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Introduction1
Magnetism is a phenomenon we encounter in our daily lives from a very young age.

As kids, one of the first toys we interact with is a “magic board” consisting of a pen

with a magnetic tip and a screen hiding some dark magnetic powder floating in a white

liquid: rolling the pen on the board our drawing appears and we can wipe it clean just

by swiping a bar that will release the powder to the hidden back. As adults, we often

use magnets to hold notes on our fridge, or keep track of our reading progress using

magnetic bookmarks. We can safely state that a large part of the population has directly

interacted with some magnetic material.

On the other hand, the microscopic theory of magnetism still poses several questions.

We know that the fundamental blocks for a microscopic magnetic theory are spin and

orbital moments. While orbital moments have an analogue in classical mechanics, spins

are an intrinsic quantum property of particles and have no classical counterpart.

One of the first attempts to model ferromagnetism is the Ising model proposed by

E. Ising in his PhD dissertation under the supervision of W. Lenz [1]. In this model,

the spins are viewed as a vector that can only point up or down (Ising spins). Ising

introduced an interaction between nearest neighbour (NN) spins:

HIsing = −J
∑
<i,j>

SiSj , (1.1)

with J > 0. His study was performed on a one dimensional chain, and did not show

any possible phase transition to a ferromagnetically ordered state at finite temperature.

While Ising believed his model to be flawed, we now know that it is not the Hamiltonian

that supports the ordered state at finite temperature, but rather the dimensionality is to

be blamed for that. In fact, it has been shown that the Ising interaction leads to phase

transitions at finite temperature in two [2, 3] and three dimensions [4, 5, 6].

Going back to our daily experience, the magnetic materials we are most used to are

ferromagnetic (FM) materials. In fact, ferromagnetism was already known to ancient

Greeks and it was the first one to be tackled through a microscopic theory, as evident

from the choice of FM interaction in the Ising model. This can be understood by noting

that the finite magnetic moment of a ferromagnet is macroscopically detectable (think of

the magnets on your fridge). Opposite to this phenomenon, we have antiferromagnetic

(AFM) materials. Those will not show any finite net magnetic moment, despite not being

a trivial paramagnet, where moments point disorderly in all directions, averaging to a

vanishing total magnetic moment. Theoretical studies on AFM materials started in the

1930s with Louis Néel and the existence of such an ordered state was experimentally

shown in 1949 thanks to neutron diffraction measurements of MnO taken by Clifford

Shull and Stuart Smart [7].

While antiferromagnetism was the challenge in the beginning of the 20th century,

magnetism in the 21st century is dealing with a new, more exotic, form of magnetism.

Namely, what we have come to call as frustrated magnetism. The simplest example

to show how this new flavour of magnetism works is to consider three Ising spins on
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(a)

(b)

?(c)
A

B

C

Figure 1.1: Examples of (a) FM ordering and (b) AFM ordering on a chain. (c) Ising spins

with AFM interactions on a triangle are the simplest example of geometric frustration

(see text).

an equilateral triangle with AFM interactions, i.e, the energy is minimised when the

spins are antiparallel. We can fix the A spin in Fig. 1.1(c) to point up, then the B spin

would point down, but what about the C spin? It is not possible for this system to

minimise all interactions at once. In such cases, we talk of geometrical frustration, since

the frustration arises from the geometrical properties of the lattice.

Another path to frustration is known as exchange frustration. In this case, different

spin components interact in an Ising fashion on different bonds. The most famous example

of such a kind of frustration is the Kitaev model, which will be introduced in more detail

in Chapter 4.

In this dissertation, we will present examples of both geometrical and exchange frus-

tration on one-dimensional (1D) and quasi-one-dimensional (quasi-1D) systems. Before

we do so, we will briefly introduce quantum phase transitions, some concepts in frustrated

magnetism and 1D systems, and talk about the numerical method, namely the density

matrix renormalisation group (DMRG) method, used in this work.

1.1 Quantum phase transitions

The concept of phase transitions is common to most people. Everyone knows that water

will turn into ice when put in a freezer and that it is important that the water is boiling

before we throw in our pasta for cooking. These changes in state that are commonly

experienced have one thing in common: a change in temperature. In this work, however,

we consider systems at zero temperature. How do we change the state of our system

then? In this case, a phase transition can be induced by varying a non-thermal parameter,

such as pressure, magnetic field or chemical composition, i.e., doping. Transitions of this

kind are called quantum phase transitions (QPT), as the leading mechanism breaking

the order is represented by quantum fluctuations.

Considering systems at zero temperature allows us to avoid the constraint on 1D

systems imposed by the Mermin-Wagner theorem [8]. This theorem states that there

cannot be any spontaneous breaking of continuous symmetries at finite temperature for

d ≤ 2. As said above, we here consider systems at zero temperature. Thus, quantum

phase transitions are allowed in 1D systems.

2



1.2. Concepts in magnetic frustration

(a) (b)

Figure 1.2: A possible configuration for (a) a short range RVB spin liquid and (b) a long

range RVB spin liquid on a triangular lattice.

In this work, we study different 1- and quasi-1D phase diagrams as the couplings

in the Hamiltonian change. Physically, this change would be induced by one of the

non-thermal parameters listed above. Moreover, as some of these models can apply to

different materials with different values of the interactions, a study of the whole phase

diagram for different ratios of the couplings gives access to universal predictions for all

materials described by a certain Hamiltonian and a better understanding of the physics

typical of the model considered.

1.2 Concepts in magnetic frustration

As briefly stated above, the hydrogen atom of geometric frustration is composed of three

spins with AFM interactions on a triangle. If we now consider Heisenberg spins, i.e., spins

with three components Sx, Sy and Sz that follow the angular momentum commutation

relations, and consider a whole triangular lattice, we end up with a different frustrated

system. This model was used by Anderson in 1973 when he first introduced the concept

of a resonating valence bond (RVB) state [9]. If we consider a lattice where spins form

valence bonds, i.e., singlets, between first neighbours, then we are in the presence of a

valence bond solid (VBS). This state has total spin 0 and is non-magnetic. In a perfect

VBS state, NN spins are maximally entangled, but they are not entangled with the other

spins in the system. Moreover, the formation of singlets on certain bonds can break the

translational symmetry in the lattice. If we now allow for quantum fluctuations to act on

the valence bonds, so that the ground state is composed of all possible superpositions

of different partitions of spins into valence bonds, we are in the presence of a quantum

spin liquid (QSL). We can further distinguish between short-range and long-range RVB

pairing, as shown in Fig. 1.2.

Though the original proposal of Anderson was modelled on the spin-1
2 AFM Heisenberg

triangular lattice, the ground state of this model is yet to be defined. It is, however,

possible to say that this model shows long range order with finite magnetisation ∼ 60%

3



Chapter 1. Introduction

of the classical one [10, 11, 12, 13, 14, 15]. These results rely on numerical methods such

as quantum Monte Carlo and exact diagonalization. They also show that powerful and

reliable numerical methods are of great importance in the context of magnetic frustration.

The RVB state proposed by Anderson is the first example of what we call a QSL. This

state of matter is defined by the absence of magnetic ordering down to zero temperature.

The absence of ordering is due to strong quantum fluctuations, typical of frustrated

systems. Moreover, QSL do not spontaneously break any symmetry and show long-

range entanglement, fractionalised excitations and artificial gauge fields [16]. All of

these properties are predicted by theory, which also classifies different QSL based on

their symmetry properties (topological order) [17]. Nonetheless, this state of matter

is very elusive and hard to conclusively detect experimentally, due to the lack of a

“smoking gun” signature. In fact, this state is characterised by the vanishing value of all

major observables: no magnetisation, no dissipation, exponential/power-law decay in

the correlations for gapped/gapless QSL. Possible probes for measuring QSL properties

are: specific heat measurements, which can be compared to the theoretically expected

low-energy density of states, thermal transport measurements, which can detect the

nature of the excitations, i.e., fractionalisation, and neutron scattering measurements,

which give information about the nature of the excitations through their energy dispersion

and also information about the correlations in the system.

Another possible consequence of magnetic frustration, almost opposite to the formation

of spin liquid states, is the phenomenon known as order by disorder. This characteristic

situation was first introduced by Villain in 1980 [18]. He analysed a magnetic model with

a classically degenerate ground state and was the first to recognise the importance of

focusing on the free energy. The high degeneracy in the ground state we are referring to is

not the usual symmetry related degeneracy: these states are not symmetry related. They

are, in fact, characterised by different symmetries. By including fluctuations, quantum or

thermal, it is possible to break this degeneracy and select a certain ordered state. Hence,

an ordered state is chosen through the disordered fluctuations, explaining the naming

order by disorder.

1.3 One-dimensional systems

The properties of 1D systems are very different from those of higher dimensional systems.

First of all, it is easy to notice that only collective excitations are possible. In fact,

electrons cannot “avoid” each other in 1D, and only a collective motion is possible, much

like people waiting in line at the bank.

The basic concept behind 1D physics is given by the Tomonaga-Luttinger model, also

called the Tomonaga-Luttinger liquid (TLL). This model clearly shows how the concept

of a Fermi liquid breaks down in 1D, as scattering processes close to the Fermi level

become of the utmost importance. Tomonaga was the first to realise that the low-energy

excitations of a 1D non-interacting fermionic system are bosonic-like excitations with

linear dispersion relation [19]. Luttinger extended this model to an exactly solvable one

that shows the following properties: there are no fermionic low-lying excitations, there is

no Fermi surface as in the usual definition, correlation functions decay asymptotically at

large distances and long times with non-universal exponents [20]. All of these properties

4



1.4. Methods

descend from the linear dispersion.

In 1D, there is no Fermi surface, but only two Fermi points ±kF . All states far

below these points are filled and all those far above are empty. Therefore, single-particle

and electron-hole pair excitations are situated near those points in a kBT range and

determine the physical properties of the system. Let us focus on electron-hole excitations.

If both the particle and the hole are in the vicinity of the same Fermi point, the required

momentum q for the process is much smaller than kF . On the other hand, if they are

around opposite points, the required momentum is of the order of ±2kF . Thus, low-energy

particle-hole excitations exist only at q = 0, ±2kF . Without going into mathematical

details, using the linear dispersion it follows that the excitation energy is always ±~vF q
independently of the position of the hole, giving rise to a highly degenerate spectrum.

Moreover, the system can be mapped from fermion to boson operators and the Fermi sea

is their vacuum.

Maybe the most important property of the excitations of this model is the so called

spin-charge separation. This is an example of fractionalisation, i.e., the mechanism

for which the excitations of a system only carry a part of the physical quantities of

the original particle. In fact, an electron has a charge e and a spin S, but through

fractionalisation these are split in two quasi-particles: spinons, carrying the spin degree

of freedom, and holon, carrying the charge degree of freedom. These two quasi-particles

propagate separately in the system. Fractionalisation appears in other systems, such as

the fractional quantum Hall effect and spin liquids, and it is a signature of the topological

nature of the system in question.

It is important to notice that the isotropic AFM Heisenberg chain is in a TLL state

and the non-Fermi liquid behaviour is a generic property of 1D systems.

1.4 Methods

When considering spin-1/2 systems as we do in this study, the size of the Hilbert space

grows exponentially with the size of the system as 2L, with L being the system’s size.

Therefore, exact diagonalization methods such us the Lanczos algorithm cannot easily

tackle systems larger than L = 30-40. While in some cases this might be enough, especially

given that these methods are numerically exact, there are systems in which finite size

scaling is of the foremost importance. Moreover, there are cases where the long range

order (LRO) stabilises only after reaching a certain critical size.

To tackle large systems in 1D and quasi-1D, one of the best numerical tools is the

density matrix renormalisation group (DMRG). Introduced by S. R. White in 1992 [21]

as an evolution of the numerical renormalisation group of Wilson, DMRG has widely

spread and it is nowadays recognised as highly trustworthy. In this section, we explain

the ideas behind our version of the algorithm.

The main idea behind any renormalisation group procedure is to keep only the relevant

degrees of freedom. This is achieved through successively eliminating the microscopic

degrees of freedom, ending up with a coarse-grained version of the initial system that still

keeps all of the information we are looking for. In DMRG, the renormalisation procedure

is performed on the eigenstates of the density matrix of the system [21, 22].

There are three lines of reasoning focusing on the optimisation of different quantities

5



Chapter 1. Introduction

for why this truncation procedure leads to a good approximation of the exact ground

states: optimisation of expectation values [23], optimisation of the wave function [21, 24]

and optimisation of entanglement [25, 26, 27, 28]. We will here present the argument

about optimising the expectation values.

Consider a system S of length ` and add a site σ. The physical state of the system

can be represented through the reduced density matrix

ρ̂ = Trσ |ψ〉 〈ψ| (1.2)

where |ψ〉 is the pure ground state of the supersystem Sσ and we have traced out the

site σ. Diagonalising the matrix ρ, we find it has N eigenvalues wα, with N being the

Hilbert space dimension of the system S and wα ≥ 0. Let us order the eigenstates in

decreasing value, so that w1 ≥ w2 ≥ w3 ≥ · · · ≥ wN . The prescription used in DMRG is

to keep only the first m largest eigenvalues and the related eigenstates. Let us consider a

bounded operator Â acting on S. The expectation value can be expressed in terms of the

reduced density matrix as

〈Â〉 = TrS ρ̂Â =
N∑
α=1

wα 〈wα| Â |wα〉 . (1.3)

Keeping only the m largest eigenvalues translates to the expectation value of Â as

〈Â〉approx =

m∑
α=1

wα 〈wα| Â |wα〉 . (1.4)

The error done with this approximation is bounded from above

〈Â〉approx − 〈Â〉 ≤=

(
N∑

α>m

wα

)
cA = ερcA, (1.5)

where cA is the exact expectation value for Â. For local quantities, errors are of the order

of the truncated weight

ερ = 1−
(

N∑
α>m

wα

)
. (1.6)

In this study, we use finite DMRG (fDMRG). This, however, needs infinite DMRG

(iDMRG) as a warm-up step. Therefore, we will now briefly present both versions of the

algorithm.

In our iDMRG warm-up step, we start by considering a block S with a Hilbert space

of dimension m and a basis {|m〉`}, ` being the length of the system. We now add a

site σ to the block S and we assume its Hilbert space to have dimension d, so that the

final total dimension for the Hilbert space of the superblock Sσ is md and the basis is

composed of product states {|m`σ〉} = {|m`〉 |σ〉}. Though the Hamiltonian H`+1 for Sσ

can be represented in this basis explicitly, this is normally not done in order to preserve

storage space. Using a large sparse-matrix diagonalisation algorithm, we now find the

ground state |Ψ〉 of the Hamiltonian HSσ. From |Ψ〉, we construct the density matrix

ρ = |Ψ〉 〈Ψ|. This is a md×md matrix. By tracing out the site’s degrees of freedom, we

6



1.4. Methods

(a) (b)

Figure 1.3: A visual representation of the DMRG method: (a) represents the iDMRG

algorithm. Starting from two sites, one site is added at every step of the algorithm until

a final length L is reached. (b) The fDMRG algorithm starts from the last step of the

iDMRG one. The figure shows how the block E grows against the block S.

find the reduced density matrix ρS = Trσρ. Having the reduced density matrix, we now

perform the “real” renormalisation procedure: we diagonalise this matrix and keep only

the m eigenstates with the largest eigenvalues. The last step is to perform a reduced

basis transformation Htr
`+1 = T †H`+1T , with T being a rectangular matrix of size md×m

with elements 〈ψσ|m`+1〉. Here, |m`+1〉 refers to the basis for a block with length `+ 1.

We rename Htr
`+1 → H`+1 and we perform the procedure described above until we reach

a certain fixed length L. This construction allows us to observe a translational symmetry

broken state.

The fDMRG algorithm starts from the last step of the iDMRG one. We consider a

system (S) and an environment (E) block. While the iDMRG involves only growing the

block and renormalising it, fDMRG fixes the whole length of the superblock S +E and

grows only one block at a time, while shrinking the other one. Moreover, the projection

procedure described above is carried out only on the growing block. So, we will start

with two blocks and let the environment grow, while the system shrinks. While doing so,

the renormalisation procedure is applied only to the environment block. Once the system

cannot shrink anymore, the procedure is reversed: the system block grows against the

environment one until the minimal length for the environment is reached. This process is

called a sweep. To check convergence, different sweeps are performed and, in many cases,

the use of different m-values is advised as well as m-value extrapolation of interesting

quantities.
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Quasi one-dimensional frustrated materials2
As introduced in the previous chapter, 1D physics shows peculiar phenomena arising

from strong quantum fluctuations [29]. As in this work we are dealing with frustrated

spin systems, we will now present some of the important concepts emerging due to the

interplay of low-dimensionality and geometric frustration and we will relate them to

studied materials that can be well described by quasi-1D models.

2.1 Magnons, spinons and spin waves

When considering a ferromagnet, the way we picture it is with having all of its spins

parallel to each other. This would be the ground state configuration. The easiest

perturbation we can apply to this ground state is the flip of a single spin. If we consider

the system to have only NN FM interactions, it is easy to see how the energy would rise

and the neighbouring spins would “notice” the antiparallel defect. Because of that, they

will also tend to misalign from the magnetisation direction, but instead of completely

reversing their direction, they will only slightly change it. Their neighbours will also

follow this behaviour and this whole process will create a collective misalignment known

as a spin-wave. More quantitatively, a single spin-flip would cost an energy |J |, with J

being the FM Heisenberg coupling. If we allow for superpositions of this kind of excitation

all over the system, the energy cost tends to zero in the small q limit, with q being

transferred momentum. This limit corresponds to considering very large wavelengths for

the spin-waves. Hence, we can conclude that spin-waves are the magnetic excitations

of a FM material. Because quantum mechanics allows us to associate a particle with a

wave, we can define a quasi-particle called magnon and associate it with the spin-wave.

Magnons are bosonic quasi-particles and carry a spin S = 1. In most cases, when the

wave properties such as propagation direction and dispersion are not important, people

use magnons to treat FM excitations.

Let us now consider the AFM case. In particular, let us take into consideration a Néel

chain. A single spin-flip can result into two domain walls as depicted in Fig. 2.1(a). These

two domains do not cost any additional energy, so that a single domain has an energy of

∼ |J |/2. Now, a single spin flip Sz = 1 results in two different independent quasiparticles

[see Figs. 2.1(b) and 2.1(c)]. As the total Sz is not changed, each quasiparticle carries

spin S = 1/2. We call such excitations spinons. Because in 1D the spinons propagate

independently and without additional energy cost, we say they are deconfined. For higher

dimensions, separating a magnon into two spinons generally requires energy. We then talk

about confined spinons. The energy cost comes from noting that, in a 2D or 3D AFM

ordered state, the two spinons are connected by a string of flipped spins with frustrated,

i.e., not satisfied, bonds. Thus, the energy is proportional to the length of the string.

In a 1D Heisenberg AFM, the dispersion relation for spinons can be found through the

Bethe ansatz [30]:

~ωspinon
q =

π

2
J sin q, (2.1)
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(a)

(b)

(c)

continuum

(d)

Figure 2.1: (a) A spin flip in a Néel chain creates two domain walls [29]. Panels (b) and

(c) show the propagation of the spinon quasiparticles. (d) The spinon dispersion relation

and continuum.

0 0.24 0.5

dimerised 

gapped

critical

gapless

short range 

incommensurate

Figure 2.2: The phase diagram for the AFM J1-J2 chain as a function of the parameter α

where J > 0 is the AFM coupling. As a single excitation generates a pair of spinons, the

momentum q can be distributed in different ways between the two quasiparticles. This

leads to the existence of a spinon continuum of excitations for a single momentum q (Fig.

2.1 (d)).

2.2 The spin-Peierls transition

The spin-Peierls transition takes its name from the similar Peierls transition that can

take place in conducting quasi-1D materials. This transition implies a dimerisation in

the underlying lattice structure, i.e., spontaneous translational symmetry breaking. In

fact, dimerisation on the chain merely means that two bonds that are equivalent in the

Hamiltonian become inequivalent on the lattice. One can see this as a displacement

along the chain, where pairs of electrons alternate being closer or further apart. The

dimerisation causes a gap in the electronic spectrum which, in return, lowers the energy

of the filled bands below the gap. A similar picture can be used for spin chains, only

that, in this case, the dimerisation is driven by spin-spin interactions instead of being

an instability related to conduction electrons. Moreover, a spin-Peierls transition also

involves the formation of a spin gap.

This phenomenon was first observed in organic materials [31]. The first inorganic

crystal showing this transition was CuGeO3. In 1993, Hase et al. showed that the

reduction in the magnetic susceptibility χ(T ) was isotropic along the different magnetic

axis, in contrast with the pure AFM transition [32]. The sharp drop in χ happens at

10



2.3. Cuprate chains with ferromagnetic first-neighbour interaction

TSP = 14 K. Through the existence of a broad maximum in the correlations at Tmax = 56

K, the intrachain coupling is fixed to be J = 88 K. When T < TSP , the chain exhibits

two alternating NN coupling J1 and J ′1 due to dimerisation with J
(′)
1 = J(1± δ(T )). The

dimerisation parameter is found to be δ = 0.17 through its proportionality to the spin

gap (∆ ∼ δ2/3), which is measured to be ∆ = 24 K. The small interchain couplings have

been determined through inelastic neutron scattering to be Jb = 0.1 J and Jc = −0.1 J

[33]. All spin-Peierls compounds show a similar magnetic phase diagram composed of

a uniform phase, a dimerised phase and an intermediate phase [34]. This intermediate

state is thought to be a commensurate, dicommensurate or incommensurate state.

By neglecting the effect of the electron-phonon coupling, this compound might be

modelled by the so called AFM J1-J2 chain [35], with J1 (J2) being the nearest (next

nearest) neighbour interaction. The Hamiltonian is given by

H = J1

∑
i

Si · Si+1 + J2

∑
i

Si · Si+2, (2.2)

where J1, J2 > 0. It is easy to see this model is, indeed, geometrically frustrated. By

defining a frustration parameter α = J2/J1, the quantum phase transition from a gapless

to a gapped state is found at αC = 0.24 [36, 37, 38]. We show the full phase diagram of

the AFM J1-J2 chain in Fig. 2.2.

2.3 Cuprate chains with ferromagnetic first-neighbour interaction

While the CuGeO3 compound exhibits NN AFM interactions, most spin chains composed

of edge sharing CuO6 octahedra have a FM J1 interaction (J1 < 0). As the next nearest

neighbour (NNN) coupling is AFM, these chains are frustrated. We will thoroughly

analyse the ground state phase diagram of what we call the FM J1-J2 chain (in contrast

to the pure AFM J1-J2 one) in Chapter 3. Here, we present some of the compounds that

are believed to be described by the FM J1-J2 chain as a minimal model. We point out

that this system is expected to be in an incommensurate spin helix state for J2/|J1| > 1/4

[41].

Several compounds are expected to show this kind of interactions, such as LiCu2O2

[44], Li2CuZrO4 [39], LiCuSbO4 [43] and LiCuVO4 [45]. The last one, in particular,

shows ferroelectricity at low temperature and spin nematicity at high magnetic fields.

The crystal structure is shown in Fig. 2.3(c). The Cu2+ ions form magnetic chains with

S = 1/2 along the orthorombic b axis [45]. The values of the couplings are found to be

J1 = −19 K and J2 = 44 K. It is, however, necessary to include an interchain coupling

J ′ = −4.6 K in order to explain the long-range helix order setting at TN = 2.4 K [46].

The incommensurate vector is found to be Q = (0; 0.532; 0) and the spin spiral ground

state is in the ab plane. We show the magnetoelectric phase diagram from Ref. [42] in

Fig. 2.4(a).

While LiCuVO4 shows long-range order at low temperature, the similar compound

LiCuSbO4 does not exhibit it down to TN = 0.1 K. Through 7Li nuclear magnetic

resonance (NMR) measurements it was possible to probe the temperature dependence of

the spin lattice relaxation rate T−1
1 at various fields [43]. The magnetic phase diagram

found in this study is shown in Fig. 2.4(b). The first feature reported in Ref. [43] is

11
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(a) (b)

(c) (d)

Figure 2.3: Crystal structure of (a) CuGeO3, (b) LiCuVO4, (c) LiCuSbO4 and (d)

PbCuSO4(OH)2. Figs. (a) and (b) are taken from Ref. [39]. Fig. (d) is modified from

Ref. [40].

that the ordering temperature increases with field, against the normal behaviour of the

Néel temperature, which is expected to be suppressed under magnetic field. Moreover,

a critical field µ0Hc = 13 T was determined. At this field, T−1
1 vs T is drastically

suppressed. This has been interpreted as a point at which magnetic fluctuations change.

Furthermore, a spin gap was observed and several possible mechanism were taken into

consideration before claiming that the correct magnetic ground state is a nematic spin

liquid.

