
Faculty of Computer Science Department of Computer Engineering

Dissertation

GENERATION OF APPLICATION SPECIFIC HARDWARE

EXTENSIONS FOR HYBRID ARCHITECTURES

The Development of PIRANHA – A GCC Plugin for High-Level-Synthesis

Submitted to the Faculty of Computer Science

in partial fulfillment of the requirements for the degree of

Doctor of Engineering (Dr.-Ing.)

at the

DRESDEN UNIVERSITY OF TECHNOLOGY

Author: Gerald Hempel

Date of birth: May 3, 1981

Place of birth: Zittau

First Reviewer: Prof. Dr.-Ing. Christian Hochberger

Technische Universität Darmstadt

Second Reviewer: Prof. Dr.-Ing. habil. Andreas Koch

Technische Universität Darmstadt

Expert consultant: Prof. Dr.-Ing. habil. Klaus Kabitzsch

Technische Universität Dresden

Submitted on: December 20th, 2017

CORE Metadata, citation and similar papers at core.ac.uk

Provided by Technische Universität Dresden: Qucosa

https://core.ac.uk/display/270293465?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Acknowledgment

An academic thesis is never the work of a single person, therefore I want to take

this opportunity to thank all people who have contributed in various ways to the

successful conclusion of my dissertation.

First and foremost, I would like to express my sincere gratitude to my PhD su-

pervisor Professor Dr. Christian Hochberger, who has always helped me with

his large wealth of knowledge and numerous constructive discussions. I would

also like to thank him for the confidence and the freedom he has provided me

throughout the development of my dissertation.

I would like to acknowledge the valuable input of Professor Koch and Professor

Kabitzsch, who reviewed my work as second supervisor and expert consultant,

respectively. Also, I would like to recognize the work of Professor Castrillon and

Professor Baader, who participated in the examination committee.

A major part of the success of this dissertation is based on contributions from

student’s diploma and study theses. In particular Jan Hoyer and Michael Raitza

have to be mentioned here, who implemented the foundations of my work. Also,

I would like to thank Jonas Wielicki, who made an important contribution to the

success of this dissertation with his work on the analysis of memory accesses.

My special thanks also go to Johanna Rohde and Candy Lohse, who implemented

particular synthesis optimizations. Moreover Andreas Wiese have to be men-

tioned here, who helped to complete the context of my dissertation with the

integration of generated hardware accelerators into the infrastructure of modern

operating systems.

This acknowledgment would not be complete without mentioning my research

colleagues and staff members of the Department of Computer Engineering of

the TU Dresden and TU Darmstadt, who contributed to this dissertation with

numerous interesting debates and ideas. My special thanks go to my friend and

colleague Markus Vogt, who read many chapters of my thesis and helped me to

improve it technically and linguistically. I further thank him for the maintenance

and provision of the tool infrastructure that made this dissertation possible.

The past few years have been stressful for my wife Susanne and my family, who

always encouraged and supported me and my work at all stages. You have my

special thanks.

CONTENTS

I Introduction 5

1 Introduction 6

1.1 Motivation . 8

1.2 Proposed Work-Flow . 10

1.3 Aims and Objectives . 11

1.4 Thesis Outline . 13

II Technical Background 15

2 HLS for Configurable Systems 16

2.1 Concepts of Hardware Generation for Digital Systems 17

2.2 C as Input Language for HLS . 20

2.3 Concepts of HLS for Configurable SoCs 21

2.4 HLS Projects Using Special Languages 25

2.5 HLS Projects Using HDL-like Languages 27

2.6 HLS Projects Based on Object-Oriented Languages 28

2.7 HLS Projects Using OpenCL Based Languages 30

2.8 HLS Projects Using C or C++ . 33

2.9 GCC PIRANHA . 43

3 Target Platform 48

3.1 Configurable Platforms . 49

3.2 Soft-Core Processors . 52

3.3 FPGA SoC . 58

4 GCC Framework 61

4.1 Compilation Flow . 62

2 CONTENTS

4.2 Intermediate Representation . 65

4.3 Optimization Passes . 72

4.4 GCC Plugin Interface . 75

III Application Acceleration 79

5 Application Analysis 80

5.1 Function Data Collection . 82

5.2 Loop Data Collection . 82

5.3 Processing the Transcript File . 85

5.4 Performance Estimation . 88

5.5 Theory of Memory Access Analysis 92

5.6 Implementation of Memory-Access Analysis 102

6 Application Modification 115

6.1 Modifying the GIMPLE Structure 115

6.2 Accelerator Function . 125

6.3 Runtime Alias Analysis . 135

6.4 Generated Files . 138

6.5 OS Integration of Accelerators . 140

6.6 Base Address Assignment . 141

7 High-Level Hardware Synthesis 144

7.1 Variants of Processor Customizations 146

7.2 From GIMPLE to HDL . 146

7.3 Generation of the State Machine 149

7.4 Optimization Strategies . 154

8 Generated Host Processor Interface 166

8.1 Parameter Interface . 167

CONTENTS 3

8.2 Memory Interface . 173

8.3 FIFO Interface . 177

8.4 Accelerator Address Map . 180

IV Evaluation 182

9 Evaluation 183

9.1 Implementation Example . 183

9.2 Evaluation of Memory Access Analysis 190

9.3 Benchmarks . 195

9.4 Influence of Register-Allocation Strategies 197

9.5 Influence of HLS Optimizations . 201

10 Conclusion 212

10.1 Realization of Aims and Objectives 213

10.2 Limitations and Future Work . 216

10.3 Summary . 218

A Examples and Code Listings 220

A.1 Alias Set Generation for Interleaved Structure Access 221

A.2 GIMPLE Example . 222

B Platform 225

B.1 SpartanMC Instruction Set . 225

B.2 SpartanMC Pipeline . 226

C GCC Plugin 228

C.1 PIRANHA Parameters . 229

C.2 Heuristic Delay Times for Operations 232

C.3 Generated Structures for Memory Analysis 232

4 CONTENTS

C.4 GIMPLE Statements . 233

C.5 Tree Types . 234

C.6 Operations . 236

D OS Integration 237

E Evaluation Results 247

E.1 Comparison of Register-Allocation Strategies 247

E.2 State Machine Evaluation . 249

E.3 Performance Evaluation . 253

E.4 Performance Estimation . 254

E.5 Data Transfer Evaluation . 255

List of Figures 256

List of Tables 260

List of Algorithms 261

Part I

Introduction

5

1 INTRODUCTION

The ongoing digitalization of our everyday life entails several challenges for fu-

ture computing systems. Particularly in the area of embedded systems there

has been an increasing need for better computing performance along with im-

proved energy efficiency. For a long time, this was achieved by downsizing the

underlying semiconductor technology and increasing the clock frequency of cir-

cuits. Both approaches have recurrently been pushing the manufacturing pro-

cess of such circuits to its technological limits. In recent years, the rise of circuit

frequencies has stagnated due to the physical limits of current semiconductor

technology. Since increasing the clock frequency is no longer an easy way to

achieve performance improvements, the design paradigm has changed to real

parallel systems implementing multiple-processor cores on a single chip. This has

revealed new bottlenecks such as the communication and synchronization over-

head of programs. Even worse, designers and tool developers are now forced to

rethink the software design process as performance improvements are no longer

achievable by simply executing the old program on the new architecture.

Nonetheless, the introduction of multi-core systems has been a success for the

consumer market as well as for scientific applications. Since then, programs

are being divided into different tasks running on dedicated processor cores. This

helps with arising performance problems but also increases the energy consump-

tion of the whole system.

General-purpose processors are able to solve nearly all kinds of computational

problems, this often comes at the price of poor power efficiency. Therefore, em-

bedded systems with strict energy constraints or an inefficient main processor

often resort to additional hardware units that provide the best energy efficiency

for a specific task. The next stage of evolution for such systems has been the

customization of hardware to the particular needs of the program. This develop-

ment has been strongly supported by the availability of low-cost reconfigurable

devices. This introduces several new challenges for system designers. Recon-

figurable systems are no longer based on static hardware. Thus, new design

methodologies are required in order to unify the software and hardware design

process.

8 CHAPTER 1. INTRODUCTION

This thesis presents a tool-flow that helps system designers to benefit from

application-specific hardware accelerators without relying on special hardware

knowledge.

1.1 Motivation

In recent decades, embedded systems have become a ubiquitous factor in nearly

all aspects of our lives. The classical definition describes an embedded system as

part of a larger technical system that is designed for one specific task [92, p. 1].

This definition is still true for many embedded systems that work within products

designed for a single purpose for instance, the bending light control of a car.

Typically, they are designed for one task or a fixed range of functionalities that do

not change over the complete life cycle of the product.

Today’s challenges emerge from the idea of closely meshed applications and ser-

vice architectures often referred to as the Internet of Things, and will undoubt-

edly increase the need for embedded systems. However, the classical definition

for such systems needs refining. On the one hand, the large number of different

tasks and devices impedes the successful economical design of tailored systems

for single tasks. On the other hand, especially small devices still require special

hardware in order to meet real-time conditions or energy constraints. Moreover,

tightly coupled devices cannot operate in a closed environment; they have to stay

prepared for changes in the surrounding systems or even for deliberate attacks.

It is not always desirable to replace all of them when security, communication

or coding standards have changed. For this reason, the need for more flexible

systems that can adapt their software and hardware will increase.

These challenges have partly been met by the design of system on chip (SoC)

architectures. An SoC combines all functionalities required by the system on a

single chip. A popular example is the Qualcomm Snapdragon architecture [111]

used in current smartphones. It contains nearly all system components on a sin-

gle die. These include, among others, a general-purpose processor, an H.265

MPEG decoder and a graphics processing unit (GPU). This allows its usage in

a multi-purpose device where the actual requirements are specified by the end

user. It saves the system designer from the tedious and error-prone process of

1.1. MOTIVATION 9

designing a system with individual components. This kind of flexibility, however,

is not sufficient for some applications, as it does not allow for a change in the

behavior of the hardware components, if necessary. For instance, the current

H.265 video decoder implemented on the Snapdragon will be nearly useless as

soon as the new standard H.266 is fully established. Additionally, for many com-

panies, it is not economically feasible to design and manufacture such a complex

SoC architecture1.

A promising alternative to raise the degree of hardware flexibility is the use of

field programmable gate arrays (FPGA). These enable a change in the hardware

even in a shipped system and involve a reasonable price for custom designs.

In comparison to ASIC design, they reduce development efforts and time-to-

market. At present, FPGAs are already the platform of choice for many embed-

ded projects. However, classical FPGAs cannot handle the growing complexity of

todays applications, as pure hardware layouts lack the flexibility and expressive-

ness of software designs. Hence, it is hardly surprising that, according to a Men-

tor Graphics functional verification study [107], more than 56% of FPGA designs

contain at least one general-purpose processor. Combining both, processors and

reconfigurable logic, has the potential to enable the design of complex software

in perfect interaction with custom hardware. Besides the gained flexibility, this

also has the potential to improve the platform’s energy efficiency as well as the

execution speed of the software.

Despite that, the price for this benefit is a complex and time-consuming design-

flow that forces the designer to implement the system on a degree of abstraction

that requires comprehensive knowledge of the underlying hardware. On these

grounds, many developers flinch from using reconfigurable logic.

Consequently, today’s challenge is the seamless and transparent integration of

the hardware design-flow into software development.

1The mask costs of an application-specific integrated circuit (ASIC) based on 20 nm technology amount to around five

to eight million US dollars [86].

10 CHAPTER 1. INTRODUCTION

1.2 Proposed Work-Flow

In order to bring the hardware design-flow as close as possible to typical soft-

ware design-flows, the integration of the hardware generation into a full-featured

software compiler is a natural choice. The chosen compiler environment for this

thesis was the Gnu Compiler Collection (GCC) framework. This compiler is widely

used for industrial applications, provides a rich set of optimization strategies, and

supports several embedded platforms. Moreover, it is an open source project

that allows modifications and custom extensions by default.

The basic idea of this thesis is to integrate hardware generation into the GCC

compilation process in order to make it transparent to the developer. There

should be no major differences in comparison to compiling a regular software

project. Figure 1.1 outlines the proposed work-flow. The input for the compilation

is a plain C application. The following software compilation is carried out by the

GCC while the hardware generation is handled by an additional GCC-plugin. The

integration of the plugin is implemented in such a way that the hardware genera-

tion benefits from most optimizations provided by the GCC software compilation

flow. Finally, the result is divided into two parts: the application binary and sev-

eral hardware description files. The latter require further processing by platform-

specific tools in order to generate a bit-file for the programmable logic. The

proposed target machine consists of a fixed part containing a general-purpose

processor and a configurable part containing the generated logic. The generated

logic acts as a special peripheral unit executing suitable hotspots of the software

application. Such peripheral units will be later referred to as accelerators.

0011110
1100101
1101100
1101010

0101011

Application
Sources

FPGA Vendor
Synthesis Tools

Hardware
Description

Accelerator Logic

Synthesis Plugin

Hybrid
Architecture

GCC 4.8.3 Application
Binary

Software
Compiler

Figure 1.1: Operating principle of the hybrid hardware/software work-flow

1.3. AIMS AND OBJECTIVES 11

The general-purpose processor can be implemented in two ways. First, it is pos-

sible to use a classical FPGA programmed with a hardware design that complies

with the specification of a processor. This is also called a soft-core processor.

Although the soft-core is quasi-static from the perspective of accelerator gen-

eration, the complete design is still customizable. This allows the adaptation of

critical system components for instance, the peripheral interface to fit seamlessly

with the generated accelerators.

Second, it is possible to use special platforms that already contain a processor

core in silicon in combination with programmable logic. Such ASIC-like system

components are called hard-cores. Even though such processor platforms are

less flexible, they provide the typical advantages of highly integrated circuit de-

signs for example excellent power efficiency and a high clock frequency. The

combination of hard processor cores, typically with a rich set of standard periph-

erals, and an FPGA fabric is also referred to as FPGA-SoC.

In this thesis, the term ”hybrid architecture“ comprises FPGA-SoCs as well as

FPGAs containing soft-core processors.

1.3 Aims and Objectives

At present, the standard way of creating hardware accelerators is to develop

them manually. This process is time-consuming and error-prone.

The goal of this thesis is to implement a tool-flow that helps the developer to

create hardware accelerators automatically, starting from a high-level software

description. The tool-flow should provide the following features:

• The possibility to handle plain C as input language. The target C code should

require neither refinements nor special annotations. This condition lowers

the entry barrier for non-hardware developers considerably and further en-

ables support for legacy application code.

• Seamless integration into a standard software compiler, namely the GCC.

This should allow developers to take advantage of optimizations in the soft-

ware compilation flow for the generation of hardware. Reuse of the GCC

front-end should further reduce the effort for syntax analysis and code parsing.

12 CHAPTER 1. INTRODUCTION

Furthermore, the usage of the GCC helps to provide a transparent tool-flow

for most software developers.

• Automatic selection of promising code sequences. It should not be pos-

sible or necessary to map the whole application code to hardware. Code

sequences containing promising application hotspots should be extracted

automatically. There is no need for manual code annotations or special lan-

guage extensions in order to select parts of the application.

• Automatic patching of the software in order to call generated accelerators.

The invocation should remain completely transparent to the user. It should

also include an optional fall-back to software execution.

• Automatic generation of a memory and a host-processor interface.

• Portability to other processor architectures. This means a modular interface

concept and a platform-agnostic generation process for hardware accelera-

tors are required.

The generation of hardware accelerators from unmodified C code poses many

challenges for an automatic tool-flow approach. Most likely, some of these chal-

lenges can never be overcome due to the lack of hardware-specific information

within the C language definition. However, the idea of this work is to consider

only those code sequences that provide sufficient information for a good hard-

ware generation. This comprises two assumptions.

First, there must be enough code sections in legacy C code that comply with

the requirements for hardware generation. Second, the static code analysis

during program compilation provides sufficient information for accelerator gen-

eration. Note that these two conditions are not completely independent of each

other. A good static code analysis allows identifying more suitable code sections,

whereas a suitable initial application code reduces the effort for the required code

analysis and hardware generation. This leads to one key question: Which im-

provements in the application performance can be achieved with a static code

analysis for a given application and target platform?

1.4. THESIS OUTLINE 13

1.4 Thesis Outline

This thesis is divided into four parts. After Part I introducing the work, Part II

which encompasses Chapters 2 to 4, gives an overview of the technical back-

ground. Part III, comprising Chapters 5 to 8, describes substantial parts of the

presented tool-flow and gives detailed information about its implementation. Fi-

nally, the results of this thesis are evaluated and summarized in Part IV.

Part II starts with the second chapter, which emphasizes the challenges and op-

portunities for system development using high-level-synthesis (HLS). Hence, the

impact of different input languages for HLS is discussed and an overview of ex-

isting HLS approaches for configurable platforms are given. Finally, the HLS com-

piler plugin that forms the basis of this thesis is introduced.

The first part of Chapter 2 discusses possible hardware architectures for the pro-

posed work-flow. The second part will introduce the hardware platforms that

were actually used in the context of this work. This includes an explanation of

the features and architecture of the soft-core processor SpartanMC and the com-

mercial Xilinx Zynq-7000 platform.

Chapter 4 gives an overview on the GCC framework. The GCC is the underlying

compiler for the proposed HLS plugin. Consequently, most of the used structures

and programming paradigms are tightly coupled to the software architecture of

the GCC. This chapter will give an overview of the compilation flow itself, as well

as on the intermediate representation and the optimization used by the compiler.

Finally, the plugin interface of the used GCC version is introduced.

Part III, comprising the following four chapters, describes the different steps that

are necessary to generate hardware accelerators for the given target platforms.

Chapter 5 explains of the application analysis to determine parts of the applica-

tion that are suitable for acceleration. The selection of application hotspots is

explained as well as different methods to determine the presumable efficiency

of the extracted accelerator at compile time.

After the selection of hotspots, the application must be modified in order to call

the generated hardware accelerators. This problem is tackled in Chapter 6. First,

techniques for modifying the intermediate representation are explained. After-

wards, a description of the integration of accelerators in the software application

14 CHAPTER 1. INTRODUCTION

with respect to different target architectures is given. The chapter closes by intro-

ducing methods for the integration of generated accelerators into a full-featured

operating system.

Chapter 7 presents the algorithms required for the high-level-synthesis of accel-

erators at compile time. It describes the transformation of an application hotspot

from the internal compiler representation into the hardware description of a finite-

state machine (FSM).

Chapter 8 presents three ways of interfacing with the respective host processor

of the given target platforms. The interfaces will be discussed in the context of

the host processor architecture and the underlying software environment.

Finally, Part IV concludes this thesis. The presented approaches are evaluated in

Chapter 9, starting with a case study to show the operability of the presented

work-flow. Additionally, the effectiveness of the application analysis is investi-

gated using a considerable set of benchmark applications. Finally, the overall

performance is evaluated for both target architectures.

Chapter 10 discusses the achievements of the presented thesis. The conclusion

also addresses limitations of the current approach and gives recommendations

for future improvements.

Part II

Technical Background

15

2 HLS FOR CONFIGURABLE SYSTEMS

2.1 Concepts of Hardware Generation for Digital Systems

In this thesis, the generation of hardware for digital systems means the mapping

of an abstract algorithmic problem to the specific physical structure of a circuit. In

the early years of circuit design this was done by utilizing elements of the target

platform typically on the granularity of logic gates or even single transistors. This

approach is no longer feasible for todays chip technology. In order to raise the

level of abstraction, nowadays designers strive for behavioral descriptions of the

desired algorithm without any reference to the structures of the underlying target

platform.

A well-known abstraction model for circuit design is the Y-chart shown in Fig-

ure 2.1, which was introduced by Gajski et al. [98] and refined by Walker et al. [118].

This chart allows visualizing design views as well as design hierarchies. The char-

acteristic Y-form arises from three radial axes showing three different design do-

mains: behavioral description, logical structure and physical structure.

Algorithms

Register-
Transfer

Systems

Logic

Transfer
Functions

Subsystems, Busses

ALUs, Registers

CPU, Memory

Gates, Flipf

Transistors

Polygones

Cells, Modules
Plans

Macros,
Floor Plans

Clusters

Chips, Pysical
Partitions

Behavioral Structural

Physical
Circuit Level

Logic Level

Register Transfer Level

Algorithmic Level

Architectural Level
Generation/
Mapping

Synthesis

High-Level-
Synthesis

lops

Figure 2.1: Gajski and Walker Y-chart showing high-level-synthesis

18 CHAPTER 2. HLS FOR CONFIGURABLE SYSTEMS

Five concentric circles represent the hierarchical levels of abstraction within the

design process. The abstraction level increases from the innermost to the outer-

most circle. Within this chart a system can be specified for all three domains by

using the following abstraction levels:

Architectural Level Abstract behavioral specification of system requirements and

its basic concepts.

Algorithmic Level Functional description of subsystems and their interaction.

Register-Transfer Level Detailed description of data-flows and transformations

on register level.

Logic Level Specification of the design on the level of logic gates and flip flops.

Circuit Level Specification of the system on the level of basic physical elements.

This level can be used to implement the actual hardware device.

The process of circuit design is modeled by specializing the problem description

by moving from the outermost abstraction level to the center of the chart. In

reality, this process often requires transition between domains. The transition

from the behavioral to the structural domain is called synthesis.

2.1.1 High-level-Synthesis

The synthesis steps performing the specialization from algorithmic level to reg-

ister-transfer level are of particular interest within this thesis. This part is called

high-level-synthesis. According to [115], the main task of HLS is the decomposi-

tion of a given behavioral or algorithmic description into a datapath and control-

flow. The description can be either a program written in a high-level language or

an abstract behavioral model, as provided by several tools e.g. MatLab [54, 30]

and LabView [23]. An abstract work-flow is given in Figure 2.2 and consists of

the following four tasks:

Compilation Translating the behavioral/algorithmic description into a formal mo-

del, for instance, a control data-flow graph (CDFG).

Allocation Identifying the quantity and requirements of hardware resources for

the operations of the algorithm. In addition to functional units like arithmetic

2.1. CONCEPTS OF HARDWARE GENERATION FOR DIGITAL SYSTEMS 19

Behavioral/
Algorithmic
Description

Fo
rm

al

M
od

el
Compilation R

TL

Allocation

Scheduling

Binding

Logic
Synthesis

High-Level-Synthesis

Library

Figure 2.2: High-Level-Synthesis design steps

logic units (ALUs), this includes registers, memories, and communication

resources. The allocation can be supported by libraries providing optimized

functional units.