Another spin chain compound that presents a rich magnetic phase diagram is the

linarite compound PbCuSO4(OH)2. Linear spin wave theory predicts the couplings to

be J1 = −114 K and J2 = 37 K [47]. For this material, it is necessary to consider an

interchain coupling J ′ = 4 K. DMRG calculations find an anisotropic J1 = (Jx1 , J
y
1 , J1,

z ) =

(−91.1,−86.6,−88.4) K and J2 = 28.3 K, so that α ∼ 0.32 [40] in order to describe the

experimental results. Within these calculations, the interchain coupling is found to be

J ′ = 2.7 K. The phase diagram has been determined through neutron diffraction and
1H-NMR. It is composed by five different states for field parallel to the b axis [48, 49, 50].

The low-temperature and low-field phase is a helical incommensurate magnetic state with

Q = (0; 0.186; 0.5) [51] (phase I in Fig. 2.4(c)). At lower temperatures, an hysteretic phase

II separates phase I from the polarised phase IV with commensurate vector Q = (0; 0; 0.5)

[48]. For T > 600 mK, phase I and IV are separated by a coexistence phase III [48].

12
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(a) (b) (c)

Figure 2.4: (a) Magnetoelectric phase diagram of LiCuVO4 as reported in Ref. [42].

(b) Magnetic phase diagram of LiCuSbO4 as reported in Ref. [43]. (c) Magnetic phase

diagram of PbCuSO4(OH)2 adapted from Ref. [40].

Phase V surrounds phase I, III and IV. This phase is a spin density wave state with

propagation vector Q = (0; ky; 0.5) shifting with magnetic field [48]. Recent experimental

results point in the direction of another phase VI close to the saturation region [40].

This phase would present nematic correlations and a possible two magnon gap. The

effect of the Dzyaloshinsky-Moriya interaction on this compound is yet to be theoretically

analysed. We show the phase diagram from Ref. [40] in Fig. 2.4(c).
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The ferromagnetic frustrated J1-J2 chain3
3.1 Introduction

The one-dimensional quantum world of spin-chain systems connects some of the most

advanced concepts from many-body physics, such as integrability and symmetry-protected

topological order [52], with the measurable physical properties of real materials. An

example is the presence of the Haldane phase [53] in spin-1 chains, which is a topological

ground state protected by global Z2×Z2 symmetry [54, 55]. On the other hand frustrated

magnets, in which a macroscopic number of quasi-degenerate states compete with each

other, are an ideal playground for the emergence of exotic phenomena [56]. For instance,

the interplay of frustration and fluctuations leads to unexpected condensed matter

orders at low temperatures by spontaneously breaking of either a continuous or discrete

symmetry, i.e., order by disorder [57]. A prototype for the interplay of low-dimensionality

and geometric frustration is the so called J1-J2 chain, with NN J1 and NNN J2 coupling,

the Hamiltonian of which is given by

H = J1

∑
i

Si · Si+1 + J2

∑
i

Si · Si+2, (3.1)

where Si are spin-1
2 operator at sites i. This model exhibits frustration for AFM J2

(J2 > 0) and both signs of J1. While the ground state of the AFM J1-J2 chain is well

understood [36, 37, 38], assisted by the exact solution of the Majumdar-Ghosh model for

α = 0.5 [58]; the ground and excited state properties of the FM J1-J2 chain are still not

completely identified. It is known that a phase transition occurs at α = 1
4 [59, 60] from

a FM to an incommensurate spiral state [61, 62] with dimerisation order [63], but the

quantitative estimation of the spin gap (if it exists) and its numerical confirmation have

been a long standing challenge - so far there is only a field-theoretical prediction of an

exponentially small spin gap for α & 3.3 [64, 65].

The FM J1-J2 chain is used as a standard magnetic model for quasi-one-dimensional

edge-shared cuprates such as Li2CuO2 [66], LiCuSbO4 [43], LiCuVO4 [67], Li2ZrCuO2

[39], Rb2Cu2Mo3O12 [68] and PbCuSO4(OH)2 [69]. Especially, multimagnon bound

state [70] and multipolar ordering [71] under magnetic field have been established both

theoretically and experimentally in this context.

In this chapter, we numerically prove the existence of a gapped state in the FM J1-J2

chain and describe the ground state configuration supporting the spin gap, finding a

topologically non-trivial ground state in Sec. 3.2. We then introduce a dimerisation in

the first-neighbour interaction, extending our model to a J1-J ′1-J2 chain. The reason

for introducing a dimerised interaction in the Hamiltonian lies in the properties of real

materials, where NN bonds are not equal. In particular, two of the cuprate chains listed

above are expected to exhibit explicit dimerisation: LiCuSbO4 [43] and Rb2Cu2Mo3O12.

Parts of this chapter have been published as SciPost Phys. 6, 19 (2019) and Phys. Rev. B 95,

220404(R) (2017)
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Chapter 3. The ferromagnetic frustrated J1-J2 chain

The anisotropic frustrated spin-chain cuprate LiCuSbO4 was recently reported to exhibit

a magnetic field-induced “hidden” spin-nematic state [43]. By the nuclear magnetic

resonance technique, a field-induced spin gap was observed above a field ∼ 13T in the

measurements of the 7Li spin relaxation rate T−1
1 , supported by static magnetisation

and electron spin resonance data. This material has a unique crystal structure: In the

CuO2 chain, four nonequivalent O2− ions within a CuO4-plaquette give rise to two kinds

of nonequivalent left and right Cu-Cu bonds along the chain direction. This gives rise to

alternating nearest-neighbour transfer integrals (t1 6= t′1). As a result, a sizeable splitting

of the two NN FM exchange integrals was estimated: J1 ≈ −160K and J ′1 ≈ −90K,

whereas the NNN AFM coupling is J2 ≈ 37.6K [see Fig. 3.11(a)]. Another example of a

FM dimerised chain compound is Rb2Cu2Mo3O12 which has CuO2 ribbon chains. Here

its ribbon chains are twisted, so that the Cu-Cu distances and the Cu-O-Cu angles are

slightly alternating. Accordingly, a small dimerisation of the nearest-neighbour exchange

integrals is expected. Assuming no dimerisation, the values of the FM nearest- and AFM

next-nearest-neighbour exchanges have been estimated as −138K and 51K, respectively,

by the fitting of susceptibility and magnetization [72]. Besides, a non-magnetic ground

state with energy gap Eg ∼ 1.6K has been experimentally detected [73]. The Hamiltonian

for the dimerised model is

H = J1

∑
i=odd

Si · Si+1 + J ′1
∑
i=even

Si · Si+1 + J2

∑
i

Si · Si+2, (3.2)

We study the phase diagram as a function of the dimerisation and frustration parameters

in Sec. 3.3. We define the phase transition line from the FM gapless to the gapped state

using spin wave theory. The gapped region supports a crossover between two different

AKLT-like VBS states.

3.2 Frustrated ferromagnetic J1-J2 chain

In this section, we focus on the FM J1, AFM J2 chain. We refer to this system as FM

J1-J2. The Hamiltonian is given by eq. (3.1), with J1 < 0 and J2 > 0. This chain

system can be also represented as a zigzag ladder [Fig. 3.1(a)] or a diagonal ladder

[Fig. 3.1(b)-(d)]. The frustration is parametrised as α = J2/|J1|.
Our aim is to determine the ground state and spin gap of the FM J1-J2 chain. To this

end, we calculate various quantities including spin gap, string order parameter, several

dimerisation order parameters, dimer-dimer correlation function, spin-spin correlation

function, and entanglement entropy using DMRG. First, we verify the existence of a

finite spin gap at α > 1
4 and find its maximum around α = 0.6. Next, we show that the

ground state is a VBS state with spin-singlet formations between third-neighbour sites

(which we refer to as the “D3-VBS state”), which leads to the finite spin gap. The leading

mechanism for the emergence of this ordered state is magnetic frustration, which is

characterised by the presence of strong quantum fluctuations: while the classical ground

state is highly degenerate, quantum fluctuations in the system lift this degeneracy with

formation of FM dimers and valence bonds, thus we are observing the formation of order

by disorder. Remarkably, this VBS state is associated with an Affleck-Kennedy-Lieb-

Tasaki (AKLT) [74]-like topological hidden order (see Sec. 3.2.1). While there exist
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(d)

(c)

(b)

(a)

(e)

Figure 3.1: (a) Lattice structure of the J1-J2 chain (at J ′3 = 0) as a zigzag ladder. The J1

chain is shown in red. Bold lines represent spin-triplet dimers, which are spontaneously

formed in the VBS state. Dotted lines show the third-neighbour J ′3 bonds (see text). (b),

(c), (d) Three candidates for the VBS ground state of the FM J1-J2 chain. Red bold

line represent effective S = 1 site as spin-triplet pairs of two spin-1
2 sites, blue ellipses

represent spin-singlet pairs, i.e., valence bonds. The dashed J1 bonds at the chain edges

are set to be zero in most of our calculations. (d) Schematic picture of the third-neighbour

VBS ground state (“D3-VBS state”) of the FM J1-J2 chain.

examples of order by disorder in quantum chains (e.g. Majumdar-Ghosh model [58]),

we are not aware of previous example of topological order by disorder. We support the

topological nature of the D3-VBS state by computing the entanglement spectrum (ES) of

the system. We confirm the robustness of the D3-VBS state by considering an adiabatic

connection of the ground state to the enforced third-neighbour dimerised state.

3.2.1 AKLT model

In 1987, Affleck, Kennedy, Lieb and Tasaki presented a result about a new magnetic

state they called a VBS [74]. This state, when present in one-dimensional AFM, features

a Haldane gap, hence being the first exact solution following Haldane’s suggestion in

1983 [53]. A VBS state is constructed as follows: first, note that a good basis for any

spin-singlet states of spin-1
2 AFM consists of all possible products of pair contractions

of spins into singlets (referred to as valence bonds). We can then rewrite any spin s by

symmetrising 2s spin-1
2 variables. Now, we can express our spin-singlet state in terms of
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(a)

(b)

(c)

(d)

Figure 3.2: (a) and (b) show the two possible ground states for the MG model. Black

dots represent S = 1
2 sites. (c) shows the S = 1 AFM chain. Blue dots represent S = 1

sites. (d) shows the AKLT-state. Blue ellipses represent S = 1 sites, black dots are the

virtual S = 1
2 , red lines represent the valence bonds in all figures.

2s valence bonds emanating from each site and terminating on different sites.

It is important to notice that this state does not break translational symmetry,

marking a difference with a dimerised state. One important example of a dimerised

spin chain is the Majumdar-Ghosh (MG) model. The MG model is an extension of the

AFM Heisenberg spin-1
2 chain in which a NNN AFM interaction is added. This NNN

interaction is set to be half of the nearest neighbours one and the Hamiltonian reads:

HMG = J
N∑
i

Si · Si+1 +
J

2

N∑
i

Si · Si+2 = J
N∑
i

[
(Si + Si+1 + Si+2)2 − 6

9

]
. (3.3)

This system is exactly solvable and features two possible ground states composed of

neighbouring pairs forming singlets as shown in Figs. 3.2(a-b). The two states |ψ+〉 and

|ψ−〉 break translational symmetry going from a period of 1 to a period of 2. The ground

state is then given by the superposition of these two solutions: |ψ〉MG = 1√
2
(|ψ+〉+ |ψ−〉)

On the other hand, we can consider the s = 1 AFM chain in a VBS state shown

in Fig. 3.2(c). Using the same representation as in Figs. 3.2(a-b), we can re-draw it

explicitating the virtual spin-1
2 as in Fig. 3.2(d). It is then clear that a VBS does not break

translational symmetry. Moreover, a VBS exhibits a gap and short-range correlations.

Consider again the spin-1 chain as in Fig. 3.2(d). A similar projection method to

the one used for the MG model can be applied. The VB forming at each neighbouring

pair implies that the total spin of each pair cannot be 2. We can then use the projection

operator onto spin 2 for each pair to define the Hamiltonian as:

HAKLT =
∑
i

P2(Si + Si+1) (3.4)

=
∑
i

[
1

2
S1 · Si+1 +

1

6
(Si · Si+1)2 +

1

3

]
. (3.5)
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Clearly, 〈H〉 ≥ 0. Affleck, Kennedy, Lieb and Tasaki have shown that a ground state

|ψ〉AKLT exists such that H |Ω〉 = 0. Using modern notation, we now call this ground

state a matrix product state (MPS). In fact, this state can be written in terms of matrices

as:

|ψ〉AKLT =
∑
s

Tr(As1As2 . . . AsL) |s〉 , (3.6)

where |s〉 = |s1, s2, . . . , sL〉 represents the state of the chain with |si〉 = |+〉 , |0〉 , |−〉
and Asi are 2× 2 matrices defined as:

A+ =

√
2

3
σ+ A0 = − 1√

3
σ0 A− = −

√
2

3
σ− (3.7)

with σ± = 1
2(σx ± iσy) and σx,y,z are the standard Pauli matrices.

Having defined the ground state of the spin-1 AKLT VBS, we can now look into its

properties. First of all, it has hidden AFM order, i.e., when removing all the Sz = 0

sites, the remaining non-zero sites will alternate between +1 and −1 in the standard Sz

basis. Moreover, if we consider an open chain, zero-energy spin-1
2 excitations can appear

at the edges [54], making the ground state 4-fold degenerate and giving us the first hint

that this state is topologically non trivial, as the spin-1
2 edge states are an example of

fractionalisation. The first property can be detected using the string order parameter

introduced by Den Nijs and Rommelse in 1989 [75]:

Oγstring = − lim
|k−j|→∞

〈(Sγk ) exp(iπ

j−1∑
l=k+1

Sγl )(Sγj )〉, (3.8)

with γ = x, y or z. The second property is seen in system with open boundary

conditions as it is then possible to detect 4 nearly-degenerate states in the lowest part of

the spectrum, separated by a Haldane gap from the rest.

These two properties are common to the whole Haldane phase, including the Heisen-

berg point. Let us rewrite the AKLT Hamiltonian as

HHaldane =
L∑
i

[Si · Si+1 + λ(Si · Si+1)2]. (3.9)

This system is in the Haldane phase for −1 < λ < 1 and it describes the same system

as Eq. (3.5) for λ = 1/3, while the model originally studied by Haldane corresponds to

λ = 0. With this Hamiltonian, we can prove the two properties in a more rigorous way.

Let us consider the non-local unitary transformation introduced by Oshikawa [55]:

U =
∏
j<k

eiπS
z
j S

x
k . (3.10)

If we apply it to Eq. (3.9) with λ = 0, i.e, to the Haldane chain, we get
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H̃ = U−1(
L∑
i

Si · Si+1)U (3.11)

=

L∑
i

(Sxi e
iπSxi+1Sxi+1 + Syi e

iπ(Szi +Sxi+1)Syi+1 + Szi e
iπSzi Szi+1) (3.12)

The transformed Hamiltonian H̃ shows a global discrete symmetry given by π-rotations

along x, y, z axes, i.e., a Z2 × Z2 global symmetry.

Applying the same transformation to Eq. (3.8) with γ = z we obtain

U−1OzstringU = lim
|k−j|→∞

SzjS
z
k (3.13)

which measures FM order in the transformed system described by Eq. (3.12).

Following this line of reasoning, we conclude the Haldane phase described by Eq.

(3.9) is stabilised by a D2 = Z2 × Z2 symmetry. Moreover, we can talk about hidden

order, as this Z2 × Z2 comes from the underlying spin-1/2 virtual degrees of freedom,

as it is obvious in the open chain. We would like to point out that this is not the only

symmetry that can stabilise the Haldane phase, as demonstrated in Ref. [52]. This is,

however, the only one that allows for a non vanishing string order parameter.

3.2.2 Methods

In the studying the FM J1-J2 chain, we apply open boundary conditions (OBC) unless

stated otherwise. Besides, both edged J1’s (denoted as Jedge
1 ) are taken to be zero in

the open chain. This has an important physical implication which will be clarified in

the following. This enables us to calculate ground-state and low-lying excited-state

energies, as well as static quantities, quite accurately for very large systems. It puts us

in the position to carry out an accurate finite-size-scaling analysis to obtain energies

and quantities in the thermodynamic limit. In our DMRG calculations, we keep up to

m = 6000 density-matrix eigenvalues in the renormalization procedure. Moreover, several

chains with length up to L = 800 are studied to perform finite size scaling. This way, we

are able to obtain accurate results with error in the energy ∆E/L < 10−11. In some cases

we study larger systems up to L = 3000 to estimate the decay length of the spin-spin

correlation function and entanglement entropy.

3.2.3 Spin gap

Although the existence of a tiny spin gap was predicted by the field-theoretical analyses

[64, 65], it has not been numerically detected so far. In our DMRG calculations, the spin

gap ∆ is defined as the energy difference between the singlet ground state and the triplet

first excited state:

∆(L) = E0(L, Sz = 1)− E0(L, Sz = 0); ∆ = lim
L→∞

∆(L), (3.14)

where E0(L,Sz) is the ground state energy of a system of size L and total spin z-

component Sz. As mentioned above, we set Jedge
1 = 0; otherwise, one cannot measure
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(a) (b)

(c)

Figure 3.3: Expectation value of the z-component of local spin 〈Szi 〉 in the first-excited

triplet state (total Sz = 1) as a function of site position i at α = 0.6 with L = 600 for (a)

Jedge
1 = −1 and (b) Jedge

1 = 0. (c) Finite-size scaling of the lowest-state energy with total

Sz = 0 for Jedge
1 = −1 and Jedge

1 = 0 at α = 0.6. A linear fitting is performed in both

cases.

correctly the excitation energy for the bulk system. As shown below, our system is

spontaneously dimerised along the FM J1 chain. By regarding the ferromagnetically

dimerised NN bond as a S = 1 site, the system can be considered as a S = 1 Heisenberg

chain. In fact, this setting Jedge
1 = 0 corresponds to an explicit replacement of S = 1

spin at each end by S = 1
2 spin in the S = 1 Heisenberg open chain. It is known that

this procedure is necessary to numerically calculate the Haldane gap as a singlet-triplet

excitation defined by Eq.(3.14) because a S = 1
2 degree of freedom appears as an unpaired

(nearly) free spin at both edges, i.e., so-called edge spin state, in the S = 1 Heisenberg

open chain. The appearance of edge spin states is a definite signature of the Haldane

state. To illustrate the presence of edge spin states in our model, we plot the expectation

value of the local spin z-component, i.e. 〈Szi 〉, in the Sz = 1 first-excited triplet state as

a function of site position i at α = 0.6 for L = 600. As shown in Fig. 3.3(a), when we

naively keep Jedge
1 = −1, the spin flipped from the singlet ground state (spinon) is mostly

localised around the chain edges. It resembles the fact that a residual S = 1/2 edge
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Chapter 3. The ferromagnetic frustrated J1-J2 chain

(a)

(c)

(b)

Figure 3.4: (a)Spin gap ∆/|J1| of the J1-J2 chain as a function of the degree of frustration

α. (b) Examples of finite size scaling of the spin gap for α = 0.35 (red line), α = 0.5

(blue line) and α = 0.75 (green line). (c) Comparison between the gaps of the FM J1−J2

and the AFM J1-J2 chain on a semilog scale.

spin (out of a valence bond) in the 1D S = 1 Heisenberg model can be flipped without

energy cost. In this case, the excitation energy, i.e. the spin gap, is zero or significantly

underestimated. It thus prevents us from estimating the bulk spin gap correctly. Whereas

in the case of Jedge
1 = 0, the flipped spin is distributed inside the system as seen in Fig.

3.3(b). Therefore, this setting of Jedge
1 = 0 enables us to obtain the spin gap after an

extrapolation of the singlet-triplet excitation energy to the thermodynamic limit.

Fig. 3.4(a) shows the spin gap in the thermodynamic limit as a function of α. For

information, we present three examples of finite-size scaling analysis for the spin gap

in Fig. 3.4(b). We performed second-order polynomial fitting for all values of α. For

α ≥ 0.6, larger system sizes up to L = 800 were taken into account due to the oscillations

of the data point reflecting the incommensurate structure. For α > 0.85 the oscillations

become a crucial problem and we could not perform a reasonable fitting. The spin gap of

the FM J1-J2 chain is compared to that for the AFM J1-J2 chain in Fig. 3.4(c). For the

FM J1-J2 chain a finite spin gap is clearly observed in a certain α region, although it is

about two orders of magnitude smaller than that for the AFM J1-J2 chain. The spin

gap seems to grow continuously from α = 1
4 reaching its maximum ∆ ' 0.007|J1| around

α = 0.6, which is within the most highly-frustrated region. This already suggests that the
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3.2. Frustrated ferromagnetic J1-J2 chain

origin of the spin gap is a frustration-induced long-range order, and the result of order

by disorder.

We here check to be sure that the artificial setting Jedge
1 = 0 does not change the

ground state. To study it, we compare the lowest energies at α = 0.6 for the two different

values of Jedge
1 in Fig. 3.3(c) as a function of 1/L. We see that at finite L the energy for

Jedge
1 = 0 is rather lower than that for Jedge

1 = −1. Nevertheless, they coincide perfectly

in the thermodynamic limit (1/L = 0); a linear fitting yields E0/L = −0.2874202246 for

Jedge
1 = −1 and E0/L = −0.2874200731 for Jedges

1 = 0. This means that the bulk ground

state does not depend on the choice of Jedge
1 .

Additionally, it would be interesting to mention the relation between edge spin states

and spinon excitations. Since the spin gap is very small in our system, the spinons are

expected to be nearly deconfined. With setting Jedge
1 = −1, the system exhibits spin edge

states; thus, a spinon is created at the system edges as an edge spin-1
2 excitation in the

total Sz = 1 state [see Fig. 3.3(a) ]. Typically, the Friedel oscillation decays quickly (with

decay length of the order of 1) from the edges in a Haldane gapped system. If the edge

spin-1
2 is completely free like in the AKLT state, the decay length is 0. However, in our

system, it decays very slowly and the amplitude seems to be still sizeable even around

the system center for L = 600. The slow decay of the Friedel oscillation clearly indicates

nearly complete deconfinement of spinons. This is also consistent with an exponential

decay of the spin-spin correlation with very large decay length, ξ ∼ 50 (α ∼ 0.6) at the

minimum.

3.2.4 Valence Bond Solid

Having established the existence of a finite spin gap for α > 1
4 , we investigate a possible

mechanism leading to it. It is known that a spontaneous FM dimerisation is driven along

J1 bonds [64, 65] and an emergent effective spin-1 degree of freedom is created with the

dimerised two spin-1
2 ’s [63]. If the system (3.1) can be mapped onto a S = 1 Heisenberg

chain, the finite spin gap might be interpreted as a Haldane gap with a VBS state [74].

However, it is nontrivial whether an arbitrary set of valence bonds, i.e., resonating valence

bonds forming in different directions, between the neighbouring effective S = 1 sites leads

to a finite spin gap [see Fig. 3.1(b)]. To investigate the stability of the VBS state, we

examine the string order parameter. For a spin S = 1 chain, the string order parameter

is defined by eq. (3.8) and we consider γ = z. In our system, the resultant spin of two

S = 1/2 spins forming a spin-triplet pair is regarded as an effective S = 1 spin. Hence,

Eq. (3.8) can be rewritten in term of S = 1/2 spins as

Ozstring = − lim
|k−j|→∞

〈(Szk + Szk+1) exp(iπ

j−1∑
l=k+2

Szl )(Szj + Szj+1)〉, (3.15)

where Szi is the z-component of a spin-1/2 operator at site i. Considering that the

z-component of a spin-1/2 spin can only take the values Sz = ±1/2, we have

exp(iπSzl ) = i sin(±π/2) = ±i,
since cos(±π/2) = 0. Taking pairs of spins Szl S

z
l+1 (within an effective spin-1 site),

we get a relation
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(a) (b)

(c)

Figure 3.5: (a)String-order parameter as a function of α. Red (blue) line refers to open

(periodic) boundary conditions. (b) Entanglement entropy as a function of the subsystem

length l. (c) Inverse of the decay length estimated from the spin-spin correlation (ξcorr)

and the entanglement entropy (ξent) as a function of α. Red line is a fit with the

exponential function 1/ξcorr = 0.13 exp (−0.35α).

exp[iπ(Szl + Szl+1)] = −4Szl S
z
l+1,

where the coefficient 4 accounts for renormalising the 1/4 factor from multiplying

two spin-1/2’s. Finally, we obtain a simplified string order parameter:

Ozstring = − lim
|k−j|→∞

(−4)
j−k−2

2 〈(Szk + Szk+1)

j−1∏
l=k+2

Szl (Szj + Szj+1)〉, (3.16)

which is expressed only by products of Sz and can be computed within our DMRG

code.

The two-fold degeneracy due to the FM dimerisation of the ground state is lifted

under OBC and the value of Ozstring is different for even and odd j (k). We thus take

their average obtained with (k, j) =
(
L
4 ,

3L
4

)
and (k, j) =

(
L
4 + 1, 3L

4 − 1
)
. We confirm the

validity of this method by checking the agreement of the OBC results with those obtained

under periodic boundary conditions keeping |k − j| = L
2 . In Fig. 3.5(a) the string order

parameter in the thermodynamic limit is plotted as a function of α. The finite value

of Ozstring suggests the formation of a VBS state with a hidden topological long-range
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(a) (b)

(c) (d)

Figure 3.6: (a) Depiction of the cutting of the system with PBC. Red ellipses represent

effective S = 1, blue lines represent singlet formation between third-neighbours. (b) ES

as a function of α, lilac area shows the FM region, green one is the D3-VBS state. λ are

the eigenstates of ρ`. (c)(d) ES as a function of Sz for (c) α = 0.2 (FM) and (d) α = 0.4

(D3-VBS).

order. The string order vanishes when approaching α = 1
4 , indicating a second-order

phase transition at the FM critical point. With increasing α, it goes through a maximum

at α ' 0.55, which is roughly consistent with the maximum position of the spin gap, and

tends slowly towards zero in the limit α→∞. The maximum value Ozstring ∼ 0.06 is much

smaller than Ozstring = 4
9 ' 0.4444 for the perfect VBS state for the AKLT model [74] and

Ozstring ' 0.3743 for the S = 1 Heisenberg chain [76]. This means that our VBS state is

very fragile which is the reason why it is so difficult to detect the spin gap numerically.

3.2.5 Entanglement entropy and spectrum

The criticality of a 1D system can be definitely identified by its entanglement structure.

The full density matrix of the system is ρ = |Ψ〉 〈Ψ|, with |Ψ〉 being the many body

ground state of the system. We consider a cut dividing our system in two subsystems A
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Chapter 3. The ferromagnetic frustrated J1-J2 chain

and B. The reduced density matrix for the subsystem A is defined as:

ρA = TrB |Ψ〉 〈Ψ| . (3.17)

We then define the von Neumann entanglement entropy of the subsystem A as:

SA = −TrρA log ρA. (3.18)

Note that SA = SB.

Though the entanglement entropy already gives us some information about the

entanglement properties of the system and can be used to derive further quantities,

e.g., central charge, it is still only one number. Li and Haldane have shown how this

number can be generalised to a more “structured” quantity that can be use to prove

the topological nature of a state: the entanglement spectrum (ES) [77]. This spectrum

derives naturally from the Schmidt decomposition:

〈Ψ| =
∑
i

e−
1
2
ξi |Ψi

A〉 ⊗ |Ψi
B〉 , (3.19)

where |Ψi
A〉 (|Ψi

B〉) are an orthonormal basis on the subsystem A (B). In our calculations,

the ES {ξi} is simply obtained as ξi = − log λi, where {λi} are the eigenvalues of the

reduced density matrices after the bipartite splitting.

We use the von Neumann entanglement entropy of the subsystem with length l,

SL(l) = −Trlρl log ρl, where ρl = TrL−lρ is the reduced density matrix of the subsystem

and ρ is the full density matrix of the whole system. A gapped state is characterised by

a saturation of SL(l) as as function of l [78]. In Fig. 3.5(b) the entanglement entropy

is plotted as a function of l with fixed whole system length L = 2000. We can clearly

see the saturation behaviour indicating a gapped ground state. The saturation value is

slightly split depending on whether the system is divided inside or outside the effective

S = 1 site. In a VBS state, SL(l) approaches the saturation value Ssat
L exponentially,

i.e., SL(l) ∼ Ssat
L − a exp(−l/ξent); while, the spin-spin correlation decays with distance

exponentially, i.e., |〈Sz0Szr 〉| ∼ b exp(−r/ξcorr) [79]. For the AKLT VBS state ξent and

ξcorr must coincide, which is indeed what we observe numerically in the D3-VBS state.

[see Fig. 3.5(c)] For technical reasons, we could determine the spin gap only for α ≤ 0.85.

However, since ξcorr · (∆/J2) = const. is expected in the large α regime, a tiny but finite

gap is expected up to α =∞.

To further support the existence of topological order in our system, we computed

the ES for several value of α through the FM critical point. We studied systems of

size L = 82 with applying periodic boundary conditions (PBC). We assumed that the

system consists of L = 4n+ 2 sites and it is divided in half as in Fig. 3.6(a). Since each

subsystem includes an odd number of sites, the edge spin state can be directly observed.

The results are plotted as a function of α in Fig. 3.6(b). The FM state (α < 1
4) has only

double degenerate states. The double degenerate state indicates a trivial state because of

the area law acting on a periodic system cut at two points (the typical 1- 3- degeneracy

is not possible due to the impossibility of forming a triplet state, having an odd number

of spins). The Haldane phase is thus characterised by a four-fold degeneracy of the

entire ES [80]. In fact, our D3-VBS shows 4n-degeneracy in the entire ES. Therefore, we
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(a) (b)

Figure 3.7: (a) Finite-size scaling of the dimer order parameter for NNN bonds (δ = 2)

at α = 0.6. The order parameter is vanishing in the thermodynamical limit. (b) Dimer

order parameters for NN (δ = 1, red line) and third-neighbour (δ = 3, blue line) bonds

as a function of α.

confirmed that our D3-VBS state is an expression of the symmetry protected Haldane

state. In Fig. 3.6(c)(d), we show the ES as a function of total spin z-component of the

subsystem Sz for the FM (α = 0.2) and D3-VBS (α = 0.4) states: While in the FM

state the double degeneracy is lifted for Sz 6= 0 and the spectrum moves away from 0

symmetrically with increasing the Schmidt value, in the D3-VBS state the Schmidt values

are 2n-degenerate and the spectrum is dense around Sz = 0 due to the possibility that

the free spins in the two subsystems are aligned (Sz = 0) or anti-aligned (Sz = 1) .

3.2.6 Dimerisation order

The above analysis makes clear that a gap opens due to the formation of a topologically

ordered VBS state but it is not yet obvious how the VBS structure is formed. We can

determine a more specific VBS structure by considering the possibility of longer-range

dimerisation orders. The dimerisation order parameter between sites distant δ is defined

as

Odimer(δ) = lim
L→∞

|〈Si−δ · Si〉 − 〈Si · Si+δ〉|, (3.20)

where we take i = L/2 for δ = 1 and i = L/2− 1 for δ = 2, 3 (the extrapolated value

in the thermodynamic limit does not depend on these choices). If Odimer(δ) is finite for

δ, it signifies a long-range dimerisation order associated with translational symmetry

breaking to period of 4− 2(δ mod 2) . For the case of δ = 2, Odimer(2) goes to zero in

This formula becomes obvious for the δ = 1 case: A dimerised bond and an undimerised bond appear

alternately along the J1 chain, meaning the symmetry breaking period is 2. For odd values of δ > 1,

considering the ladder representation as in Fig. 3.1(d), the mirror symmetry between the two J2 chains is

broken and the translational symmetry along the J2 chains is preserved. It leads to symmetry breaking

with period 2 along the J1 chain. For even values of δ, as depicted in Fig. 3.1(c), the translational
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(i)

(ii)

(iii)

(i)

(ii)

(iii)

(a) (b)

Figure 3.8: (a) Dimer-dimer correlation 〈D3(i)D3(i)〉 as a function of distance |i − j|
for several values of α. To see the net correlation the product of expectation values

〈D̄3〉2 is subtracted. (b) Dimer-dimer correlation functions for the three different kinds

of third-neighbour bonds pairs at α = 0.6.

the thermodynamic limit, as seen in Fig. 3.7(a). This clearly indicates the absence of

long-range dimerisation order along the two J2 chains like in Fig. 3.1(c). Thus, this VBS

state can be excluded as a candidate for the ground state for the FM J1-J2 chain. Hence,

the possibility of a VBS state with dimerisation along two J2 chains is excluded. Whereas

for δ = 1 and 3, Odimer(δ) is finite. In Fig. 3.7(b) the values of Odimer(1) and Odimer(3)

in the thermodynamic limit are plotted as a function of α. Remarkably, Odimer(3) is

significantly larger than Odimer(1) despite the longer distance. Moreover, though FM

dimerisation between fifth-neighbours and AFM dimerisation betweem seventh-neighbour

may be finite, we expect them to be much smaller than the values reported in Fig. 3.7(b).

We also find that 〈Si · Si+3〉 is always negative at α > 1
4 suggesting that a VBS ground

state with third-neighbour valence bonds, i.e., D3-VBS state, is stabilised as shown in

Fig. 3.1(d).

In order to further prove the D3-VBS picture, we calculate the dimer-dimer correlation

function defined as

〈D3(i)D3(j)〉 − 〈D̄3〉2, (3.21)

where D3(i) = Si · Si+3 is spin-spin correlation between the third-neighbour sites (i,i+ 3)

and 〈D̄3〉 is the averaged value of D3(i) over i = 1, · · · , L in the thermodynamic limit. In

Fig. 3.8(a) we show the dimer-dimer correlation as a function of the distance |i− j| for

different values of α. For all α values a fast saturation with the distance is clearly seen.

This directly evidences the presence of the long-range D3-VBS order. In fact, in Fig. 3.8(a)

only the correlations for dimer pairs forming valence bond as in Fig. 3.8(b)(i) are shown.

It would be informative to see the correlation between the other third-neighbour bond

pairs. As expected, the correlation between third-neighbour pairs without valence bond

symmetry is broken on the J2 chain with a twofold structure, and the mirror symmetry between the two

J2 chains is also broken. This leads to a symmetry breaking period of 4 along the J1 chain.
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Figure 3.9: Spin gap ∆ as a function of the third neighbour AFM interaction J ′3 for

α = 0.6. The red line points are data points, the blue line is a linear fitting. We indicate

∆(J ′3 = 0) as ∆0. The fitting function yields ∆−∆0 ' 0.5046J
′2/3
3 .

saturates to a negative value [Fig. 3.8(b)(iii)] and that between third-neighbour pairs

with and without valence bond vanishes [Fig. 3.8(b)(ii)].

Thus, the finite spin gap is related to the emergent spin-singlet formation on every

third-neighbour bond. To test this concept, we introduce an explicit AFM exchange

interaction J ′3Si ·Si+3 on the third-neighbour bonds [see Fig. 3.1(a)]. Note that i is chosen

to be either even or odd depending on the symmetry breaking pattern; in our open chain

i is taken to be even. The dependence of ∆ on J ′3 with fixing α = 0.6 is shown in Fig. 3.9.

We find that the spin gap is smoothly enhanced by the AFM J ′3. This means that our

ground state is adiabatically connected to an explicit formation of the third-neighbour

VBS state by J ′3. With increasing J ′3 the gap increases like ∆−∆(J ′3 = 0) ∝ J ′
2
3

3 , though

small but finite intrinsic dimerisation should exist at J ′3 = 0. This is qualitatively the same

behaviour as in the spin-Peierls transition of the S = 1
2 dimerised Heisenberg chain [81].

We thus conclude that the ground state of the system (3.1) is the D3-VBS state depicted

in Fig. 3.1(d). If we regard the system (3.1) as a diagonal ladder with effective S = 1

rungs as in Fig. 3.1(d), the D3-VBS state may be interpreted as a symmetry protected

state [52] with a plaquette unit including two effective S = 1 rungs, i.e., four S = 1
2

sites. The plaquette is sketched in the inset of Fig. 3.10(a). The third-neighbour valence

bond is locally stabilised in a |∑4
i=1 Si| = 1, i.e., Stot = 1, sector. The spin gap can

be qualitatively estimated from the excitation energy to a state with |∑4
i=1 Si| = 2, i.e.

Stot = 2, sector which is projected out from the ground state as in the AKLT model.

We plot the excitation energy as a function of α. We can see that the tendency of ∆ is

qualitatively reproduced by the single plaquette: With increasing α, the gap starts to

increase at α = 1
4 , goes through the maximum at α = 0.5, and then decreases slowly at

larger α. Moreover, in the Stot = 1 sector the antiferromagnetic spin-spin correlation
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(b)(a)

Figure 3.10: (a) Excitation energy from the Stot = 1 (ε0,1) to Stot = 2 (ε0,2) sectors in

a single plaquette extracted from the diagonal ladder [Fig. 3.1(d)]. A spin-singlet is

formed between sites 1 and 4 in the Stot = 1 sector. (b) Spin-spin correlations in a single

plaquette as a function of α.

between sites 1 and 4 is much stronger than that between sites 1 and 3 for α > 1/4. This

clearly indicates a spin-singlet formation between sites 1 and 4, which corresponds to the

third-neighbour valence bond in our D3-VBS state. Each of the remaining two S = 1/2

spins on sites 2 and 3 forms another spin-singlet with a S = 1/2 spin in the neighbouring

plaquette.

3.2.7 Matrix product state

Our VBS wave function can be expressed as the matrix product state

|VBS〉 =
1√
2

[
Tr
∏
i odd

gi + Tr
∏
i even

gi

]
(3.22)

with

gi =

(
0 1

−1 0

)(
| ↑〉i+1| ↑〉i | ↑〉i+1| ↓〉i
| ↓〉i+1| ↑〉i | ↓〉i+1| ↓〉i

)
(3.23)

where |a〉i+1|b〉i (a, b =↑, ↓) denotes the spin state of effective S = 1 site created by the

original two S = 1
2 sites (i, i+ 1). To show this corresponds to our third-neighbours VBS,

let us perform a part of the product between two effective S = 1 sites:(
| ↑〉i+1| ↑〉i | ↑〉i+1| ↓〉i
| ↓〉i+1| ↑〉i | ↓〉i+1| ↓〉i

)(
0 1

−1 0

)(
| ↑〉i+3| ↑〉i+2 | ↑〉i+3| ↓〉i+2

| ↓〉i+3| ↑〉i+2 | ↓〉i+3| ↓〉i+2

)

=

(
| ↑〉i+1| ↑〉i+2 | ↑〉i+1| ↓〉i+2

| ↓〉i+1| ↑〉i+2 | ↓〉i+1| ↓〉i+2

)
⊗ (| ↑〉i| ↓〉i+3 − | ↓〉i| ↑〉i+3). (3.24)

A spin-singlet is formed between S = 1/2 spins at sites i and i + 3, namely, between

third-neighbour sites. Since the resultant 2× 2 matrix has the same form as before, this

matrix product state can be extended up to an arbitrary length.
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(a)

(b)

Figure 3.11: (a) Lattice structure of the J1−J ′1−J2 model. (b) Topologically equivalent

situation which allows to schematic picture of the valence-bond-solid gapped state. Red

ellipses indicate spin-singlet pairs that form in the AKLT (Haldane) state.

This is similar to the ground state of the AKLT model in Eq. (3.6), but the symmetric

operation between two spin-1
2 ’s within the effective S = 1 site, i.e., 1√

2
(| ↑〉| ↓〉+ | ↓〉| ↑〉),

is not explicitly included. Alternatively, two terms in Eq. (3.22) correspond to two-fold

degenerate states. The Lieb-Schultz-Mattis theorem is thus satisfied. A schematic picture

of either one is shown in Fig. 3.1(d), in which every site forms a singlet pair with the

third neighbour site. In fact, setting Jedge
1 = 0 corresponds to an explicit replacement of

S = 1 spin at the each end by S = 1
2 spin in our effective S = 1 chain [82]. It removes

the degeneracy due to the edge spin state and enables us to calculate the spin gap with

the DMRG method. The essential physics of our D3-VBS state can be explained by

extracting a single plaquette including two effective S = 1 sites, i.e., four S = 1
2 sites, in

the same way that a combined spin-2 state is projected out in the AKLT model (see

Sec. 3.2.1).

3.3 Dimerised J1 − J ′1 − J2 chain

As noted in Sec. 3.1, due to lattice dimerisation in the compounds LiCuSbO4 and

Rb2Cu2Mo3O12, it is interesting to consider a model with dimerised NN interaction.

3.3.1 Model and method

The spin Hamiltonian is given by eq. (3.2). The lattice is shown in Fig. 3.11(a). We use

the notations of next-nearest-neighbour coupling ratio α = J2/|J1| (frustration parameter)

and nearest neighbour coupling ratio β = J ′1/J1 (dimerisation parameter) hereafter.

When the system is undimerised (β = 1), we are dealing with the so-called J1 − J2

model described in Sec. 3.2. Increasing α, a gapped phase with incommensurate spin-spin

correlations follows a FM phase. The transition occurs at α = 1/4, both in the quantum

as well as in the classical model [59, 60]. The incommensurate (“spiral”) correlations are

short ranged in the quantum model [61, 83]. A vanishingly small gap was predicted by

the field-theory analysis [65] and we have numerically proved its existence in Sec. 3.2.3.
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Figure 3.12: Phase diagram of the J1−J ′1−J2 model in the α-β plane. Contour map for

the spin gap ∆/|J1| is shown. The black line represents the boundary of the fully-polarised

ferromagnetic and gapped incommensurate spiral states, obtained by spin-wave theory.

The open circles mark the results from DMRG. The shaded area indicates the region with

a vanishingly small gap (∆|J1| < 10−3). Filled circle and square indicate the locations of

Rb2Cu2Mo3O12 and LiCuSbO4, respectively.

In the limit of β = 0, the system (3.2) is equivalent to a spin ladder with AFM legs

and FM rung couplings. Since this system can be effectively reduced to an S = 1 AFM

Heisenberg chain with regarding two S = 1/2 spins on each rung as a S = 1 spin [84, 85],

the ground state is gapped as predicted by the Haldane conjecture [53]. Therefore, the

ground state can be well described by a VBS picture, proposed in the AKLT model [74].

The schematic picture is shown in Figure 3.11(b).

We calculate the total spin with periodic boundary conditions, and spin gap, spin-spin

correlation functions with open boundary conditions. In the DMRG calculation, we

keep up to m = 6000 density-matrix eigenstates in the renormalisation procedure and

extrapolate the calculated quantities to the limit m → ∞ if necessary. Furthermore,

several chains with lengths up to L = 800 are studied to handle the finite-size effects.

In this way, we can obtain quite accurate ground states within the error of ∆E/L =

10−9 − 10−10|J1|.

3.3.2 Ferromagnetic critical point

In the limit of β = 0 and α = 0, the FM critical point no longer exists because the system

is solely composed of isolated spin-triplet dimers. However, if β is finite, a FM order is

expected for small α. Let us then consider the β-dependence of the critical point. Since
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Figure 3.13: Normalised total spin as a function of α at β = 0.5, calculated by DMRG

with periodic boundary conditions.

the quantum fluctuations vanish at the FM critical point, the classical SWT may work

perfectly for estimating the FM critical point. By the SWT the excitation energy for a

FM ground state is given as

2ωq = −
√

1 + β2 + 2β cos(2q) + 2α cos(2q). (3.25)

The system is in the FM ground state if ωq > 0 for all q; otherwise, it is in the spiral

singlet state. Thus, the FM critical point is derived as

αc,1 =
β

2(1 + β)
. (3.26)

As shown in Fig. 3.12, the FM region is simply shrunk with decreasing β, and disappears

in the limit of β = 0 as a consequence of isolated FM dimers. It can be numerically

confirmed by calculating the ground-state expectation value of the total-spin quantum

number S of the whole system, S2, defined as 〈S2〉 = S(S + 1) =
∑

ij〈Si · Sj〉. In

Fig. 3.13, the normalized total spin at β = 0.5 is plotted as a function of α. We can

find a direct jump from S = 0 to S = L/2 at α ∼ 0.17, indicating the absence of an

intermediate (partially polarised) FM state. This critical value is in good agreement with

that obtained by the SWT (αc,1 = 1/6). Similarly, for all β values, we confirm a direct

transition between FM (S = L/2) and singlet spiral (S = 0) states as well as perfect

agreement between SWT and DMRG critical points as compared in Fig. 3.12.

3.3.3 Haldane gapped state

The spin gapped state has been verified in the limit of β = 0 [84, 85] and β = 1 (Sec. 3.2.3).

This can be interpreted as a realisation of the AKLT VBS state. However, it is a nontrivial
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(a) (b)

Figure 3.14: (a) Extrapolated spin gap ∆/|J1| as a function of α for β = 0, 0.5, and 0.9.

Inset: similar plot of ∆/J2 at β = 0. (b) Log-log plot of ∆/|J1| as a function of 1− β for

α = 0.6 and 0.9.

question what happens to the spin gap for finite 0 < β < 1. The spin gap ∆ is evaluated

as the energy difference between the lowest triplet state and the singlet ground state as

in Eq. (3.14).

First, we focus on the case of β = 0, namely, a ladder consisting of two AFM leg

chains and FM rungs. In Fig. 3.14(a) the extrapolated values of ∆/|J1| is plotted as a

function of α. The gap opens at α = 0 and increases monotonously with increasing α,

and saturates at a certain value scaled by |J1|. This means that ∆ is finite for all α at

β = 0, which is consistent with the prediction by the bosonisation method [85] and the

conformal field theory [86]. In the limit of α = 0 the system is exactly reduced to a S = 1

AFM Heisenberg chain

Heff = Jeff

∑
i

S̃i · S̃i+1 − J1L/4, (3.27)

where S̃i is a spin-1 operator as resultant spin S̃i = S2i+S2i+1 and Jeff = J2/2. In the inset

of Fig. 3.14(a) ∆ is replotted in unit of α. We obtain ∆/J2 = 0.2045 in the limit α = 0.

The Haldane gap of the system (3.27) has been calculated as ∆/Jeff = 0.410479 [87].

Thus, we can confirm Jeff = J2/2 numerically for the mapping from Eq.(3.2) to Eq.(3.27)

at the limit |J1|/J2(= 1/α)→ 0 and β = 0.

Next, we look at the effect of β on the spin gap. Figure 3.14(b) shows a log-log plot

of ∆/|J1| as a function of 1− β for α = 0.6 and 0.9. The behaviours are nontrivial, but ∆

decays roughly as a power law with decreasing 1− β. As a result, the gap is vanishingly

small near the uniform J1−J2 limit (β ∼ 1). As discussed in Sec. 3.2, this is due to

the fact that we are not applying the correct boundary conditions on the J1 coupling

at the edges while performing this study. Besides, it is interesting that ∆ for α = 0.6

is larger than that for α = 0.9 at larger β and opposite at smaller β. We know that

the gapped state at β = 1 is an AKLT-type VBS with valence bonds forming between

third-neighbours (see Sec. 3.2.4). The crossing depicted in Fig. 3.14(b) suggests that

for smaller β the gapped state is in the AKLT-like VBS state depicted in Fig. 3.11(b),

with valence bonds forming on NNN (J2-VBS), while near β = 1 the state is described
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Figure 3.15: Equal-time spin-spin correlation function |〈Szi Szj 〉| as a function of distance

|i− j| at α = 0.1, β = 0.12, α = 0.2, β = 0.3, and α = 0.3, β = 0.7 for the L = 400 cluster.

by a D3-VBS as explained in Sec. 3.2.6. A contour plot of the magnitude of ∆ is given

in Fig. 3.12. We can see a rapid decay of ∆ with approaching the FM phase. However, ∆

is too small to figure out whether it remains finite, e.g. ∆ . 10−3, in the vicinity of the

FM critical boundary. Therefore, to verify the presence or absence of the gap, we checked

the asymptotic behaviour of spin-spin correlation function |〈Szi Szj 〉|. In Fig. 3.15 the

semi-log plot of |〈Szi Szj 〉| as a function of distance |i− j| is shown for some parameters

near the the FM critical boundary. The distances |i− j| are taken about the midpoint

of the systems to exclude the Friedel oscillations from the system edges, i.e. (i+ j)/2

locates around the midpoint of the systems. All of them exhibit exponential decay of

|〈Szi Szj 〉| with distance, which clearly indicates the presence of a finite spin-gap. The

curves are well-fitted with the expression |〈Szi Szj 〉| ∝ cos[Q(i− j)]|i− j|− 1
2 e
− |i−j|

ξ for long

distances [88, 89]; the correlation lengths ξ are estimated as ξ = 11.6 (α = 0.1, β = 0.12),

ξ = 8.6 (α = 0.2, β = 0.3), and ξ = 7.3 (α = 0.3, β = 0.7). In the AFM J1−J2 model [88],

a region with ξ ≈ 10 still has a spin gap of order of 10−1J1. This may imply the spin

velocity of our system is more than two digits smaller than that of the AFM J1−J2 model

since ∆ = vs/ξ where vs is the spin velocity.