Scheduling Assigning all operations to a specific time interval with respect to

given resource and timing constraints.

Binding Assigning all variables/data to corresponding memory resources (e.g.

registers). Furthermore, operations are assigned to functional units, and

data transfers to communication resources.

The usual result of an HLS tool is a problem description on register-transfer level,

which is further synthesized to gate level by the logic synthesis. Typically, the

register-transfer level is expressed in hardware description language (HDL).

While traditional HDLs, like VHDL [85] and Verilog [84], are good at describing

detailed hardware-properties such as timing behavior, they are generally cumber-

some in expressing higher-level abstractions. Hence, HDLs may not be the first

choice to meet future productivity requirements for large and complex hardware

designs. Furthermore, they are hard to use for most software programmers.

Thus, it is worthwhile to focus on HLS tools that allow algorithmic descriptions

using a much more abstract input language.

20 CHAPTER 2. HLS FOR CONFIGURABLE SYSTEMS

2.2 C as Input Language for HLS

There is an ongoing discussion in the research community about suitable input

languages for HLS. First attempts extended established HDLs like Verilog and

VHDL with behavioral language features. The resulting behavioral-HDLs [112, 94]

were processed by the first commercial HLS tools, e.g. the Synopsys Behavioral

Compiler [38].

Although those languages enable the desired higher level of abstraction, the ac-

ceptance from the user community is rather low. Consequently, the next step

for HLS tools was the usage of a widely used input language. The obvious choice

was C, which is accepted and frequently used for industrial and research projects.

Typical HDLs define a set of statements simultaneously taking effect after a de-

fined trigger condition is met. Naturally, this is useful for hardware development,

as it allows the description of parallel structures as well as strict timing behaviour.

However, C is a procedural language optimized for serial execution on a single

general-purpose processor. For usage in HLS, C has several stumbling blocks:

• The width of operators and operations is fixed and only defined by the used

data type. This prevents the synthesis tool from generating registers and

buses of arbitrary width.

• Some C constructs are not suitable for synthesis, especially code working on

an unpredictable amount of resources, e.g. dynamic memory management

or recursion.

• The lack of information about timing and input/output (IO) behavior requires

special treatment of such code sections.

• Instruction-level parallelism (ILP) is not directly exposed. Typically, this is the

first source of speedup for custom hardware; thus, it is mandatory to exploit

such parallel operations. The second form of parallelism is thread-level par-

allelism (TLP). Naturally, threads are directly utilized by special library calls,

which make them easy to find for synthesis tools. But in most cases the

granularity of whole threads is not suitable for direct automatic hardware

generation, as they usually contain long and complex code fragments. Nev-

ertheless, TLP may be useful for hardware acceleration as it provides the

2.3. CONCEPTS OF HLS FOR CONFIGURABLE SOCS 21

potential for real parallel code execution between processor and hardware

accelerators.

• Arbitrary pointer access is a problem for most HLS tools. It prevents synthe-

sis tools from determining a predictable pattern for memory accesses. This

aggravates the typical memory bottleneck for hardware accelerators.

• One of the major challenges for C-based HLS is the lack of information about

the aliasing of memory accesses (cf. Section 5.5). Aliasing is not explicitly

exposed or prevented in C code as it is nearly irrelevant for serial execution.

Unfortunately, it prevents all attempts of data prefetching or parallelization

of memory accesses in HLS. Thus, aliasing is a major issue for HLS that

requires special attention.

Some of these issues, e.g. the unknown operator width, result in slightly sub-

optimal hardware. For this reason, they are ignored by most synthesis tools.

Others, like recursion and dynamic memory management, are often suppressed

by the design-rules of the HLS tool.

2.3 Concepts of HLS for Configurable SoCs

The following sections will give an impression of tool-flows that provide a unique

methodology or have a major impact on the field of automatic HLS research. The

overview is given with respect to the main objectives of this thesis. At the end

of each survey a brief summary categorizes the approach by its input language,

the proposed target architecture, its level of automation, and its design objective.

The design objective describes the ability of the proposed tool-flow to generate a

consistent SoC containing both custom hardware and software parts. Therefore,

a tool-flow requires the capability for an automated hardware/software co-design.

In this thesis, three varieties of design objectives have been distinguished.

Single IP1 Mapping: Tool-flows that are based on this approach are special-

ized to map the whole application or a well defined part of the application

to a custom hardware design. It requires additional effort to integrate the

resulting hardware into the surrounding system. Typically, such approaches
1IP stands for Intellectual Property which denotes a reusable component of a circuit design

22 CHAPTER 2. HLS FOR CONFIGURABLE SYSTEMS

provide generic interface logic that must be adapted to the given hardware.

The choice of suitable application hotspots is delegated to the developer.

Both tasks require profound knowledge of the hardware platform.

Software Back-Delegation: The concept of software back-delegation is much

more convenient for the developer, as it aims to generate complete SoCs

with software and hardware parts. Besides the configurable platform, sys-

tems using this concept provide a general-purpose processor, which exe-

cutes the program sections that failed to meet performance requirements

or contain unsynthesizable program statements. Potentially required inter-

faces are generated automatically with respect to an underlying target plat-

form. Having the opportunity to switch back to software enlarges the po-

tential code base for accelerators but also introduces additional overhead for

data transfers.

Hybrid Architecture: Similar to software back-delegation, this concept aims at

platforms consisting of a general-purpose processor and a configurable part.

The application basically runs on the software processor while only fully syn-

thesizable hotspots are mapped to customized hardware units. In contrast

to software back-delegation the resulting hardware accelerators might be

smaller and the overhead of data-transfers, often a crucial point when aim-

ing at speedups, can be minimized.

All tool-flows that were examined within this thesis are intended for the offline

synthesis of hardware units. Besides these approaches, there are several other

projects taking advantage of online hardware synthesis. Typically, they are based

on coarse-grain reconfigurable architectures [10]. These architectures require

very little configuration data and allow fast reconfiguration during application

runtime. Though, the used algorithms and mechanisms are often similar, such

projects [56, 49, 26] represent another research field and will not be discussed in

this thesis.

2.3.1 Taxonomy of Existing HLS Tool-Flows

In the last 25 years various HLS work-flows with scientific and industrial back-

grounds have been published. Usually, they follow different philosophies to

2.3. CONCEPTS OF HLS FOR CONFIGURABLE SOCS 23

achieve their goals, even though the main objective namely, raising the level of

abstraction for hardware development is identical. However, many work-flows

arose from individual challenges. As a result, they provide a large variety of qual-

ities that are not relevant in context of this thesis. Hence, several properties are

not addressed in the following survey.

The used taxonomy considers five major attributes to distinguish the presented

HLS approach from past and recent HLS work-flows:

Input Language: The language or behavioral description that is required to hand

the algorithmic problem to the HLS tool. It is either an established high-level

programming language or a special language typically adapting features from

other languages. The latter is sometimes achieved by modifying a given lan-

guage. In such cases the following survey gives a hint to the used enhance-

ments or constraints.

Concept: The concept characterizes the scope covered by the proposed work-

flow. Some work-flows are used to design a complete system containing

both software and hardware parts while others are limited to pure hardware

design. The distinguished design concepts Single IP Mapping, Software

Back-Delegation and Hybrid Architecture were described in Section 2.3.

Flexibility: The flexibility describes the capability of the approach to address

problems from different application domains. Typically, this attribute is strong-

ly influenced by the static part2 of the given target platform or the input lan-

guage. Due to their respective architecture templates some approaches can

not support certain interface types (e.g. streaming) or the language restricts

the usage of language features (e.g. arbitrary pointers). Obviously, such

constraints limit the flexibility.

Almost a domain-specific language or architecture.

Usable for HW-design only or introduces major limitations.

HLS tool requires minor refining of programs.

All features of a high-level language are supported.
2The part of the hardware that is invariant to application-specific hardware customizations, e.g. buses, host processor

or memory layout.

24 CHAPTER 2. HLS FOR CONFIGURABLE SYSTEMS

HW/SW Co-Design: The hardware (HW)/software (SW) co-design attribute de-

scribes the degree of automation provided by the tool to support the user

with the selection of hardware accelerators. Obviously, this feature is not

required for approaches that are based on the Single IP Mapping concept.

HW/SW co-design not in scope of the tool.

HLS tool allows manual selection of accelerators.

HLS tool supports the user by suggesting suitable code section.

Selection of accelerators is completely transparent to the user.

Interface The interface attribute specifies the ability of the tool to automatically

choose different interface types.

Interfaces must be implemented manually.

The tool provides a library of interfaces.

Interfaces were suggested after memory analysis.

The selection of suitable interfaces is transparent to the user.

2.4. HLS PROJECTS USING SPECIAL LANGUAGES 25

2.4 HLS Projects Using Special Languages

Due to the known issues with C for HLS, several research groups tried to find

other ways to raise the productivity of hardware design. Some introduced com-

pletely new languages that circumvent arising problems with the existing ones.

Others tried to adapt major languages with domain-specific constructs that po-

tentially fit better with the needs of hardware development than C.

2.4.1 HLS Projects Based on Functional Languages

The idea of using a functional language to describe hardware is quite popular in

academic HLS-projects [55, 41, 12]. It must be admitted that functional languages

have some points in common with HDLs. For example, the model that describes

combinatorial logic is a mathematic equation that is easy to decompose by using

functional languages. Another important point is, that the order in which a func-

tional language is evaluated does not matter as long as data dependencies are

respected. For that reason, it is easy to exploit parallelism from such languages.

Haskell is a widely used functional language and the basis for several HLS-projects

[12, 44, 9]. All these projects aim at a new way of describing hardware in order

to supplement or even replace classical HDLs as input language. The principle

of operation for those languages is to provide a library of Haskell functions and

types. They form the language primitives of a domain specific language tailored

to the hardware description.

26 CHAPTER 2. HLS FOR CONFIGURABLE SYSTEMS

2.4.2 CλaSH

A prominent example for the use of a functional language for hardware devel-

opment is CλaSH [9], which stands for CAES (Computer Architecture for Em-

bedded Systems) Language for Synchron-ous Hardware. The CλaSH-compiler

allows translating Haskell modules into VHDL. The modules have to be written

in a very concise way using a hardware-oriented subset of Haskell. Thus, CλaSH

tries to combine the best of two worlds. On the one hand, it provides the flexibil-

ity of a functional language comprising a template language for introducing new

HDL primitives, it also provides the possibility to define higher-order functions

for procedural hardware generation. On the other hand, CλaSH provides the low-

level expressiveness of typical HDLs by enabling the description of bit-accurate

hardware structures.

Hardware designs written in CλaSH are comparable to hand-optimized VHDL de-

signs in terms of size and performance. The use of Haskell code allow a concise

description of complex functions. However, pure functional languages are not

widely accepted in the industry even though they are elegant. This is caused

by the fact that such approaches typically provide ways for effective implementa-

tions of simple transformational algorithms but lack expressiveness or productiv-

ity for complex stateful algorithms or whole system descriptions.

CλaSH Summary

Input Language: Haskell with libraries

Design Concept: Specialized IP core

Flexibility: Arbitrary hardware-design

HW/SW CO-Design: No direct support for HW/SW co-design

Interface: Arbitrary interfaces

2.5. HLS PROJECTS USING HDL-LIKE LANGUAGES 27

2.5 HLS Projects Using HDL-like Languages

Some approaches refine the design flow and structure of current HDL-languages.

They borrow features from other programming languages and typically create a

new one. Examples of this approach are SystemVerilog [2] and Bluespec Sys-

temVerilog [46].

2.5.1 Bluespec SystemVerilog

While SystemVerilog extends Verilog with new language features, Bluespec Sys-

temVerilog uses a fundamentally different approach. It reuses elements of func-

tional languages, which thereby find their way into commercial tools. Bluespec

Inc. was founded as a company in 2003 to market HLS tools based on the Blue-

spec System Verilog HLS language. The Bluespec language is strongly inspired

by Haskell but also has adapted features and syntax that resembles Verilog.

On the one hand, it uses functional rules similar to Haskell and provides a strong

type system that allows language features like polymorphism. On the other hand,

it provides timing and control-flow structures similar to Verilog. An additional

feature of Bluespec System Verilog is the special syntax for atomic transactions.

It allows to describe complex control structures in an elegant and compact way,

and ensures a precise and well-defined concept of chronological sequences. In

this paradigm, hardware is described as a data-flow network consisting of atomic

rules. State changes happen simultaneously when rules are fired. Parallelism is

achieved through concurrent execution of non-conflicting rules.

Bluespec Sytem Verilog Summary

Input Language: HDL-inspired Language

Design Concept: Specialized IP core

Flexibility: Arbitrary hardware-design

HW/SW CO-Design: No direct support for HW/SW co-design

Interface: Arbitrary interfaces

28 CHAPTER 2. HLS FOR CONFIGURABLE SYSTEMS

2.6 HLS Projects Based on Object-Oriented Languages

There are several projects that translate high-level languages (other than C) into

hardware. Examples are Kiwi [57] (based on C#) and Lime [8] (based on Java).

In order to enable hardware-specific features, such languages typically provide

a customized API to the developers. It allows describing a whole system in a

hardware friendly but still object-oriented manner.

2.6.1 Liquid Metal and Lime

Besides the object-oriented features of Java, Lime programs expose parallelism

and enable bit-level analysis. Programs written in Lime can use a restricted form

of Java enum types that guarantee their immutability. Together with the qualifier

local, Lime allows the isolation of computation and eases the mapping of code

sections to different (hardware) units. Moreover, Lime provides keywords for

abstract parallelism (task), streaming (=>), and data parallel constructs like map

(@) and reduce (!).

Using the Lime language together with the Liquid Metal project [33] enables

programmers to compile the same code into either pure software binaries or

software/hardware co-designs. The proposed work-flow is shown in Figure 2.3.

Lime
Program S

IR SIR
Compiler S

IR

(o
pt

im
iz

ed
)

Crucible

Limeade
Compiler

SIR
Back-End

Bytecode
Back-End

FPGA
Vendor
Tools

PPC CPU

FPGA

A
nn

ot
at

ed
B

yt
ec

od
e

LMRT

V
er

ilo
g

FP
G

A
B

itf
ile

Xilinx Virtex 4

IBM PowerPC 405

Figure 2.3: Liquid metal compilation and runtime system (derived from [33])

2.6. HLS PROJECTS BASED ON OBJECT-ORIENTED LANGUAGES 29

As Lime is basically Java code with some additional features, it can be flawlessly

translated into Bytecode. In a first step, the Limeade compiler (cf. Figure 2.3)

checks for compliance with the Lime coding-rules. These rules are required for

hardware compilation in order to avoid problematic program structures for in-

stance, object aliasing. Suitable parts of the program will be translated into a

synchronous dataflow model that will be further optimized by the synchronous

intermediate representation (SIR) compiler. Finally, the mapping into HDL is car-

ried out by the Crucible compiler. The resulting code runs on an FPGA-SoC3.

Depending on the specification in the Lime code, a tailored interface to transfer

data between the hardware and software part of the application is generated. It

is utilized by the Liquid Metal runtime (LMRT) in the resulting system. Conse-

quently, the communication with the hardware accelerator is transparent for the

system designer as long as the used communication pattern is implemented in

the LMRT.

Liquid Metal with Lime Summary

Input Language: Java with extensions

Design Concept: Heterogeneous architecture (CPU,GPU,FPGA)

Flexibility: Plain Java but requires special keywords and cod-

ing rules for hardware parts

HW/SW CO-Design: Lime-conform code sections determine future

hardware parts

Interface: Runtime environment using various interfaces

3The configurable platform used in [33] is a Virtex 4 FPGA. The software runs on an embedded IBM PowerPC 405.

30 CHAPTER 2. HLS FOR CONFIGURABLE SYSTEMS

2.7 HLS Projects Using OpenCL Based Languages

Open Computing Language (OpenCL) is an open industry standard for program-

ming heterogeneous and parallel computing platforms such as GPUs, DSPs, and

FPGAs. Although OpenCL is largely used for GPU programming, the design

paradigm is similar to all HLS design flows targeting streaming problems for FP-

GAs namely HLS projects based on Impulse-C [61] or CUDA [29, 48].

2.7.1 Altera OpenCL

One of the most popular examples for a commercial tool-flow using OpenCL [35,

22, 21] was created by Altera. Programs using this language demand a hierarchi-

cal memory layout similar to the hardware layout of GPUs. Although the program

is mapped to an FPGA, many parts of the architecture are generated from fixed

modules. Altera OpenCL relies on the template FPGA architecture sketched in

Figure 2.4. It consists of modules that have been manually optimized for the

underlying reconfigurable architecture. In particular, performance-critical parts,

for instance, the external memory interface benefit from this strategy. The only

custom-generated parts of the design are the kernel pipelines, which contain the

datapath and the control unit of the computational kernels.

External Memory
Controller
and PHY

External Memory
Controller
and PHYPCIe

FPGA

Global Memory Interconnect

Memory

Memory

Memory

Memory

Memory

Memory

Local Memory
Interconnect

Local Memory
Interconnect

Local Memory
Interconnect

D
D

R
x

X86 External
Processor

Kernel
Pipeline

Kernel
Pipeline

Kernel
Pipeline

D
D

R
x

Figure 2.4: Altera OpenCL hardware architecture [7]

2.7. HLS PROJECTS USING OPENCL BASED LANGUAGES 31

Virtually, the proposed work-flow (Figure 2.5) starts with two separate programs.

First, is the classical C/C++ part that is running on the host machine (mostly an

x86 processor). It is responsible for queuing and transferring data to the OpenCL

computing device. Second, is the OpenCL-C part that is running on the pro-

grammable hardware. Only the second part requires the special HLS tool-flow

that is provided by the Altera OpenCL compiler. Hence, the software/hardware

partitioning is inherent to the code structure containing dedicated parts for the

host processor and the configurable hardware. In order to introduce existing

hardware kernels to the host compiler, the auto-discovery module is used. It

provides information about the kernel itself and its interfaces.

host.c

kernel.cl

V
er

ilo
g

ACL Host
Library

0011110
1100101
1101100
1101010

0101011

Host Binary

C Compiler

C-Language
Front-End

Live-Value
Analysis

CDFG
Generation

Scheduling RTL
Generator

System
Integration

(QSYS/Quartus)

Auto-Discovery
Module

Kernel Compiler

Figure 2.5: Altera OpenCL tool-flow [22]

As described in [7], the OpenCL code itself is a subset of the ISO C99 standard

with additional support for parallelism. On the one hand, it provides extensions

for special data types, e.g. vectors or 2D/3D work items, on the other hand

it prohibits function-pointers, recursion and dynamic arrays. A special feature

of OpenCL is the hierarchical memory structure that is reflected by the C code

through special key words for variable declaration (e.g. __host, __global,

__local). Together with the special data types, this enables data locality and

compensates for the lack of information about memory accesses.

The feasibility of OpenCL as an input language for HLS has been evaluated in

32 CHAPTER 2. HLS FOR CONFIGURABLE SYSTEMS

several case studies. If used properly, it leads to impressive speedups on re-

configurable hardware. It even outperforms comparable implementations on

GPUs [53] in terms of speedup and/or energy consumption. Due to the flexibility

provided by the reconfigurable architecture it is possible to fit problems accu-

rately to the provided memories, which makes it easy to beat a GPU architecture

with a fixed memory size.

In summary, the Altera OpenCL tool-flow provides good speedups connected

with a well-estab-lished programming paradigm. However, this comes at the cost

of a strict program structure targeting a more or less static hardware architecture.

Currently, the proposed architecture is not designed for usage with SoCs.

Altera OpenCL Summary

Input Language: C/C++ and OpenCL extensions

Design Concept: Fixed architecture template for FPGA

Flexibility: Tailored for streaming applications → adapting

new algorithms requires substantial refinement

HW/SW CO-Design: Separate development of hardware and software

(using seperate files for each part)

Interface: FPGA connected with general-purpose proces-

sor via PCIe

2.8. HLS PROJECTS USING C OR C++ 33

2.8 HLS Projects Using C or C++

In order to overcome the issues with C as input language for HLS (cf. Section 2.2),

many approaches revisit the usage of C by using a subset of the language or by

modifying the language to meet the requirements of hardware generation.

2.8.1 SystemC

The basic idea of SystemC [4] is the usage of C++ as a unified language for

hardware and software. As full-featured C++ would be too complex for hardware

generation, SystemC provides a C++ class library tailored to the special needs

of hardware design. Developers either use parts of the library that are suitable

for hardware-mapping or implement their code using the complete set of C++

features. The latter implies that the code has to run in software. The resulting

system can be regarded as hardware/software co-design containing parts of the

application designed for software or simulation purposes and containing parts for

hardware generation.

� �
#include "systemc.h"

#define WIDTH 4

SC_MODULE(adder) {

sc_in<sc_uint<WIDTH> > a, b;

sc_out<sc_uint<WIDTH> > sum;

void do_add() {

sum.write(a.read() + b.read());

}

SC_CTOR(adder) {

SC_METHOD(do_add);

sensitive << a << b;

}

};� �
Listing 2.6: SystemC design of a 4-bit adder [114]

The SystemC class library makes use of C++ class templates to provide new

language features for typical hardware constructs e.g. modules, parallelism, spe-

cial bit operations or timing specifications. Listing 2.6 shows a sample SystemC

34 CHAPTER 2. HLS FOR CONFIGURABLE SYSTEMS

implementation of a 4-bit adder. It uses several special templates (e.g. sc_in,

sc_out) and functions (e.g. SC_CTOR, SC_METHOD) to provide the expressive-

ness of an HDL within C++. Hence, to design the hardware part of an applica-

tion, one requires the same knowledge of the target platform as for a direct HDL

design. As a consequence, this method offers only a small rise in abstraction.

Moreover, the automatic selection of suitable hardware parts is not supported

and still belongs to the designer.

Nevertheless, SystemC has the advantage of giving the developer the oppor-

tunity to design all parts of an application within the same tool and the same

language. This makes it easy to elaborate the design space for hardware and

software mapping. Additionally, it allows the simulation and verification of the

whole system during an early stage of development. Hence, SystemC does not

claim to be an HLS tool. Rather, it is recognized as a tool for electronic system

level design4.

SystemC Summary

Input Language: C++ with HDL-inspired libraries

Design Concept: Heterogeneous architecture or arbitrary

hardware design

Flexibility: Arbitrary hardware architecture aiming at SoCs

HW/SW CO-Design: Determined by language-structure

Interface: Arbitrary interfaces

4Methods for the development of electronic systems covering the upper three levels of abstraction (cf. Y-Chart in

Figure 2.1), including hardware/software co-design

2.8. HLS PROJECTS USING C OR C++ 35

2.8.2 Xilinx Vivado

In 2013, Xilinx released the Vivado Design Suite [60] after many years of develop-

ment. It can be regarded as an integrated design environment (IDE) with several

components tailored for circuit design. Among others, it contains the Vivado HLS

compiler, which enables C,C++, and SystemC programs to be directly translated

to application-specific hardware. The proposed design-flow is presented in Fig-

ure 2.7.

C/C++ Algorithm

Vivado
HLS R

TL
D

es
ig

n

Verification

Vivado
EDK

IP
 C

or
e

FP
G

A
B

itf
ile

Constraints

FPGA with
Custom Logic

C Testbench

Packaging

Figure 2.7: Vivado design-flow (adapted from [60]

The concept of Vivado HLS follows the idea of mapping a number of complete

C-functions to a hardware design. The desired behavior can be specified in a C

testbench that allows verification of the design on C-level by using a common

software compiler. The selection of C code and the interfacing must be carried

out manually. However, Vivado provides several features that support the devel-

oper during the integration and development of custom IP cores. The tool-suite

enables design space exploration by allowing the designer to specify constraints,

e.g. area/speed optimization. In addition, it generates various solutions for each

design. It belongs to the designer to choose which solution fits the requirements

best. In order to generate reusable custom hardware, the IP packager can be

used to turn the design into a self-contained IP core. The IP packager provides

several high-throughput interfaces that are tailored to the Xilinx in-house proces-

sor cores and FPGA architectures. The generated IPs can be further reused by

Xilinx system builder tools like Vivado EDK.

36 CHAPTER 2. HLS FOR CONFIGURABLE SYSTEMS

Besides mentioning problematic code structures like recursion, Vivado HLS gives

neither explicit coding rules nor any best practices for development. Hence, pro-

grams usually require considerable refinements to achieve optimal results.

The assignment of data to dedicated interfaces or memories is recommended

in order to help Vivado with the generation of an IP core interface. If such re-

finements are ignored or not possible due to the structure of the application, the

resulting design can even introduce slowdowns. This fact was exemplified in a

case study for a tree-traversal algorithm [65]. In this work, the use of random

pointers prohibits the use of fast interfaces and finally leads to substantial slow-

downs. Although this is not a typical use case for hardware acceleration, it shows

that code refinement is essential when using Vivado HLS.

Xilinx Vivado HLS Summary

Input Language: C/C++/SystemC

Design Concept: Generate specialized IP core

Flexibility: Arbitrary hardware architecture targeting

FPGAs/SoC-FPGAs

HW/SW CO-Design: Separate development of hardware and software

Interface: Provides several interface templates

2.8. HLS PROJECTS USING C OR C++ 37

2.8.3 Nymble

The Nymble compiler [34] was introduced in 2013 and was inspired by the COM-

RADE [39] compiler. Both approaches use a technique for software back-dele-

gation. The idea of giving the control back to software originates from GarpCC [16]

but has been strongly improved by COMRADE and Nymble. The proposed hard-

ware/software co-compilation flow is shown in Figure 2.8.

Clang

C/C++
Source with

Pragmas

Partitioner
LLVM-IR

Transformation
Optimization

CDFG
Construction

CDFG
Optimizations

Patcher

Scheduling

LLVM Code
Generation

RTL Verilog

0011110
1100101
1101100
1101010

0101011

Executable

Figure 2.8: Nymble hardware/software co-compilation [34]

The Nymble compiler is based on the Low Level Virtual Machine (LLVM) but

uses a modified clang C/C++ front-end, which accepts custom pragma direc-

tives. These pragmas are used to define the hardware/software partitioning. The

future hardware part is translated into a separate function that, after applying

optimizations in LLVM, is processed by a specialized HLS flow that generates

Verilog. The remaining application is patched to call the hardware function, and

is further translated into an executable. The concept of software back-delegation

requires a tight coupling between processor and accelerator memory. For this

reason, Nymble uses a sophisticated (cache)-Memory Architecture for Reconfig-

urable Computers (MARC II) [105] to interface between hardware and software.

HW Startfor (i =0; i < n ; i ++) {
 x = a[i];
 if (i >0)
 x = x % c;
 else {
 printf("x=%d",a[i]);}
 b[i] = x;

}

Register
Transfer

Cache
Invalidate

Cache
Flush

SW Service
Start

SW Service
End

SW

HW

SW

HW

HW End

Register
Transfer

Register
Transfer

Register
Transfer

Register
Transfer

Register
Transfer

Register
Transfer

Register
Transfer

A

B

Figure 2.9: Switch between hardware and software [34]

38 CHAPTER 2. HLS FOR CONFIGURABLE SYSTEMS

The kernel5 selection is typically done on the granularity of loops. Because of

the back-delegation feature it is possible to translate loops even if they con-

tain real function calls, which allows the mapping of large portions of C code

to hardware. However, frequent switching between hardware and software in-

troduces an overhead to the execution time. This may be acceptable for the

transfer of small amounts of data, e.g for a complex arithmetic operation (cf. Fig-

ure 2.9 (A)). But for operations with unknown side-effects – like function calls

– back-delegation is often expensive. The used data cache between hardware

and software needs to maintain its data consistency for each software/hardware

switch (cf. Figure 2.9 (B)). Besides additional hardware resources, this introduces

long delays due to the overhead of data transfers.

Nymble Summary

Input Language: C/C++

Design Concept: Cores for hybrid-architectures using

software back-delegation

Flexibility: Complete system design targeting

FPGAs/SoC-FPGAs

HW/SW CO-Design: Manual code annotation of suitable

hardware sections

Interface: Generated cache for accelerators

5In the context of HLS, the term ”kernel“ refers to that part of the application code which is considered for hardware

mapping.

2.8. HLS PROJECTS USING C OR C++ 39

2.8.4 LegUp

LegUp [17, 18] was introduced in 2011 but is still under development. The origi-

nal approach was tailored to a hybrid architecture using the Tiger MIPS soft-core

processor [110] for Altera-FPGAs. Currently, the HLS-flow is adapted to Altera

Cyclone V SoCs, which contain a hard IP Advanced RISC Machine (ARM) pro-

cessor core [24]. Besides hybrid architectures, the LLVM-based HLS tool can

also be used standalone in order to map C functions to single IPs. LegUp does

not support software back-delegation within accelerators; thus, it requires fully

synthesizable C sections for hardware generation.

C Program

LegUp

Software
Compiler

Processor

FPGA Fabric
with Accelerator Logic

Profiling Data:
 Execution Cycles
 Cache Misses

High-Level-
Synthesis

Self-Profiling Tiger
MIPS Processor

Altered
Software

Binary

Hardened
Program

Segments

Figure 2.10: LegUp design-flow [17]

A special feature of LegUp is the automatic profiling of applications in order to

identify computational hotspots. To make use of this feature, the C application

must be implemented for a soft-core processor running on the FPGA (cf. Fig-

ure 2.10). A built-in hardware profiler [6] is then used to generate an application

trace. Using this trace data allows LegUp to estimate the possible speedup of

an accelerator. Afterwards, the user can mark the discovered critical functions in

the source code for synthesis. The selected function sources will be recompiled

with LegUp-HLS while the remaining source code is patched with accelerator

calls and translated by a regular software compiler.

As traces depend on runtime data, the gathered information is naturally not com-

plete. The number of loop iterations, the control flow, and the memory ac-

cesses might differ in actual application runs. In order to avoid an inaccurate

40 CHAPTER 2. HLS FOR CONFIGURABLE SYSTEMS

hardware-software partitioning, the final selection of hotspots still belongs to the

developer. The interface between the Tiger MIPS soft-core processor and the

hardware accelerator is implemented by using shared memories. Therefore, the

Avalon system bus is used in order to connect the processor and the accelerator

with multi-port memories provided by the FPGA platform.

LegUp Summary

Input Language: C/C++

Design Concept: Cores for hybrid-architectures. The general-

purpose processor requires a profiling interface

or a cycle-accurate emulation

Flexibility: Complete system design targeting

FPGAs/SoC-FPGAs

HW/SW CO-Design: Suitable hardware sections are determined

via profiling

Interface: Using shared memory

2.8.5 Overview of Other HLS Projects

The presented projects are only a few examples from the numerous existing HLS

tools and work-flows. The following by no means exhaustive Tables 2.-8 and 2.-9

give a quick survey of further approaches for HLS tools. The chosen taxonomy

adapts the criteria of the previously presented projects.

2.8. HLS PROJECTS USING C OR C++ 41
Ta

bl
e

2.
-8

:
O

ve
rv

ie
w

of
R

el
at

ed
H

LS
P

ro
je

ct
s

(1
)

H
L

S
-P

ro
je

c
t

In
p

u
t

L
a

n
g

u
a

g
e

D
e

s
ig

n
C

o
n

c
e

p
t

F
le

x
ib

il
it

y
H

W
/S

W
C

o
-D

e
s
ig

n
In

te
rf

a
c
in

g

C
O

M
R

A
D

E
[3

9,
25

]
C

/C
+

+
S

W
B

ac
k-

D
el

eg
at

io
n

C
at

ap
ul

t-
C

[4
5,

13
]

C
/C

+
+

S
in

gl
e

IP

C
A

S
H

[1
5]

C
(A

nn
ot

at
ed

)
S

in
gl

e
IP

C
H

iM
P

S
[5

2,
40

]
C

(S
ub

se
t)

H
yb

rid
A

rc
hi

te
ct

ur
e

G
ar

pC
C

[1
6,

32
]

A
ns

iC
H

yb
rid

A
rc

hi
te

ct
ur

e

G
A

U
T

[4
3,

20
]

C
/C

+
+

S
in

gl
e

IP

H
an

de
l-C

[1
4,

63
]

H
D

L-
in

sp
ire

d
S

in
gl

e
IP

H
er

cu
Le

S
[3

7,
36

]
C

/N
A

C
S

in
gl

e
IP

M
at

la
b

H
LS

[5
4]

M
od

el
-B

as
ed

H
yb

rid
A

rc
hi

te
ct

ur
e

La
bV

ie
w

H
LS

[2
3]

M
od

el
-B

as
ed

H
yb

rid
A

rc
hi

te
ct

ur
e

N
im

bl
e

[3
1,

42
]

A
ns

iC
H

yb
rid

A
rc

hi
te

ct
ur

e

Pa
nd

a/
B

am
bu

[1
,5

0]
A

ns
iC

S
in

gl
e

IP

R
O

C
C

C
[6

4]
C

+
Li

br
ar

y
S

in
gl

e
IP

S
tr

ea
m

s-
C

[2
8]

C
(E

xt
en

de
d)

H
yb

rid
A

rc
hi

te
ct

ur
e

42 CHAPTER 2. HLS FOR CONFIGURABLE SYSTEMS
Ta

bl
e

2.
-9

:
O

ve
rv

ie
w

of
R

el
at

ed
H

LS
P

ro
je

ct
s

(2
)

H
L

S
-P

ro
je

c
t

In
p

u
t

L
a

n
g

u
a

g
e

D
e

s
ig

n
C

o
n

c
e

p
t

F
le

x
ib

il
it

y
H

W
/S

W
C

o
-D

e
s
ig

n
In

te
rf

a
c
in

g

La
v a

[1
2]

H
as

ke
ll

S
in

gl
e

IP

m
uF

P
[5

5]
Fu

nc
tio

na
l

S
in

gl
e

IP

H
M

L
[4

1]
Fu

nc
tio

na
l

S
in

gl
e

IP

C
2V

er
ilo

g
[5

9]
A

ns
iC

S
in

gl
e

IP

C
-t

o-
Ve

ril
og

[1
1]

A
ns

iC
S

in
gl

e
IP

C
-t

o-
S

ili
co

n
[3

]
S

ys
te

m
C

/O
S

C
IT

LM
S

in
gl

e
IP

K
iw

i[
57

]
C

#
H

yb
rid

A
rc

hi
te

ct
ur

e

Im
pu

ls
-C

[6
1]

H
D

L-
in

sp
ire

d
C

S
in

gl
e

IP

eX
C

ite
[6

6,
67

]
A

ns
iC

(E
xt

en
de

d)
S

in
gl

e
IP

xP
ilo

t
[1

9]
C

/S
ys

te
m

C
S

in
gl

e
IP

FP
G

A
B

ro
ok

[5
1]

C
(E

xt
en

de
d)

H
yb

rid
A

rc
hi

te
ct

ur
e

D
IM

E
-C

[2
7]

A
ns

iC
(E

xt
en

de
d)

S
in

gl
e

IP

C
ar

te
/M

A
P

[5
,5

8]
C

+
Li

br
ar

y
S

in
gl

e
IP

D
ae

da
lu

s
[4

7,
62

]
C

(E
xt

en
de

d)
H

yb
rid

A
rc

hi
te

ct
ur

e

2.9. GCC PIRANHA 43

2.9 GCC PIRANHA

The following section describes the structural decisions that have been taken in

order to create a new HLS tool-flow. Although the content of this section does

not directly belong to the technical background, it helps the reader to classify

the implemented approach with respect to the existing ones. Furthermore, it

motivates the following background information about the target platforms and

the GCC compiler framework.

GCC PIRANHA stands for GCC Plugin for IR ANalysis and Hardware Acceleration.

It was developed as HLS tool-flow that is tightly coupled with the software com-

pilation process. It targets hybrid architectures and was originally designed to

generate accelerators for the SpartanMC soft-core processor [139]. The tool-flow

is based on the GCC framework. While the first version of the tool [142] uses

GCC version 4.4.5, the refined version [145] was implemented using the GCC

plugin interface of GCC 4.8.3.

2.9.1 Manageable Language Constructs

By using GCC as the underlying compiler framework for the proposed HLS ap-

proach, it is obvious to use C as the preferred input language. On the one hand,

C is a commonly used language in the area of embedded systems and is well

accepted by the industry and the research community. On the other hand, as

described in Section 2.2, the use of C introduces various challenges to the whole

HLS process. Some of the required information, e.g. the patterns of memory

accesses or memory aliasing are not expressed within the language. Other im-

portant information like ILP or the optimal operator width could be extracted but

requires very complex analysis techniques that sometimes cannot be handled

with acceptable effort. Hence, the philosophy behind the proposed work-flow is

to consider only those code sections for HLS that seem to be manageable by the

plugin and lead to correct synthesis results.

Typically, most of the execution time of embedded applications is spent in loops.

Consequently, the analysis of PIRANHA focuses on loops. In contrast to other

HLS flows (e.g.: LegUp [17]), complete functions and linear code sections are not

considered for hardware generation. Within the loop body, PIRANHA can handle

44 CHAPTER 2. HLS FOR CONFIGURABLE SYSTEMS

arbitrary control flow and even subordinated loops. An exception are function

calls, which cannot be mapped to hardware without further effort. As C function

calls cannot be considered as free of side effects, the inclusion of these state-

ments finally requires a mechanism for software back-delegation, which intro-

duces additional hardware effort. The lack of software back-delegation is partially

compensated by the inlining capabilities of the GCC. Both granularities, loops and

functions, entail different advantages and disadvantages: Obviously, the param-

eter list of function-based accelerators is clearly defined and often smaller than

for loop-based accelerators. On the downside, the chance for the occurrence of

unsuitable code sections, like library calls, is typically higher. For the proposed

work-flow, the granularity of functions would lead to a higher number of rejected

hardware kernels. For this reason, PIRANHA considers only loops for accelera-

tion.

Besides function calls, the proposed work-flow also declines code sections con-

taining unsupported operations, e.g. floating point arithmetic or divisions. Such

features are not relevant for the current implementation but can be upgraded

later with little effort by using existing interfaces.

2.9.2 Translation Work-Flow

As mentioned in Section 1.2, the idea behind PIRANHA is to provide a transpar-

ent tool-flow for software programmers in order to considerably lower the entry

barrier for hardware development. Hence, the selection of suitable accelerators

as well as the integration of accelerators into the host system is completely auto-

mated. PIRANHA consists of two separated GCC-plugins collectively performing

four processing steps. Figure 2.11 gives an overview of the tool-flow and its

processing steps.

1. The loop data collection performs a whole-program analysis and collects in-

formation about all loops of the program. This step must be carried out in a

separate compilation run in order to ensure that all files of the program can

be analyzed. Thus, it is solely implemented within the first plugin. The result

of this run is an analysis transcript of all loops within the program.

2.9. GCC PIRANHA 45

Hardware
Generation

0011110
1100101
1101100
1101010

0101011

Loop Data
Collection

Loop
Analysis

Application
Modification

FPGA Vendor
Synthesis Tools

Analysis
Transcript

Processor

HDL

Accelerator Logic

Collector Plugin
(1st GCC-Run)

Synthesis Plugin
(2nd GCC-Run)

Adaptive
Target Platform

Binary
Objects

Application
Sources

1 2 3

4

Figure 2.11: GCC plugin-based HLS work-flow for configurable architectures

2. The loop analysis is performed as a first step from the second plugin during

the second compilation run. Its task is to analyze each loop of the source

code by using the gathered data from Step 1. Besides this information, it

analyzes the feasibility of hardware generation and uses a cost model to

estimate the speedup of loops with respect to the target platform.

3. The hardware generation performs the HLS for loops that were selected in

the previous step. The result of this step is a hardware description of the

generated accelerators.

4. The application modification adapts the original software code in order to

integrate the hardware accelerator. According to the target platform, ad-

ditional C code is generated to perform the communication between host

processor and accelerator interface. Afterwards, the whole application is

translated and linked to generate a program binary.

GCC PIRANHA invests substantial effort to analyze the application in order to

identify suitable code sections. For most of the existing HLS approaches, this

task is assigned to the system developer, which may lead to better overall results

but also to a much higher entry barrier for the user of the system. Hence, GCC

PIRANHA has taken a completely new direction for HLS tool-flows. It works on

whole applications and requires neither program rewriting nor special annotation

or language features.

46 CHAPTER 2. HLS FOR CONFIGURABLE SYSTEMS

2.9.3 Runtime Work-Flow

After generating a modified binary file in Executable and Linking Format (ELF) and

a bit file containing the hardware design, both files can be used to run the applica-

tion on the target platform. Therefore, the ELF binary is executed on the general-

purpose processor while the bit file is used to configure the programmable logic

part of the target platform. PIRANHA modifies the ELF binary in such a way that

running the whole application in software is still possible even if the hardware

accelerator is temporarily unavailable. This feature is required for rather complex

systems that share several accelerators between multiple applications. For in-

stance, this may occur for accelerated library functions. In general, the execution

of an accelerator is divided into three steps as shown in Figure 2.12.

0011 1101 1010 1001 00
1100 1010 1101 1110 10
1101 1001 1000 1000 11
1101 0101 0000 1000 00
0111 1101 1010 1001 01
1100 1010 1101 1110 10
1101 1101 1000 1100 01
1101 0101 0110 1000 00
1101 0101 0000 1000 00
0111 1101 1010 1001 01
0011 1001 1010 1001 00
0000 1101 1011 1111 00
0011 1101 1010 1001 01
1101 0101 0000 1000 00

Data MemoryInstruction Memory

L18 R6 &ready
BEZ R6
L18 R7 &result

S18 R4 &max

.
.
.

.
.
.

S18 R5 &start

MOVI R4 MAX
MOVI R5 0x01

Processor

MAX+
*

=

LD 2

RES

C
on

tro
l

D
at

ap
at

h

Register Transfer

Accelerator

Initial Values
Base Addresses

Direct Memory Access

1

2

3

Register Transfer

Results

Figure 2.12: GCC plugin-based HLS work-flow for FPGA-based architectures

1. The entry point of the loop is identified and replaced by a call of the ac-

celerator wrapper function. The first task of that function is to pass input

parameters to the hardware accelerator. Such input parameters are typically

variables that are used within the accelerated loop. The transfer is initiated

by the host processor. Afterwards, the host processor hands control to the

accelerator by setting a start bit in the accelerator control register.

2.9. GCC PIRANHA 47

2. After the transfer of input parameters the accelerator starts its loop execu-

tion while the host processor polls the accelerator status register. All ar-

ray and pointer accesses within the loop require a direct memory interface.

The default behavior of the accelerator is to generate a direct memory ac-

cess (DMA) for each single value, but the actual method can be adapted to

the special requirements of the target architecture and the C code of the

loop. This memory interface requires special attention in order to avoid slow

downs of the accelerator.

3. Finally, the accelerator uses the status register to signal its completion to

the host processor. Afterwards, the processor transfers results from the

accelerator and continues the regular software execution. One of the gener-

ated result values indicates the software entry point that is used to continue

the program. If the accelerator has run successfully, the loop must be by-

passed by setting this entry point behind the loop. Otherwise, the entry

point is set above the loop that executes the software loop without further

modifications.

2.9.4 Target Architecture

GCC PIRANHA is tailored for hybrid architectures containing a general purpose

processor and configurable logic. The current implementation was evaluated on

two target architectures of different complexities: first, on a soft-core proces-

sor tailored for SoCs on FPGAs running bare metal applications, and second,

on an FPGA platform with an embedded ARM processor running a full-featured

operating system. Both host processors provide a GCC port for their archi-

tecture. Hence, the whole approach is portable without modifications on the

hardware/software co-compilation process, except the hardware and software

interface for memory and peripheral access.

3 TARGET PLATFORM

The following chapter gives an overview on the technical background of the used

target platforms. The proposed work-flow is based on configurable platforms,

consequently, the used FPGA technology is briefly introduced. The GCC plugin

was considered to be target-agnostic as long as the related platform provides

configurable logic resources. Thus, it seemed natural to prove the practicability of

the approach by implementing it for two target architectures. Both architectures

are introduced in the following sections.

3.1 Configurable Platforms

Application-specific architectures can be implemented by using various technolo-

gies. Together with other individual features, each technology provides its own

level of granularity for application-specific customizations.

ASICs allow the adoption of nearly all design variables, starting from the circuit

layout down to specific technology parameters. The result is usually a tailored cir-

cuit with nearly optimal properties in terms of area, speed and energy consump-

tion. The downside of this technology is the design process, which includes all

development steps required for a complete semiconductor fabrication flow. Thus,

for many projects, building an ASIC is often too expensive and time consuming.

Another approach to custom circuit design is the use of application-specific stan-

dard products (ASSPs). The key of this technology is the usage of “off-the-shelf”

components in order to simplify the design process. However, even such stan-

dard cell designs require a minimum quantity of pieces to be economically advis-

able. The hardware accelerators presented in this thesis are solely implemented

on FPGAs. Such platforms are ideal for prototypes with very low quantities and

have become increasingly popular due to decreasing costs per unit. In contrast

to ASICs and ASSPs, FPGAs provide the possibility to change the design after

fabrication in the “field”.