Therefore, to consider the connection to the gapped state with tiny gap ∆ . 10−40J2

at α > 3.3 predicted by field theory [65], we estimated the correlation length as shown

in figure 3.16, where the absolute values of spin-spin correlation functions |〈Szi Szj 〉| for

α = 0.35, 0.5, and 0.9 are plotted as a function of distance |i− j|. We can clearly see

the exponential decays for all α values. By performing the fitting of |〈Szi Szj 〉| with a

function 〈Sz0Szr 〉 = A exp(−r/ξ), where ξ is the correlation length, we obtained ξ = 116

for α = 0.35, ξ = 52 for α = 0.5, and ξ = 192 for α = 0.9. We found that the inverse

correlation length is well fitted by 1/ξ = 0.085 exp(−πα) for large α. Since ∆ = vs/ξ, it
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Figure 3.16: Spin-spin correlation functions |〈Szi Szj 〉| as a function of distance |i− j| for

several α values in the uniform J1−J2 model (β = 1). The solid lines exhibit fittings

with a function 〈Sz0Szr 〉 = A exp(−r/ξ) where ξ is the correlation length.

may be feasible to speculate that the gap has a maximum around α = 0.5− 0.6, decreases

with increasing α, and smoothly connects to the tiny gap region.

3.4 Discussion

We considered a frustrated J1−J2 spin chain without/with dimerisation of nearest-

neighbour FM coupling and determined its phase diagram in both cases.

For the undimerised model, we find a second order phase transition at α = 1
4 from

a FM state to a third-neighbour VBS state with the AKLT-like topological hidden

order based on the results of string order parameter, dimerisation order parameters,

dimer-dimer correlation function, and entanglement entropy. This provides a simple

realisation of coexistence of spontaneous symmetry breaking and topological order, or

rather, topological order caused by spontaneous symmetry breaking. It may be helpful

to consider this transition in two steps: (i) The system exhibits a spontaneous nearest-

neighbour FM dimerisation, i.e., breaking of translational symmetry, as a consequence

of the quantum fluctuations typical of magnetic frustration – order by disorder. (ii) By

regarding the ferromagnetically dimerised spin-1
2 pair as a spin-1 site, the system is

effectively mapped onto a S = 1 Heisenberg chain and topological order as in the Haldane

state is possible. The coexistence of symmetry breaking and topological order is thus

allowed. Then, we proposed the third-neighbour valence bond formation as the origin of

the finite spin gap since the FM dimerisation alone does not lead to a finite gap. The

third-neighbour valence bond formation is consistent with the Haldane state with valence

bond formation between nearest-neighbour S = 1 sites, as the two third-neighbour spins in

the J1-J2 chain can be seen as nearest-neighbour spin-1 sites on the effective S = 1 chain.
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3.4. Discussion

The emergence of third-neighbour VBS formation was also confirmed by the observation

of adiabatic connection of the ground state to an enforced third-neighbour dimerised

state. Originated from the VBS state, the spin gap opens at α = 1
4 and reaches its

maximum ∆ ' 0.007|J1|, which is about two orders of magnitude smaller than that for

the AFM J1-J2 chain, at α ' 0.6. Since the correlation length of spin-spin correlation

seems to diverge at α =∞, a tiny but finite spin gap may be present up to α =∞.

For the dimerised chain, the FM critical point is analytically determined to be

αc = (β/2)/(1 + β) by applying the linear spin-wave theory, which was confirmed by

the numerical calculation of the total spin. The transition between the fully polarised

FM and the singlet spiral states is of the first order for β < 1 and no partially polarised

FM state exists. The spin-gap in the vicinity of the FM boundary was confirmed to be

finite by the exponential decay of the spin-spin correlation functions but it is vanishingly

small. Near β = 0 the spin-gap increases with increasing α; whereas, near β = 1 it

has a maximum value around the strongest frustration region α = 0.6, as shown in Sec.

3.2.3. Therefore, the gap opening in the entire incommensurate singlet phase may be

interpreted as a crossover between two different AKLT-type VBS states: Near β = 0 the

valence bonds form along NNN on the J2 bonds (J2-VBS), whil near β = 1 they form

between third-neighbours along the symmetry breaking direction (D3-VBS). Moreover,

the spin gap computed for β > 0.9 is probably underestimated as we did not use special

OBC with zero coupling at the edges as done for the undimerised J1-J2 model.

A typical value for J1 in cuprates is J1 = −200K, which leads to a gap closing at

external magnetic field ' 1 T for the undimerised chain. In real materials, the exchange

couplings have been estimated to be J1 = −6.95 meV, J2 = 5.20 meV (α = 0.75) for

LiCuVO4 [90]; J1 = −6.84 meV, J2 = 2.46 meV (α = 0.36) for PbCuSO4(OH)2 [91]. If

experimental measurements are performed at very low temperature, a spin excitation

gap with magnitude ∆ = 0.035 meV and ∆ = 0.013 meV could be observed, respectively.

Concerning materials with explicit NN dimerisation, density-functional calculations

predict α = 0.235 and β = 0.56 for LiCuSbO4 with J1 ≈ −160 K, J ′1 ≈ −90 K, and

J2 ≈ 37.6 K [43]. The system is in the gapped spiral state, but very close to the FM

phase where the spin-gap is vanishingly small. Thus, the spin gap may be too small to

be detected experimentally. For the compound Rb2Cu2Mo3O12, previously estimated

parameters are J1 = −138 K and J2 = 51 K (α = 0.37). Then, a substantial dimerisation

(β = 0.65) of J1 and J ′1 is necessary to reproduce the experimentally observed gap

Eg ∼ 1.6 K, namely, J1 = −138 K and J ′1 = 90 K. Furthermore, if it is more appropriate

to consider the value −138 K as an averaged FM coupling (J1 +J ′1)/2, then an even larger

dimerisation would be needed. In practice, the actual J1 should be somewhat smaller or

J2 should be larger. A detailed analysis of the experimental data that explicitly takes

into account the dimerisation can clarify this point.
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Kitaev materials4
While in chapter 2 we have investigated a prototype of geometric frustration in 1D,

we now turn to the other face of magnetic frustration, namely exchange frustration. As

stated in the Introduction (Chapter 1), exchange frustration arises when the different

types of interactions on different bonds cannot be satisfied simultaneously. Nowadays,

the most famous example of this is the Kitaev model on a honeycomb lattice. This

peculiar compass model allows for an analytical solutions and supports exotic Majorana

quasiparticles. A summary of the properties of this model is given in Sec. 4.1.

Though this model has such intriguing properties, it is crucial to determine the class

of materials that can host such Kitaev physics. This is reviewed in Sec. 4.2, together

with the introduction of the Kitaev-Heisenberg (KH) model.

4.1 The Kitaev model

In 2006, Alexei Kitaev published the solution for a compass model on a honeycomb

lattice [92]. This system exhibits exchange frustration and has an exact solution. This

solution turns out to be a Z2 spin liquid and the phase diagram exhibits a gapless and a

gapped phase. By applying a magnetic field, a gap is induced in the gapless phase and

the system exhibits non-Abelian excitations.

The system is described by the following Hamiltonian on the honeycomb lattice:

HKitaev = −Kx
∑

x−bonds

Sxi S
x
j −Ky

∑
y−bonds

Syi S
y
j −Kz

∑
z−bonds

Szi S
z
j . (4.1)

The different sums run on different kind of bonds, labeled x, y, and z bonds depending

on the spin component considered for the Ising-like interaction. On the honeycomb lattice,

there are three bonds emanating from every lattice site, so that each site has every kind

of bond interaction. Moreover, two adjacent bonds do not carry the same flavour of bond

interaction. The lattice is represented in Fig. 4.1(a). Note that the lattice is bipartite

and the unite cell is composed of two lattice sites.

Kitaev’s solution uses the Majorana representation for spins, where one spin component

in a multi-spin system can be represented through two Majorana operators, where there

are four different flavours of Majoranas. He also introduces the plaquette operator

Oplaquette = 26Sx1S
y
2S

z
3S

x
4S

y
5S

z
6 , (4.2)

where the spin component at site i is defined by the incoming bond not included in

the considered plaquette [see Fig. 4.1(a)] and we have included a normalisation factor 26

such that the operator squares to 1. This operator commutes with the Hamiltonian (4.1).

This is relatively easy to see by considering one bond, for example the 1-2 bond in Fig.

4.1(a). On this bond, the relevant interaction is KzSz1S
z
2 , so that we need to consider the

commutator [Sz1S
z
2 ,Oplaquette]. This effectively reduces to [Sz1S

z
2 , S

x
1S

y
2 ], as spin operators
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(a) (b)

Figure 4.1: (a) The Kitaev model on the honeycomb lattice. Black and white sites show

the bipartition on the lattice. x, y and z label the bonds. l, j and k label the sites

considered for the field induced mass term in Eq. (4.40). The numbering shows one

plaquette as in Eq. (4.2). (b) The Majorana representation as in Eq. (4.10), adapted

from Ref. [92]

at different sites commute. Then, we have

[Sz1S
z
2 , S

x
1S

y
2 ] = Sz1S

z
2S

x
1S

y
2 − Sx1Sy2Sz1Sz2 =

i

2
Sy1 (− i

2
Sx2 )− (− i

2
Sy1 )

i

2
Sx2 = 0, (4.3)

where we have used the Pauli matrices’ property σiσj = δij + iεijkσk and Sγ = 1
2σ

γ .

We now also consider an incoming bond, for example 1-1′ in Fig. 4.1(a). In this case,

the interaction reads KxS
x
1S

x
1′ . This directly commutes with all spin operators in the

plaquette except for Sx1 :

[Sx1S
x
1′ , S

x
1 ] = [Sx1 , S

x
1 ]Sx1′ + Sx1 [Sx1′ , S

x
1 ] = 0. (4.4)

This can be done in a similar way for all bonds. Furthermore, plaquette operators on

different plaquettes commute with each other. This can be proven in a similar way as

done for the commutation with the Hamiltonian.

As plaquette operators commute with the Hamiltonian, they are conserved quantities

of the system. This means we have at least 2N conserved quantities, with N being the

number of unit cells in the system, as this is the number of plaquettes in a honeycomb

lattice. Moreover, 〈Oplaquette〉 = 1, so that the eigenvalues are Oplaquette = ±1. We call

the eigenvalue on plaquette j the flux of the plaquette, also referred to as static flux,

gauge flux or Z2 flux. We can then divide the Hilbert space into 2N sectors with a certain

plaquette configuration, e.g. the sector where all Oplaquette = 1. Each sector has 2N

degrees of freedom left.

As previously stated, Kitaev’s approach builds on the representation of spin operators

in terms of Majorana ones. We here recall the properties of this kind of operators. First,

the defining property of Majorana particles is that they are their own antiparticle, so

that ai=a
†
i , making them Hermitian. They satisfy the following relations:

a2
i = 1 [ai, aj ]+ = δij , (4.5)
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where [ , ]+ is the anticommutator, so that Majorana operators obey the fermionic

commutation relation. As any operator can be represented in terms of Hermitian operators,

the fermionic creation and annihilation operators ci, c
†
i can be rewritten as

ci = a2j−1 + ia2j . (4.6)

It is possible to write the spin-1
2 operators in terms of four different (real) flavours of

Majorana modes c, bx, by, bz in the following way:

2Sx = icbx (4.7)

2Sy = icby (4.8)

2Sz = icbz, (4.9)

with a constraint cbxbybz = 1 for the physical system. This representation preserves the

spin commutation relations [Sαi , S
β
j ]+ = 1

2δαβ and [Sαi , S
β
j ] = iεαβγS

γ .

Within this new representation, the original Hamiltonian (4.1) can be mapped to

Hû = i
∑
〈i,j〉

Kα
ij ûijcicj , (4.10)

with ûij = ib
αij
i b

αjk
j , where αij labels the direction of the bond, and ûij = −ûji. The

operators ûij commute with the Hamiltonian and have eigenvalues uij = ±1. This

Hamiltonian is illustrated in Fig. 4.1(b).

It is possible to show that all possible choices of {uij} for a given plaquette configura-

tion (flux sector) are equivalent. The plaquette operator in this notation is written as

Oplaquette = u21u23u43u45u65u61. For instance, if all plaquettes have eigenvalue 〈Oi〉 = 1,

than we can take all uij = 1, but this is not the only possible admissible configuration. For

example, flipping all bonds emanating from the same site does not change the flux sector.

All configuration of uij corresponding to the same plaquette configuration are gauge

equivalent and only correspond to choosing a different sign for the c Majoranas (gauge

transformation). The gauge redundancy comes from the transformation into Majorana

operators, which has increased the size of the Hilbert space, leading to the emergence of

a Z2 field. Physically, this means our spins have fractionalised into delocalised Majorana

modes and static gauge fluxes. The fluxes are long range ordered, but Majorana-Majorana

correlations decay algebraically: we conclude there is no magnetic order and we are in

the presence of a spin liquid.

We now present a different approach to the problem and use it to define the phase

diagram of the Kitaev model on a honeycomb lattice. Namely, we will be using a

Jordan-Wigner transformation to fermionize the spins, following Chen and Nussinov [93].

The way this one-dimensional transformation works on the two-dimensional honeycomb

lattice is made more vivid by considering a brickwall lattice as in Fig. 4.2(a). The latter

is topologically equivalent to the honeycomb one. The Jordan-Wigner transformation

was originally introduced for 1D systems. Nonetheless, by finding a suitable path, it is

possible to extend it to two-dimensional lattices. For the brickwall lattice, the path chosen

for the transformation is shown in Fig. 4.2(b). We use the notation w/b (white/black)
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Figure 4.2: (a) Brickwall lattice with x, y and z bonds on one plaquette and lattice vectors

ex and ey and label r on one z bond. (b) Schematic of the Jordan-Wigner transformation

on the brickwall lattice.

to denote the two sublattices as illustrated in Fig. 4.2(a) and we introduce Cartesian

coordinates (α, β) for every site i. Then, we define the transformation:

σ+
αβ = 2

∏
β′<β

∏
α′

σzα′β′

[∏
α′<α

σzα′β

]
c†αβ (4.11)

σz = 2c†αβcαβ − 1, (4.12)

where c†αβ is the fermion creation operator associated with the spin raising operator

and the factor of 2 comes from noticing that σ+
αβ = (σxαβ + iσyαβ) is twice the spin raising

operator.

The Kitaev Hamiltonian (4.1) is now rewritten as

HKitaev =Kx

∑
x−bonds

(c† − c)w(c† + c)b −Ky

∑
y−bonds

(c† + c)w(c† − c)w

−Kz

∑
z−bonds

(2c†c− 1)w(2c†c− 1)b. (4.13)

For each bond, we drop the Cartesian-coordinate notation and refer to black and

white sites as shown in Fig. 4.2(a).

It is generally possible to express a fermion operator in term of Majorana operators.

Hence, we rewrite fermionic operators on white and black sites as:

c†w =
Bw − iAw

2
(4.14)

c†b =
Ab − iBb

2
. (4.15)

In the Majorana representation, the Hamiltonian (4.1) becomes

HKitaev = −i

Kx

∑
x−bonds

AwAb −Ky

∑
y−bonds

AbAw

−Kz

∑
z−bonds

(BA)b(BA)w. (4.16)
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It is easy to see that the operator BbBw along the z-bonds is a conserved quantity.

We define an operator

αr = iBbBw, (4.17)

where r labels the middle of the bond between a black and a white site (Fig. 4.2(a)

shows r on a z bond) and Bb and Bw are defined by Eqs. (4.14) and (4.15). Finally, the

Hamiltonian takes the form:

HKitaev = −i

Kx

∑
x−bonds

AwAb −Ky

∑
y−bonds

AbAw

− iKz

∑
z−bonds

αrAbAw. (4.18)

Notice that αr are Z2 static local gauge fields and, since there are no direct connections

between z-bonds, all αr operators are good quantum numbers, meaning they commute

with each other as well as with the Hamiltonian.

The Hamiltonian (4.18) is a free Majorana model with static Z2 gauge fields. A

similar expression was derived in the original work of Kitaev [92]. In that case, however,

four Majoranas were introduced for each spin, requiring to make use of a projection to

get rid of the redundant degrees of freedom.

As said, the plaquette operator (4.2) is a conserved quantity. This quantity is related

to the αr operators. In fact:

σy1wσ
z
2bσ

x
3w = iB1wB3b (4.19)

σx6bσ
z
5wσ

y
4b = iB4bB6w. (4.20)

Therefore

Oplaquette = α34α16. (4.21)

Note that inverting all αr on one horizontal row does not affect the system. This is

explicitly shown in Ref. [93]. Here, the authors also show how the degree of freedom

given by the possibility of choosing the direction of one α on each row is related to the

string-like quantity in the original spin model Pj =
∏
i σij

z. Furthermore, the authors

point out that taking the gauge where one α is fixed to +1 on each row makes the set

{Ohplaquette} equivalent to the set {αr}.
In order to determine the energy spectrum of the model, we recombine the Majoranas

into fermion operators on z bonds as

d =
Aw + iAb

2
d† =

Aw − iAb
2

. (4.22)

We define the unit vector êy as the vector connecting two z bonds and crossing a y

bond. In the same manner, we can define a unit vector êx. These vectors define the square

lattice where the fermion operators (4.22) act. On this lattice and with the operators

defined in (4.22), the Hamiltonian takes the form
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HKitaev = Kx

∑
r

(d†r+dr)(d
†
r+êx
−dr+êx)+Ky

∑
r

(d†r+dr)(d
†
r+êy

+dr+êy)+Kz

∑
r

αr(2d
†
rdr−1)

(4.23)

and αr now plays the role of a site-dependent chemical potential. By definition

[αr, d
†
r] = [αr, dr] = 0. (4.24)

A theorem by Lieb assures us that, for large enough systems, the ground state is in

the vortex free sector Oplaquette = 1 for all plaquettes. In terms of the fermionic model

(4.23), this means all αr = 1. As previously stated, reversing a plaquette from 1 to −1

corresponds to reversing all αr on a given horizontal string.

To get the ground state, we perform a Fourier transformation

d†r =
1√
N

∑
q

eiqrd†q. (4.25)

This leads to

HFT =
∑
q

[
εqd
†
qdq + i

∆q

2
(d†qd

†
−q + h.c.)

]
, (4.26)

with

εq = 2Kz − 2Kx cos qx − 2Ky cos qy

∆q = 2Kx sin qx + 2Ky sin qy. (4.27)

The Hamiltonian (4.23) is that of a p-wave superconductor, as the second term shows

spinless superconducting pairing. By performing a Bogoliubov transformation, we can

write the Hamiltonian as

HFT =
(
d†q d−q

)
HBdG

(
dq

d†−q

)
HBdG = εqσz + ∆qσy, (4.28)

with σγ being the Pauli matrices. This is easily diagonalised and gives us the spectrum:

Eq =
√
ε2q + ∆2

q . (4.29)

By analysing Eq. (4.27) and Eq. (4.29), we can determine when the energy spectrum

is gapped. To do so, we study the solution to the condition Eq = 0. This is equal to

requiring ε2q + ∆2
q = 0. Imposing that the sum of two squares of real quantities vanishes

translates into a system of two equations εq = 0 and ∆q = 0:

{
2Kz − 2Kx cos qx − 2Ky cos qy = 0

2Kx sin qx + 2Ky sin qy = 0.
(4.30)
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4.1. The Kitaev model

The first equation in (4.30) gives the condition

cos qx =
Kz −Ky cos qy

Kx
, Kx 6= 0. (4.31)

Remembering the first trigonometric fundamental relation sin2 α + cos2 α = 1 and

substituting in the second equation of the system (4.30), we get:

±
√
K2
x − (Kz −Ky cos qy)2 = −Ky sin qy. (4.32)

Thanks to the ± sign on the left hand side of Eq. (4.32), we do not need to impose

any condition on Ky sin qy and we can square both sides in Eq. (4.32). Rearranging the

terms, we get:

cos qy =
K2
y +K2

z −K2
x

2KzKy
. (4.33)

Substituting back into (4.31), we finally arrive at the values for qx and qy:

qx = ± arccos

[
K2
x +K2

z −K2
y

2KxKz

]
qy = ± arccos

[
K2
y +K2

z −K2
x

2KyKz

]
. (4.34)

The domain of the arccos function is [−1, 1], so that, for this solution to be admissible,

the following conditions have to be satisfied simultaneously

−2|Kx||Kz| < K2
x +K2

z −K2
y < 2|Kx||Kz| (4.35)

−2|Ky||Kz| < K2
y +K2

z −K2
x < 2|Ky||Kz| (4.36)

Solving these inequalities provides the conditions for gapless excitations

|Kx| < |Ky|+ |Kz| (4.37)

|Ky| < |Kz|+ |Kx| (4.38)

|Kz| < |Kx|+ |Ky| (4.39)

These are the same as the one obtained in the original work by Kitaev [92]. The

phase diagram as a function of the Kγ (γ = x, y, z) couplings is shown in Fig. 4.3. By

mapping the fermion operators back to the original spin operators, it is possible to write

down the real space spin state of the Kitaev model. This is found to be a gapless Z2

spin liquid, also known as Kitaev spin liquid. In this state, spin-spin correlations are

present only between first neighbours. More generally, for gapless spin liquids, spin-spin

correlations decay algebraically. Note that, opposite to spin solids, spin liquids do not

spontaneously break any symmetries. Spin liquids show no long range order even at zero

temperature: in this case, quantum fluctuations prevent the formation of an ordered

state, similarly to what thermal fluctuations do in normal liquids.

We will not continue further with analysing the gapped phase in detail, as we will

focus only on the isotropic case Kx = Ky = Kz = K in the following. Let us just briefly

state that the gapped state has Abelian anyonic excitations, i.e., the Majoranas obey
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Kx = 1 Ky = 1

Kz = 1, Kx = Ky = 0

Gapless

Gapped Gapped

Gapped

Ky = Kz = 0 Kx = Kz = 0

Figure 4.3: Phase diagram of the Kitaev model (see Ref. [92])

anyonic statistics, so that when two are interchanged in a process where each particle

makes a counter-clockwise revolution around the other, the two-particle wavefunction

gains a phase θ: |ψ1ψ2〉 = eiθ |ψ2ψ1〉. These excitations are Abelian [92], meaning that

when this process is reversed, each particle makes a clockwise revolution around the

other, the wavefunction gains a term e−iθ. Let us also note that HBdG does not possess

a mass term able to generate a topologically non-trivial gapped superconducting state.

Moreover, a gap is induced in the gapless state in the presence of an isotropic magnetic

field and this new phase exhibits exotic non-Abelian anyonic excitations. In this case,

the phase gained due to moving a particle around a loop is trajectory dependent, so that

interchanging two particles twice might not take us back to the starting wavefunction.

For small enough fields h = (hx, hy, hz), perturbation theory gives us a mass term:

Hmass ∼ −
8hxhyhz
K2

∑
j,k,l

Sxj S
y
kS

z
l , (4.40)

where j and k define the α bond and k and l define the β bond with α 6= β (see Fig.

4.1(a)) and we have considered the isotropic case Kx = Ky = Kz = K. Note that this

interaction includes NNN terms. The Majorana mass gap in this state is then proportional

to the cube of the field itself ∆ ∼ 4hxhyhz
K2 . This term gaps out the Dirac cones at (0, 0)

and (π, π) [92].

4.2 Kitaev interaction in real materials

The model described in Sec. 4.1 hosts topological excitations and intriguing properties.

But can it be translated into a real physical system? The answer to this question came a

couple of years after the model was introduced, thanks to G. Jackeli and G. Khaliullin

[95].

In this work, they showed how spin-orbit enhanced Mott insulators can support

Kitaev-like intercations. We immediately notice that one of the key ingredients for the
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(a)

(b) (c)

Figure 4.4: (a) Schematic for the formation of a jeff = 1
2 Mott insulator in d5 materials.

(b) Crystal structure of Na2IrO3. (c) Energy levels in Na2IrO3. Panels (b) and (c) are

taken from Ref. [94].

existence of Kitaev coupling is large spin-orbit coupling. In particular, we are considering

transition-metal oxides with partially filled d orbitals. The reason why this class of

materials provide us with the correct features to get bond-directional interactions is as

follows: first we consider the d5 orbital. Under the action of the crystal field, e.g., an

octahedral field, the d5 orbitals are split into (empty) eg and (partially filled) t2g levels.

We now have five s = 1/2 electrons in a shell with ` = 1 orbital momentum. The action

of the spin-orbit coupling then further separates the j = 3/2 and j = 1/2 bands, with

the first being filled and the second partially filled. This band has a somewhat small

bandwidth, which allows for the opening of a Mott gap. What we end up with is a

jeff = 1/2 Mott insulator [96]. This mechanism is schematised in Fig. 4.4(a).

At this point, we have one of the ingredients we need, namely a spin-1/2 system.

We can now look at how the bond-directional exchange arises. In order to do so, we

need to look at the structure of the materials we are considering. Specifically, we are

looking at the bond direction between two IrO6 octahedra. There are two possibilities:

corner sharing or edge sharing octahedra. The corner sharing bond is also referred to

as 180◦ bond. In this case, there is only one Ir-O-Ir path and the dominant coupling is

an isotropic Heisenberg interaction. For edge sharing octahedra, there are two distinct

Ir-O-Ir paths with a 90◦ bond geometry. These two paths lead to destructive interference

of the Heisenberg coupling when we restrict the coupling to arise only from the j = 1/2

bands. The study of the full multi-orbital model gives a suppressed Heisenberg exchange,

in addition to the Kitaev one. In the end, we have different Ising-like interactions on

different bond directions depending on which kind of edge is shared between the octahedra,

plus a residual Heisenberg interaction on all bonds. The model taking into account both

those interactions is known as the Kitaev-Heisenberg (KH) model [95].

From these considerations, one sees how the honeycomb iridates Na2IrO3 [Fig. 4.4(b)],

47



Chapter 4. Kitaev materials

α-Li2IrO3 [97, 98, 99, 100] and H3LiIr2O6 [101] can be considered as candidate Kitaev

materials. Another transition-metal oxide with a honeycomb lattice is α-RuCl3, which

has been proven in the last years to be a very promising candidate for the realisation of

a quantum spin liquid state [102, 103, 104]. A fairly recent experiment on this material

by Kasahara et al. [105] reported quantised thermal Hall conductance for field intensities

between 7 and 9 T and field directions in the ac plane at angles θ = 45◦ and θ = 60◦,
where θ is the angle with the c direction. Though these results are very promising and

prove, in principle, the fractionalisation of spins into Majoranas and Z2 gauge fluxes,

other experiments are needed in order to make a final conclusion on the properties

of this material at low temperature and in magnetic field. Moving from 2D to 3D,

hyperhoneycomb β- and γ-Li2IrO3 [94, 106] also show bond directional exchange and

may host Kitaev physics. Though the original Kitaev model is defined on the honeycomb

lattice, it has recently been suggested that a class of materials with effective j = 1/2

moments on a quasi-two-dimensional triangular lattice might support Kitaev interactions

[96]. These include the family of hexagonal perovskite Ba3IrxTi3−xO9. In particular, the

doping case x = 1, Ba3Ir1Ti2O9, has been suggested to be described by a KH model

on the triangular lattice [107]. The phase diagram for the KH model on the triangular

lattice is very different from that on the honeycomb one. Non-trivial states include a Z2

vortex crystal and a nematic phase, both induced by the Kitaev coupling [107, 108].

Nonetheless, all of the above honeycomb materials show an AFM zigzag magnetically

ordered ground state at low temperature and normal pressure [109, 110]. This is due

to the presence of further interactions beyond the pure KH model. In particular, it is

believed that all of the above materials support off-diagonal Γ interactions, so that the

full minimal Hamiltonian reads

HJKΓ = −
∑

γ−bonds

[
JSi · Sj +KSγi S

γ
j + Γ(Sαi S

β
j + Sβi S

α
j )
]

(4.41)

where α and β are the two directions perpendicular to γ = x, y, z. Moreover, different

materials also host further-neighbour Heisenberg and/or Γ coupling. In all these models,

the Kitaev interaction is still believed to be the leading interaction. Hence, as shown

in experiments, application of magnetic field or pressure might melt the AFM magnetic

order into the spin liquid phase. How this melting of order works is still under debate,

but, as K and J are the two leading interactions, it provides us with a motivation to

further explore and better understand the pure KH model.

48



The Kitaev-Heisenberg chain5
When we consider the Kitaev-Heisenberg model presented in chapter 4 in a 1D setup,

the first thing to notice is the missing z-rungs (see Fig. 5.1). This makes it impossible

for this lattice geometry to support the same states as on the 2D honeycomb lattice.

It turns out, however, that this model has a particularly rich phase diagram for a 1D

system and the ordered states of the 2D honeycomb KH model can be interpreted in

terms of coupled chains.

This chapter is organised as follows: in Sec. 5.1, we give some motivations for studying

the 1D KH system. In Sec. 5.2 we present the Hamiltonian and the methods used. We

discuss the ground state properties and phase diagram in Sec. 5.3 and Sec. 5.4. Sec.

5.5 shows the spectral properties of the low-lying excitations. Finally, we sum up our

findings in Sec. 5.6

5.1 Motivation

A temperature-dependent electron energy loss spectroscopy (EELS) measurement has

been performed in a K-intercalated RuCl3, denoted as K0.5RuCl3 [111]. The intercalated

K+ ions provide charge carriers, however, a sharp gap was observed at ∼ 0.9 eV, instead

of the charge gap Eg = 1.1 − 1.2 eV for the undoped α-RuCl3 [112, 113, 114]. This

indicates an insulating feature of K0.5RuCl3 and differs from the pseudogap behavior

seen for charge localisation in disordered metals. This has been interpreted as half of

the j = 1
2 pseudospins being replaced by nonmagnetic d6 ions. Therefore, this insulating

state can be pictured as a formation of superlattice by charge disproportionation (charge

ordering). Different possible charge ordering patterns are shown in Fig. 5.1. In [111],

ab initio calculations predict a triangle ordering Fig. 5.1(a). A semiclassical analysis,

however, predicts the lowest energy state to be the zigzag chain-type pattern exhibited

in Fig. 5.1(c), where chains of nonmagnetic ions are separated by chains of magnetic ions

with KH interactions [115]. This charge configuration would be a material realisation

of the KH chain, making the work presented in this chapter possibly relevant for real

materials. To understand whether this is the case, further experimental and theoretical

studies on K-doped RuCl3 are needed.

The above motivations lead us to studying the 1D KH model not only for fundamental

theoretical reasons, but also as a possible minimal spin model to describe the magnetic

properties of the K-intercalated RuCl3. So far, there are few studies on the 1D KH

model [116, 117, 118, 119, 120, 121, 122, 123, 124]. Using the DMRG method, we calculate

total spin, real-space spin-spin correlation functions, static spin structure factor, central

charge, and various order parameters in the ground state. Based on the results, we obtain

the ground-state phase diagram, including four long-range ordered and two liquid phases,

as a function of the ratio between Heisenberg and Kitaev interactions. Moreover, the

relevance of the phase diagram to that of the honeycomb-lattice KH model is discussed.

Parts of this chapter have been published as Sci. Rep. 8, 1815 (2018)
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Chapter 5. The Kitaev-Heisenberg chain

Remarkably, all the magnetically ordered states of the honeycomb-lattice KH model

can be interpreted in terms of coupled 1D KH chains. Furthermore, we calculate the

dynamical spin structure factors via the Lanczos exact diagonalization (ED) technique.

The basic low-lying excitations are considered by use of the known six-vertex model

and the SWT. The present investigation can thus contribute to an elucidation of the

fundamental properties of the K-intercalated RuCl3 as well as a better insight in the

understanding of the physics of the honeycomb-lattice KH model.

5.2 Model and Numerical Methods

Figure 5.1: Possible charge ordering patterns of K0.5RuCl3; (a) triangular, (b) dimer,

and (c) zigzag. (d) Lattice structure of the 1D Heisenberg-Kitaev model. The labels ‘x’

and ‘y’ indicate the x-bond and y-bond, respectively (see text).

5.2.1 1D Kitaev-Heisenberg Hamiltonian

At present, it is widely believed that the magnetic properties of the undoped α-RuCl3 are

well described by the KH model on a honeycomb lattice. If we assume the zigzag-type

charge ordering in Fig 5.1(c), the zigzag chains are well separated by the nonmagnetic

ions. Then, each chain is considered to be a 1D KH model, which is equivalent to a

system obtained by removing the z-bonds from the honeycomb-lattice KH model. The

Hamiltonian of the 1D KH model is written as

H = K

L/2∑
i=1

(Sx2i−1S
x
2i + Sy2iS

y
2i+1) + J

L∑
i=1

Si · Si+1 (5.1)

for a system with L sites, where Si = (Sxi , S
y
i , S

z
i ) is a spin-1

2 operator at site i, and

the Kitaev and exchange couplings are defined as K = sinφ and J = cosφ via a phase

parameter φ. Throughout this chapter, we take
√
K2 + J2 = 1 as the energy unit. The
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system has two kinds of neighbouring links and they appear alternately along the chain.

Hence, the structural unit cell contains two lattice sites. Hereafter, we call the links

(2i− 1,2i) and (i,2i+ 1) “x-link” and “y-link”, respectively. By rewriting Eq. (5.1) as

H =
2J +K

4

L∑
i=1

(S+
i S
−
i+1 + S−i S

+
i+1) + J

L∑
i=1

Szi S
z
i+1 +

K

4

L∑
i

(−1)i(S+
i S

+
i+1 + S−i S

−
i+1)

≡ Hex +HIsing +Hdsf ,

we can easily notice that a XXZ Heisenberg chain containing exchange (Hex) and Ising

(HIsing) terms is disturbed by sign-alternating double-spin-flip (Hdsf) fluctuations [116].

5.2.2 Numerical methods

We apply open boundary conditions unless stated otherwise. This enables us to calculate

ground-state and low-lying excited-state energies, as well as static quantities, quite

accurately for very large finite-size systems. We are thus allowed to carry out an accurate

finite-size-scaling analysis to obtain energies and quantities in the thermodynamic limit

L→∞. We hence study chains with several lengths up to L = 200 sites for a given φ.

Since, in hindsight, the system (5.1) exhibits only commensurate phases in the ground

state and the largest magnetic unit cell contains four lattice sites, its size is taken as

L = 4n (n: integer). For each calculation, we keep up to m = 1200 density-matrix

eigenstates in the renormalisation procedure and extrapolate the calculated quantities

to the limit m → ∞ if needed. Since the SU(2) symmetry is broken in system (5.1)

and total Sz is no longer a good quantum number except at φ = 0, π, one may have

some difficulties in obtaining accurate results in comparison to usual DMRG calculations.

Nevertheless, in this way, the maximum truncation error, i.e., the discarded weight, is

less than 1× 10−10 while the maximum error in the ground-state is less than 1× 10−8.

For the dynamical properties calculation, we used the Lanczos ED method. To

examine the low-energy excitations for each phase, we calculate the dynamical spin

structure factor, defined as

Sγ(q, ω) =
1

π
Im〈ψ0|(Sγq )†

1

Ĥ + ω − E0 − iη
Sγq |ψ0〉

=
∑
ν

|〈ψν |Sγq |ψ0〉|2δ(ω − Eν + E0), (5.2)

where γ is z or −(+), |ψν〉 and Eν are the ν-th eingenstate and the eigenenergy of the

system, respectively (ν = 0 corresponds to the ground state). Under periodic boundary

conditions, the spin operators Sγq can be precisely defined by

Sγq =

√
2

L

∑
i

Sγi exp(iqri) (5.3)

where ri is the position of site i and the sum runs over either i even or i odd sites. They

provide the same results. The momentum is taken as q = 4π
L n (n = 0,±1, . . . ,±L4 ) since

the lattice unit cell includes two sites and the number of unit cells is L
2 in a system with

L sites. We calculate both spectral functions S±(q, ω) and Sz(q, ω) as they are different

for all values of φ due to the breaking of SU(2) symmetry except at φ = 0 and π. We
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study chains with L = 24, namely, 12 unit cells, by the Lanczos ED method. As shown

below, system (5.1) contains only commensurate phases with unit cell containing one,

two, or four sites. Therefore, a quantitative discussion of the low-lying excitations is

possible even within the L = 24 chain.

5.3 Ground-state properties

5.3.1 Quantum phase transitions

Let us first look at the ground-state energy and total spin with respect to φ in order

to capture the overall appearance of quantum phase transitions. The results, using a

periodic 24-site KH chain, are shown in Fig. 5.2. We clearly see discontinuities in the

first derivative of the ground-state energy at four values: φ = π
2 , π, 3π

2 , and ≈ 1.65π,

which indicate the first-order phase transitions. The second derivative −∂2E0/∂φ
2 is, in

a precise sense, continuous except for the above four φ points, nonetheless, there exists a

distinguishable peak around φ ≈ 0.65π, which may corresponds to a second-order (or

continuous) phase transition (see inset in Fig. 5.2(b)). Furthermore, as shown below,

we find another phase transitions at φ = 0. Therefore, we suggest that the simple 1D

model (5.1) exhibits a variety of phases including six quantum phase transitions. It will

be confirmed by studying various corresponding order parameters or spin-spin correlation

functions. We also confirm that the ground-state energy of the 1D KH chain is always

lower than that given by the dimer-type charge ordering on the honeycomb shown in Fig.

5.1(b) [see Fig. 5.2(a)].

(a) (b) (c)

Figure 5.2: (a) Ground-state energy E0, (b) the second derivative of E0 with respect

to φ, and (c) total spin Stot as a function of φ, obtained with a 24-site periodic Kitaev-

Heisenberg chain. Dotted line in (a) indicates ground-state energy for the dimer-type

charge ordering.

5.3.2 Ferromagnetic-xy phase (π < φ < 3π
2

)

Since both K and J are ferromagnetic (FM), a long-range FM ordered state is naively

expected in the range π < φ < 3π
2 . At the spin isotropic point φ = π, the spins can align

along any arbitrary spatial direction due to SU(2) spin rotation invariance and the total

spin takes the maximum value Stot
L = 1

2 [see Fig. 5.2(c)]. Away from the isotropic point,

the SU(2) symmetry is broken to U(1) and the configurations for higher |Sz| sectors are
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Figure 5.3: Schematic pictures of five states realised in the 1D KH model, except the

TLL state at 0 < φ < π
2 . In the phases (a)(c)(d), the spins lie mostly on the xy-plane and

these states are rotational invariant around the z-axis. In phases (b)(e), the spins almost

align along the z-direction and a state having opposite spin directions is degenerate.

projected out [see Fig. 5.3(c)]. When φ is still close to π (−J � −K > 0), the ground

state is approximately expressed as

|Ψ0〉 =
1√
N
∑
m

|ψm〉, (5.4)

where |ψm〉 is a basis in real space, namely each site state is represented by either spin-up

(↑) or spin-down (↓). The basis is here restricted to a Sztot =
∑L

i=1〈Szi 〉 = 0 subspace, so

that m is summed over all possible combinations of spin configuration with L
2 up and

L
2 down spins in a L lattice sites. N is the total number of the spin configurations, i.e.,

L!
(L/2)!(L/2)! . The wave function (5.4) becomes exact in the isotropic spin limit φ = π+.

Accordingly, the spin-spin correlations have long-range FM ordering for all three spin

components: 〈Sxi Sxj 〉 = 〈Syi S
y
j 〉 = 1

6 and 〈Szi Szj 〉 = − 1
12 for any i 6= j. Taking the spin

isotropic Hamiltonian at φ = π+ as an unperturbed one, the unperturbed ground state

is given by Eq. (5.4). When φ− π � 1, the perturbed Hamiltonian can be written as
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H′ ≈ φ−π
4

∑
i(S

+
i S
−
i+1 + S−i S

+
i+1) and the lowest-order energy correction is E′ = φ−π

4 .

Therefore, with increasing φ from π, the AFM fluctuations increase and the long-range FM

ordering is weakened. Nonetheless, the correlations 〈Sxi Sxj 〉 and 〈Syi S
y
j 〉 retain the same

asymptotic behaviours indicating the long-range FM ordering until φ = 3π
2 , characterised

by the saturation to a finite negative value in the limit |i − j| → ∞; whereas, 〈Szi Szj 〉
decays in a power law with |i − j|. This is because the AFM fluctuations are mainly

introduced along the z-direction. It is confirmed by a slow decrease of the total spin as

a function of φ, as seen in Fig. 5.2(c). We thus call this state FM-xy state. A collapse

of the long-range FM ordering is detected by a drop-off of the total spin at φ = 3π
2 ,

suggesting a first-order transition.

5.3.3 Ferromagnetic-z phase (0.65π . φ < π)

(a) (b)

Figure 5.4: (a) Finite-size scaling analyses of the FM-z order parameter with polynomial

fitting functions. (b) Extrapolated values of the FM-z order parameter OFM−z to the

thermodynamic limit L→∞ as a function of φ.

A long-range FM ordered state stabilises also at 3π
4 < φ < π, where all the exchange

tensors are FM since J +K is negative despite positive K. However, in contrast to the

FM-xy state, spin alignment along the z-direction is favoured because of the easy-axis-

XXZ-like interactions |2J+K
2 | < |J |. Therefore, the most dominant spin configurations

are given by the highest |Sz| sectors, i.e., the ground state is expressed as

|Ψ0〉 =
1√
2

(| ⇑〉+ | ⇓〉), (5.5)

with | ⇑〉 = | · · · ↑↑↑↑↑↑ · · · 〉 and | ⇓〉 = | · · · ↓↓↓↓↓↓ · · · 〉. This wave function is exact

in the isotropic limit of φ = π−. We call this type of long-range FM ordering FM-z

state. Let us take Eq. (5.5) as the unperturbed ground state. For π − φ � 1, the

perturbed Hamiltonian can be written as H′ ≈ (π−φ)2

2

∑
i S

z
i S

z
i+1. This is an Ising-like

AFM correlation and it clearly disturbs the FM-z state. However, the lowest-order

correction to the ground-state energy is E′ = (π−φ)2

8 . It means that the perturbation

acts only gradually with being away from the isotropic point φ = π. As a result, the

total spin is not that much reduced around φ = π in the FM-z phase. To estimate the

lower bound of the FM-z phase, we shall define the FM-z order parameter. A state

54



5.3. Ground-state properties

with long-range FM ordering is a state with broken spin symmetry along the z-direction;

macroscopically, there are two degenerate ground states |Ψ0〉 ≈ | ⇑〉 and |Ψ0〉 ≈ | ⇓〉.
Applying open boundary conditions, one of the two ground states is picked imposing initial

conditions on the calculation. The long-range ordered state is thus directly observable as

a symmetry-broken state in our DMRG calculations. The order parameter is defined as

OFM−z = 2 lim
L→∞

〈SzL/2〉 (5.6)

The finite-size scaling analysis is performed. The extrapolated values in the thermody-

namic limit are shown in Fig. 5.4. Notably, the FM-z state survives even at φ < 3π
4 ,

where a part of the interactions is AFM, i.e., J +K > 0. Nevertheless, the long-ranged

FM order is drastically suppressed by the AFM fluctuations at φ < 3π
4 and completely

destroyed at φ ≈ 0.65π. This is understandable by noting that the XXZ-like interaction

is actually proportional to 2J +K rather than just J +K and 2 cosφ+ sinφ vanishes

at φ ≈ 0.65π. The order parameter has no jump at the transition point, suggesting a

second-order phase transition.

5.3.4 Spiral-xy phase (π
2
< φ . 0.65π)

As shown above, the FM-z phase remains down to φ ≈ 0.65π. Then, we look at which

kind of phase appears for smaller values of the angle parameter at π
2 < φ . 0.65π. In

this range, K is AFM, J is FM, and K � −J . On the x-links, the x-components of

spins tend to be antiparallel due to the strong AFM interaction along the x direction;

whereas their y-components tend to be parallel due to FM J term. The y-links behave

in the same way. Eventually, the spins lie on the xy plane and rotate by 90◦ from one

site to the next. The magnetic unit cell is twice as large as the structural unit cell, i.e.,

including four lattice sites [see Fig. 5.3(a)]. We call this state spiral-xy state. To confirm

this magnetic structure, we calculate the static spin structure factor, defined as

Sγ(q) =
2

L

∑
k,l

〈SγkS
γ
l 〉e−iq(k−l), (5.7)

where the length of the structural unit cell, i.e., two lattice spacings, is taken to be unity.

The DMRG results with L = 60 cluster are shown in Fig. 5.5. Near the AFM Kitaev

point φ = π
2 , Sx(q) + Sy(q) has a large q = π peak indicating a periodicity of four lattice

sites on the xy-plain. On the other hand, Sz(q) is almost zero for all q since the FM z

interaction J is tiny compared to the dominant AFM x or y interactions J +K. With

increasing φ, the q = π peak becomes lower and a q = 0 peak in Sz(q) develops. Basically,

the spins are tilted in one direction along the z-axis with keeping the periodicity on the

xy-plain. Those peak heights are reversed around the transition point φ = 0.65π from

the spiral-xy to the FM-z phases. We note that the height of the q = 0 peak in Sz(q)

coincides with the FM-z order parameter. As shown in Fig. 5.6, the spin-spin correlations

decay as a power law for all the spin components in the spiral-xy phase. It means that

the q = π peak in Sx(q) + Sy(q) disappears in the thermodynamic limit: the spiral-xy

structure is not long-range ordered.
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Chapter 5. The Kitaev-Heisenberg chain

Figure 5.5: Static spin structure factors for (a) φ = 0.51π, (b) φ = 0.65π, (c) φ = 0.75π,

and (d) φ = 0.85π.

5.3.5 Néel-z ordered phase (1.65π . φ < 2π)

Next, we turn to the parameter region 3π
2 < φ < 2π (J > 0, K < 0). We start from the

SU(2) symmetric limit φ = 2π, where the system is the original 1D AFM Heisenberg model.

The ground-state wave function can be exactly obtained and it is known to have Stot = 0.

So, the first perturbative correction is given by H′ ≈ (φ − 2π)
∑

i(S
+
i S
−
i+1 + S−i S

+
i+1),

which provides an easy-axis anisotropy to the system. Therefore, the possibility of a

continuous Néel-z order transition is conceived by analogy to the easy-axis anisotropic

XXZ chain. For small 2π − φ, the magnetisation is expect to grow gradually with

M ' π

2(2π − φ)
exp

{
− π2

2
√

2(2π − φ)

}
. (5.8)

Let us confirm it numerically. In the long-range Néel-z ordered state, the translational

symmetry is broken in a finite system due to the Friedel oscillation under open boundary

conditions, so that the Néel-z state can be directly observed by extracting one of the

degenerate states, like in the FM-z state. Generally, the Friedel oscillations in the centre

of the system decay as a function of the system length. If the amplitude at the centre of

the system persists for arbitrary system lengths, it corresponds to a long-range ordering.
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Figure 5.6: Log-log plot of the spin-spin correlation functions as a function of distance at

φ = 0.6π.

Here, we are interested in the formation of alternating spin flip along the z-direction.

Thus, the Néel-z order parameter is defined as

ONéel = lim
L→∞

|〈SzL/2〉 − 〈SzL/2+1〉|. (5.9)

This quantity is equivalent to the magnetisation M in the thermodynamic limit. The

finite-size scaling analyses of ONéel was performed using the results for systems with up

to L = 120 and the extrapolated values to the thermodynamic limit were obtained. They

are shown in Fig. 5.7. We indeed see a slow increase of ONéel near the SU(2) symmetric

limit φ = 2π. Further with decreasing φ, the order parameter develops up to ONéel = 1

and drops down to 0 at φ ≈ 1.65π.

In fact, this lower φ-boundary of the Néel-z ordered phase can be estimated analytically.

At φ = tan−1(−2) ≈ 1.6476π, the exchange term Hex disappears in the Hamiltonian (5.1)

and the system is just written as a sum of double-spin-flip and Ising parts

H = Hdsf +HIsing

=
K

4

L∑
i

(−1)i(S+
i S

+
i+1 + S−i S

−
i+1) +

J

4

L∑
i

Szi S
z
i+1. (5.10)

Each of the partition Hamiltonians Hdsf and HIsing is exactly solvable. For Hdsf , the

system is regarded as noninteracting fermions with “pair hopping” and the ground-state

wave function is

|Ψ0〉 =
1√
N
∑
C

∏
i(C),γ(C)

(−1)i−1Sγi S
γ
i+1 |⇑〉 , (5.11)
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(c)

(b)(a)

Figure 5.7: (a) Finite-size scaling analyses for the Néel-z order parameter ONéel with

polynomial fitting functions. (b) The extrapolated values of ONéel to the thermodynamic

limit as a function of φ. (c) Central charge, calculated with periodic chains, as a function

of φ for several chain lengths.

where C is summed over all possible spin configurations created by the double spin

flips starting from |⇑〉 or |⇓〉 (N =L CL/2), i and γ(=+ or -) are taken to create the

configuration C. While, for HIsing, the system is a simple Ising one and the ground-state

wave function is

|Ψ0〉 =
1√
2

∑
σ

L/2∏
i=1

c†2i−1,σc
†
2i,σ̄ |0〉 , (5.12)

where |0〉 is the vacuum state. The ground-state wave functions (5.11) and (5.12) are

orthogonal since they do not share the same spin configurations. It means the ground

state is two-fold degenerate at the critical point φ = tan−1(−2). The ground-state energy

is E0 = −L cosφ
4 . This degeneracy is lifted away from φ = tan−1(−2). Eq. (5.12) is the

ground state for larger-φ side, namely, in the Néel-z phase; while, Eq. (5.11) for lower-φ

side (see Sec. 5.3.6). This is consistent with the fact that ONéel reaches exactly 0.5 at

φ = tan−1(−2), as shown in Fig. 5.7(b). Therefore, the ground-state wave function is

completely changed at φ = tan−1(−2) and it clearly suggests a first-order transition.