However, the design concepts presented in this work can be adapted to all of

these technologies and may also be suitable for future reconfiguration techniques

like silicon nano wire transistors [116].

50 CHAPTER 3. TARGET PLATFORM

3.1.1 Field Programmable Gate Arrays

The key feature of FPGAs is their ability to change the behavior of the chip even

after fabrication. Therefore, the static architecture consists of homogeneous

logic modules and an arbitrary routing network. Most of the configurable logic

blocks (CLBs) and the routing network contain programmable switches1 or pro-

grammable memory elements2, which can be used to adapt the hardware layout

to implement a certain behavior. Although the actual implementation of the CLBs

and the routing network depend on the FPGA vendor, it is often similar with re-

spect to its logical structure. Figure 3.1 shows the architecture of a Xilinx 7 Series

FPGA [126], which is used for the implementations in this thesis.

Similar to other FPGA types, the essential element of this architecture is the

CLB. The Xilinx CLB architecture is organized in slices that provide resources

to emulate nearly all basic logic functions. The core pieces of these slices are

the look up tables (LUTs). These SRAM cells are used to specify Boolean func-

tions by using the address bits as input variables and to determine the output

through the assigned contents of the memory. Furthermore, a slice contains

adders that form a carry-chain with the neighboring slices, and several flip-flops

that are used to store data in order to create synchronous logic. The multiplexers

(cf. Figure 3.1 for the slice structure) are required as switches to select or by-

pass single elements. The input and output signals of each CLB are connected

to the configurable routing network. Additionally to the generic CLBs, FPGAs

provide different special blocks implemented as fixed hardware, e.g. dual-ported

memories (BRAM), DSP blocks3, serial transceivers, and IO blocks. On current

Xilinx FPGAs such modules are organized in columns and stacked above a sili-

con interposer by using conducting “bumps”. The silicon interposer provides the

static connections between these columns. This technique allows a smaller foot-

print and shortens the distances between modules, which decreases the latency

for interconnects. The resulting advanced silicon modular block layout (ASMBL)

allows Xilinx to adapt its FPGA portfolio to new application domains with little

effort.

1Some manufactures also use fuses here.
2This can be either static random access memory (SRAM) cells or Flash cells
3Digital signal processors (DSP-blocks) [124] are execution units containing a parametrizable adder and multiplier.

3.1. CONFIGURABLE PLATFORMS 51

Slice (1)

Slice (0)

CLB

Cout

Cin

Global Interconnect

ADD

Slice (0) Cout

Cin

FF

FF

FF

FF

FF

FF

FF

FF

LUT

LUT

LUT

LUT

Silicon Interposer with
Low-Latency Connections

DSPs /
Special IPs

Block RAM
Memory

CLBs

IO BLocks

Package Substrate

FPGA Dice

Layout Example ASMBL Architecture

Pb/Sn C4
Bump

Figure 3.1: Xilinx Artix FPGA layout [125, 113]

In the 1980s, the first FPGAs were mainly used for glue and control logic. At

present, FPGAs have evolved into highly capable coprocessors and platforms for

complete SoCs. They are often used for typical DSP applications like filter and

transformation algorithms as well as for security applications. In order to improve

speedup and power efficiency with FPGAs, one need to take advantage of the

large number of computing resources by performing highly parallel executions.

This becomes even more necessary due to the fact that the clock frequency of

a typical FPGA is significantly lower than the frequency of an optimized general-

purpose processor or ASIC. Nevertheless, many publications in the past have

proven the viability of FPGA-based program acceleration [106, 99]. Another ap-

plication domain is its usage as a peripheral unit in order to perform specialized

IO operations. The combination of a large number of parallel IO blocks and the

deterministic behavior of hardware designs makes FPGAs an ideal platform for

52 CHAPTER 3. TARGET PLATFORM

real-time IO with the potential to reduce the computational load of the main pro-

cessor.

3.2 Soft-Core Processors

Microprocessors are an integral part of many digital systems. If used in con-

junction with FPGAs it is perfectly logical to consider their implementation using

configurable logic resources as well. In this case, the processor itself is imple-

mented as a part of the FPGA design. Such so called soft-core processors are

available from most FPGA vendors. Popular examples are the Altera NIOS II pro-

cessor [89, 108] and the Xilinx Microblaze [119]. Typically, they are optimized for

the underlying configurable fabric of the respective FPGA manufacturer. In ad-

dition, also open source and commercial soft-core processors for cross-platform

usage exist. For instance, the LEON processor family [87].

The tight coupling of custom hardware and soft-core processor on the same chip

allows the usage of low-latency interfaces for data transfers. For instance, it

enables direct and symmetric access to shared memory without the need for

specialized bus interfaces. This works especially well on FPGAs as they provide

dual-ported memories (BRAMs) by default. Such memories can be used either as

shared cache for processor and accelerator or directly as data memory. The latter

makes sense especially for small embedded systems. Another feature of soft-

core processors is the ability to adapt the processor core to the requirements of

custom hardware. For example, this is done in the Microblaze pipeline with so

called Fast Simplex Links [121] that can be used for special tasks like instruction

set extensions or multi-core architectures.

3.2.1 SpartanMC

SpartanMC [139] is a soft-core processor that was developed to optimally fit the

typical hardware structure of FPGAs. As FPGAs provide a processing width of

18 bit for several internal structures, e.g. DSP-blocks and BRAMs, the Spar-

tanMC soft-core adapts its internal processing width to these circumstances.

By using 18 bit wide instructions and data4, the core ranges between 8 bit and
4The SpartanMC soft-core uses a word width of 9 bit and an integer width of 18 bit.

3.2. SOFT-CORE PROCESSORS 53

32 bit cores, thus, aiming at applications of medium complexity derived from the

typical 16 bit domain of classical embedded microprocessors. The resulting pro-

cessor (including additional modules for Timer and UART) provides a reasonable

performance of 1.05 DMIPS/MHz with a minimal resource footprint of 852 LUTs

and four BRAMs. Providing an elaborated toolchain and customized peripherals,

the SpartanMC can be regarded as a viable platform for signal processing and

controlling tasks.

Instruction Set

The SpartanMC soft-core processor implements an instruction set with a fixed

width of 18 bit. In contrast to typical 16-bit architectures, it turns out that the

additional 2 bits per instruction are essential in order to design a small reduced in-

struction set computer (RISC) architecture without the need for extension words.

This enables the integration of two addresses or immediate values into a single

instruction. The complete op-code matrix and its sub-matrices are shown in Ta-

bles B.1, B.2, and B.3. The available instructions can be grouped into four types,

as shown in Figure 3.2.

17 13 9 8 5 4 012

OPC RS1 FuncRD

17 13 9 8 5 4 012

OPC RD/RS2 RS1 Displ.

17 13 9 8 012

OPC RD Constant

17 13 012

OPC Offset

R-Type M-Type

I-Type J-Type

Figure 3.2: SpartanMC instruction types [139]

• The R-Type is used for arithmetic operations that take two 4 bit register

addresses as operands. The result of the operation is stored in the first

register operand. The bits 4 to 0 at the end of the instruction are reserved

for the opcodes of the two sub-matrices.

• The I-Type includes all operations using constant values for calculations.

Therefore, the constant is stored in the least significant 9 bits of the instruc-

tion. Again, the destination of the operation is the first register operand.

54 CHAPTER 3. TARGET PLATFORM

• The M-Type is used for load and store operations. The SpartanMC provides

op-codes for full words (18 bit) and half words (9 bit). The unsigned displace-

ment can be used as an additional offset for chained memory accesses.

• The J-Type is typically used for jump and branch instructions. The latter take

their condition from a special condition code register.

Core Architecture

As shown in Figure 3.2, the SpartanMC instructions provide 4 bit to address

internal registers, which implies that the core can effectively use a maximum of

16 registers. The 18-bit registers are implemented in a BRAM with 1024 cells.

This decision was taken in order to utilize a sliding register window technique, as

outlined in Figure 3.3. Hence, each new function or interrupt invocation provides

eight new registers to the core. Four of the 16 registers are defined as globals

(R0–R3), another four registers overlap in order to pass parameters between call

levels (R12–R15 or R4–R7of the calling function), and the remaining four registers

(R8–R11) are considered to be local with respect to the current function. Sliding

the window by eight memory cells for each call results in up to 127 nested call

levels. This technique enables very fast function and interrupt invocations on the

architectural level. Furthermore, the SpartanMC requires no dedicated stack for

subroutine calls as long as the available registers are sufficient. If additional stack

is required the necessary memory is allocated at the end of the main memory.

The current stack-pointer is always stored in R0.

R
0

R
1

R
2

R
3

R
4

R
7

R
8

R
11

R
12

R
15

R
4

R
7

R
8

R
11

R
12

R
15

Globals Local

In Local

In Out

Out
Subroutine
Return from

Call
Subroutine

Figure 3.3: SpartanMC sliding register window [139]

The SpartanMC is designed as an RISC core executing one instruction per cy-

cle. Therefore, it provides a three-stage pipeline with bypasses, e.g. between

operand fetch and write-back or between write-back and the execution stage.

3.2. SOFT-CORE PROCESSORS 55

The timing of the pipeline was first developed by using a phase-splitting tech-

nique that allows the usage of two clock edges per cycle (cf. [139]). On the one

hand, this eliminates some of the bypasses and minimizes the resource footprint

of the core. On the other hand, it requires tedious clock management within

the pipeline, which finally leads to a poor overall clock frequency. In context of

this thesis, phase splitting is not used at the cost of a slightly higher resource

consumption. A schematic of the actual used pipeline is given in B.2.

Memory Interface

The default implementation of the SpartanMC uses BRAMs (cf. Section 3.1.1) as

memory for the program and data section of the application binary. A simplified

structure of the SpartanMC memory interface is presented in Figure 3.4. The

memory architecture is designed as a modified Harvard architecture. This means

that the core has parallel access to a combined data and program memory by

using separate interfaces for both, data and instructions. This approach is well

supported by the underlying FPGA architecture as the used BRAMs always pro-

vide two independent ports. The actual size of the main memory is customizable

by the granularity of BRAM pairs each providing a width of 9 bit and a depth

of 2048 lines. The usage of two BRAMs at a time is necessary in order to grant

18-bit access for the instruction interface and native 9-bit access for the data port.

Besides the connection to the main memory, the SpartanMC provides two light-

weight interfaces to integrate peripherals into the 18-bit address space.

First, a memory-mapped register interface is used for peripherals working on

small amounts of data, using registers that are synchronized to the processor

clock. As shown in Figure 3.4, such registers are integrated in a sub-address

space while the remaining address bits are used to define the base address of

the peripheral. For data write operations, single registers are selected by an

address decoder.

Second, a direct memory access (DMA) interface is implemented that uses dual-

ported BRAMs to exchange large data sets between processor and peripheral.

The integration of the DMA interface is similar to that of the regular main mem-

ory, but instead of connecting the second memory port to the instruction fetch

of the processor, it is connected as the data port of the peripheral.

56 CHAPTER 3. TARGET PLATFORM

Peripheral
 IP 1

Data Out (18 Bit)

D
M

A
 P

er
ip

he
ra

l

Data In

access

Data Out
BlockRAM

DMA BASE ADR

access 18x1024

...OR
Data In (18 Bit)

D
ec

od
er

se
le

ct
 1

W
E

AND AND AND

OR ...

...

Data In (18 Bit)

Data Out (18 Bit)

select 3
select 2
select 1

...

R
eg

is
te

r 1
P

er
ip

he
ra

l

select 1
select 2
select 3

MODULE
BASE ADDR

=

D
ec

od
er

BRAM 4+5
BRAM 2+3

BRAM 0+1

Peripheral
IP 0

DMA
BRAM

Peripheral
IP 2

se
le

ct
 2

W
E

se
le

ct
 3

W
E

R
eg

is
te

r 2
P

er
ip

he
ra

l

R
eg

is
te

r 3
P

er
ip

he
ra

l

Address Bus

Address Bus

Data Out (18 Bit)

S
pa

rt
an

M
C

 IF

Instruction

PC

BlockRAM

access...

...

...OR
Data In (18 Bit)

B
R

A
M

S
el

ec
t

Address Bus

Data Bus

Instruction
Fetch (IF)

Po
rt

A

Po
rt

B

P
or

t A

P
or

t B

9x2048

9x2048

...
access

B
R

A
M

S
el

ec
t

ctrll9/l18

s9/s18 ctrl

SpartanMC
Core

...

Complex Peripheral
(USB, Ethernet,
CAN, Profibus)

Memory Mapped Peripherals
(I2C, SPI, UART, IRQ-Ctrl,

Timer, Capture/Compare etc.)

SpartanMC Main Memory

Figure 3.4: SpartanMC memory Architecture [139]

In order to avoid a distributed multiplexer for read operations from different pe-

ripherals the outputs of all memories and register sets are combined with an OR

gate. This presumes that peripherals that are not selected always produce a zero

on their outputs.

3.2. SOFT-CORE PROCESSORS 57

3.2.2 Toolchain

The major benefit of the SpartanMC environment lies in its customizability to

application-specific requirements. Along with the SpartanMC processor soft-core

exists a rich set of peripheral IP cores for standard functions, e.g. capture and

compare and interrupt handling as well as for complex communication protocols

like USB or CAN. The SpartanMC SoC-kit [140] allows the combination of such

IP cores in any desired composition and quantity in order to generate a tailored

SoC. Maintaining such a complex system and granting its accessibility to a broad

community of end users requires a lot of effort in the area of tool development.

The SpartanMC SoC-kit is distributed as an open source project bundled with a

GNU Automake [96] toolchain. Furthermore, it provides a cycle accurate simula-

tor, a system-builder application, and a C compiler. An overview of the tool-flow

for the SpartanMC SoC-kit is given in Figure 3.5.

Target FPGA

jConfig FPGA Vendor
Synthesis Tools

Top-Level
HDL File

ELF Binary

Firmware
Sources

GCC+
BinUtils

Simulator

C Headers and
Linker Script

0011110
1100101
1101100
1101010

0101011

XML Module
Library

BRAM
Generator

Bit File

0011110
1100101
1101100
1101010

0101011

User
Constraints File

C Libraries

XML System
Specification

Hardware
Module Source

Figure 3.5: SpartanMC tool-flow [139]

58 CHAPTER 3. TARGET PLATFORM

The system-builder application in connection with the software compilation pro-

cess, is of particular interest for this thesis. The system builder provides a graph-

ical user interface to instantiate and connect IP cores in an easy and straightfor-

ward manner. In order to register hardware units for use in the SpartanMC sys-

tem builder, hereinafter referred to as jConfig, one requires an eXtensible Markup

Language (XML) description of the IO ports and the parameters of the respective

hardware unit.

Another major tool in the context of this thesis is the C compiler. The Spar-

tanMC SoC-kit uses the GCC framework for software compilation. As the GCC

is known to generate an excellent code quality for two address machines, it was

the natural choice for the SpartanMC processor. PIRANHA was first designed

to generate application specific accelerators exclusively for the SpartanMC archi-

tecture. Hence, it was an obvious choice to use GCC as the underlying compiler

framework for the plugin as well.

3.3 FPGA SoC

According to [107], more than the half of all FPGA designs already use at least one

general-purpose processor besides their custom logic implementation. Thus, it

was the logical next step for FPGA manufactures to offer processors as hard IP

cores for their platforms. Although such integrated processors cannot provide

the same flexibility as soft-core processors do, they compensate this with better

performance and energy efficiency. As long as FPGA vendors use mainstream

architectures like ARM, such hard IP processors are complemented by a highly

optimized toolchain. With the use of hard IP processors on FPGAs, they have

become increasingly relevant as a central component of an SoC. This approach is

reflected in the name FPGA SoC.

3.3.1 Xilinx Zynq

The most recent FPGA SoC platforms from Xilinx are Zynq and Zynq Ultrascale.

As shown in Figure 3.6, the platform used for this thesis is the Xilinx Zynq-

7000 [129] on an Avnet ZedBoard [91]. Zynq-7000 contains an Artix-7 FPGA

fabric in combination with a complete ARM subsystem consisting of a Cortex-A9

3.3. FPGA SOC 59

dual-core processor featuring two NEON floating-point units (FPUs) and a com-

prehensive set of standard peripherals. The integrated processor core is based

on the ARMv7 instruction set and provides a Dhrystone performance of 2.5

DMIPS/MHz for each of the cores. The used clock frequency for the Zynq on

the Zedboard is 667 MHz which makes the processor approximately seven times

faster than a typical design for the associated FPGA fabric.

N
E

O
N

 D
S

P
/F

P
U

E

ng
in

e

C
or

te
x-

A
9

N

E
O

N
 D

S
P

/F
P

U

E
ng

in
e

C
or

te
x-

A
9

51
2

K
B

L2
 C

ac
he

S
no

op
 C

on
tro

l U
ni

t

32
 K

B
 I

L1
 C

ac
he

32
 K

B
 D

L1
 C

ac
he

32
 K

B
 I

L1
 C

ac
he

32
 K

B
 D

L1
 C

ac
he

A

X
I M

as
te

rs

A

X
I S

la
ve

s

25
6

K
B

O
n-

C
hi

p
M

em
or

y

ACP

A

X
I I

nt
er

co
nn

ec
t

Multiport DRAM Controller

GP

HP

P
ro

gr
am

m
ab

le
 L

og
ic

A
R

M
 S

ub
sy

st
emM

M
U

M
M

U

xc

7Z
02

0
A

rti
x-

7
FP

G
A

53
20

0
LU

Ts
 ,

26
5

B
R

A
M

s,
 2

20
 D

S
P

 S
lic

es

A

M
B

A

2x SPI

 2x I2C

 2x CAN

2x UART

GPIO

...

Figure 3.6: Zynq architectural overview [145]

For the communication between processor core and generated accelerators the

memory architecture of the platform is of great importance. The main memory

of the Zynq is connected to the ARM subsystem via two caches: a 32 KB first-

level cache for each core and a combined 512 KB second-level cache for both

cores. Moreover, the ARM core is connected to a memory management unit

(MMU) providing hardware support for the virtual address management, which

is required by operating systems. Both features, caching as well as virtual ad-

dressing, introduce new challenges for generating a processor-accelerator sys-

tem. First, the virtual addressing of an operating system hinders direct mem-

ory access from within the accelerators, as the required data addresses are not

known during compilation time. Second, the integrated cache architecture re-

quires additional effort to keep the data between core and accelerator consistent.

The latter problem is addressed by a special port for custom hardware units, the

60 CHAPTER 3. TARGET PLATFORM

accelerator coherency port (ACP). The ACP is internally connected to the Snoop

Control Unit of the ARM and can be used for cache-coherent access to the ARM.

In addition, the ARM subsystem provides a DMA unit to initiate burst transfers

from the operating system that will be of further interest for the implementation

of the accelerator interface.

Advanced eXtensible Interface

A challenging aspect of the integration of a standard processor on an FPGA is

the implementation of the interface between the hard IPs and the FPGA fabric.

Therefore, the ARM processor on the Zynq platform provides several Advanced

eXtensible Interfaces (AXIs). AXI is a bus system derived from the ARM Ad-

vanced Microcontroller Bus Architecture standard (AMBA) [122] and is currently

available in the fourth version (AXI4). The standard incorporates a full-featured

interface that allows for full-duplex single-word transfers as well as memory

bursts and a light-weight interface (AXI4-Lite) that is limited to word transfers

only. Furthermore, AXI provides special features like unaligned data transfers by

byte strobes. Generally, AXI is designed as a master/slave protocol where only

masters are able to initiate the communication.

On Zynq devices, one distinguishes between full-duplex 64 bit high-performance

and 32 bit general-purpose AXI interfaces. The ARM subsystem provides four

general-purpose interfaces and four high-performance interfaces. However, the

actual capabilities of the channel depend on the provided interface for both peers.

For the communication with the FPGA fabric, the interface is always implemented

as soft-core providing an AXI bus ”uplink“ and a non-standard interface to the

custom logic.

4 GCC FRAMEWORK

The GNU Compiler Collection (GCC) is one of the most widely used compiler

frameworks for software development in industrial and scientific areas. It is es-

tablished for embedded systems as well as for consumer- and high performance

computers. Its development started in 1987 with a free C-only compiler for the

GNU operating system. Hence, the acronym stood for the GNU C compiler at

first. Later, the compiler front-end grew to support additional programming lan-

guages like C++, Java, Fortran and Ada. Consequently, the name was changed

to GNU Compiler Collection.

Today, the GCC can be regarded as a compiler generation framework that gener-

ates reliable and highly optimized compilers from descriptions of target platforms.

It owes much of its popularity to its support for more than 30 machine architec-

tures. Due to its wide variety of source languages and target machines, the GCC

has become one of the most complex free software projects with a considerable

code base of over two million lines1. Currently, the GCC is mostly written in C.

Only some of the core functionalities of the API, e.g. vec.h were ported to C++

classes.

Using such a mature compiler helps to provide a fully transparent work-flow for

software developers and introduces a rich set of code analysis and optimization

strategies. Most of these strategies have proven their usefulness independent of

the target machine architecture. Hence, the availability of a transparent work-flow

and the huge amount of language- and architecture-agnostic optimizations make

the GCC a promising choice for generating custom hardware from a high-level

language.

In this thesis, many GCC data structures and terms will be used. Hence, the

following chapter will introduce assorted mechanisms and structures of the com-

piler generation framework.

1Without target specific code and external optimization frameworks.

62 CHAPTER 4. GCC FRAMEWORK

4.1 Compilation Flow

The GCC processes each source file in a single compilation run. In the case of

C as input language a compilation run comprises a C source file and its inclu-

sions (usually header files). In the following, the combination of an application

source file and its inclusions will be referred to as a compilation unit. A high-level

overview of the compilation process for one compilation unit, as described in

[80], is given in Figure 4.1.

The compilation workflow can be divided into three stages: the front-end, the

middle-end, and the back-end. The front-end is responsible for validating the

syntactical structure of the given input. It creates internal structures for data

types and variables and builds an initial abstract syntax tree (AST). The middle-

end analyzes and transforms the program by following two design goals: make

the resulting object code run as fast as possible and make it as space-efficient

as possible. Finally, the back-end translates the intermediate code of the middle-

end to the machine code of the target architecture. While the front-end depends

on the input language and the back-end depends on the target architecture, the

middle-end carries out all optimizations using a language-agnostic intermediate

representation (IR). Hence, the middle-end can be regarded as language and

target-independent.