This is also confirmed by the jump of ONéel as well as by the singularity in −∂2E0/∂φ
2

at φ ≈ 1.65π.
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0 20 40 60 80 100

(b) (c)(a)

Figure 5.8: (a) The x-component of local spin, where opposite magnetic fields ±10 are

applied at either end of the system. (b) Finite-size scaling analyses for the staggered-xy

order parameter with polynomial fitting functions. (c) The extrapolated values of Oxy to

the thermodynamic limit as a function of φ.

5.3.6 Staggered-xy ordered phase (3π
2
< φ . 1.65π)

Let us then consider a region at 3π
2 < φ . 1.65π, where the signs of Heisenberg and

Kitaev terms counterchange from the spiral-xy state. This may mean the local spin

structure is similar to the spiral-xy state. As discussed above, the system has a first-order

transition at φ = tan−1(−2) ≈ 1.65π. In the lower-φ vicinity (φ . 1.65) the ground

state is exactly given by Eq. (5.11), which derives asymptotic behaviours of the spin-spin

correlations: 〈Sx0Sxj 〉 = α2

4
√

2
cos π2 [(j + 1

2)], 〈Sy0Syj 〉 = β2

4
√

2
cos π2 [(j − 1

2)], 〈Sz0Szj 〉 = 0, and

〈S0Sj〉 = 1
4 cos

(
π
2 j
)

+ α2−β2

4 sin
(
π
2 j
)
. Since the system is rotationally invariant around

the z-axis, the coefficients α and β can take arbitrary real numbers under the condition

α2 + β2 = 1. As illustrated in Fig. 5.3(d), all the spins lie on the xy-plane and the

magnetic unit cell contains four lattice sites as in the spiral-xy state. However, the crucial

difference from the spiral-xy state is that this xy state exhibits long-range ordering, which

is clearly indicated by the correlation functions. We call this state staggered-xy state,

since it resembles a Néel-like state with a period of four sites.

We then investigate the φ-dependence of this xy state. Applying a staggered field

along the x-direction on both open system edge sites, the presence or absence of the long-

range staggered-xy order can be determined by studying the decay of the x-component

of local spin 〈Sxi 〉 as the Friedel oscillation. Thus, the staggered-xy order parameter is

defined at the center of the system as

Oxy =
1

2
lim
L→∞

|〈SxL/2〉 − 〈SxL/2+1〉|. (5.13)

In the upper and lower vicinity of φ ≈ 1.65π, Oxy = 0 and 1
2 are obtained from Eqs. (5.11)

and (5.12), respectively. For the other φ values the profile of the x-component of local

spin and the finite-size scaling of the order parameter are shown in Fig. 5.8(a)(b). The

extrapolated values of Oxy to the thermodynamic limit are plotted in Fig. 5.8(c). We can

see that the order parameter jumps at the both phase boundaries suggesting first-order

transitions. The collapse of the staggered-xy ordering at the lower boundary φ = 3π
2 is

clearly confirmed by the profile of 〈Sxi 〉, as shown in Fig. 5.8(a).
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Figure 5.9: Central charge, calculated with periodic L = 10, 20, and 30 chains, as a

function of φ .

5.3.7 Tomonaga-Luttinger-liquid phase (0 ≤ φ < π
2
)

The remaining region is 0 ≤ φ < π
2 . At φ = 0 the system is equivalent to the spin-isotropic

AFM Heisenberg chain, which is a gapless spin liquid. It is known that the low-energy

physics is described by a Tomonaga-Luttinger (TL) model with a boson field, which is

equivalent to the unity central charge (c = 1) conformal field theory (CFT) [125]. Let us

now consider what happens when we move away from φ = 0. At 0 < φ < π
2 the deviating

interactions from the spin-isotropic Hamiltonian are written as

Haniso =
K

4

L∑
i=1

[S+
i S
−
i+1 + S−i S

+
i+1 + (−1)i(S+

i S
+
i+1 + S−i S

−
i+1)]. (5.14)

Obviously, these interactions cannot produce any explicit magnetic order, since they only

enhance the quantum fluctuations. It is a nontrivial question, however, whether the c = 1

CFT is conserved. To examine it, we directly calculate the central charge, which can

be obtained from the von Neumann entanglement entropy in the DMRG procedure as

follows: Let us consider a quantum 1D periodic system with length L. We have described

the von Neumann entanglement entropy (EE) in Sec. 3.2.5: for a subsystem with length

l, we have to fix A = l and B = L− l. We denote the EE for this subsystem as SL(l).

Using the CFT, the entropy of the subsystem with length l for a fixed system length L

has been derived as [126, 127, 128]:

SL(l) =
c

3
ln

[
L

π
sin

(
πl

L

)]
+ s1 (5.15)
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where s1 is a non-universal constant. In the DMRG calculations this quantity can be

accurately estimated by the second derivative of Eq. (5.15) with respect to l [129], namely,

c = −3L2

π2

∂2SL(l)

∂l2

∣∣∣∣
l=L

2

. (5.16)

The results for periodic chains with L=10, 20, and 30 are plotted in Fig. 5.9. We see a

quick convergence to c = 1 with increasing system size in the whole range of 0 ≤ φ < π
2 .

Hence, we confirm the system remains in the TL liquid state as far as both J and K

are AFM. Similarly, we studied the central charge in the Néel-z phase. The results for

periodic chains with L = 16, 24, and 32 are plotted in Fig. 5.7(c). Although c = 0 should

be retained in the Néel-z phase, we see a very slow converge to c = 0 with increasing L

near φ = 2π, reflecting the tiny magnetisation.

5.3.8 Kitaev points

As discussed above, the Kitaev points are singular, not adiabatically connected to the

neighbouring phases. At these points φ = ±π
2 , the Heisenberg interaction J vanishes in

our Hamiltonian Eq. (5.1) and it is reduced to

H = ±K
∑

x−links
Sxi S

x
i+1 ±K

∑
y−links

Syi S
y
i+1 (5.17)

In order to make the notation easier, we here focus on the case of φ = −π/2. Note

that the case of φ = π
2 can be similarly considered. It is convenient to fermionize the

Hamiltonian (5.17). By applying the Jordan-Wigner transformation as in Chapter 4

Szi = 2c†ici − 1 (5.18)

S+
i =

i−1∏
k=1

(−Szk)c†i (5.19)

S−i =
i−1∏
k=1

(−Szk)ci (5.20)

we can rewrite the spin operators in Eq. (5.17) by fermion operators, and we obtain:

H =
∑

x−links
(c†b,i − cb,i)(c

†
w,i + cw,i)−

∑
y−links

(c†w,i + cw,i)(c
†
b,i+1 − cb,i+1), (5.21)

where cb,i and cw,i are the fermion annihilation operators at the black and white

labelling sites in the i-th unit cell, illustrated in Fig. 5.1(d), respectively. Generally, it is

possible to write fermion operators in terms of Majorana fermions defined as:

c†b,i =
b1,i − ib2,i

2
(5.22)

c†w,i =
w1,i − iw2,i

2
. (5.23)
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With these operators Eq. (5.21) is transformed to

H = −iK
4

∑
x−links

b2,iw1,i + i
K

4

∑
y−links

w1,ib2,i+1. (5.24)

We immediately notice that the Majoranas b1, w2 are not included in the Hamiltonian

(5.24). We then define new, non local, fermion operators as

d†i =
w1,i − ib2,i

2
(5.25)

di =
w1,i + ib2,i

2
, (5.26)

where the indices i run over the unit cells instead of over the lattice sites [see

Fig. (5.1)(d)]. Using these operators, (5.24) can be expressed as

H =
K

2

∑
i

d†idi −
K

4

∑
i

(d†idi+1 + didi+1 + h.c.). (5.27)

This describes a p-wave paired superconductor [130]. The exact solution for the

ground state is easily obtained by a Fourier transformation:

H =
1

2

∑
q

[
εqd
†
qdq + i

∆q

2
(d†qd

†
−q + h.c.)

]
(5.28)

where εq = −K2 (cos q+ 1) and ∆q = K
2 sin q. Using a Bogoliubov transformation, this

can be diagonalised and the quasiparticle excitation is given by

Eq = ±1

4

√
ε2
q + ∆2

q . (5.29)

Thus, we can confirm the system is still in the gapless region. The ground-state

energy is calculated as

E0

L
=

1

L

∑
q

(−Eq) =
1

2π

∫ π

−π
dq(−Eq) = −K

2π
. (5.30)

To consider the meaning of the Majoranas b1, w2 which do not appear explicitly

in the Hamiltonian (5.24), we take a possible recombination of them into new fermion

operators:

d̃ †i =
b1,i − iw2,i

2
(5.31)

d̃i =
b1,i + iw2,i

2
(5.32)

We can now trace these back to the initial spin operators. Using Eqs. (5.22) and

(5.23), we get

d̃ †i =
1

2

(
c†b,i + cb,i + c†w,i − cw,i

)
. (5.33)
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Moreover, the inverse of Jordan-Wigner transformation used to obtain Eq. (5.21)

reads

c†w,i =
i−1∏
k=1

∏
k′=b,w

(−Szk,k′)(−Szb,i)S+
w,i (5.34)

cw,i =
i−1∏
k=1

∏
k′=b,w

(−Szk,k′)(−Szb,i)S−w,i (5.35)

c†b,i =

i−1∏
k=1

∏
k′=b,w

(−Szk,k′)S+
b,i (5.36)

cb,i =
i−1∏
k=1

∏
k′=b,w

(−Szk,k′)S−b,i. (5.37)

We can now use this transformation to rewrite in terms of the initial spin operators

as:

d̃ †i =

i−1∏
k=1

∏
k′=b,w

(Szk,k′)(S
x
b,i − iSzb,iSyw,i). (5.38)

Thus, the Majorana operators can be expressed by spin operators, like

b1,i = d̃†i + d̃i = 2

i−1∏
k=1

(−Szk,k′)Sxb,i (5.39)

w2,i = i(d̃†i − d̃i) = 2
∏

k′=w,b

(−Szk′,k)(−Szb,i)(−Syw,i). (5.40)

We now confirm that the system has a free spin per unit cell at the Kitaev points.

Therefore, the dimensionality of the ground-state manifold, or number of zero Majorana

modes, is 2
L
2
−1 for periodic chain and 2

L
2 for open chain. Some more details are given

below.

It is also possible to derive the same results as Eqs. (5.39) and (5.40) by taking a

different combination of the Majoranas from Eqs. (5.31) and (5.32):

B†i =
b1,i − ib1,i+1

2
(5.41)

W †i =
w2,i − iw2,i+1

2
. (5.42)

From Eqs. (5.22) and (5.23), we have

B†i =
1

2
(c†b,i + cb,i − ic†b,i+1 − icb,i+1) (5.43)

W †i =
1

2
(c†w,i+1 − cw,i+1 + ic†w,i − icw,i). (5.44)
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Using (5.35)-(5.37), we obtain

B†i =

i−1∏
k=1

∏
k′=b,w

(−Sk′,k)
[
Sxb,i − i(−Szk′,i)Sxb,i+1

]
(5.45)

Bi =
∏

k′=b,w

(−Sk′,k)(Sxb,i − i(−Szk′,i)Sxb,i+1). (5.46)

Then, we obtain

b1,i = B†i +Bi = 2
i−1∏
k=1

(−Szk,k′)Sxb,i. (5.47)

In a similar way, we find

w2,i = W †i +Wi = 2
i−1∏
k=1

∏
k′=w,b

(−Szk′,k)(−Szb,i)(−Syw,i). (5.48)

Actually, Eqs. (5.47) and (5.48) are identical to Eqs. (5.39) and (5.40).

5.4 Phase diagram

In Fig. 5.10(a) we summarise the ground-state phase diagram as a function of φ in a

pie chart form. Notably, each phase has another exactly-symmetrically-placed phase

in the pie chart, i.e, TLL and FM-xy, Néel-z and FM-z, spiral-xy and staggered-xy.

The paired phases have the common features. The TLL and FM-xy states, where the

exchange components are either all AFM or all FM, are basically understood within the

framework of the isotropic Heisenberg chain; the FM-xy state is long-range ordered and

the TLL state is critical. The Néel-z and FM-z states are described by the easy-axis XXZ

Heisenberg chain. The dominant features are determined by the Ising term. Depending on

the sign of the Ising term, the spins are aligned ferromagnetically or antiferromagnetically

along the z axis. The spiral-xy and staggered-xy states can be basically interpreted as

the easy-plane XXZ Heisenberg chain affected by the double-spin-flip term. The system

has a four-site periodicity, and exhibits a critical behaviour and a long-range ordering for

the former and latter states, respectively, in analogy to the relation between the TLL

and FM-xy states.

It is now possible to establish a connection between our ground-state phase dia-

gram and that of the two-dimensional KH model on a honeycomb lattice (Fig. 5.10(b),

normalised to the current notation from [131]). To consider the phase-to-phase cor-

respondence, it is helpful to regard the honeycomb lattice as coupled KH chains, as

shown in Fig. 5.10(c). Here, the interchain coupling is equivalent to the z-bond in the

honeycomb-lattice KH model, written as

Hz−bond =
J

2

∑
k,l

(S+
k S
−
l + S−k S

+
l ) + (J +K)

∑
k,l

SzkS
z
l , (5.49)

where k, l are summed over all connected sites between the KH chains.
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Figure 5.10: (a) Ground-state phase diagram of the 1D KH model. (b) Ground-state

phase diagram of the honeycomb-lattice KH model, where the same notations as in

Eq. (5.1) are used for K and J . (c) Brick-wall lattice created by coupling the 1D KH

chains by the z-bond. This is topologically equivalent to the honeycomb lattice.

Hereafter, we report how the introduction of the z-bonds coupling affects the (quasi-

)ordered states present in the one-dimensional case, mapping them to those of the

honeycomb system:

(i) At 0 ≤ φ < π
2 the interchain coupling is AFM. Our TLL state has no long-range

order but strong AFM fluctuations. Therefore, a Néel order is intuitively expected once

the chains are antiferromagnetically coupled. Hence, our TLL phase corresponds to the

Néel phase in the honeycomb case.

(ii) At 0.65π . φ < π our system is in the FM-z state. While considering this interval,

we need to examine two different cases as the sign of the interaction on the z-bonds

changes from AFM to FM. We obtain a zigzag state in the honeycomb case when the

FM-z chain state is coupled by AFM interchain couplings; whereas a FM state in the

case of FM interchain couplings. The change in sign of the interchain coupling is assumed

to happen at φ = 3π
4 , where J +K = 0. This φ value is reasonably close to the transition

point φ ≈ 0.81π between the zigzag and FM states in the honeycomb case. Thus, our

FM-z phase is distributed to either zigzag or FM phases of the honeycomb KH model

depending on the AFM or FM nature on the z-bond.

(iii) At 1.65π . φ < 2π our system is in the Néel-z state. In the same way as above,

we need to consider the cases of AFM and FM z-bonds. We easily find that our Néel-z

state is base for the Néel and stripy states of the honeycomb KH model as also discussed

in previous work [116]. Namely, our Néel-z phase is distributed to either Néel phase
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in the presence of AFM interchains coupling or the stripy phase in the presence of FM

interchains coupling of the honeycomb KH model. The value of φ = 7π
4 giving J +K = 0

is again near the transition point φ ≈ 1.65π between the Néel and stripy states in the

honeycomb case.

Therefore, it is possible to understand all the long-range ordered phases of the

honeycomb-lattice KH model in the framework of the coupled KH chains. In brief, an

extracted zigzag lattice line from any ordered state of the honeycomb-lattice KH model

corresponds to one of the phases in the 1D KH chain; and the remaining degrees of

freedom derive from the fact that the zigzag lines are coupled either ferromagnetically or

antiferromagnetically by Hz−bond.

(iv) Two xy phases in our phase diagram are left. Since these states are stabilised

by the dominant xy-Kitaev term, they are connected to the Kitaev spin liquid states in

the honeycomb case. In hindsight, this means that our staggered-xy ordered state can

collapse to the spin liquid state due to strong FM fluctuations along the z-direction.

5.5 Low-lying excitations

To examine the low-energy excitations for each phase, we calculated the dynamical spin

structure factors Sz,±(q, ω), defined in Eq. (5.2). Under periodic boundary conditions

the momentum is taken as q = 4π
L n (n = 0,±1, . . . ,±L

4 ) since the unit cell contains two

lattice sites and the number of unit cells is L
2 in a system with L sites. We study chains

with L = 24 using the Lanczos ED method and the results are shown only for q ≥ 0 as

Sz,±(q, ω) = Sz,±(−q, ω).

5.5.1 Tomonaga-Luttinger-liquid phase (0 ≤ φ < π/2)

As confirmed above, the low-energy physics at 0 ≤ φ < π
2 is described by a gapless TL

model. The low-lying excitations are expected to be basically equivalent to those of the

easy-plane XXZ chain because (2J + K)/2 > J > 0 [see Eq. (5.2)]. If we ignore the

double-spin-flip term Hdsf , the main dispersion (lower bound of the spectrum) is given by

ω(q) =
π(2J +K)

4

sinµ

µ
sin

q

2
(5.50)

with cosµ =
(
1 + K

2J

)−1
. This was obtained by using the transfer matrix of the six-vertex

model [132, 133]. Nevertheless, the effect of Hdsf is unknown. Therefore, to investigate

the effect of Hdsf we employ a standard SWT for the bipartite system. Using the Holstein-

Primakoff representation the spin operators of Hdsf for the black labelling sites in Fig.

5.1(d) are replaced as S+
i =

√
2S − a†iaiai and S−i = a†i

√
2S − a†iai; similarly, for the

white labelling sites S+
i = b†i

√
2S − b†ibi and S−i =

√
2S − b†ibibi, where ai and bi are

canonical boson annihilation operators at site i. Then, applying the Fourier transform

we obtain

Hdsf = i
K

2

∑
q

sin
q

2
(a†q

2
b q
2
− a q

2
b†q
2
). (5.51)
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(a)

(b)

(c)

Figure 5.11: Dynamical structure factors calculated with a periodic 24-site chain for (a)

TLL [φ = π
3 ], (b) spiral-xy [φ = 5π

8 ], and (c) FM-z [φ = 7π
8 ] states. The left and right

panels show Sz(q, ω) and S−(q, ω), respectively. The red lines are analytical dispersions:

Eq. (5.52) for φ = π
3 and Eq. (5.55) for φ = 7π

8 . The arrow indicates an appearance of

the spiral-xy fluctuation in the FM-z state.

This off-diagonal term gives a splitting in the main dispersion (5.50). Then, we can

speculate the total dispersions as

ω(q) =

(
π(2J +K)

4

sinµ

µ
± K

2

)
sin

q

2
. (5.52)
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(a)

(b)

(c)

Figure 5.12: Dynamical structure factors calculated with a periodic 24-site chain for (a)

FM-xy [φ = 5π
4 ], (b) staggered-xy [φ = 19π

12 ], and (c) Néel-z [φ = 17π
10 ] states. The left

and right panels show Sz(q, ω) and S−(q, ω), respectively. The red lines are analytical

dispersions: Eq. (5.56) for φ = 5π
4 , Eq. (5.57) in Sz(q, ω) and Eq. (5.58) in S−(q, ω) for

φ = 19π
12 , and Eq. (5.59) for φ = 17π

10 .

Fig. 5.11(a) shows the dynamical structure factors Sz(q, ω) and S−(q, ω) for φ = π
3 . The

largest peak appears in S−(q = 0, ω = 0) reflecting the AFM fluctuations. The intensities

in Sz(q, ω) are weaker than those in S−(q, ω) due to the easy-plane xy anisotropy. The

68



5.5. Low-lying excitations

split dispersions are well described by Eq. (5.52). The splitting is largest in the vicinity

of the Kitaev point φ = π
2− (J → 0+, K → 1):

ω(q) =

(
K

2
± K

2

)
sin

q

2
. (5.53)

The main dispersion (lower bound of the spectrum) of the isotropic Heisenberg model at

φ = 0 (K = 0) is also reproduced by Eq. (5.52).

5.5.2 Spiral-xy phase (π
2
< φ . 0.65π)

Across the Kitaev point from the TL to spiral-xy phases the momentum of the Fermi

point is shifted from q = π to q = 0. Thus, in the vicinity of the Kitaev point φ = π
2 +

(J → 0−, K → 1), the momentum of the excitation dispersion is shifted from Eq. (5.53)

by π:

ω(q) =

(
K

2
± K

2

)(
1− sin

q

2

)
(5.54)

for S−(q, ω). In contrast, Sz(q, ω) exhibits a q-independent continuum between ω = 0

and ω = K since the z-component of exchange interaction is much smaller than the other

interactions. With increasing φ from π
2 , the FM Ising interaction and double-spin-flip

fluctuations increase and the exchange interaction decreases becoming zero at the critical

boundary to the FM-z phase. Fig. 5.11(b) shows the dynamical structure factors Sz(q, ω)

and S−(q, ω) for φ = 5
8π. The main dispersion in S−(q, ω) is scaled as ω(q) ∝ 1− sin q

2 .

Although the largest peak at (q, ω) = (π, 0) indicates a four-site periodicity in the spiral-xy

state, it diminishes with increasing system size because of no long-range ordering. While

in Sz(q, ω), a dispersion ω(q) ∝ sin q
2 appears and a peak toward the FM-z state develops

at (q, ω) ≈ (0, 0). Both the dispersion widths are roughly scaled by |K|.

5.5.3 Ferromagnetic-z phase (0.65π . φ < π)

Fig. 5.11(c) shows the dynamical structure factors Sz(q, ω) and S−(q, ω) for φ = 7
8π.

Near φ = π (K ≈ 0) in the FM-z phase, the system is effectively described by a FM

XXZ Heisenberg chain with easy-axis anisotropy J < 2J+K
2 < 0 and the ground state

is approximately expressed by Eq. (5.5). An applied operator Szq does not change the

ground state |ψ0〉 in Eq. (5.2) and the final state |ψν〉 has only a zero energy excitation

from |ψ0〉. Therefore, Sz(q, ω) has a very sharp peak at (q, ω) = (0, 0) and almost no

spectral weight appears at the other momenta. This peak keeps its weight constant with

increasing system length, indicating the long-range FM-z ordering. On the other hand,

in Eq. (5.2) the operator S−q dopes one magnon into the FM-z alignment so that the

SWT is expected to give a good approximation for the excitation dispersion of S−(q, ω):

ω(q) = −J ± 2J +K

2
cos

q

2
. (5.55)

We can confirm that a gap ∆ = K
2 opens at q = 0 reflecting the easy-axis anisotropy.

With approaching the neighbouring spiral-xy phase, the double-spin-flip fluctuations

grow gradually in influence; accordingly, the q = 0 peak in Sz(q, ω) shrinks and a peak

develops at q = π, ω ≈ 0 in S−(q, ω).
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5.5.4 Ferromagnetic-xy phase (π < φ < 3π
2

)

Fig. 5.12(a) shows the dynamical structure factors Sz(q, ω) and S−(q, ω) for φ = 5
4π.

Near φ = π (K ≈ 0) in the FM-xy phase, the system is effectively described by a FM

XXZ Heisenberg chain with easy-plane anisotropy 2J+K
2 < J < 0 and the ground state is

approximately expressed by Eq. (5.4). Thus, the excitation spectrum is expected to be

gapless. Since the total Sz of the ground state is zero, unlike the case of FM-z state both

Sz(q, ω) and S−(q, ω) have the same excitation dispersion as

ω(q) = −2J +K

2

(
1± cos

q

2

)
. (5.56)

Note that a sharp peak at (q, ω) = (0, 0) in S−(q, ω) keeps its weight constant with

increasing system length, indicating the FM-xy long-range ordering. On the other hand,

in the vicinity of the Kitaev point φ ≈ 3π
2 −, the excitation dispersion of S−(q, ω) is well

described by Eq. (5.53).

5.5.5 Staggered-xy ordered phase (3π
2
< φ . 1.65π)

In the vicinity of the Kitaev point φ = 3
2π+, the excitation spectra are the same as in

the other Kitaev point φ = 1
2π+, namely, Eq. (5.54) for S−(q, ω) and a q-independent

continuum for Sz(q, ω). Whereas in the vicinity of the Néel-z ordered phase φ =

tan−1(−2)−, the ground state is expressed by Eq. (5.11). Thus, the dispersions are

described by a single magnon excitation:

ω(q) = −K
2

(
1± cos

q

2

)
(5.57)

for Sz(q, ω), and

ω(q) = −K
2

(
1± sin

q

2

)
(5.58)

for S−(q, ω). Fig. 5.12(b) shows the dynamical structure factors Sz(q, ω) and S−(q, ω)

for φ = 19π
12 . The excitation dispersions are well reproduced by Eqs. (5.57) and (5.58).