Besides these compilation stages the GCC framework enables general customiza-

tions. Therefore, it is possible to modify the compilation process by command-

line parameters. This can be used to generate debug information and to influence

how GCC optimizes the compilation unit.

4.1.1 Front-End

After processing the command line parameters the parsing of the application

starts in the front-end. Naturally, this process is language-specific and requires a

special parser for each language.

The resulting tree representations of the parsed input code still depend on the

input languages. In order to be processable by the middle-end, the tree must be

converted from the language-specific tree representation to GENERIC (cf. Sec-

tion 4.2). Note that this step is not necessary for C and C++, as they are directly

4.1. COMPILATION FLOW 63

RTL

GIMPLE

GENERIC

...
Fortran

Tree

Fortran
ParserC++ ParserC Parser

Fortran to
GENERIC

Other
Parsers

Gimplify

Interprocedural
Optimizer

Tree SSA
Optimizer

RTL
Optimizer

Code
Generator

Object
Code

Machine
Description

Front-End

Middle-End

Back-End

*.c / *.h *.cpp / *.h *.f

- Flow sensitive and flow insens. alias analysis
- Constant Propagation (CCP)
- Full Redundancy Elimination (FRE)
- Dead Code Elimination (DCE)
- Forward Propagation
- Jump Threading
- Copy Propagation (COPY-PROP)
- Value Range Propagation (VRP)
- Scalar Replacement of Aggregates (SRA)
- Dead Store Elimination (DSE)
- Tail Call discovery
- Partial Redundancy Elimination (PRE)
Loop Optimizations
 - Loop Invariant Motion (LIM)
 - Loop Unswitching
 - Loop Interchange
 - Induction Variable Optimizations
 - If conversion
 - Vectorization
 - Loop Prefetching
 - Loop Unrolling
 - Empty Loop Elimination

- Inlining
- Constant Propagation (IPCP)
- Static variable analysis
- Points-to alias analysis

Figure 4.1: GCC compilation flow with common optimizations, adapted from [80].

64 CHAPTER 4. GCC FRAMEWORK

converted to a subset of GENERIC. The special role of C can be explained by the

historic evolution of the compiler. When the development of the GCC started, the

IR was tailored to the specific characteristics of C, as it was the only supported

input language at the time.

4.1.2 Middle-End

At this point of the compilation process, the complete compilation unit is con-

verted (gimplified) to GIMPLE in Tree SSA (static single assignment) form (cf.

[72, 78]). The details of GIMPLE and Tree SSA are described in the next Sec-

tion 4.2.

This IR has no references to the source language or the target architecture.

Therefore, it is suitable for carrying out all general code optimizations that have

beneficial effects on most input languages and target platforms. This includes

fine-grained optimizations – like common subexpression elimination – as well as

coarse-grained optimization, e.g. function inlining. The optimization tasks are di-

vided into so-called passes. A detailed explanation of the pass structure of the

middle-end is given in Section 5.6.4.

4.1.3 Back-End

The back-end converts the optimized GIMPLE tree to the register transfer level

(RTL). This Lisp-like2 structure is suitable for optimizations close to the target

machine (e.g. instruction scheduling or register allocation). It was the default

intermediate representation before the introduction of GIMPLE in GCC 4 [82].

Finally, this representation is converted to assembly by using the machine defini-

tion of the target architecture. Afterwards, the integrated GNU Binutils [73] are

used to convert the assembly to target byte code, which is emitted as an output

file.

2Lisp is a functional, adaptable high-level programming language.

4.2. INTERMEDIATE REPRESENTATION 65

4.2 Intermediate Representation

The following section will describe GIMPLE and GENERIC. These representa-

tions are used by the middle-end optimization passes and represent the most

important structures in context of this thesis.

In the early years of GCC development the internal representation for optimiza-

tions was RTL, which was directly derived from AST – the data structures used

by the front-ends to represent the parse-trees. In the past, each front-end con-

verted the input language to its specific flavor of parse-tree; hence, optimizations

had to be adapted to the single front-end. This process was very error-prone and

hard to maintain. In order to overcome these limitations in GCC version 4, the

compiler framework was reworked, and GENERIC and GIMPLE were introduced.

Both were implemented on top of a tree data structure using a formalism called

static single assignment.

4.2.1 Tree SSA

The GCC internal Tree SSA structure [79, 72] is the foundation of the IR. It

presents all information of the code structure concerning function-nodes, state-

ments, operands, and operations. Single function-nodes and statements are

structured as trees. A sequence of statements is structured as a tree chain. An

example Tree SSA structure for a PLUS_EXPR is presented in Figure 4.2. Access

to the sub-nodes is ensured with the macro interface provided by tree.h.

PLUS_EXPR

TARGET_MEM_REF

INTEGER_CST

VAR_DECL

IDENTIFIER_NODE

a[i] + 1

node

VAR_DECL

null

TREE_OPERAND(node,0)

TREE_OPERAND(node,1)

TREE_OPERAND(node,[0,1,2,3,4])

DECL_NAME(node)

null

(1)

DECL_NAME(node)

IDENTIFIER_NODE

(4)

(i) (a)

(a+4i)

(+)

INTEGER_CST

Figure 4.2: Tree structure of an PLUS_EXPR with TARGET_MEM_REF

66 CHAPTER 4. GCC FRAMEWORK

Besides several variable and constant types, the given expression contains a

memory reference (TARGET_MEM_REF) that is of particular interest within this

thesis. Such references require special treatment during hardware generation,

as they trigger the communication to external memories. The memory reference

itself describes an access pattern to resolve the address and returns a type that

describes the data gathered by the access.

The following two memory access patterns are used during the hardware gener-

ation process:

target_mem_ref A memory reference using a base b, a constant offset o, an

index i1 with a step size of s and a secondary index i2 (operating on byte

level). All values except the offset o and i2 could be expressions. The ad-

dress A for the access is calculated as follows:

A = b + i1 · s + i2 + o

Not all variations of this formula are allowed or make sense for a given target

architecture. For instance, both targets (ARM and SpartanMC) that are used

in the context of this thesis waive the usage of i2.

mem_ref A memory reference using only a base address b, which can be vari-

able or constant, and a constant offset o. The address A is the sum of base

and offset:

A = b + o

Listing 4.3 shows a sample loop that contains two array accesses. Both accesses

are represented as target_mem_ref (MEM[...]) in the GIMPLE transcript of

the loop body in Listing 4.4. The first memory reference accesses element a of

the structure foo. It uses ptr as base, the variable ivtmp as index and step

size, and an offset of zero. The second access reuses the base and the index of

the first one but sets the offset to eight in order to read element b. The example

gives an impression of the representation of memory references within GIMPLE.

Furthermore, it shows clearly that the actual access parameters depend on the

surrounding GIMPLE statements and could only be vaguely predicted from the

given C code. In order to guarantee a correct handling of memory accesses, the

4.2. INTERMEDIATE REPRESENTATION 67

� �
struct foo {

int a;

int b;

};

int main(struct foo *ptr) {

int i, a;

for (i=0; i<100; i++) {

a += ptr[i].a + ptr[i].b;

}

return a;

}� �
Listing 4.3: Example loop with memory ac-

cesses

� �
...

ivtmp.20 = PHI <0, ivtmp.19>

_9 = MEM[base:ptr.6, index:

↪→ivtmp.20, offset:0B];

_16 = ptr.6 + ivtmp.20;

_10 = MEM[base:_16, offset:4B];

_11 = _9 + _10;

a_12 = _11 + a.18;

ivtmp.19 = ivtmp.20 + 8;

...� �
Listing 4.4: GIMPLE transcript of the loop

body showing memory references

plugin performs an exact mapping of the GIMPLE representation to hardware,

even if the representation provides room for improvements.

It should be noted that Tree SSA contains many more different memory access

patterns, e.g. BIT_FIELD_REF, COMPONENT_REF, and ARRAY_REF. For the pur-

pose of hardware generation, those patterns must be lowered by the plugin code

or by previous optimization passes to a pattern or a combination of the patterns

described above.

The handling of memory accesses in the plugin is based on target_mem_refs,

which represent the most generic description of a memory reference in the con-

text of the given plugin implementation.

The GCC framework provides various convenience functions to traverse the Tree

SSA structures. This helps to determine types of variables and constant values.

Additionally, it allows the tracking of variable scopes and, finally, enables a basic

alias analysis.

Another feature of the internal tree structure is the SSA property of variables.

The central idea is the versioning of variables. Every time a new value is as-

signed to a variable, the compiler generates a new version of that variable. This

is advantageous for many optimizations applied in the middle-end, for instance,

constant propagation, which tries to compute expressions at compile time in

order to avoid unnecessary computations at runtime. The SSA form supports

this optimization as it helps the compiler to keep track of constant values across

68 CHAPTER 4. GCC FRAMEWORK

different statements.

Naturally, programs are seldom written as a straight sequence of statements. As

shown in code sequence 4.5, they contain control flow, like conditionals or loops,

that leads to ambiguous values for SSA variables (cf. Listing 4.6).

� �
x = get_x();

if (x > 0) {

a = 0;

}

else {

a = 42;

}

return a;� �
Listing 4.5: C code with conditional

� �
x_1 = get_x();

if (x_1 > 0) {

a_2 = 0;

}

else {

a_3 = 42;

}

a_4 = PHI <a_2, a_3>

return a_4� �
Listing 4.6: SSA values with PHI function

In the example, it is impossible to compute the return value for a at compile time.

The merge of such conflicting versions of SSA variables is called the PHI function.

It indicates to the optimizers that a_4 is not resolvable at compile time but can

be a_2 or a_3 at run time.

4.2.2 GENERIC and GIMPLE

GENERIC is the interface between the language-specific front-ends and the middle-

end optimizations. It was implemented as the superset of all tree representations

in GCC. Hence, the conversion to GENERIC removes all language dependencies

from the program but still preserves its structural complexity. The example in

Listings 4.7 and 4.8 illustrates the lowering of C code (4.7) to GENERIC (4.8)3.

In order to perform code optimizations, GENERIC is further lowered to GIM-

PLE, which provides a more abstract representation of the program. GIMPLE

is a fusion of two IRs. On the one hand, there is SIMPLE, which was used by

McGill University’s McCAT compiler [74]. Its contribution to GIMPLE is the three-

address representation of statements. On the other hand, there is GENERIC,
3It should be noted, that IRs exists in only internal compiler structures. The transcripts used in this thesis cannot show

the complete expressiveness provided by the IR.

4.2. INTERMEDIATE REPRESENTATION 69

C Code� �
#define LEN 100

int foo_sum (int a[LEN]) {

int sum = 0;

for (int i=0; i<LEN; i++) {

if (a[i] < 0) {

return error();

}

sum += a[i];

}

return sum;

}

� �
Listing 4.7: C code example

GENERIC� �
foo_sum (int * a) {

int sum; {

int i;

i = 0; sum = 0;

goto <D.6488>;

<D.6487>:;

if (*(a + (i * 4)) < 0) {

return error ();

}

sum = *(a + (i * 4)) + sum;

i++ ;

<D.6488>:;

if (i <= 99) goto <D.6487>;

else goto <D.6489>;

<D.6489>:;

}

return sum;

}� �
Listing 4.8: GENERIC code transcript

which imposes several structural restrictions (s. [78]). The fusion of both names,

GENERIC and SIMPLE, results in GIMPLE. As GIMPLE allows only the use of

three-address statements, complex expressions must be partitioned with tem-

poraries. GIMPLE itself can be divided into High GIMPLE, which still contains

lexical scopes and control structures, and Low GIMPLE, only using labels and

goto instructions. Both representations are shown in A.2 and A.3 for the code

given in Listing 4.7.

4.2.3 Control Flow Graph

Besides GIMPLE and Tree SSA, the GCC requires a third type of IR, the control

flow graph (CFG) [82, p. 285 ff.]. As the name implies, this structure contains

information about the control flow of an application. The representation of the

CFG is built on top of GIMPLE and consists of so called basic blocks and edges.

Each node of the CFG is a basic block. A basic block contains a sequence of non-

branching GIMPLE statements. The transfer of control is represented by edges

70 CHAPTER 4. GCC FRAMEWORK

between the blocks.

For instance, an if statement occurring in a basic block splits the control flow and

creates two conditional edges. The following two blocks contain the statements

for the then and else branches, respectively. The block behind such a conditional

contains the PHI functions of all variables set in the conditional basic blocks.

Figure 4.9 illustrates the GIMPLE structure and the CFG that is generated for the

function in Listing 4.7. This level of abstraction is the basis for the generation of

hardware accelerators presented in this work.

Dominance Relation

The control flow structures of the CFG can be ordered according to their dom-

inance relation. A node i (inferior) is dominated by another node s (superior) if

each path from the entry of i must pass s in order to reach i. In this context,

each basic block has exactly one immediate dominator. This block s dominates

its subsequent basic block i directly without dominating any other dominator of i.

The immediate dominator can be used to construct a dominator tree by defining

an edge from each block to its immediate dominator. This tree is provided by the

GCC and can be traversed. Among others, PIRANHA uses the domination tree

to derive domination levels in order to identify parallelizable basic blocks.

Interface for Application Profiling

Naturally, the control flow of an application has a strong impact on its execution

time. Thus, the GCC framework provides many optimization options for CFGs.

Besides an integrated branch prediction, each basic block provides estimations

about its frequency and its actual count. The former represents an estimation

generated during compile time by the usage of static profiling. It provides infor-

mation about how often a basic block may be executed within a function. The

latter contains the hard-counted numbers of executions measured during a pro-

gram run. This way of data acquisition is called dynamic profiling.

For dynamic profiling, GCC provides the compiler flag -pg, which equips the pro-

gram to produce profiling data ([82] p. 290 ff.). After a test run of the application,

the profiling data is written to an extra output file and can be used in an external

4.2. INTERMEDIATE REPRESENTATION 71

Basic Block 2

Basic Block 6

Basic Block 5

Basic Block 3

Basic Block 4

Basic Block 7

Basic Block 8

 i_4 = 0;
sum_5 = 0;

i.1_6 = (unsigned int)i_2;
 _7 = i.1_6 * 4;
 _9 = a_8(D) + _7;
 _11 = *_9;
 if (_11 < 0)

i.1_13 = (unsigned int)i_2;
 _14 = i.1_13 * 4;
 _15 = a_8(D) + _14;
 _16 = *_15;
sum_17 = _16 + sum_1;
 i_18 = i_2 + 1;

sum_1 = PHI <sum_5, sum_17>
 i_2 = PHI <i_4, i_18>
 if (i_2 <= 99)

_19 = sum_1;

_12 = error ();

_3 = PHI <_12(4), _19(7)>
return _3;

truefalse

truefalse

Figure 4.9: Example transcript of a CFG with GIMPLE basic blocks

72 CHAPTER 4. GCC FRAMEWORK

tool or for a second GCC run. This method provides accurate information about

the program but depends on the input data used for the test.

The profiling data used in this thesis is gained by static profiling only. Embedded

systems typically use a cross-compiler toolchain for program translation. This

implies that the architecture on which the compiler runs does not correspond to

the architecture of the compilation target. Hence, the execution of the test for

dynamic profiling would require additional effort. Particularly for small embedded

systems that run on bare-metal code with a very limited set of libraries, gaining

a dynamic application profile would not be trivial.

4.2.4 Register Transfer Language

The final optimizations of the compiler are done on a low-level IR called register

transfer language (RTL) [82, p. 225 ff.]. This IR is a hardware-based representa-

tion for an abstract target architecture with an infinite number of registers. RTL

defines and optimizes low-level features, e.g. memory-addressing modes, word

sizes, types, and compare and branch instructions.

After the final GIMPLE passes, the IR is lowered to RTL which is still represented

by internal structures and pointers. The GCC provides several interesting op-

timization passes for RTL structures, e.g. modulo scheduling. However, such

optimizations are not strictly target-independent, as they are influenced by the

machine description. This description provides target-specific RTL templates in a

lisp-like structure that will further generate target-specific compiler code. Thus,

the existing RTL optimizations are not applied for hardware generation in order

to remain independent from the underlying architecture.

4.3 Optimization Passes

Optimizations during the compilation process are carried out in passes. A pass

modifies the structure of the IR or converts the current representation into an-

other IR. The sequence of their execution is specified in passes.c, which con-

tains a fixed schedule for all optimizations. It is not recommended to rearrange

this sequence, as the resulting IR of a pass does not necessarily fit the IR ex-

pected by an inserted one (even if both passes use GIMPLE). To attenuate this

4.3. OPTIMIZATION PASSES 73

problem, the C structure of a pass provides fields for its prerequisites and re-

sults. Such conditions may be considered by other passes, unfortunately this is

not obligatory in GCC 4.8.3. The C structure of a pass defines a hook for a gate

function and an execute function. The former is the entry point for the actual

implementation and can be used to verify user-defined conditions before execut-

ing the pass, for example, the value of a compilation flag. Passes are grouped

hierarchically according to their underlying IR and their scope of optimization,

e.g. functions, loops, etc.. Optimizations that transform one IR into another (e.g.

GENERIC to GIMPLE, AST to Tree SSA) are called lowering passes.

The GCC provides over 180 passes for optimizations based on GIMPLE, Tree

SSA, and RTL. This includes various loop optimizations as well as common scalar

optimizations, e.g. dead code elimination (DCE), conditional constant propaga-

tion (CCP), and dead store elimination (DSE). A selection of the most important

optimizations is given in Figure 4.1.

Generally, the GCC distinguishes between three classes of optimization passes:

Interprocedural (IPA) passes work on the inter-function level and perform op-

timizations for the complete compilation unit. These passes traverse the

internal call graph structure of the GCC, which contains every function of

the compilation unit. The call graph is used for the application analysis de-

scribed in Chapter 5.

Intraprocedural Passes work on loops and sequences of statements. These

passes perform high-level optimizations on the granularity of GIMPLE state-

ments, Tree SSA, and the CFG. Consequently, they are also called GIMPLE

passes. The HLS described in Chapter 7 is implemented as such a GIMPLE

pass.

RTL Passes are used to prepare and optimize the program code for the target

architecture. RTL can be regarded as an assembler language for an abstract

machine. Nevertheless, it uses several target-specific features.

The GCC provides a vast number of parameters to specify which passes are fi-

nally run within the compilation process. Almost every optimization pass can

be influenced, activated or deactivated by such parameters. In order to sim-

plify the usage of the compiler, sets of optimization passes can be selected by

74 CHAPTER 4. GCC FRAMEWORK

the parameters -O0, -O1, -O2, -O3, -Os and -Ofast. While -O0 guaran-

tees the shortest compilation time and a comprehensible translation result, -O1

through -O3 optimize the code size as well as the execution time. The option

-Os optimizes the code for size only, while -Ofast tries to speed up the code

by using mathematical calculations with less accuracy. This option may lead to

inaccurate results for programs that require an exact implementation of IEEE or

ISO specifications.

Source File

main

toplev_main

do_compile

process_options

compile_file

lang_hooks.parse_file

*_genericize

cgraph_finalize_function

Front-
End

Middle-
End

cgraph_analyze_function

cgraph_assemble_pending_functions

cgraph_expand_functions

cgraph_final_write_globals cgraph_optimize

ipa_passes ...

cgraph_analyze_functions

cgraph_expand_all_functions

conversation to GENERIC

lowering to GIMPLE

loop_optimizations HW Generation Plugin

HW Analysis Plugin

RTL and codegen passes

...

...

.
.
.

RTL and codegen passes
.
.
.

lowering to GIMPLE

-O0-O1+

gimple_passes ...

Analysis
Transcript

Figure 4.10: Simplified call graph for -O0 and -O1 – -O3

Figure 4.10 shows a simplified call graph for the optimization level -O0 and the

common optimization levels greater than or equal to -O1. The plugin for hardware

generation is treated by the GCC as an additional optimization pass (blue boxes

in Figure 4.10). For that reason, the hardware generation pass is only called for

optimizations greater than -O0.

4.3.1 Link Time Optimization

The traditional implementation of the GCC only processes a single compilation

unit per compilation run. Hence, the scope of interprocedural optimizations is

limited to more or less one source file at a time. For programs that are scattered

4.4. GCC PLUGIN INTERFACE 75

across several files, this hinders the optimization passes from using their full

potential.

In order to solve this problem, the GCC provides the link time optimization (LTO)

framework. Since GCC version 4.5, the LTO framework can be used to expand

the scope for optimizations to the whole program or, at least, to the part of the

program that is visible at link time. Therefore, a bytecode representation of GIM-

PLE is integrated as a special section into the emitted object files (*.o). These,

so-called ”fat“ objects4 enable LTO to compose a whole program representation

on the GIMPLE-level from the linked application. As LTO triggers the regular GCC

optimizations twice, it almost doubles the compilation time of a program.

LTO is activated by using the GCC parameter -flto during compilation. Given

this parameter the GCC calls two IPA passes pass_ipa_lto_gimple_out and

pass_ipa_lto_finish_out which generate the GIMPLE section of the object

file. The actual optimization is triggered when collect25 detects a linked set of

.o/.a files containing LTO information. This information is aggregated into a

single compilation unit that is further processed by regular IPA passes.

Similar to LTO, the generation of hardware accelerators also requires a global

view of the application. Although, at first glance, the LTO work-flow seems feasi-

ble for the generation of accelerators, the currently available LTO passes do not

provide suitable hooks for the required hardware generation passes. Nonethe-

less, the current hardware generation process is inspired by the LTO work-flow.

Both work-flows run the optimization passes twice; the first run is used to gather

information while the actual work is done in the second run.

4.4 GCC Plugin Interface

Since version 4.5.0, the GCC framework has provided support for plugins [75, 77].

Such modules are translated to shared objects and can be linked dynamically

during the compilation run. The usage of plugins provides several benefits for

the development of GCC extensions.

It allows the implementation and testing of new features without bootstrapping

4The resulting object could be up to five times the size of the original object.
5A tool that, among others, could be used to check the linker output.

76 CHAPTER 4. GCC FRAMEWORK

the compiler. In particular for cross-compiler toolchains this process is error-prone

and very time-consuming. Additionally, it provides a clear separation between

the compiler’s internal functions and the extension. Hence, it effectively keeps

developers from modifying internal functions according to their personal require-

ments. Finally, it provides flexible and powerful access to the compiler’s internal

data structures through a well-defined interface.