We also find a sharp peak at (q, ω) = (π, 0) in S−(q, ω), which indicates the staggered-xy

long-range ordering. This peak keeps its weight constant with increasing the system

length, in contrast to the similar peak for the spiral-xy state.

5.5.6 Néel-z ordered phase (1.65π . φ < 2π)

In the vicinity of the staggered-xy ordered phase φ = tan−1(−2)+, the ground state is

expressed by Eq. (5.12). Accordingly, Sz(q, ω) has only a delta peak at (q, ω) = (0, 0).

Whereas, S−(q, ω) is exactly explained by a single magnon dispersion. It is obtained by

the SWT as

ω(q) = J ± K

2
sin

q

2
. (5.59)

Although this is equivalent to Eq. (5.57), the spectral weight is uniform for all q values.

Since the transition at φ = tan−1(−2) is first ordered, there is no peak indicating a

connection to the staggered-xy ordered phase. On the other hand, near φ = 2π, the

system can be basically regarded as an easy-axis AFM XXZ Heisenberg chain so that the

excitation dispersion is described by Eq. (5.52) for both Sz(q, ω) and S−(q, ω). Fig. 5.12(c)
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shows the dynamical structure factors Sz(q, ω) and S−(q, ω) for the intermediate region

φ = 17
10π. The main dispersion of S−(q, ω) is basically described by Eq. (5.59) but some

features from Eq. (5.52) seem to be somewhat mixed.

5.6 Discussion

In this chapter, we have established the presence of a variety of phases in the 1D KH

system. Especially, it is surprising that most of the φ ranges are covered by long-range

ordered phases despite considering a pure 1D system. In this context, we now consider

the K-intercalated α-RuCl3, namely, K0.5RuCl3. One should be aware of the fact that

several different parameter sets have been suggested for undoped α-RuCl3: (i) K = −5.6,

J = 1.2 (φ ≈ 1.57π) [134], (ii) K = 7.0 ,J = 4.6 (φ ≈ 0.68π) [102], (iii) K = 8.1,

J = 2.9 (φ ≈ 0.61π) [102], (iv) K = −6.8, J = 0 (φ = 1.5π) [135] in unit of meV. If we

assume that the charge ordering pattern in K0.5RuCl3 is that illustrated in Fig. 5.1(c),

the parameter sets (i)-(iv) correspond to the staggered-xy, FM-z, spiral-xy, and FM

Kitaev point, respectively. In practice, the charge ordering could cause a significant

change of the parameter since they are very sensitive to the Ru-Cl-Ru bond angle [134].

In other words, once the magnetic properties of K0.5RuCl3 are observed, we may easily

speculate the possible parameter set of K0.5RuCl3 and even the charge ordering pattern

by comparing them to our rich phase diagram. To gain deeper insights, theoretical and

experimental studies under magnetic fields are also required.

It is relevant to seek other possible realisations of 1D KH system. Even if the Kitaev

interaction in 1D systems is present, it is considered to be very small. However, as shown

above, even a tiny Kitaev interaction can stabilise one of ordered state. It might also be

intriguing to reconsider quasi-1D materials having two sublattices like Ni2(EDTA)(H2O)4,

[Ni(f-rac-L)(CN)2], LiCuSbO4, and Rb2Cu2Mo3O12 from the point of view of the 1D

Kitaev system.

The φ-dependent phase diagram of our model is similar to that for the honeycomb-

lattice KH model. Remarkably, all the magnetically ordered states of the honeycomb-

lattice KH model can be interpreted in terms of the coupled 1D KH chains. In other

words, the key elements to derive the magnetic ordering in the 2D honeycomb-lattice KH

model are already contained in the 1D KH chain. The pure 1D model, however, does

not support the existence of a KSL state. Therefore, we turn to a quasi-1D system and

consider a ladder geometry in the next chapter.
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Kitaev-Heisenberg ladder6
In the previous chapter, we have studied the KH model on a 1D chain and found a

very rich phase diagram with several long-range ordered states. Nonetheless, that system

did not show the presence of a KSL due to the missing z rung. Hence, we now turn to a

more promising geometry for the existence of such an exotic state, though still keeping

the system quasi-one-dimensional, and consider a two-legged ladder. In fact, in this

chapter, we will show how such a quasi-1D system presents a phase diagram very similar

to that of the 2D honeycomb model, including to QSL states.

This chapter is organised as follows: Our Hamiltonian of the KH ladder is explained

and the applied numerical methods are described in Sec. 6.2. In Sec. 6.3 we present

the four kinds of LRO magnetic state that are present depending on the ratio between

Kitaev and Heisenberg interactions. In Sec. 6.4 we discuss the properties of KSL states

expanded around the large limit of Kitaev interaction. In Sec. 6.5 the ground states are

summarised as a phase diagram as a function of the ratio between Kitaev and Heisenberg

interactions. We also compare the ground state phase diagram with those of 1D KH

model and 2D honeycomb-lattice KH model, and discuss the similarity and dissimilarity

among them. Section 6.6 explains the fundamental features of dynamical spin structure

factor in each the phase. Finally we discuss our findings in Sec. 6.7.

6.1 Introduction

While in the previous chapter we have studied the KH model on a 1D chain (Fig. 6.1(a)),

we now consider a quasi-1D system that acts as an “intermediate” geometry between a

pure 1D chain and a 2D lattice, namely, a two-legged ladder. The lattice is shown in

Fig. 6.1(b). In fact, though the original KSL was introduced on the honeycomb lattice,

it is known that the Kitaev interaction on any three-coordinated lattice gives rise to non

trivial properties: In this sense, while a one-dimensional (1D) KH chain represented in

Fig. 6.1(a) cannot possess a KSL state (see Chapter 5), the KH model on a ladder (we

simply refer to it as the KH ladder hereafter) in Fig. 6.1(b) already meets the geometrical

requirement due to the presence of the z bonds. The KH ladder can be also extracted

from a brick-wall lattice (Fig. 6.1(c) ), which is geometrically equivalent to the honeycomb

lattice: Cutting along the grey line and folding the cut z bonds towards the centre we

recover the KH ladder in Fig. 6.1(b). Hence, we expect to gain insight about the basic

properties of the honeycomb-lattice KH model from the KH ladder.

Since the interplay of Kitaev and Heisenberg interactions in 2D or 3D geometries

may pose serious challenges to the available numerical methods, it is a good strategy to

consider the ladder system next. We can make use of the DMRG technique to study

quasi-1D systems with great accuracy [21]. Moreover, possible spin liquid behaviour in

the KH ladder has been already suggested at finite temperature [136].

We obtain the ground state phase diagram of the KH ladder to be composed of

Parts of this chapter have been published as Phys. Rev. B 99, 224418 2019
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(a)

(b)

(c)

Figure 6.1: (a) Lattice structure of the KH chain. (b) Lattice structure of the KH ladder

studied in this chapter. (c) Structure of the KH model on a brickwall lattice, which is

geometrically equivalent to the honeycomb lattice. The grey rectangle shows a cutout

that makes the mapping to the ladder represented in (b) possible. The indices x, y and z

indicate the three different bonds: x bond, y bond, and z bond, respectively.

four magnetically ordered phases, namely rung singlet, stripy, FM-xy, zigzag; and two

liquid phases, namely AFM SL and FM SL, depending on the ratio between Kitaev and

Heisenberg interactions. To determine the phase boundaries, we compute several order

parameters, excitation gap, and entanglement spectra. Strikingly, the phase diagram of

the KH ladder is very similar to that of the honeycomb-lattice KH model. We then proceed

at analyzing the low-lying excitations of the KH ladder by calculating the dynamical spin

structure factor with using the Lanczos (ED). It is interesting that most of the spectral

features can be explained by considering those of the 1D KH model Sec. 5.5.

6.2 Model and Method

6.2.1 Model

We study the KH ladder as represented in Fig. 6.1(b). The Hamiltonian is described by

H = K

L/2∑
i=1

(Sx2i−1,1S
x
2i,1 + Sy2i,1S

y
2i+1,1) + J

L∑
i=1

Si,1 · Si+1,1

+K

L/2∑
i=1

(Sx2i,2S
x
2i+1,2 + Sy2i−1,2S

y
2i,2) + J

L∑
i=1

Si,2 · Si+1,2

+K

L∑
i=1

Szi,1S
z
i,2 + J

L∑
i=1

Si,1 · Si,2, (6.1)

where Sαi,j is the α component of spin-1
2 operator Si,j at rung i and leg j (= 1, 2), L is

the system length, and K and J are the Kitaev and Heisenberg interactions, respectively.

The first two lines denote the intraleg interactions and the last line denotes the interleg
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interactions: Each leg has a period of two lattice spacing and there are three kinds of

bond-dependent interactions. As shown in Fig. 6.1(c) one finds that the KH ladder (6.1)

is a system cut out of the KH model on a brick-wall lattice. Since the brick-wall-lattice

KH model is obtained by deforming the honeycomb-lattice KH model, the KH ladder is

geometrically equivalent to the honeycomb-lattice KH model. Note that the KH ladder

has a strong cluster anisotropy, i.e., the periodicity along the z bond is short. Nonetheless,

the LRO states observed in the honeycomb-lattice KH model also have a short periodicity

in the bond direction and all of them can be reproduced in the KH ladder as shown

below. In this work, to compare magnetic properties of the KH ladder to those of the

honeycomb-lattice KH model, we focus on the case of equal Kitaev and Heisenberg

terms on the three bonds. For convenience, we introduce an angle parameter φ, setting

J = cosφ and K = sinφ.

The Hamiltonian (6.1) can be rewritten as

Hleg =
2J +K

4

2∑
j=1

L∑
i=1

(S+
i,jS
−
i+1,j + S−i,jS

+
i+1,j)

+
K

4

2∑
j=1

L∑
i=1

(−1)(i+j)(S+
i,jS

+
i+1,j + S−i,jS

−
i+1,j)

+ J
2∑
j=1

L∑
i=1

Szi,jS
z
i+1,j , (6.2)

for the intraleg couplings, and

Hrung =
J

2

L∑
i=1

(S+
i,1S

−
i,2 + S−i,1S

+
i,2) + (J +K)

L∑
i=1

Szi,1S
z
i,2 (6.3)

for the interleg, i.e., rung, couplings. We can easily notice that all the nearest-neighbor

bonds have a XXZ-type interaction, and the sign-alternating double-spin-flip fluctuations

acts only along the leg direction.

6.2.2 Method

We study finite-size systems with length up to L × 2 = 160 × 2 with keeping up to

m = 4000 density-matrix eigenstates in the renormalisation procedure. In this way, the

truncation error, i.e. the discarded weight, is ∼ 10−11. The calculated quantities are

extrapolated to the limit m → ∞ if needed. This allows us to perform very accurate

finite-size scaling analysis. We use open and periodic boundary conditions depending on

the quantity we consider. To identify the ground state for the given angle parameter φ, we

compute several order parameters, spin gap, plaquette operator, dynamical spin structure

factor, and entanglement spectra. When we calculate the order parameter under open

boundary conditions, the LRO state is observed as a state with a broken translational

or spin symmetry. There are in fact several degenerate ground states; one configuration

of the degenerate states is selected as the ground state by the initial condition of the

DMRG calculation.
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For the dynamical calculations, we use the Lanczos ED method. To examine the

low-energy excitations for each phase, we calculate the dynamical spin structure factor,

defined as

Sγ(q, ω) =
1

π
Im〈ψ0|(Sγq )†

1

Ĥ + ω − E0 − iη
Sγq |ψ0〉

=
∑
ν

|〈ψν |Sγq |ψ0〉|2δ(ω − Eν + E0), (6.4)

where γ is z or −(+), |ψν〉 and Eν are the ν-th eingenstate and the eigenenergy of the

system, respectively (ν = 0 corresponds to the ground state). Under periodic boundary

conditions, the spin operators Sγq can be precisely defined by

Sγq =

√
2

L

∑
i

Sγi,j exp(iqri,j), (6.5)

where ri,j is the position of site (i, j). The sum runs over either i even or i odd sites with

fixing j = 1 or 2. They provide the same results. The momentum is taken as q = 4π
L n

(n = 0,±1, . . . ,±L
4 ) since the lattice unit cell includes four sites and the number of unit

cells is L
2 in a system with L× 2 sites. We calculate both spectral functions S±(q, ω) and

Sz(q, ω) as they are different due to broken SU(2) symmetry except at φ = 0 and π. We

study ladders with L× 2 = 12× 2, namely, six unit cells, by the Lanczos ED method.

As shown below, our model (6.1) contains only commensurate phases with the unit cell

containing one, two, or four sites. Therefore, a quantitative discussion for the low-lying

excitations is possible even within the 12× 2 ladder.

6.3 Ordered phases

In this section, we present the DMRG results for LRO phases in the ground state. We

find four kinds of ordering, namely: stripy, rung singlet, zigzag, and FM-xy phases. The

rung-singlet state is not magnetically ordered but the system is in a unique state with

dimer ordering, namely, the dimer-dimer correlation is long ranged. The names of the

ordered phases follow Ref. [98]. In the LRO states, except for the rung-singlet state,

the translational or spin rotation symmetry is broken in a finite system due to Friedel

oscillations under open boundary conditions, so that the ordered state can be directly

observed with a local quantity by extracting one of the degenerate states. Generally,

the Friedel oscillations in the centre of the system decay as a function of the system

length. If the amplitude at the centre of the system persists for arbitrary system lengths,

it corresponds to a long-range ordering.

6.3.1 Stripy phase (1.57π < φ < 1.7π)

Let us start with the stripy state. In the region of 3
2π . φ < 7

4π, since J > 0 and

J + K < 0, the leg and rung interactions are AFM and FM, respectively. Thus, we

naively expect the coupled chains to order in what we call the stripy state, as depicted in

Fig. 6.2(a). Getting back to the original brick-wall lattice, the alignments of up spins and

down spins appear alternately with running along the leg. This state can be analytically
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(a)

(b) (c)

Figure 6.2: (a) Schematic spin configuration of the stripy state. (b) Finite-size scaling of

the stripy order parameter for several values of φ. The dotted line helps the eye follow

the data points, solid lines represent the linear fitting. (c) Extrapolated stripy order

parameter as a function of φ/π.

proven at φ = tan−1(−2) ≈ 1.65π, where our model (6.1) is exactly solvable: The rung

Hamiltonian (6.3) leads simply to isotropic FM couplings due to J +K = −J , whereas,

the leg Hamiltonian (6.2) is reduced to a sum of double-spin-flip (S+S++S−S−) and Ising

(SzSz) parts because the exchange (S+S− + S−S+) term disappears due to 2J +K = 0.

The total energy of our system (6.1) is minimised by taking the wave function as

|Ψ0〉 =
1√
2

L/2∏
i=1

S−2i,1S
−
2i,2| ⇑〉+

L/2∏
i=1

S+
2i,1S

+
2i,2| ⇓〉

 , (6.6)

where | ⇑〉 and | ⇓〉 denote configurations including only up and down spins, respectively.

Note that all the spins are aligned along the z direction. When the Hamiltonian (6.1) is

applied to this wave function (6.6), only the Ising terms provide nonzero components.

Thus, no quantum fluctuations exist and the system is in a perfect stripy state described

by Eq. (6.6). The ground-state energy is E0/L = 3
4J .

It is still a nontrivial question how the wave function (6.6) is modified with moving

away from φ ≈ 1.65π. To study it numerically, we introduce an order parameter defined

by

Ostripy(L) =
1

2

(
|〈Sz(L/2,1)〉 − 〈Sz(L/2+1,1)〉+ 〈Sz(L/2,2)〉 − 〈SzL/2+1,2)〉|

)
(6.7)

Ostripy = lim
L→∞

Ostripy(L) (6.8)

In Fig. 6.2(b), we show finite-size scaling analysis of Ostripy. We see how finite-size scaling

is of fundamental importance in this system: the dotted line shows the jump in the order

parameter between the smallest (20× 2) and the second smallest (40× 2) systems. The

finite size scaling is then performed with discarding the first point, where the system

77



Chapter 6. Kitaev-Heisenberg ladder

(c)(b)

(a)

Figure 6.3: (a) Schematic spin configuration of the zigzag state. (b) Finite size scaling of

the zigzag order parameter for several values of φ. Dotted lines help the eye follow the

data points, solid lines represent the linear fitting. Note that for φ = 0.53π the order

parameters is finite only for L ≥ 140. (c) Extrapolated zigzag order parameters as a

function of φ/π.

size is too small to stabilise the ordering. This explicitly indicates the existence of a

“critical length” for stabilising a long range order. Examples of this kind of behaviour

are seen also for order parameters of the other ordered states. The L→∞ extrapolated

value of the stripy order parameter is plotted in Fig. 6.2(c). The validity of the exact

wave function (6.6) is confirmed by Ostripy = 1 at φ ≈ 1.65π. Even away from φ ≈ 1.65π,

Ostripy keeps relatively large value (∼ 1) and drops down to zero at both edges, φ ≈ 1.57π

and φ = 1.7π. It means that the transitions at both phase boundaries are of the first

order.

In the previous Chapter (Sec. 5.3.5) we found that the 1D KH model exhibits a

Néel-z state, i.e., Néel ordering with spins parallel or antiparallel to the z axis, for

1.65π . φ < 2π. In this sense the stripy state of the KH ladder may be also interpreted

as two Néel-z chains coupled by FM interaction.

6.3.2 Zigzag phase (0.53π ≤ φ < 0.8π)

In the region of 1
2π . φ < 3

4π, since J < 0 and J +K > 0, the leg and rung interactions

are FM and AFM, respectively. Hence, an ordered state as in Fig. 6.3(a) is expected. We

call it a zigzag state by following the name of the corresponding state in the honeycomb-

lattice KH model [98] (our straight leg corresponds to a zigzag line in the honeycomb

lattice). Through a similar analysis of the exact wave function (6.6) at φ ≈ 1.65π, we

could assume the wave function at φ ≈ 0.65π to be

|Ψ0〉 ≈
1√
2

[
L∏
i=1

S−i,1| ⇑〉+
L∏
i=1

S+
i,1| ⇓〉

]
. (6.9)
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However, unlike in the case of φ ≈ 1.65π, this classical configuration is just a good

approximation for the wave function at φ ≈ 0.65π but not an exact one because quantum

fluctuations are involved from the intra-leg double-spin-flip and rung exchange processes.

We define the following order parameter to see the instability of zigzag ordering:

Ozigzag(L) =
1

2

(
|〈Sz(L/2,1)〉+ 〈Sz(L/2+1,1)〉 − 〈Sz(L/2,2)〉 − 〈SzL/2+1,2)〉|

)
(6.10)

Ozigzag = lim
L→∞

Ozigzag(L) (6.11)

Figures 6.3(b) and 6.3(c) show the finite-size scaling analysis of Ozigzag(L) for several

values of φ. At the lower boundary with the AFM KSL phase (φ = 0.53π), the long-range

order settles only at large system sizes L ≥ 140: This can be interpreted as some kind

of “fragility” of the zigzag ordering close to the AFM KSL. Moreover, it underlines

the importance of studying large enough ladders using the DMRG method for this

system, although the finite-size effect could be relieved by a pinning of the order with the

corresponding magnetic field at the system edges. In Fig. 6.3(c) we plot the extrapolated

values of Ozigzag in the thermodynamic limit. We can see that Ozigzag keeps ∼0.7−0.8 in

most of the zigzag phase and Eq. (6.9) gives a good approximation for this zigzag state.

Around the lower phase boundary (φ ∼ 0.53π), Ozigzag approaches rather continuously

to zero with approaching the phase boundary, suggesting a continuous transition of

second order; whereas at the upper phase boundary (φ ∼ 0.8π), Ozigzag drops down to 0,

suggesting a first-order transition.

For φ < 0.75π, the leading interaction on the rungs is AFM since J +K is positive in

Eq. (6.3). Therefore, the zigzag state may be simply interpreted as antiferromagnetically

coupled FM chains (“FM-z state” Sec. 5.3.3) obtained in the 1D KH model at 0.65π <

φ < π. However, the lower bound of the zigzag phase is significantly more extended

(down to φ = 0.53π) than the lower bound of the FM-z state (φ = 0.65π) in the 1D KH

model. At 0.5π < φ < 0.65π the 1D KH model is in a liquid state called “spiral-xy state”

(Sec. 5.3.4). Nevertheless, ferromagnetic fluctuations on the legs would be strong because

of the negative J in Eq. (6.2) and the zigzag ordering can be stabilised by the dominant

AFM Ising term on the rungs due to J +K > |J | in Eq. (6.3). In other words, the FM

alignment on each leg is just taken care of by the interchain AFM couplings. This may

be related to the fragility of the zigzag order near the AFM KSL phase.

6.3.3 Rung-singlet phase (−0.3π ≤ φ ≤ 0.48π)

At φ = 0 (J = 1, K = 0), our system (6.1) is a pure isotropic AFM Heisenberg ladder,

known to be in a rung-singlet state with singlet-triplet excitation gap ∆1 = 0.5037J

(Ref. [137]). The schematic picture of a rung-singlet state is given in Fig. 6.4(a). We

compute the excitation gap to see how the perturbation introduced by the Kitaev term

affects this state. Since the total Sz is not a good quantum number except at φ = 0, the

rung-singlet excitation gap is simply defined as the energy difference between the ground

state and first excited state. The gap between the ground state and nth excited state is

defined as

∆n(L) = En(L)− E0(L) ∆n = lim
L→∞

∆n(L), (6.12)
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(a)

(b) (c)

Figure 6.4: (a) Schematic spin configuration of the rung singlet state, where a red ellipse

represents a spin singlet. (b) Finite size scaling of the gap for φ = −0.2π, 0.1π, and 0.47π.

The fit is performed using a polynomial function in 1/L. (c) Extrapolated spin gap as a

function of φ/π. Inset: Spin gap of isolated rung as a function of φ.

where E0 is the ground state energy and En is the nth excited state energy. Figures 6.4(b)

and 6.4(c) show the finite-size scaling analysis of ∆1(L) for several values of φ and the

L→∞ extrapolated value of ∆1 as a function of φ, respectively. It is remarkable that

the gap is clearly asymmetric about φ = 0, reaching its maximum at φ ∼ 0.1π: this could

be understood by noticing that both K and J are AFM in the region of 0 < φ < 1
2 , while,

K and J have different signs in the region of −1
2π < φ < 0. The gap closes gradually

with approaching the boundary to the stripy phase at φ = −0.3π and to the AFM KSL

phase at φ = 0.48π. Thus, they are both continuous transitions.

Let us provide a more comprehensive explanation about the asymmetry of the gap

in respect to φ. In an AFM Heisenberg ladder, it is known that the magnitude of the

gap roughly scales with the AFM rung interaction. This also means that the spin-spin

correlations are strongly screened. Therefore, a single dimer may be expected to be

an effective model to reproduce the gap behaviour. We then extract an isolated rung:
J
2 (S+

1 S
−
2 + S−1 S

+
2 ) + (J +K)Sz1S

z
2 from our system (6.1). This two-site system can be

easily diagonalised and the gap is obtained as ∆i-rung = 2J+K
2 for φ < 0 and ∆i-rung = J

for φ > 0. In the inset of Fig. 6.4(c) the gap obtained for the isolated rung is plotted. The

qualitative trend the of gap with φ is well described by the single dimer. Furthermore,

the gap closing points at φ = tan−1(−2) ≈ −0.35π and φ = 1
2π are very close to those

for the original KH ladder. It proves the strong screening of spin-spin correlations in the

whole rung-singlet phase.

We note that the rung-singlet state is a special feature of the KH ladder with even

number of legs. If the number of legs is odd, the system is gapless; and in the limit of

infinite number of legs, i.e., 2D honeycomb lattice, the system exhibits a Néel order.
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(b)(a)

Figure 6.5: (a) Finite-size scaling of the local spin 〈S〉 for several values of φ. Dotted lines

help the eye follow the data points, solid lines represent the fitting. (b) Extrapolated

values of 〈S〉 as a function of φ/π.