As described in Section 5.6.4, the GCC optimizations are organized in passes that

are executed according to a fixed schedule. In order to execute arbitrary plugin

code between these optimization steps, the plugin interface allows the registra-

tion of callback functions on several predefined events within the optimization

schedule for instance, after execution of all loop-optimization passes or before

parsing a function body. In addition, the plugin interface provides a possibility

to register regular GCC passes (according to the definition in tree-pass.h)

instead of arbitrary callback functions. The registration of regular passes can

be done dynamically using the plugin pass manager which provides a hook for

almost every internal pass. Using these hooks allows the integration of own

GCC passes between existing ones. The parameters, defining the new pass, are

handed to the plugin pass manager via the register_pass_info structure.

Listing 4.11 shows the declaration of this structure for the hardware synthesis

pass (pass_hw_synthesis). This pass is called directly before finishing all loop

optimizations (Lines 2 and 5). The value of ref_pass_instance_number is

used to insert the pass in a specific instance of the reference pass (loopdone).

A value of zero activates the pass for all instances.

� �
static struct register_pass_info hw_synthesis = {

.pass = &pass_hw_synthesis.pass,

.reference_pass_name = "loopdone",

.ref_pass_instance_number = 0,

.pos_op = PASS_POS_INSERT_BEFORE

};� �
Listing 4.11: Register pass-info for plugin

4.4. GCC PLUGIN INTERFACE 77

4.4.1 Using GCC Garbage Collector with Plugins

With the growing number of optimization passes, the utilization of memory be-

came a severe challenge for GCC developers. This was tackled with the intro-

duction of the GCC Garbage Collector (GGC). Hence, most of the objects and

structures that are used within the GCC are marked with GTY((...)) macros.

This prepares them for use with the maintenance mechanisms provided by the

GGC. The declaration of such types obeys strict rules, e.g. they must be declared

in a global scope and must not be static.

Even though the GGC provides many benefits for the GCC framework, its han-

dling can be very tedious for the developer. Further information on the GGC, its

features, and its usage in plugins can be found under [82, p. 608 ff.].

If a plugin only analyzes data, it could use its own memory management. As soon

as a plugin modifies the IR or generates data that should be handed to the fol-

lowing passes, it is inevitable to allocate memory under the GGC administration.

For each GGC-controlled structure, the allocation of GGC memory is encapsu-

lated by a unique generated function. For example, the struct GTY(()) dfg

{...} must be allocated with a generated function called ggc_alloc_dfg().

The header file gt.h containing this function is generated within the plugin build

process by a GCC tool called gengtypes.

A common data type of the GCC, that is frequently used in the plugin is the

vector. Vectors are typically used to aggregate data of the same type. In this

context, the GCC template class vec provides the functionality to add or remove

elements as well as to iterate or resize vectors. From the user’s point of view,

it is necessary to distinguish between two types of vectors: vectors that are

allocated on the heap (which is the default creation strategy) and vectors that

are allocated in the garbage collector memory. While the former is declared by

vec<data_type> name, the latter requires the flag va_gc (vec<data_type,

va_gc> name) in order to generate a vector that interoperates with the GGC

machinery.

78 CHAPTER 4. GCC FRAMEWORK

4.4.2 Plugin Call

Plugins are translated to a shared object (*.so). Hence, the target platform has

to support dynamic linking using dlopen(). The location of a plugin is given to

the GCC via the -fplugin flag. Parameters are passed using key-value pairs,

e.g.

-fplugin=/path/to/<plugin>.so -fplugin-arg-<plugin>-<key1>[=value1].

The compiler extension presented in this thesis was first developed for GCC

4.4.5. Thus, it was integrated in the GCC as a set of optimization passes. With

an adaption to GCC version 4.8.3, the code was reworked and implemented as a

plugin.

Part III

Application Acceleration

79

5 APPLICATION ANALYSIS

The application analysis is divided into two parts. The first part is carried out in

the first of two GCC runs by using the collector plugin. It identifies loops within

C functions and collects the required loop data for the whole application1. This

part of the analysis is shown in Figure 5.1 and consists of two steps. Both steps,

collect functions and collect loops (gray boxes in Figure 5.1), are implemented

as GCC passes that are integrated by using the plugin hook of the GCC pass

manager. Collect functions is implemented as an additional simple IPA pass and

is scheduled after all GCC internal IPA passes. Its task is to analyze the call graph

of all functions. Collect loops is implemented as a GIMPLE pass. Its task is to

identify loops within functions and extract all relevant loop parameters. The result

of the first compilation run is a transcript file containing the static analysis data

for each loop of the application.

Sources
Application Front-End Middle-End

IPA
Passes

Collect
Functions

GIMPLE
Passes

Collect
Loops

Generic

Analysis
Transcript

x

Analyze call graph,
gather function data

Gather loop data,
write transcript file

Figure 5.1: First GCC compilation run collecting loop-data

Even though the loop data collection is carried out in the first GCC run, the actual

analysis – especially for parameters required for hardware generation – is carried

out in the beginning of the second GCC run using the synthesis plugin. This

part includes the analysis of memory accesses and the evaluation of possible

speedups with respect to the desired target architecture. The analysis steps of

the second GCC run are discussed in Sections 5.1 to 5.4.1 of this chapter.

1This includes every function within all compilation units.

82 CHAPTER 5. APPLICATION ANALYSIS

5.1 Function Data Collection

In order to perform inter-procedural optimizations, the GCC generates an in-

ternal call graph [76] that is accessible in all IPA passes. The inserted pass,

collect_functions, which gathers the function data, is therefore implemen-

ted as an IPA pass.

The call graph consists of unique nodes, each representing a function, and di-

rected edges pointing from the caller function to the callee. Each edge provides

a weight that represents the number of function calls out of loops of the caller.

For instance, function foo in the example call graph 5.2 (A) contains a loop that

calls bar six times.

Figure 5.2: Example call graph (A) and inverted call graph for bar (B)

In the work of [133], the call graph is utilized for the collect_functions pass. Its

only task is to mirror the graph for each compilation unit to local hw_node struc-

tures. The hw_node structures finally contain the number of calls for each func-

tion derived from the call graph and the loop_node structure containing the

loops of each function. The latter is supplemented by the following collect_loops

pass.

5.2 Loop Data Collection

After collecting all function data, the analysis of the loops for each function is

carried out with an additional GIMPLE pass. The lifetime of the required loop

data is limited to the loop optimization passes within the GCC. The gate to the

sub-tree of these GIMPLE passes is implemented in pass_tree_loop_init.

The actual loop collection pass “collect_loops” is inserted at the end of all loop

5.2. LOOP DATA COLLECTION 83

optimization passes to benefit from GCC internal optimizations for later hardware

generation.

The implemented function to gather the loop data of a given function from the

applications source code is analyze_loop(...). This function is used to de-

termine the number of iterations of a loop or loop nest by analyzing the tree of

loops recursively. The tree and the required loop data is integrated in the CFG

representation of GIMPLE (cf. Section 4.2.3). Further analysis is done by the two

additional functions compute_deps(...) and find_funcalls_loop(...).

The former is used to determine memory references by utilizing the GCC internal

function compute_data_-dependences_for_loop(...). Such dependen-

cies are useful in order to estimate the costs of hardware generation. The latter

is used to gather function calls within a loop by searching for gimple_call

statements in the loop body. It is necessary to find such function calls within

loops as they represent a blocker for the hardware generation.

Finally, the resulting collection of loop and function data is preserved in an inter-

mediate transcript file for later analysis in the second GCC run. This additional

processing step is necessary in order to get a whole application view gathered

from multiple compilation units. For example, the call graph analysis of another

compilation unit could reveal that the expected number of iterations for an al-

ready analyzed loop is increased by another function call. For this reason, the

actual analysis of the gathered data is moved to the second GCC run.

5.2.1 Transcript File

The first GCC run is used to analyze all compilation units and appends the analysis

data of each unit to a transcript file2. At the end of the first compilation run, the

transcript file contains the data of all loops regardless of whether the loop is

suitable for hardware generation or not.

The data in the transcript file mirrors the hierarchical order of the source program.

The analyzed compilation unit represents the top level, containing a sequence of

included functions that further contain the subordinated loops. Listing 5.5 shows

a simplified version of the transcript file for two compilation units 5.3 and 5.4.

The property well_nested is of particular interest for the later hardware generation.
2It should be noted that the data collection does not check for semantic errors like duplicate function names.

84 CHAPTER 5. APPLICATION ANALYSIS

� �
int fun3(int a, int b);

int fun1(int a, int b) {

int c;

for (int i=0; i<10; i++)

c += fun2(b + a, a - b);

return c;

}

int fun2(int a, int b) {

for (int i=0; i<30; i++) {

a += fun3(a, b);

b -= a;

}

return a+b;

}� �
Listing 5.3: Source code of unit1.c [145]� �

int fun3(int a, int b) {

for (int i=0; i<100; i++) {

a += b;

if (a > 200)

break;

b--;

}

return a;

}� �
Listing 5.4: Source code of unit2.c [145]

� �
unit1.c

function=fun2

loop1

countall.low=29

countall.high=0

deps_computed=0

call=1

well_nested=0

-fun3

function=fun1

loop2

countall.low=9

countall.high=0

deps_computed=0

call=1

well_nested=0

-fun2

unit2.c

function=fun3

loop3

count.low=99

count.high=0

deps_computed=1

call=0

well_nested=1� �
Listing 5.5: Analysis transcript file after

compiling unit1.c and unit2.c [145]

It indicates whether a loop or a loop nest is synthesizable at all. As in the

example, loop1 and loop2 contain function calls, fun2 and fun3, respec-

tively; hence, they are excluded from hardware generation. According to the

transcript file in Listing 5.5, only loop3 with the property well_nested=1 will

be considered for hardware generation in the second GCC run. The GCC uses

double_int types to store potentially large numbers, e.g the loop count. This

type consists of an unsigned host_wide_int for the lower part of the number

and a signed host_wide_int for the upper part. The complete transcript file of

the code examples 5.3 and 5.4 can be found in A.4.

5.3. PROCESSING THE TRANSCRIPT FILE 85

5.3 Processing the Transcript File

As shown in Figure 5.6, the parsing of the transcript file is carried out at the be-

ginning of the second GCC run. The process is implemented as an additional

GIMPLE pass collect_data, which sorts the analyzed loops by the given cri-

teria. Later, the resulting list of accelerator candidates is used by the hardware

generation pass.

Sources
Application

Front-End Middle-End

IPA
Passes

GIMPLE
PassesGeneric

Verilog

Binary
Objects

0011110
1100101
1101100
1101010

0101011

Back-End

RTL

Analysis
Transcript

Analyze
Loops

Synthesize
Loops

Parse transcript file,
analyze inverted call
graph and loop data

Figure 5.6: Second GCC compilation run analyzing loop-data

Besides the parsing of the transcript file, the key functionality of the pass is

implemented in the update_graph function. It is used to search for the function

that is called most often within the application. This optimization task can be

boiled down to the question: Which is the longest Eulerian path3 in the call graph

with the highest product of all involved edge-weights?

5.3.1 Call Graph Analysis

The Eulerian path problem for a graph consisting of vertices V and edges E;

G = (V, E) is solvable with the complexity of O(|E2|). The algorithmic solution

in [133] is based on a depth-first search (DFS) for each node. As regular call graphs

can contain cycles, it is mandatory to determine a termination condition for the

DFS by marking visited edges. Intermediate results are stored in the leaves of the

graph. The implementation of the search algorithm was simplified by inverting

the edges and setting the current function as the root of the graph (Figure 5.2

(B)). For each node vi ∈ V , the algorithm generates a tree of accessible nodes.

In order to find the longest path (maximum of the product of all path weights),
3The longest path of the graph by using each edge only once.

86 CHAPTER 5. APPLICATION ANALYSIS

the DFS has to investigate all possible paths in the call graph. This results in

an exhaustive search with the complexity of O(2|E|). As call graphs of nearly

all programs are sparsely populated with edges, additional optimizations of the

search algorithm are not reasonable. An inverted graph is shown in Figure 5.2 (B)

for the function bar, which also represents the leaf with the longest path (blue

arrows) with respect to the example in 5.2 (A).

5.3.2 Loop Analysis Functions

In order to sort the analyzed loops in a candidate list for hardware generation,

the analysis of the call graph and loops utilizes several functions that implement

different search criteria. The available compare functions are parametrizable via

compilation parameters (cf. C.2) or could be implemented according to the spe-

cial requirements of the user. Custom weighting functions must be implemented

with respect to the following structure definition:� �
static struct {

char name[32];

loop_cmp cmp_fun;

loop_cnt cnt_fun;

} lcmp_funs[]� �
Listing 5.7: Interface for compare functions [133]

The 31 characters for the name (cf. Listing 5.7) can be used to specify an arbitrary

compare function via a compiler parameter. The loop_cmp type specifies the

actual compare function. The second type loop_cnt allows the specification of

a metric to count loops.

Available implementations of compare functions are lcmp_iterations(...)

or lcmp_-iterations_strict(...). Both use lcnt_iterations(...)

as a metric to sort functions by their number of calls from wrapping loops. The

compare function distinguishes between countable and uncountable loops. If

the compared loops are countable, the actual number of iterations is evaluated in

lcnt_iterations(...) and is used to rank the loop. If the loop is uncount-

able the resulting number of iterations is one or infinite.

The function lcmp_iterations(...) always gives uncountable loops a better

5.3. PROCESSING THE TRANSCRIPT FILE 87

rating compared to countable. In this case, uncountable loops are considered to

have infinite iterations. The function lcmp_iterations_strict(...) makes

no difference between countable and uncountable loops. In this case, the actual

rating of uncountable loops is carried out by lcnt_iter-ations(...), result-

ing in an iteration count of one.

It is also possible to use a compare function that is based on the actual number of

instructions or on a metric that considers the estimated hardware effort of a loop.

Additional compare functions can be easily implemented by using the interface

in Listing 5.7.

Besides the configurable compare functions the second GCC plugin requires two

additional parameters. First, the hw-nloops parameter is used to define the

maximum number of loops in the candidate list. Second, the hw-ninstr param-

eter is used to determine an upper bound of the software instructions per loop.

The latter may be useful to limit the logic resources used for a single hardware

accelerator. A comprehensive overview on plugin parameters and their function

can be found in C.2.

88 CHAPTER 5. APPLICATION ANALYSIS

5.4 Performance Estimation

In the previous Sections 5.3 – 5.3.2, the analysis of loops was the subject of

discussion. The determined number of instructions or iterations was used to

generate an ordered candidate list of potential application hotspots.

If necessary, this list can be further filtered by an analysis of the expected run-

time. For this purpose, the presumed speedup of individual candidates is de-

termined and, in addition, an efficiency metric is introduced. In order to allow

a pre-sorting of accelerator candidates, the required data must be collected and

evaluated at the beginning of the synthesis pass in the second GCC run (cf. Fig-

ure 5.8). The basic structure of the performance analysis described below have

been developed in [132].

Sources
Application

Front-End Middle-End

IPA
Passes

GIMPLE
PassesGeneric

Verilog

Binary
Objects

0011110
1100101
1101100
1101010

0101011

Back-End

RTL

Analysis
Transcript

Analyze
Loops

Synthesize
Loops

Figure 5.8: Second compilation run with synthesis pass

5.4.1 Performance Metric

The efficiency E of a hardware accelerator is defined by the ratio of gained

speedup S to the complexity of the hardware C. The speedup itself is defined as

the quotient of the software cycle count TSW and the hardware cycle count THW :

E =
S
C

, S =
TSW

THW
.

Obviously, the speedup is of particular interest for the accelerator generation. To

calculate the estimated speedup of an accelerator, one requires the maximum

number of software instructions of the loop body Imax as well as the number of

clock cycles for the longest path CP in hardware.

5.4. PERFORMANCE ESTIMATION 89

The number of software instructions is determined by GCC internal functions

evaluating the longest path of GIMPLE statements in a loop. Therefore, each

GIMPLE statement in the path is weighted in order to estimate its impact on the

final assembler code. The used instruction counter is derived from the function

inlining pass and uses its heuristic to estimate the weight of each statement. Due

to architecture-specific back-end optimizations, this method may lead to slightly

inaccurate results.

The value of CP is determined from the generated states of the hardware im-

plementation. As memory accesses in hardware introduce architecture-specific

latency-cycles (Tmem), they must be taken into account when calculating the value

for CP. Accordingly, CP can be calculated as sum of states respectively cy-

cles of the loop body Tbody and the latency for all memory accesses of the loop

(Nmem ·Tmem). Assuming a constant cycle count Tmem for each access. In addition,

a static overhead OV is required that arises from the number of data transfers

IO and the latency Tmem at the beginning and end of the accelerator call as well

as the overhead Tcall of the accelerator function itself. Consequently, CP and OV

are defined as follows4:

CP = Tbody + Nmem · (Tmem − 1)

OV = IO · Tmem + Tcall .

As each architecture uses it own memory interface with dedicated latencies, the

values for Tmem and Tcall are defined via architecture-specific parameters. The

resulting equation for the speedup of a given loop with the number of iterations

n ∈ Z is defined as

S =
n · Imax

n · CP + OV
S ≈ Imax

CP
|n→∞.

For a large iteration count n, the influence of the overhead OV is negligible. This

is the case for uncountable loops analyzed with lcmp_iterations(...) as

compare function (cf. Section 5.3.2).

Obviously, the speedup is further influenced by the difference in the operating fre-

quencies between accelerator and host processor. For this reason, the resulting

4Tmem − 1 is required to subtract the one state-change cycle from Tmem that is already included in Tbody

90 CHAPTER 5. APPLICATION ANALYSIS

speedup must be scaled by the ratio of the accelerator clock frequency FAcc to

the host processor frequency FCPU. The resulting equation for the speedup is

S =
FAcc

FCPU
· n · Imax

n · CP + OV
.

In order to make accelerators on the candidate list comparable to each other, a

coarse efficiency metric is introduced. It uses an artificial value for the hardware

complexity that is loosely coupled with the resource footprint of the resulting

hardware design. The implemented equation for the complexity is influenced by

the number of nodes in the data-flow graph (DFG) NDFG and memory accesses

Nmem of the accelerator. In [132] it was decided to regard both components

as orthogonal vectors. Accordingly the scalar value of the complexity can be

evaluated as follows

C =
√

N2
DFG + N2

mem .

Finally, the overall efficiency is defined by the following equations for a small (5.1)

and large (5.2) amount of iterations:

E =
FAcc

FCPU
· n · Imax

(n · CP + OV) ·
√

N2
DFG + N2

Mem

, (5.1)

E ≈ FAcc

FCPU
· Imax

CP ·
√

N2
DFG + N2

mem

|n→∞. (5.2)

The described metric is implemented in the function reorganize_vec, which

is used to mark candidates that do not meet the given objectives in terms of

speedup or efficiency.

5.4.2 Pseudo-Scheduling

To determine the longest execution path, NDFG, and Nmem, the analysis functions

rely on HLS algorithms that are normally used for the regular hardware genera-

tion. The “pseudo-scheduling” is the last analysis step which is performed at the

5.4. PERFORMANCE ESTIMATION 91

beginning of the actual hardware synthesis pass. It carries out all scheduling and

optimization steps according to the parameter configuration of the plugin, except

for the GIMPLE modifications and the actual HDL generation, which are excluded

to avoid non-reversible modification of the application code. The resulting DFG is

analyzed in the function compute_complexity in order to obtain the required

parameters for the performance metric.

As shown in Figure 5.9, the pseudo-scheduling is carried out for each acceler-

ator candidate in the corresponding candidate list. After applying the pseudo-

scheduling, the vector incorporating the loop candidates holds additional perfor-

mance information for each loop. This data is used by the performance analysis

afterwards. Finally, the vector is sorted (Reorganize Candidates in Figure 5.9)

according to the desired performance metric specified by the following plugin

parameters:

hw-synth-strategy=<0|1|2> The strategy specifies the behavior of the

analysis. The current implementation supports three modes.

0 This is the default value. The given efficiency must be achieved for the

synthesis of accelerators. If the efficiency is not predictable due to an

unknown number of iterations, n → ∞ is assumed and the simplified

formula (5.2) is used.

1 The given efficiency must be achieved, but candidates with an unpre-

dictable efficiency are excluded.

2 The efficiency estimation is ignored. All available candidates will be syn-

thesized.

hw-synth-min-efficiency=<value> This is the minimal value for the re-

quired efficiency, which is evaluated if the strategy is 0 or 1. If the strategy

is set to 2, the parameter is ignored. The efficiency is set to 0 by default

which automatically includes all candidates with a potential speedup greater

than one.

After the pseudo-scheduling has been applied, the HLS is carried out, which will

be discussed in the following chapters.

It should be noted that the metric described here contains some daring as-

sumptions. For example, the value used for NDFG relies on an identical resource

92 CHAPTER 5. APPLICATION ANALYSIS

Iterate Candidate List

Iterate Candidate List

HLS

Pseudo Scheduling

Candidate Available

CP Analysis

Reorgenize Candidates

Candidate Available
No

Yes

No

Yes

End of Pass

Execute Sythesis Pass

Figure 5.9: Flow-chart of the pseudo-scheduling

consumptions for different operators in the DFG, which may be not the case in a

real hardware design. Further the value for Imax is based on a internal heuristic of

the GCC that may be too inaccurate for this particular use case.

Later experiments indicated that the described efficiency estimation was too

coarse for practical application. Therefore, this plays only a minor role in the

further sections of this thesis. However, PIRANHA provides the infrastructure for

later implementations of a more accurate estimation.

5.5 Theory of Memory Access Analysis

After determining application hotspots on the granularity of loops and loop nests,

the memory access analysis aims to optimize the generated hardware. First

attempts at hardware generation have shown that the number of states in the

critical path strongly depends on the number of memory accesses within the

loop. Due to the characteristics of C, different memory accesses must be con-

sidered to alias each other as long as nothing is known about the semantic of the

accesses. In this context, aliasing means that they potentially reference and mod-

ify the same memory location. Without further analysis, memory accesses must

be scheduled consecutively in order to preserve the correctness of the hardware

kernel. This hinders a prefetching of data for multiple loop iterations and a usage

5.5. THEORY OF MEMORY ACCESS ANALYSIS 93

of parallel memory ports. It also introduces an upper bound for the possible max-

imum ILP in a loop. Even after applying all optimizations on the C code, there will

always remain an execution path that is determined by the shortest sequence of

memory read and write operations. Without memory access analysis, this path

cannot be further optimized.