6.3.4 Ferromagnetic phases

At φ = π (J = −1, K = 0), the system is in an SU(2) isotropic FM state. This state can

be expressed as a sum of fully polarised spin configurations for all of the total Sz sectors,

namely, Sztot =
∑

i S
z
i = 0,±1,±2, · · · ,±L. On leaving φ = π, the sectors are lifted: For

|π − φ| � 1, the first order perturbation in the Hamiltonian (6.1) is given by

H′ = π − φ
4

2∑
j=1

L∑
i=1

(S+
i,jS

−
i+1,j + S−i,jS

+
i+1,j)

+
π − φ

4

2∑
j=1

L∑
i=1

(−1)(i+j)(S+
i,jS

+
i+1,j + S−i,jS

−
i+1,j)

+ (π − φ)
L∑
i=1

Szi,1S
z
i,2, (6.13)

where the nonperturbative part is the simple FM Heisenberg ladder with J = −1 (∀ NN

bonds). To gain the energy benefits by H′, the total Sz sectors in the wave function are

restricted to Sztot = 0,±2,±4, · · · ,±L. Thus, near the vicinity of φ = π the ground state

is approximately denoted by

|ψ〉 ≈ 1√
N
∑
m

|φm〉 (6.14)

where m runs over all the possible spin configurations |φm〉 (m = 1 · · ·N ) with Sztot =

0,±2,±4, · · · ,±L, N is the number of the spin configurations, i.e., N =
∑L

n=0 2LC2n =∑L
n=0

(2L)!
(2n)!(2L−2n)! . As a result, the polarised direction is [110] in the spin space, namely,

〈Sxi Sxj 〉 = 〈Syi S
y
j 〉 = 1

8 and 〈Szi Szj 〉 = 0 (∀i, j). We call it the FM-xy state. This breaking

of the SU(2) symmetry is a consequence of the double-spin-flip term, which immediately

suppressed the spin polarisation along the z axis.

To determine the range of the FM-xy phase, we calculate the total spin per rung
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(a) (b)

Figure 6.6: Expectation value of the plaquette operator around (a) the AFM SL point

φ = π/2 and (b) the FM SL point φ = 3π/2 for different system lengths. Shaded areas

show the neighbouring LRO phases. The insets in (a) and (b) show the considered six-site

plaquette corresponding to a hexagon in the honeycomb-lattice KH model.

Stot/(2L), defined by

Stot(Stot + 1) =
2∑

j,j′=1

L∑
i,i′=1

Si,j · Si′,j′ (6.15)

and the local spin

〈S〉 =
√
〈Sxi,j〉2 + 〈Syi,j〉2 + 〈Szi,j〉2 (6.16)

at the centre of the system i = L
2 . Note that we can directly detect the local moment

in the FM state since the spin rotation symmetry is broken by using open boundary

conditions. We have confirmed 〈S〉 = Stot/(2L) in the thermodynamic limit. Figure 6.5

shows 2〈S〉 as a function of φ. At the isotropic SU(2) point (φ = π), 2〈S〉 = Stot/L = 1.

We find that 2〈S〉 decays very slowly from 1 as the distance from φ = π, and keeps ∼1

in the whole FM-xy region 0.8π < φ < 1.37 < π. The robustness of the FM-xy state is

naively expected because both J and J + K are FM at 3
4π < φ < 3

2π. Then, at both

boundaries, to the zigzag state at φ = 0.8π and to the spin liquid state φ = 1.37π, it

sharply drops down to 0, which indicates first-order transitions.

6.4 Spin-liquid states

We have determined the phase boundaries of LRO phases covering most of the φ range.

In the remaining two narrow φ regions around the Kitaev points φ = ±π
2 , we found

no long-range ordering, i.e., they are spin-liquid states. To consider the similarity to

the so-called KSL in the honeycomb KH model, we compute the expectation value of

plaquette operator and the excitation gap.
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(a) (b)

Figure 6.7: L→∞ extrapolated gap of first and second excited states from the ground

state as a function of φ: (a) AFM QSL, (b) FM QSL.

6.4.1 Plaquette operator

It is known that the Kitaev model, e.g., on a hexagonal cluster and ladder, is in a π-flux

state. This state is characterised by the expectation value of plaquette operator to be

unity. We define the expectation value of the plaquette operator for our system (6.1) as

Oplaquette = 〈Sx1Sy2Sz3Sx4Sy5Sz6〉 (6.17)

where the numbering of sites is indicated in the inset of Fig. 6.6(b). Note that this

six-site plaquette corresponds to a hexagon in the honeycomb-lattice KH model. In

Fig. 6.6 we show Oplaquette calculated with ED for several ladder lengths under periodic

boundary conditions. The finite-size effect seems to be negligible within the spin-liquid

phases. At both of the Kitaev points φ = ±π/2, Oplaquette is 1 as expected. With

moving away from φ = ±π/2, Oplaquette decreases but keeps ∼1 in finite regions. In the

vicinities of the neighboring LRO phases, it decreases rapidly to ∼0. This means that

the ranges of spin-liquid phases characterized by nonzero Oplaquette are consistent to the

phase boundaries with the LRO state estimated by order parameters and spin moment.

Interestingly, the region of FM SL is a few times wider than that of AFM SL. This is

similar to the trend in the honeycomb KH model (see below). We have also confirmed

that the spin-spin correlations are finite only between neighbouring sites at the Kitaev

points, as in the honeycomb-lattice KH model.

6.4.2 Excitation gap

We compute the excitation gaps ∆1 and ∆2 around the AFM and FM Kitaev point

φ = ±1
2π using Eq. (6.12). In Fig. 6.7 the excitation gaps are plotted as a function of

φ/π. In both cases, the first excitation gap ∆1 seems to vanish; whereas the second

excitation gap ∆2 is clearly finite over the whole interested region. It means that the

disordered phase around the Kitaev points is characterised as a gapped KSL, although

the ground state is doubly degenerate. This is consistent with the previous studies in

Refs. [138, 139, 140]. Therefore, we can conclude that the spin liquid state of the KH
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Figure 6.8: String order parameters Ostring as a function of φ.

ladder is different in terms of excitations from an isotropic gapless KSL state of the

honeycomb-lattice KH model. It is also worth mentioning that for the FM QSL, the

maximal value of ∆2 is given a bit away from the FM Kitaev point, φ ∼ 1.49π. We also

point out that the gap ∆1 reported in Fig. 6.7(a) is finite in the rung singlet state and

closes continuously at φ ≈ 0.49π.

6.4.3 String order parameter

Hidden (non local) order is a key feature to know the topological properties of a spin

system and it has been so far recognised in various ladder systems. In particular, as

discussed in previous studies [93, 139, 140], the string (or brane) order is expected in the

Kitaev systems. To confirm it numerically, we calculate the string order parameter which

is defined by

Ostring = lim
|i−j|→∞

〈Syi,1Sxi,2

(
j−1∏
k=i+1

Szk,1S
z
k,2

)
Syj,1S

x
j,2〉. (6.18)

To obtain the values in the thermodynamic limit, we choose i = L
4 and j = 3L

4 with

system length L = 8n (n: integer). We calculate the string order parameters (6.18) for

systems with length up to L = 76 and perform finite-size scaling analysis. The L→∞
extrapolated results around the FM Kitaev point are plotted as a function of φ/π in

Fig. 6.8. The presence of a long-ranged string order is clearly seen in the whole range of

the FM SL phase. The maximum is found at the FM Kitaev point.
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(a) (b) (c)

Figure 6.9: (a) φ-dependent Phase diagram of the 1D KH model as determined in Chapter

5. (b) Phase diagram of the KH ladder, obtained in this chapter. (c) Phase diagram of

the honeycomb-lattice KH model adapted from Ref. [131].

6.5 Phase diagram

Based on the above numerical results, we present the φ-dependent ground state phase

diagram of the KH ladder in Fig. 6.9(b). For an easier comparison, we also show the

ground state phase diagrams of the KH model on a single chain reported in the previous

chapter (Sec. 5.4) and on a honeycomb lattice [131] in Figs. 6.9(a) and 6.9(c), respectively.

As discussed in Chapter 5, all the LRO states of the honeycomb-lattice KH model can

be interpreted in terms of the coupled KH chains. Surprisingly, we now found that the

phase diagram of just two coupled KH chains, i.e., the KH ladder, is getting more similar

to that of the 2D honeycomb-lattice KH model. The only recognisable differences are the

following:

(i) The Néel phase is replaced by the rung-singlet phase. The rung-singlet gap decreases

with increasing the number of KH chains and goes to zero in the honeycomb KH limit.

This is essentially the same as the relation between n-leg Heisenberg ladder and 2D

Heisenberg model.

(ii) The KSL phases in the KH ladder is wider than those in the honeycomb-lattice KH

model because the quantum fluctuations are stronger due to the low dimensionality.

Finally, to get further insights into the topological properties of our system (6.1), we

investigate the entanglement spectrum [77]. Using Schmidt decomposition, the ground

state can be expressed as

|ψ〉 =
∑
i

e−ξi/2|φA
i 〉 ⊗ |φB

i 〉, (6.19)

where the states |φSi 〉 correspond to an orthonormal basis for the subsystem S (either A

or B). We study a periodic ladder with L× 2 = 32× 2 sites and divide it into isometric

subdomains A and B with L
2 × 2 sites. In our calculations, the ES {ξi} is simply obtained

as ξi = − lnλi, where {λi} are the eigenvalues of the reduced density matrices after the

bipartite splitting. The low-lying entanglement spectrum levels are plotted as a function

of φ in Fig. 6.10. We find that the lowest level has no degeneracy in the magnetic LRO

phases, which are topologically trivial. In the SL phases, the lowest level has two fold

degeneracy confirming the existence of Majorana zero modes and the higher levels have

high degrees of degeneracy. These are consistent with the ground state phase diagram.
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Figure 6.10: Entanglement spectra for representative φ-points of the different phases in

the ground-state phase diagram. The used system size is L× 2 = 32× 2 for the LRO

states and L× 2 = 24× 2 for the two Kitaev points.

6.6 Low-lying excitations

In this section, we study the low-lying excitations of the KH ladder by calculating the

dynamical spin structure factor. We compute both Sz(q, ω) and S−(q, ω) for each of the

LRO phase. For the FM KSL state we compute them at three different φ values to study

the effect of the Heisenberg interaction on the dispersion. The calculations were done

using ED and a ladder of size L = 12× 2 with periodic boundary conditions.

6.6.1 Rung-singlet phase

Figure 6.11(a) shows the dynamical structure factors for the rung-singlet state at φ = 0.2π

(J ∼ 0.81,K ∼ 0.59). The largest peak appears in S−(q = 0, ω ∼ 0.6) reflecting the

dominant AFM fluctuations along the leg. The value of ω ∼ 0.6 corresponds to the

excitation gap ∆ estimated above. The intensities in S−(q, ω) are larger than those

in Sz(q, ω) due to the easy-plane xy anisotropy. As indicated by the dotted line, the

spin-triplet dispersion ω(q) of Sz(q, ω) can be well explained by that of the two-leg

Heisenberg ladder with the ratio between rung and leg interactions rung
leg ≈ J+K

J ∼ 1.7

(Ref. [141]). The spin-triplet dispersion of S−(q, ω) is similar in shape but it splits with

the width ∼ ±K2 at q = π. This splitting of the spin-triplet dispersion is a general feature

in the system including the sign-alternating double-spin-flip term as seen in Sec. 5.5. The

width of spin-triplet dispersion in Sz(q, ω) and S−(q, ω) roughly scales to J and J + K
2 ,

respectively.
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(c)

(b)

(d)

Figure 6.11: Dynamical structure factors calculated with a 12× 2 ladder with periodic

boundary conditions in the (a) rung-singlet (φ = 0.2π), (b) stripy (φ = 1.64π), (c) zigzag

(φ = 0.6π), and (d) FM-xy (φ = 0.9π) phases. The left and right panels show Sz(q, ω

and S−(q, ω), respectively. The red dotted lines are guides to the eye and red solid lines

are spin-triplet dispersion obtained by the spin-wave theory.

6.6.2 Stripy phase

Figure 6.11(b) shows the dynamical structure factors for the stripy state at φ = 1.64π

(J ∼ 0.43, K ∼ −0.9) where the single leg can be basically regarded as an easy-axis AFM

XXZ Heisenberg chain. In Sz(q, ω) the largest peak appears at (q, ω) = (0, 0) due to the

Néel ordering along the leg. Very few weights in the other momenta prove the validity

of Eq. (6.6) with almost perfect alignment of spins parallel or antiparallel to the z axis

and very weak quantum fluctuations, whereas the spin-triplet dispersion of S−(q, ω) is

basically explained by a single magnon dispersion. Thus, the spectral weight is almost

uniform for all q values, and the dispersion is obtained by spin-wave theory as

ω(q) = J ± K

2
sin

q

2
. (6.20)

The good agreement can be seen in Fig. 6.11(b). Since the stripy order parameter drops on

both phase boundaries, Eq. (6.20) would give at least qualitatively a good approximation

for the spin-triplet dispersion in the whole stripy phase.

6.6.3 Zigzag phase

Figure 6.11(c) shows the dynamical structure factors for the zigzag state at φ = 0.6π(J ∼
−0.31,K ∼ 0.95) where each leg is ferromagnetically ordered. The system can be
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(a)

(b)

(c)

Figure 6.12: Dynamical structure factors in the FM KSL phase, calculated with a 12× 2

ladder under periodic boundary conditions for (a) φ = 1.4π, (b) φ = 1.5π, and (c)

φ = 1.54π. The left and right panels show Sz(q, ω) and S−(q, ω), respectively. The results

for the AFM Kitaev point φ = 0.5π are exactly the same as in (b).
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understood as two FM chains coupled by the Ising-like AFM coupling. The largest

peak in Sz(q = 0, ω ∼ 0) reflects the FM ordering along the leg. The weights in the

other momenta are small since the spins are mostly aligned along the z axis; however,

they seem to be larger than those for the stripy state. This implies that the zigzag

ordering is more fragile than the stripy ordering. In S−(q, ω) a largest and lowest-lying

peak appears at q = π, indicating a four-site periodicity along the leg. The shape of

the dispersion is similar to that of the staggered-xy ordered state in the 1D KH model.

Nevertheless, the gapped peak position ω ∼ 0.42 clearly suggests no ordering on the xy

plane. The intensities in S−(q, ω) are larger than those in Sz(q, ω) due to the easy-plane

xy anisotropy.

6.6.4 FM states

Figure 6.11(d) shows the dynamical structure factors for the FM-xy state at φ = 0.9π(J ∼
−0.95, K ∼ 0.30). The largest peak in S−(q = 0, ω ∼ 0) confirms that the spins lie mostly

on the xy-plane. The other features are very similar between Sz(q, ω) and S−(q, ω). Both

of them have the same excitation dispersion as

ω1(q) = −2J +K

2

(
1± cos

q

2

)
, (6.21)

and

ω2(q) = −2J +K

2

(
1± cos

q

2

)
+ 2|K|. (6.22)

The splitting between ω1(q) and ω2(q) becomes zero in the isotropic SU(2) summetric

point at q = π and it is roughly proportional to |K|.

6.6.5 Kitaev spin liquid

In Fig. 6.12 we show the dynamical structure factors around the FM Kitaev point

(φ = 3
2π). At the FM Kitaev point, both Sz(q, ω) and S−(q, ω) show no dependence

on q. This dispersionless feature is a natural consequence of no spin-spin correlations

except the nearest-neighbour ones. The distance between the lower and upper bound

of the continuum in S−(q, ω) is of the order of |K|, relating to the spinon propagation

along the leg. Note that the spectra at the AFM Kitaev point are exactly the same as

those at the FM Kitaev point. Let us then see the effect of the Heisenberg term on the

spectra. Figures 6.12(a) and 6.12(c) show the dynamical structure factors at φ = 1.4π

and φ = 1.54π, respectively. Although they are almost equally close to the boundary to

the neighbouring phase, the spectra are apparently quite different: At φ = 1.54 it mostly

keeps the spectral features at the Kitaev point except that the main peak splits into two

peaks with a small interval ∼ J ; while at φ = 1.4π the dispersionless feature is completely

collapsed and its lower bound looks rather similar to the spin-triplet dispersion of the

FM-xy state. It may be related to the fact that the expectation value of the plaquette

operator deviates faster from the pure KSL value (Oplaquette = 1) at φ < 3
2π (J < 0) than

at φ < 3
2π (J > 0) with leaving from the FM Kitaev point. This also suggests that the

SL state at J < 0 is more easily destroyed by external perturbations, e.g., magnetic field.
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6.7 Discussion

We studied the ground state and low-lying excitations of the KH model on a ladder using

the DMRG and Lanczos ED methods. Based on the results of several order parameters,

excitation gap, and entanglement spectra, we determined the ground state phase diagram

as a function of the ratio between Kitaev and Heisenberg interactions. The phase diagram

is very rich and includes four magnetically ordered phases, namely, rung singlet, stripy,

zigzag, FM, and two spin-liquid phases. The phase diagram is strikingly similar to that

of the KH model on a honeycomb lattice. Distinct differences are only the presence of

a rung-singlet phase instead of the Néel state and a few times wider ranges of the two

spin-liquid phases. These differences can be understood through the dimensionality: (i)

Though the two-leg KH ladder has a finite excitation gap in the rung-singlet phase around

φ = 0 due to strong cluster anisotropy, the gap decreases with increasing the number of

legs and becomes zero in the limit of the 2D honeycomb-lattice KH model. (ii) Since

the quantum fluctuations are typically stronger in a lower dimensional system, it is more

difficult to stabilise LRO state in the ladder than in a 2D system. Moreover, the fact

that these two QSL states exhibit a finite gap beyond the 2-fold degenerate ground state

can also be understood in terms of the lowered geometry of the lattice when compared to

the 2D case. In fact, as in the rung singlet case, the gap would decrease with increasing

the number of coupled chain and it would vanish in the limit of infinite coupled chains.

Interestingly, the rung-singlet phase shows the same geometry as the valence bond crystal

induced by pressure in α-RuCl3 [142]. We also calculated the dynamical spin structure

factor using the Lanczos ED method. Noticeably, most of the spectral features in the KH

ladder can be explained by considering those of the 1D KH model determined in Sec. 5.5.
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Conclusion7
Quantum magnetism is a vast and worth of exploring field. In particular, magnetic

frustration opens the door to new possible exotic phases of matter, like spin liquids, spin

ices, and nematic phases. Much of what lies behind that door is yet to be completely

understood. In this work, we focused on a special class of frustrated spin systems, namely

one- (1D) and quasi-one-dimensional models. Though real, effectively 1D materials are

not so common, there exist different classes of materials where an effective 1D Hamiltonian

is enough to capture the experimental feature, such as magnetisation curve and inelastic

neutron scattering spectra, thus motivating our theoretical investigation.

We have presented possible realisations of such systems exhibiting geometric frustra-

tion in Chapter 2. A class of materials that supports the realisation of spin-1
2 chains is

cuprates. The most celebrated one is CuGeO3, which was the first inorganic material

to exhibit a spin-Peierls transition. This material exhibits an antiferromagnetic (AFM)

nearest neighbour (NN) interaction. Other cuprate chains, however, have been found

to have a ferromagnetic (FM) NN interaction, i.e., they are described by the FM J1-J2

model. We have analysed this model in Chapter 3. Some of its features were already

known, namely that the system is in a FM state for J2/|J1| < 1/4 and that it exhibits

incommensurate spiral spin correlations for larger values of J2/|J1|. Nonetheless, a

question remained open about the behaviour of the spin gap. In fact, mean field theory

predicted the gap to open around J2/|J1| ∼ 3.3 with a value of ∆ ∼ 10−40|J1|, but failed

for smaller J2/|J1| values. We have presented our numerical prediction for the existence

of a spin gap for J2/|J1| > 1/4. Moreover, we have thoroughly analysed the ground

state supporting the gap and found it to be an Affleck-Kennedy-Tasaki-Lieb (AKLT)-like

valence bond solid (VBS) with valence bonds forming between third neighbours. We call

this state D3-VBS state. We were able to characterise this state by computing dimer

order parameters for first, second and third neighbours and a string order parameter. We

proved this state to be topologically non-trivial by studying its entanglement spectrum.

Therefore, we concluded that the phase transition from the FM gapless to the D3-VBS can

be understood in two steps: first, a ferromagnetic dimerisation between first neighbours

spontaneously breaks translational symmetry, next these FM dimers give rise to an

effective S = 1 AFM chain that supports an AKLT-like VBS with a Haldane gap.

We also considered a dimerised model, namely a J1-J ′1-J2 chain, where translational

symmetry is already broken in the Hamiltonian. The introduction of the dimerisation

parameter β = J ′1/J1 has two effects on the phase diagram: (i) with decreasing β, the

FM region shrinks and (ii) considering the same value of α, the gap is enhanced with

decreasing β. In particular, the gap is due to the presence of a VBS in the ground state.

This, however, presents a crossover from next nearest neighbours to a third-neighbour

VBS.

While this model captures most of the physics for the frustrated cuprate chains with

FM NN interactions, real materials often present a finite interchain coupling J ′ and one

may also need to include further interactions, like Dzyaloshinskii-Moriya interaction, in
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Chapter 7. Conclusion

order to capture their low-energy physics. Moreover, the FM J1-J2 chain is known to

exhibit multipolar ordering in high magnetic field. A different approach to access this kind

of multipolar physics would be to study two AFM coupled chains. In this case, an Ising

interchain coupling would act like an effective field, lowering the value of the saturation

field. The effects of a Heisenberg coupling and other XXZ anisotropic interaction are,

currently, unclear. We believe investigating the possibility of multimagnon bound states

in this setting will improve our understanding of spin chain materials and open up the

possibility of multipolar physics at lower fields. Furthermore, when dealing with real

materials, several of them also exhibit a small, but finite, third neighbour interaction.

It is currently undetermined what the effect of this third neighbour coupling is on the

spin gap. A future numerical investigation using the DMRG method could answer this

question and also shed light on the nematicity in these materials.

The second part of this work focused on exchange frustration, particularly the Kitaev-

Heisenberg (KH) model. We have shown how the KH model features non-trivial physics

also in lower dimension. We have first analysed a simple chain with alternating x and y

interactions and Heisenberg interaction on all bonds. Though it is not possible to have

a Kitaev spin liquid in this geometry due to the lack of z bonds, the phase diagram is

still found to be extremely rich. In particular, it has six different phases: two without

long-range magnetic order, namely Tomonaga-Luttinger liquid (TLL) and spiral-xy state,

and four of which are long-range-ordered, namely FM-z, FM-xy, staggered-xy and Néel-z.

Moreover, this system has two singular Kitaev points at φ = ±π
2 . At these two points,

the system is a p-wave superconductor, namely a Kitaev chain. Remarkably, it is possible

to map the long range ordered states of the KH chain to those of the 2D honeycomb

model by coupling the chains in a brick-wall fashion through z-bonds. In this way, the

FM-z state gives rise to the zigzag and FM state on the honeycomb, depending on the

sign of the interactions on the rungs; the FM-xy naively goes into the FM state, while

the Néel-z state transforms into the stripy and Nèel phase depending on the sign of the

rung interaction. The TLL, being unstable to any perturbation, gives rise to the Nèel

state on the 2D honeycomb lattice, as the interaction between the chains is AFM.

This naive mapping from a 1D model to its 2D counterpart is rare and unexpected

and we proved it further by studying the KH model on a two-legged ladder. In this case,

the presence of z bonds and the threefold coordination of the lattice make it possible for

the system to support the presence of a Kitaev spin liquid. We found the ground state

phase diagram to be strikingly similar to that of the 2D honeycomb model. In particular,

the differences between the two diagrams can be understood in terms of the different

dimensionality: (i) on the ladder, a rung-singlet state stabilises in the region where the

2D honeycomb model exhibits Néel ordering. The rung singlet state has a finite gap, in

contrast with the 2D phase. When extending the ladder to contain more coupled chains,

the gap is expected to decrease and it will vanish in the limit of an infinite number of

coupled chains. (ii) The liquid regions are more extended in the quasi-1D case. This is

interpreted in terms of the stronger effects of quantum fluctuations on lower dimensional

systems. These two liquid states are gapped. This gap, however, would behave as that of

the rung singlet state when changing the dimensionality, so that the spin liquid states

on the two-legged ladder would become gapless Kitaev spin liquid in the 2D limit. In
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addition, the low-lying excitations of the ladder are well explained by the pure 1D chain.

We also note that the spectral properties of the long range ordered states in the 2D

honeycomb are expected to be similar to those of the ladder, due to symmetry breaking

in the ky direction.

Experimental studies have suggested the possibility of field induced spin liquid be-

haviour in α-RuCl3 [104, 105]. This transition is currently interpreted as a melting of

AFM order to a liquid state. However, the microscopic mechanism behind this transition

is still under debate. A possible way to investigate this mechanism is by making use of

the KH ladder. In fact, this model realises the liquid-zigzag transition with the advantage

of being quasi-1D, allowing for great numerical accuracy. By analysing the effect of the

magnetic field on the ladder, one hopes to gain insight on how the AFM order transforms

into a Kitaev spin liquid.
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[69] A. U. B. Wolter, F. Lipps, M. Schäpers, S.-L. Drechsler, S. Nishimoto, R. Vogel, V.
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Ehlers, D. Tennant, R. Mole, J. Gardner, S. Süllow, and S. Nishimoto, Dynamics
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