On these grounds an alias analysis is applied for all memory accesses in the

GIMPLE structure considered for hardware acceleration. Besides information

about the potential aliasing of memory accesses, this analysis provides detailed

data about the used memory access patterns. Such data is highly useful for

further streaming or caching mechanisms. Naturally, the results of a static alias

analysis are not complete. For this purpose the analysis during compile time is

supplemented with a light-weight online analysis during runtime.

The GCC contains a powerful loop optimization framework [71] providing two

functionalities that help with analyzing memory accesses. First, the data depen-

dency interface, which provides a list of all memory accesses within a loop. Sec-

ond, the scalar evolution interface, which allows analyzing the change of values

of variables during each iteration of a loop.

If scalar evolution can produce proper results during static code analysis, the

provided data can be used to determine the exact stride and step width of a

memory access with respect to its starting address.

5.5.1 Analysis Example

Assuming a simple C function, as given in Listing 5.10, it is possible that the

parameters in and out point to overlapping or identical regions in memory. If

this is the case, then the two parameters would alias. In most cases, it is im-

possible to determine at compile time whether or not two pointers reference

the same memory location. The compiler optimizations must assume that each

modification of ”out“ potentially affects the memory that is referenced by ”in“.

For the given example, this implies that the generated code must always wait for

the result of the multiplication and store it to the memory before the load of the

next value can be carried out. Hence, it is impossible to apply any parallel loop

execution, as the iterations are assumed to depend on each other. Moreover, it

94 CHAPTER 5. APPLICATION ANALYSIS

� �
void mul(int* in, int* out, int a) {

int i;

for (i = 0; i < 64; i++) {

out[i] = in[i] * a;

}

}� �
Figure 5.10: Potential pointer aliasing

prevents the accurate prefetching of data and the utilization of a streaming inter-

face as a fast way to transfer data to custom hardware. Ironically, this behaviour

is often not intended by the developer. Nonetheless, the provided C syntax that

informs the compiler about non-aliasing pointers, e.g. ”int* restrict out“

is used very rarely in legacy code.

This problem is addressed by reversing the typical causal chain of alias analysis.

Instead of assuming that a given code aliases until the opposite can be proven

by the GCC, the implemented approach always presumes non-aliasing accesses.

This is possible, as the generated accelerators provide a software fall-back mech-

anism (cf. Section 6.3). The final decision on the code execution path that should

be used is taken at application runtime.

The aim of the memory access analysis is to identify the used symbol, the num-

ber of iterations, the stride, and the step width of an access. For the given

example in Listing 5.10, both symbols in and out are used for one access in 64

iterations. Furthermore, scalar evolution would identify a stride of four (assuming

an integer size of 4 byte) and a step width of one. A possible aliasing of both

accesses can be excluded if the distance between *in and *out is more than

256 byte. Note that the latter can only be evaluated at application runtime after

determining the actual value of the function parameters.

5.5.2 Chains of Recurrences

Before going into the details of scalar evolution, the chain of recurrence (chrec5)

formalism has to be introduced. It forms the basis of the approach used in the

GCC interface and the returned data relies on its mathematical structures.

5This abbreviation is used to keep conformance with the terminology used in GCC

5.5. THEORY OF MEMORY ACCESS ANALYSIS 95

Chains of recurrences were first described by Bachmann, Wang, and Zime [70].

The idea behind the formalism was to unify the construction of recurrence rela-

tions of functions for a given interval. This allows a fast and algorithmic evaluation

of a function at a given number of points. Being more formalistic, it computes

the value of a function G(x) where x ∈ {x0 + ih | i ∈ N} with constant x0 and

h. The aim is to generate a chrec Φ with Φ(i) = G(x0 + ih) that can be evaluated

potentially faster than the direct evaluation of G at a given point. Therefore, the

actual function value G(x0 + ih) is calculated by using the value for G(x0 + ih− h).

An example taken from [70] elucidates this basic concept. Given a function

G(x) = 3x + 1, the sequence G(x0 + ih) with i ∈ N could be naïvely calculated by

re-evaluating the function for each i. The following calculations show the classical

approach (left side) and the approach using a recurrence relation (right side):

G(x0) = 3x0 + 1

G(x0 + h) = 3(x0 + h) + 1

G(x0 + 2h) = 3(x0 + 2h) + 1

G(x0) = 3x0 + 1

G(x0 + h) = G(x0) + 3h

G(x0 + 2h) = G(x0 + h) + 3h.

As 3x0 + 1 and 3h can be pre-calculated, the approach using the recurrence re-

lation takes one addition instead of one multiplication and one addition for each

value of G.

The formalism for a simple recurrence relation is called basic recurrence. It is

represented by a tuple containing the constant ϕ0, the operator � which can be

either ”+“ or ”·“ and the function f1 defined over the natural numbers N.

f = {ϕ0,�, f1}.

For instance, the function G(x0) = 3x0 + 1 would be represented by the following

basic recurrence:

G′ = {3x0 + 1, +, 3h},

with f1(h) = 3h describing the evolution of the function value of G with respect

to the starting value 3x0 + 1.

96 CHAPTER 5. APPLICATION ANALYSIS

The basic recurrence is defined as function f (i) over N by

f (i) = {ϕ0, +, f1}(i) = ϕ0 +
i−1∑
k=0

f1(k) or

f (i) = {ϕ0, ·, f1}(i) = ϕ0

i−1∏
k=0

f1(k),

depending on the operator used for �. These basic recurrences are special cases

for first-order linear recurrences. Functions that are more complicated will be rep-

resented by chrecs containing several constants. The generalized tuple of a chrec

Φ consists of the constants ϕi , i ∈ {0, . . . , k −1}, the operators �i , i ∈ {1, . . . , k}
with � ∈ {+, ·}, and a function fk

Φ = {ϕ0,�1,ϕ1,�2,ϕ2, . . . ,�k , fk}

or recursively as a function over N

Φ(i) := {ϕ0,�1, {ϕ1,�2,ϕ2, . . . ,�k , fk}}(i).

This section has given only a brief introduction of chrecs in order to provide all

information to understand the methods used in the thesis. More detailed infor-

mation about the generation of the chrecs as well as several additional rules and

applications for chrecs are presented in [70].

5.5.3 Scalar Evolution

In this thesis, the formalism provided by chrecs is of great importance. It is used

to extract the subscript of memory accesses for regular arrays and structures.

Such subscripts contain incremental changes of the accessed address locations

relative to their base address. This is also referred to as the scalar evolution of

an access. An algorithmic implementation to extract the scalar evolution from

the Tree SSA structure of the GCC has been described in the work of D. Berlin

et. al. [71]. For the development of the analysis within this thesis, this boils

down to the usage of two functions analyze_scalar_evolution(...) and

instanciate_parameters(...). The first function is used to generate a

chrec that still contains references to other variables inside the loop. The second

5.5. THEORY OF MEMORY ACCESS ANALYSIS 97

function tries to resolve the variables’ values until the chrec only contains values

that are constant in the context of the loop. The resulting function for an sample

pointer subscript p[i*4+j] accessing integers with the length of 4 byte will be

represented as follows:

G(i, j) = p + 16i + 4j = {p, +, 16} (i) + 4j = {{p, +, 16} (i), +, 4} (j).

The base address, given here with the pointer p, and all evolutions of the access

have been reduced to constants (albeit this is a trivial transformation in this ex-

ample). It should be noted that the inner chrec {p, +, 16}(i) can be regarded as a

constant ϕ0 with respect to j in the outer chrec {ϕ0, +, 4}(j).

The tree node type POLYNOMIAL_CHREC is used for the GCC-internal represen-

tation of chrecs. It contains the tree operands b, loop, and s which refer to a

chrec {b, +, s} with respect to the loop loop, while b may be a chrec describing

another loop. Consequently, nested loops are expressed as nested tree nodes

of POLYNOMIAL_CHRECs.

5.5.4 Extraction of Access Patterns

A sequence of nested slices, as introduced in [135], can be used for further pro-

cessing of the information gained by scalar evolution. A slice is defined as a tuple

(start, end, stride) that aggregates all information of a memory access pattern.

The value for start depends on the base address of the access or is defined by

a constant offset. Both cases are handled separately. For this reason, the start

value is set to zero by default. Accordingly, a slice is defined as S = (n, s), where

n is the number of subsequent accesses made and s is the number of bytes be-

tween the starting points of consecutive accesses. For instance, the stride (4,3)

specifies the address offsets o = {0, 3, 6, 9}.

The generation of slices is demonstrated for a code example taken from [135],

calculating a four-dimensional matrix-vector product (cf. Listing 5.11). Due to array

subscripts influenced by both loop variables (i, j), the determined set of slices

must be nested as well. Thus, at least two of three array accesses are described

by multiple nested slices.

An example for nested slices is given in Figure 5.12, which shows two slices

S0 = (5, 5) and S1 = (2, 2). In this example, the nesting means that the inner

98 CHAPTER 5. APPLICATION ANALYSIS

� �
void matrix4_mul_vec4(int *mat, int *vec_in, int *vec_out) {

int i, j;

for (i = 0; i < 4; ++i) {

int accum = 0;

for (j = 0; j < 4; ++j) {

accum += mat[i*4+j] * vec_in[j];

}

vec_out[i] = accum;

}

}� �
Figure 5.11: Four-dimensional matrix-vector product [135]

slice S0 “runs” entirely for each iteration of the outer slice S1. Such nested slices

can also be written as a finite sequence of slices, starting with the outermost

slice:

S = (S0, S1, . . . , S|S|−1).

1

s1

1 1 1 1

1 2 3 4

s0

inner slice S1

outer slice S0

Figure 5.12: Memory access pattern produced by two nested slices S0 and S1 [135]

Note that each access in Example 5.11 was extended by an additional slice with

a stride of one and an iteration count of four. This stride is used to model the

multiple-byte access caused by the 4-byte integer types used in the code. The

three memory accesses of the four-dimensional matrix-vector product can be

described by the following set of strides:

Output Vector vec_out[i] (write access): The write access to the output vec-

tor can be determined in a straight forward manner. The subscript is deter-

mined by the iteration of the outer loop described by the stride SVout ;0 = (4, 4),

which results in the following set:

SVout ;0 = (4, 4), SVout ;1 = (4, 1), SVout = (SVout ;0, SVout ;1).

5.5. THEORY OF MEMORY ACCESS ANALYSIS 99

Matrix mat[i*4+j] (read access): The matrix access requires a nested slice, as

the iteration variables of both loops (i,j) are part of the subscript o = 4i + j.

The outer slice SM;0 has an upper bound of four and a stride defined by

o1 = 4i, which results in s1 = 16. The inner slice SM;1 again has an upper

bound of four and a stride defined by o2 = j, which resolves to s2 = 4.

Consequently, the slices SM;0 = (4, 16) and SM;1 = (4, 4) are added to the

sequence:

SM;0 = (4, 16), SM;1 = (4, 4), SM;2 = (4, 1), SM = (SM;0, SM;1, SM;2).

Input Vector vec_in[j] (read access): The input vector is an interesting case.

It is part of the loop nest, but requires only the loop variable of the inner

loop for its subscript, which is presented by a slice SVin;1 = (4, 4). The fact

that the outer loop has no effect on the subscript implies that the inner loop

has to wait four iterations of j before carrying out its next access. This is

represented by a dummy slice for SVin;0. The dummy slice use the iteration

number of the outer loop (four) and a stride of zero. The resulting set of

slices supplemented by SVin;0 = (4, 0) and SVin;1 = (4, 4) is:

SVin;0 = (4, 0), SVin;1 = (4, 4), SVin;2 = (4, 1), SVin = (SVin;0, SVin;1, SVin;2).

5.5.5 Aliasing of Access Patterns

After the sequences of slices have been successfully generated the actual alias

analysis can be carried out. In case of array accesses this requires finding poten-

tial overlaps between read and write accesses. Later, such information can be

used to generate hardware structures enabling concurrent memory accesses.

Finding shared points between two access subscripts is a common task in the

area of compiler construction. This problem can be expressed by a system of

homogeneous linear Diophantine equations [68]. Such equations are of the form

a0 + a1x1 + . . . + anxn = 0

with the coefficients ai ∈ Z and the variables xi ∈ Z, 1 ≤ i ≤ n or, alternatively, of

the form

a0 + a1x1 + . . . + anxn ≥ 0

100 CHAPTER 5. APPLICATION ANALYSIS

which is hereinafter called a linear Diophantine inequality. In order to compare

two sequences of slices, a system of such equations can be specified by intro-

ducing values and bounds for xi and ai derived from the current slices.

System of Diophantine Equations

Assume that there are two sequences n := |SA| and m := |SB|, containing nested

slices each with the stride si and the iteration ni . Let there also be αi , 1 ≤ i ≤ n,

and βj , 1 ≤ j ≤ m values over Z, associated with the iteration variables of the

loop. As all iterations are constrained to be greater than zero, the first two in-

equalities would be:

0 ≤ αi for all i (5.3)

0 ≤ βj for all j. (5.4)

Furthermore, the iteration variables are bound to the number of iterations:

αi ≤ nA;i − 1 for all i (5.5)

βj ≤ nB;j − 1 for all j (5.6)

and the coefficients ai ∈ Z, 1 ≤ i ≤ n and bj ∈ Z, 1 ≤ j ≤ m are defined by the

strides of the given slices:

ai := sA;i for all i (5.7)

bj := sB;j for all j. (5.8)

Finally, the equation used to determine if both sequences of slices touch the

same offset is defined as follows:

c =

(
n∑

i=1

aiαi

)
−

 m∑
j=1

bjβj

+ d. (5.9)

In case the sequences overlap each other this equation is true. The offset to

the single slices is calculated by the product of αi and the stride ai or bi and βj ,

respectively . These both offsets are subtracted and the base offset d is added.

The constants c and d (c, d ∈ Z) are introduced to take into account that the

slices may not start at an offset of zero. For instance, slices accessing different

struct members introducing the offsets c1 and c2 are presented by c := c2− c1

and d := d2 − d1, respectively.

5.5. THEORY OF MEMORY ACCESS ANALYSIS 101

Adapting this to the example of the code in Listing 5.11, the alias detection has

to be carried out on the sequences determined in Section 5.5.4. The aliasing

is tested pair-wise using at least one write access with another memory ac-

cess. For this reason, the two combinations (vec_in[j], vec_out[i]) and

(mat[i*4+j],vec_out[i]) will be relevant for possible aliasing:

1. Input vector vs. output vector

Considering the sequences SVin and SVout , the test for aliasing can be formu-

lated by using Equation 5.9:

0 = 0 · α1 + 4 · α2 + 1 · α3 − 4 · β1 − 1 · β2 + d

0 = 4α2 + α3 − 4β1 − β2 + d.

Note that the offset between the base addresses vec_in and vec_out

is only known at runtime. Thus, the value for d is substituted with both

variables:

0 = 4α2 + α3 + vec_in− 4β1 − β2 − vec_out.

The remaining loop constraints result in the following inequalities:

0 ≤ α2 ≤ 3

0 ≤ α3 ≤ 3

0 ≤ β1 ≤ 3

0 ≤ β2 ≤ 3.

2. Input matrix vs. output vector

Considering SM, SVout , the usage of Equation 5.9 results in:

0 = 16 · α1 + 4 · α2 + 1 · α3 − 4 · β1 − 1 · β2 + d

0 = 16α1 + 4α2 + α3 − 4β1 − β2 + d

0 = 16α1 + 4α2 + α3 + mat− 4β1 − β2 − vec_out.

Placing the loop constraints in equation form leads to the following inequalities

102 CHAPTER 5. APPLICATION ANALYSIS

that are added to the system:

0 ≤ α1 ≤ 3

0 ≤ α2 ≤ 3

0 ≤ α3 ≤ 3

0 ≤ β1 ≤ 3

0 ≤ β2 ≤ 3.

As the loop boundaries are the same for all iterations and the integer size

matches the matrix dimension, the derived inequalities all look similar.

As mentioned already, in this example, the offset d is only known at runtime.

Consequently, the system can only be solved by containing d as a remaining

parameter. The result is a set of possible offsets d for which aliasing occurs .

Subsequently, the alias analysis can be broken down to a runtime test for a set

membership. As shown in the following Section 5.6, this is used to enable an

elementary alias analysis at runtime.

Solving a system of Diophantine equations is NP-complete and a solution typically

utilizes integer-programming techniques [69]. In context of this thesis, a library

will be used for that purpose. A detailed description of the library used is given

in Section 5.6.1.

5.6 Implementation of Memory-Access Analysis

After explaining the theoretical principles of the alias analysis, this section will

describe its implementation. In order to provide a full access analysis, the GCC

plugin must provide a comprehensive specification of all involved memory ac-

cesses and their relative position to each other. Unfortunately, such information

(especially the base address of an access) is only rarely available during compila-

tion time. If at all, the required data can be derived after linking time, but usually

it is available only during the execution time of the program. Due to this lack of

information, the alias analysis must follow a two-layered approach. The imple-

mentation of the plugin must provide internal structures for runtime analysis but

5.6. IMPLEMENTATION OF MEMORY-ACCESS ANALYSIS 103

also compilable C code for runtime use. According to these premises, the tasks

of the actual implementation are:

• The detection and resolution of memory references inside a loop.

• The generation of an alias matrix that stores information about aliasing be-

tween all involved symbols6. This matrix must further contain the set of

base offsets for which aliasing occurs.

• The generation of C code that performs the runtime analysis for the given

alias matrix.

All three tasks have been implemented in [135] as a C++ class, the MemrefAn-

alyzer. However, the actual implementation uses a helper library to solve the

system of equations describing the potential alias pattern between two symbols.

5.6.1 Integer Set Library

As already mentioned in Section 5.5, the computational complexity for the solu-

tion of a system of Diophantine equations (cf. 5.3 to 5.9) is NP-complete [69].

Furthermore, a universal algorithmic solution is not trivial. Fortunately, there is a

library for that work, the Integer Set Library (libISL) [83]. It provides operations

on sets of integer points, e.g. for set difference and union, and beyond that, it

contains tools for the analysis of conditions derived from Diophantine equations.

The libISL is a integral part of the toolset used for polyhedral optimizations.

Polyhedral Optimizations

The concept of polyhedral optimizations became popular as the classical target

specific optimizations (applied in the compiler back-end) turned out to be no

longer sufficient for current architectures. This was fueled by emerging archi-

tectures that typically provide the potential for parallel computing on different

cores; others may contain micro optimizations that allow for instruction-level par-

allelism. It turned out that the sheer number of such architectures necessitates

a more holistic approach, which uses a higher level of abstraction. Polyhedral
6A symbol describes one distinct memory reference in the loop

104 CHAPTER 5. APPLICATION ANALYSIS

optimizations get their name from the underlying mathematical structure. Used

in integer space, a polyhedron can be represented as a set of linear Diophantine

inequalities.

In the GCC framework, polyhedral optimizations were introduced with GRAPHITE

(GIMPLE Represented as Polyhedra with Interchangeable Envelope) [81]. The

framework focuses on optimization of whole loop nests and loop sequences. In

order to enable parallelization, it performs loop re-nesting but also loop fusion or

fission. For the tool-flow in this thesis, most of the outcomes of GRAPHITE are

not directly usable without further refinements. Nevertheless, some concepts of

the polyhedral community are very interesting in the context of HLS and might

be worth investigating in future.

Adoption of Access Pattern to libISL

The libISL is designed for working with sets and relations of integers. It uses

generic sets that consist of so-called basic sets. Basic sets are always defined

for a numerical range and a set of constraints restricting its possible members.

In order to use libISL for alias analysis, the given sequences of slices must be

transformed into such sets. First, the so-called universe U, has to be specified

according to the values of the Diophantine equation system defined in Equations

5.3 to 5.9:

U =
{

(α1, . . . ,αn, β1, . . . , βm, d)|(α1, . . . ,αn, β1, . . . , βm, d) ∈ Zn+m+1
}

.

Second, the set of constraints is specified:

P =
{

(α1, . . . ,αn, β1, . . . , βm, d) ∈ Zn+m+1|equation 5.3 to 5.9
}

.

Starting from these sets libISL can be used to compute an alias set A containing

all conditions of d7 (the base address) for which aliasing occurs

A = {d ∈ Z|condition} .

The condition can be either a range of values or a rather complex expression

including existentially quantified variables. The following example illustrates the
7The other variables αi , and βj were removed from the results as the specific iteration that aliases is not of interest.

This operation can be carried out by LibISL and is called projection.

5.6. IMPLEMENTATION OF MEMORY-ACCESS ANALYSIS 105

results of the alias analysis generated by libISL for the code of the matrix vector

multiplication in Listing 5.11 that was already discussed in Section 5.5.5.

1. Input vector vs. output vector

The universe and constraints sets are:

U =
{

(α1,α2,α3, β1, β2, d) ∈ Z6
}

,

P =
{

(α1,α2,α3, β1, β2, d) ∈ Z6
∣∣

0 ≤ α1 ≤ 3 ∧ 0 ≤ α2 ≤ 3 ∧ 0 ≤ α3 ≤ 3∧

0 ≤ β1 ≤ 3 ∧ 0 ≤ β2 ≤ 3∧

0 = 4α2 + α3 − 4β1 − β2 + d
}

.

The resulting alias set A, after eliminating the other variables αi and βj , is:

A = {d ∈ Z | −15 ≤ d ≤ 15} . (5.10)

2. Input matrix vs. output vector

The universe and constraints sets are:

U =
{

(α1,α2,α3, β1, β2, d) ∈ Z6
}

,

P =
{

(α1,α2,α3, β1, β2, d) ∈ Z6
∣∣

0 ≤ α1 ≤ 3 ∧ 0 ≤ α2 ≤ 3 ∧ 0 ≤ α3 ≤ 3∧

0 ≤ β1 ≤ 3 ∧ 0 ≤ β2 ≤ 3∧

0 = 16α1 + 4α2 + α3 − 4β1 − β2 + d
}

.

The resulting alias set A is:

A = {d ∈ Z| − 63 ≤ d ≤ 15} . (5.11)

As expected, in this example, the alias interval increases, as the memory re-

gion touched by the access to mat is larger than the memory region touched

by vec_in.

For the sake of clarity, the example above generates only two simple alias sets.

This makes it handy enough to understand the principle. In order to show the

106 CHAPTER 5. APPLICATION ANALYSIS

capabilities of libISL, a more complex example is provided in Appendix A.1. The

underlying C code in A.1 generates interleaved accesses by using structures. As

a consequence, the resulting alias sets contain rather complex conditions that

cannot be represented as simple interval expressions.

5.6.2 Resolution of Accesses

As mentioned at the beginning of Section 5.6, the first tasks of the implementa-

tion are the detection of memory references and the generation of corresponding

memory access structures. For this purpose, the resulting structures from the

GCC internal function compute_data_depen-dences(...) are used. This

function provides a sequence of data references for the current loop as well as

structures describing how those data references relate to each other. These

structures are called data dependence relations (DDR).

By analyzing the DDR structure, it is sometimes possible to obtain alias informa-

tion about the memory access without performing any elaborate analysis. For in-

stance, if the keyword restrict was used in the program code or a re-traceable

malloc was called for generating the pointer in question, the GCC marks the

memory references as independent. In that case, the following analysis reuses

this data and provides direct results without any further analysis.

The DDR structures contain, among others, a direct reference to the GIMPLE

statement, the GENERIC tree of the memory reference, and a Boolean, indicating

the direction (read or write) of the access. In order to get information about all

memory accesses within the loop, the provided sequence of accesses is iterated

and each access is analyzed using the functions of MemrefAnalyzer.

As described in Section 4.2.1, the general case of a memory reference tree

is target_mem_ref. The memory access of a target_mem_ref can be ex-

pressed by the equation A = b + i1 · s + i2 + o. Here, the type of A defines

the width of the access. In order to gather information about such memory refer-

ences the chrec describing the evolution of the base b is generated and analyzed.

If this is successful, the further expressions, e.g. index i1 with stride s are an-

alyzed in the same way. However, the current implementation assumes that i1
and s are constants within the loop nest. After their analysis, the resulting slice

is added to the results of the base analysis while the constant o is added to the

5.6. IMPLEMENTATION OF MEMORY-ACCESS ANALYSIS 107

static offset field of the memory_access.

The function analyze_data_access_base(...) is the entry point for the

analysis process. This function triggers all analysis steps that are required to

generate the memory_access structure which is the result of the access reso-

lution. This structure contains the following fields:

min_offset Describes a constant offset that is applied to the base before any

other field is evaluated.

slices A list of slices that describes the access to the base of the ref-

erence. The slices are ordered from the outermost to the inner-

most loop.

word_size The width of a single memory access.

known A value of true indicates that this access was successfully ana-

lyzed. If the analysis returns unknown access, it means this

value is set to false. Otherwise, it is always true.

mode This value indicates whether the access is a read access

(AM_LOAD) or a write access (AM_STORE).

dr Data reference of this access as returned by the generating GCC

function

The analysis is carried out in analyze_data_access_base(...) for each

memory reference provided by the DDR structures. A survey of the single pro-

cessing steps within this function is given in Algorithm 1. In general the analyzed

tree base could contain five possible values that imply a different handling by the

algorithms described in this section:

1. base is an SSA name: In this case the defining GIMPLE statement is ana-

lyzed. If the SSA name is defined in a super loop or somewhere else beyond

the scope of the loop nest, the referred value is obviously constant within

the loop. If the SSA name is defined within the loop, the defining statement

must be analyzed recursively.

2. base is a constant: In this trivial case the base can be used directly as the

constant value within every associated loop.

108 CHAPTER 5. APPLICATION ANALYSIS

3. base is a binary expression: The result of such an expression is constant

if both operators are constant, which resolves to a simple constant base. If

the expression contains a non-constant value (e.g. an SSA name or another

expression) and a constant value, the resulting analysis uses the further an-

alyzed non-constant value as a parameter for the later runtime analysis. The

constant part is interpreted as an offset. Expression containing two non-

constant operands are not supported by the current implementation.

4. base is a NOP_EXPR: If this occurs, the expression is ignored and the single

operator of the NOP_EXPR is analyzed further.

5. base is a chrec: If the base is described by a chrec ({b, +, s}loop), it is con-

sidered to be non-constant with respect to the current loop. The stride s is

extracted and the included base b is analyzed further.

First, the chrec structure (cf. Section 5.5.2) scev for the current base with

respect to the loop is extracted by using the functions from scalar evolution.

These GCC functions return an invalid scalar evolution structure if the base is

constant within the current loop. However, they do not check for changes in the

remaining loop nest. For this reason, it is necessary to do this with the function

is_constant_in_loop(...). This function checks whether the chrec does

change within the given outer loop8. If this is the case, the base expression b is

further analyzed in the function analyze_data_access_base_chrec(...).

If the base turns out to be constant, the related value is directly used as the base

for the current access. Finally, the value of the base is normalized in the func-

tion normalize_base(...) by extracting the actual components of the base.

The last two functions do the major work of the analysis and will be described in

detail in the next sections.

Base Analysis

The function analyze_data_access_base_chrec(...), as shown in Algo-

rithm 2, is used to recursively resolve the previously found chrec. The function

terminates if the base turns out to be constant within the loop nest. The result

of the function is a filled in memory_access structure with at least one slice for

each iteration level.
8A non-constant chrec can be assumed, if the contained base b is a chrec again.

5.6. IMPLEMENTATION OF MEMORY-ACCESS ANALYSIS 109

Algorithm 1: Function analyze_data_access_base [135]

Input: base loop outermost_loop

Output: result of type memory_access

1 scev ←− analyze_scalar_evolution(base, loop)

2 scev ←− analyze_scalar_evolution(outermost_loop, scev)

3 if not is_constant_in_loop(outermost_loop, scev) then

4 result ←− analyze_data_access_base_chrec(scev)

5 else

6 result ←− scev

7 result ←− normalize_base(result)

8 if result == NULL then

/* Analysis failed */

9 return unknown access

10 return result

The function returns the special value unknown access if the input is not a chrec.

This return value indicates that the GCC plugin cannot resolve the current ac-

cess; hence the known field in the memory_access structure is set to false. In

Lines 3 to 5, the base b, the stride s, and the corresponding loop of the chrec

(slice_loop) are extracted from the chrec base. As non-constant strides are

not supported, the following lines (6–8) are used to check if the stride is a con-

stant value. If the base b is not constant within the loop nest, the function calls

itself recursively to further evaluate the base of the next nesting level. If the base

b finally turns out to be constant, the memory_access structure is initialized as

a new known access (Lines 12–16). After the base has been determined, the

algorithm has to insert dummy slices (Line 20) for each loop that did not produce

a chrec (cf. Section 5.5.4). Finally, the new slice as well as the base and the

stride are added to complete the memory_access structure.

Base Normalization

Another major function of the access resolution is normalize_base(...).

This function is called after a base has been evaluated and turns out to be con-

stant with respect to the loop. According to Algorithm 3 the function analyzes

the (constant) base in order to generate a tuple {base_addr, offset} describing

110 CHAPTER 5. APPLICATION ANALYSIS

Algorithm 2: Function analyze_data_access_base_chrec [135]

Input: base of type chrec

Output: result of type memory_access

1 if not base is chrec then

2 return unknown access

3 b←− get_base(base)

4 loop←− get_loop(base)

5 s←− get_stride(base)

6 if not s is constant then

7 return unknown access

8 if not is_constant_in_loop(outermost_loop, b) then

9 result ←− analyze_data_access_base_chrec(b)

/* Exit recursion if result turns out to be an unknown access

*/

10 if result == unknown access then

11 return result

12 else

13 result ←− init_memory_access(b)

14 result ←− fill_dummy_slices(loop)

15 result ←− add_slice(s)

16 return result

the base access. This tuple consists of either a single constant or a combination

of a variable (the dynamic base address) and a constant offset.

By implementing the conditions one through four for the possible values of the

base, as mentioned in the enumeration above, the function can generate the

corresponding tuple for each base. Note, that the implementation does not care

about chrec trees, as these values were already analyzed in

analyze_data_access_base_chrec(...).

If the base is not an SSA name, a NOP_EXPR or a constant value, the evaluation

of binary expressions must be carried out. Therefore, the base is divided into a

left-hand-side operand and a right-hand-side operand. Due to the characteristic

code translation of the GCC the possible operator can be limited to PLUS_EXPR.

On the one hand, the GCC does not support multiplicative offsets. On the other

hand, potentially negative offsets are transformed by the compiler to an addition

5.6. IMPLEMENTATION OF MEMORY-ACCESS ANALYSIS 111

Algorithm 3: Function normalize_base [135]

Input: base

Output: tuple of base and constant {b, c}
1 switch type of base do

2 case SSA_NAME do

3 return {base, 0}

4 case INTEGER_CST do

5 return {base, 0}

6 case PLUS_EXPR do

7 lhs←− baseoperand1

8 rhs←− baseoperand1

9 lhsconst ←− is_constant(lhs)

10 rhsconst ←− is_constant(rhs)

11 if lhsconst and rhsconst then

/* Unsupported, typically not occurs */

/* due to prior constant folding */

12 return {NULL, 0}

13 else if lhsconst then

14 return {lhs, $normalize_base(rhs)}

15 else if rhsconst then

16 return {$normalize_base(lhs), rhs}

17 else

/* Currently not supported */

18 return {NULL, 0}

19 otherwise do

20 return {NULL, 0}

modulo 2n − 1. If both sides of the expression contain a constant value, the

tuple {NULL, 0} is returned, indicating an unsupported statement. Nevertheless,

this is very unlikely to occur, as there is no reason for the GCC to generate this

without optimizing it. As already mentioned, combinations of constant and none-

constant values are valid whereas the combination of two non-constant values

leads to an error. Although very unlikely, this case seem to be possible during

compilation and results in an irresolvable memory reference with respect to the

current implementation.

112 CHAPTER 5. APPLICATION ANALYSIS

5.6.3 Alias Matrix Generation

If all accesses have been analyzed and the source code contains no access that

has returned the unknown access value, the alias matrix can be constructed. This

structure is required to determine which access must be resolved during runtime

and which accesses can be regarded as safe. The matrix describes the relation-

ships between all of the memory references of the underlying code. Due to the

symmetry of the alias relations9 only half of the matrix is actually presented in

memory. Each cell of the matrix represents a memory_alias_matrix_entry.

Among others, these entries contain a summary of the alias relation that could

be either MEMREF_NO_ALIAS, MEMREF_MAY_ALIAS, or MEMREF_ALIASES. Ad-

ditionally, an entry comprises the libISL basic sets for each access pair, and an

info field that indicates the reason for the alias relation found. The reason could

be either ”read/read“ which can be considered safe per se, as two read accesses

never alias, ”gcc“ which indicates a relation found by the GCC-internal analysis

or ”none“ for relations that were not analyzable at all.

Table 5.1: Alias matrix for Listing 5.11

Symbol mat vec_in vec_out

mat MEMREF_NO_ALIAS — —

vec_in MEMREF_NO_ALIAS MEMREF_NO_ALIAS —

vec_out MEMREF_MAY_ALIAS MEMREF_MAY_ALIAS MEMREF_NO_ALIAS

The alias matrix for the loop from Listing 5.11 in Section 5.5.4 is shown in Ta-

ble 5.1. The example only shows the summary field of the memory_alias_ma-

trix_entry. The relations between vec_in and mat are trivial, as both de-

scribe load accesses. Also, trivially, the involved accesses cannot alias with

themselves.

More interesting is the relationship between vec_out and the other symbols.

Therefore, Equations 5.10 and 5.11 must be tested at runtime in order to exclude

possible aliasing for these accesses.

9If symbol A aliases with symbol B, symbol B must also alias with symbol A

5.6. IMPLEMENTATION OF MEMORY-ACCESS ANALYSIS 113

5.6.4 Runtime Alias Analysis

The basic sets for the runtime alias analysis are generated from the sets of each

alias matrix entry. The internal representation of the alias sets uses extensive

structures from libISL. Hence, they need to be optimized with regard to the per-

formance of the runtime code. This is accomplished by several libISL functions

that minimize the existing alias sets:

• isl_set_remove_redundancies(...): Removes redundant constraints

from all basic sets contained in the entry. This function is called after each

major modification of the basic sets.

• isl_set_compute_divs(...): Transforms existentially represented con-

ditions10 into a set of explicit conditions11 if possible.

• isl_set_coalesce(...): Merges basic sets and removes identical basic

sets after merging.

At runtime, the optimized basic sets are evaluated in ascending order defined

by their complexity. This is accomplished by storing them in the sorted list

alias_basic_sets. The complexity of a basic set is determined by the num-

ber of existentially represented conditions as the first criterion. As a second

criterion the number of explicit conditions is considered.

5.6.5 C Code Generation

The generated C code for the runtime analysis comprises a simplified version of

the access matrix with all alias sets. If data prefetching is enabled, a runtime

analysis of these alias sets is essential, since the final decision about overlapping

memory accesses usually depends on runtime data. The alias sets have to be

evaluated right before the accelerator execution starts.

For this reason two types of C representation for the given sets from alias_ba-

sic_sets are generated. On the one hand, rather simple sets, consisting of a di-

rect comparisons between input values and constants, are transformed into con-

ditional statements. On the other hand, complex alias sets are transformed into
10Conditions that require an existential quantifier for their definition.
11Conditions that are defined by a contiguous interval.

114 CHAPTER 5. APPLICATION ANALYSIS

a libISL call with the representation of the alias set as parameter. In these cases,

a runtime version of libISL has to perform the alias analysis (cf. Section 6.3).

For each loop nest the generated C code is stored in a file with the name of the

source file, the number of the processed loop, and the name of the function for-

matted into the filename (<name>_<no>_<fun>_memref_info.h). In addition,

a similar safe naming scheme is applied to variables within the generated code.

Therefore, the symbol name and the unique index of the respective access are

formatted into the name. Besides the direct integration into the header file, the

generated functions are declared as static inline in order to minimize the

overhead of the runtime code. The required structures are provided by the static

file memref_info_generic.h.

The accelerator wrapper function is described in detail in Section 6.2.2. A com-

prehensive overview of the provided structures for memory accesses is given in

Table C.3.

6 APPLICATION MODIFICATION

In order to use a generated hardware accelerator from the given C application,

the existing code must be extended at compile time by additional statements that

implement the software interface of the hardware accelerator. Several existing

HLS approaches, e.g. Vivado HLS [60] consider this processing step as irrelevant

because they focus on the generation of single IP cores. If integration into a host

processor system is required in such an HLS tool, adaptation of the host software

has to be carried out manually. Other approaches like LegUp [24] or Nymble [34]

use source-to-source compilation to integrate accelerator call functions in their

application code. The technique presented in this thesis is slightly different from

the latter approach. The patching of the application code is carried out on the

GIMPLE-level at the end of the second compilation run. As a consequence, the

software interface is easily adaptable to the actual generated accelerator. The

code-patching process can even be aborted if the accelerator does not turns out

to be beneficial. For this reason, the direct modification of the GIMPLE-IR can be

regarded as a seamless and flexible way to implement the software modification.

Although the application patching is carried out at the very end of the plugin

execution, its implementation should be discussed together with the application

analysis. Both processing steps work on the internal GIMPLE representation

while the remaining HLS steps use their own internal representation. Hence,

besides the application analysis, the application modification (cf. Figure 2.11, step

1,2, and 4) is the second processing step of the plugin that directly depends on

the underlying GCC version.

6.1 Modifying the GIMPLE Structure

The synchronization between software application and hardware accelerator is

implemented via peripheral registers. Such registers are mapped into the ad-

dress space of the host processor system. The registers are used for initial

parameters, either representing loop input and exit variables that are derived

from the GIMPLE-IR or control values of the accelerator hardware. The overall

software-flow of an accelerator call is sketched in Figure 6.1.

116 CHAPTER 6. APPLICATION MODIFICATION

Read Output Registers

Start Accelerator

Accelerator Ready
No

Yes

Write Input Registers

Check Status Register

do somthing else

Figure 6.1: Overall software-flow of an accelerator call

The first task of the application patch is to transfer the individual parameter set

from GIMPLE variables to accelerator registers. Later, the hardware is started by

a control signal. While the accelerator is running, the software waits in a loop for

the change of a status register that is set by the accelerator once it is finished.

This polling loop can be used for further purposes, e.g. running another software

thread. Finally the results are read from the accelerator.

This desired behavior could be achieved by two different implementations. Both

modify the GIMPLE representation but with different degrees of invasiveness.

The first variant generates completely new GIMPLE statements to write and read

peripheral registers, and replaces the original loop with a new polling loop. The

second approach generates only an additional function call in the GIMPLE-CDFG.

Later, this function contains generated C code for the required accelerator control

flow. The original loop remains untouched and is only bypassed by a generated

CDFG edge.

A detailed discussion of the implementations is given in the following sections.

Regardless of the actual used method, both approaches require an input/output-

analysis of loop variables.

6.1.1 Loop Input/Output-Analysis

Before the actual patching of the GIMPLE tree can be carried out, it is necessary

to identify all input and output parameters of the chosen loop. In contrast to

memory access operations, the set of input and output variables is transferred

6.1. MODIFYING THE GIMPLE STRUCTURE 117

in advance and after completing the accelerator operation, respectively. Conse-

quently, these parameters directly influence the register interface of the gener-

ated hardware and must be taken into account when modifying the application

code.

The set of input and output parameters is gathered in the vectors in_vars and

out_vars. The generation of both vectors is carried out during the GIMPLE

analysis in order to provide data for the code patching and generation of the

hardware interface.

As data-flow into a loop always causes PHI-nodes within the loop, the vector of

input variables can be created by iterating all PHI-nodes within the loop (cf. Al-

gorithm 4). The right-hand-side (RHS) operands of the PHI-statement are treated

as the potential input parameters, while the left-hand-side (LHS) is regarded as a

local variable. If the RHS turns out to be a constant, the value is directly assigned

within the accelerator. As a consequence, the RHS is added to the list of inputs if

the variable is a function parameter (GCC macro SSA_NAME_IS_DEFAULT_DEF)

or the variable is set in a basic block that does not belong to the current loop. The

defining statement of a variable could be determined by the GCC internal macro

SSA_NAME_DEF_STATEMENT.

Algorithm 4: Identify input variables

Input: CDFG(V, E) of loop body

Output: set of input variables (in_vars)

1 foreach phi_node ∈ V do

2 foreach RHS ∈ phi_node do

3 tree←− RHS

/* RHS operand is a function parameter */

4 if SSA_NAME_IS_DEFAULT_DEF(tree) then

5 in_vars←− add(tree)

6 else

7 defining_statement ←− SSA_NAME_DEF_STATEMENT(tree)

/* RHS operand is not part of the loop body */

8 if defining_statement /∈ V then

9 in_vars←− add(tree)

In order to determine the output variables of a loop, all CDFG-edges pointing to

118 CHAPTER 6. APPLICATION MODIFICATION

PHI-nodes contained in basic blocks outside the loop must be examined. Algo-

rithm 5 shows the actual method to determine these so called exit variables.

Algorithm 5: Identify loop exit variables

Input: CDFG(V, E) of loop body

Output: set of output varaibles (out_vars)

1 foreach edge /∈ E do

2 exit_node←− get_phi_node(edge)

3 foreach RHS ∈ phi_node do

4 tree←− RHS

5 defining_statement ←− SSA_NAME_DEF_STATEMENT(tree)

/* RHS operand is part of the loop body */

6 if defining_statement ∈ V then

7 out_vars←− add(tree)

6.1.2 Accelerator Invocation Using Invasive GIMPLE Modifications

The invasive method for integrating the accelerator into the application was im-

plemented in [130]. Figure 6.2 (A) represents an example of a basic block (BB)

structure for an unmodified loop. The Header and Latch blocks form the outer-

most loop. The loop body (dashed box) contains the basic blocks of the internal

control flow. Possible loop exits could occur in the loop body or directly in the

header block. The example in Figure 6.2 (A) shows a loop with two exits from the

loop body and a bypass from BB 2 to BB 4. For each loop exit, the GCC generates

a PHI-node, even if it has one input edge only (cf. BB 3 in Figure 6.2 (A)). Such

unary PHI-nodes change the SSA-name of a variable, which is typically necessary

at the exit of loops. Finally, the control-flow is joined in BB 5, which represents

the last block of the loop.

In order to prepare the software loop for removal (Figure 6.2 (B)), the control-

flow is extended by several new basic blocks (grey blocks). Adding new ba-

sic blocks to the current control flow can be done by the GCC internal function

split_edge(...). This function splits a given edge and inserts an empty ba-

sic block between two existing basic blocks. The new Header and the new Latch

block are required to form the new polling loop. Consequently, they must be

prepared with the required GIMPLE statements. The new initialization block (Init)

6.1. MODIFYING THE GIMPLE STRUCTURE 119

new Latch

Loop Body

Header

Latch

BB 2

Loop Body

BB 3 BB 4

BB 5

A B C

Header

Latch

BB 2

BB 3 BB 4

BB 5

new Header

Return

new Latch

BB 2

BB 3 BB 4

BB 5

new Header

Return

Init Init

(...) (...)

(...) (...)(...)

(...)

(...)(...)

(...)

(...)(...)

Figure 6.2: Remove loop and CFG modifications

is used to set the parameters and the start signal of the accelerator. In order to

enable the return block (Return) to control the further data-flow it requires one

output edge for each exit of the original loop.

After cutting all exit-edges of the original loop the remaining unreachable blocks

are removed using a GCC internal function for elimination of dead paths. Finally,

the new polling loop is generated by adding the back edge from the new Latch

block to the new Header block (cf. Figure 6.2 (C)).

Data Transfer and Accelerator Control

The data transfer to the hardware is shown in the excerpt of the modified GIM-

PLE transcript (Listing 6.3) for the control flow from Figure 6.2. The loop bypass

in BB 2 is generated by the if statement using the variable con_1 in this exam-

ple. The initialization of accelerator registers for the parameters a_6 and b_3 is

120 CHAPTER 6. APPLICATION MODIFICATION

implemented in BB Init by GIMPLE assign statements. The target operand is the

direct hardware address of the corresponding register. After all parameters are

transferred, the accelerator is started by setting the control register at address

212992d (0x34000). Later, the host processor polls the status register 212994d

(0x34002) until the hardware accelerator finishes its operation. Analogously to

the initial parameter transfer, the results of the accelerator (res_1, res_2) are

read in the Return block directly from the corresponding register addresses. The

condition for the contained PHI-node is derived from the index of the exit basic

block of the original software loop (cf. bb_idx in Listing 6.3), which is returned

by the hardware accelerator. In order to assign the correct return value to the

final GIMPLE variable a_14, the results of the loop must be handled by adapted

PHI-nodes in BB 3 and 4.

The assembler code of a patched application for the SpartanMC soft-core proces-

sor is shown in Listing 6.4. Lines 6 to 13 show the initialization of the registers.

The instructions of the polling loop that checks the control register (18-bit address

0x34002) for the ready bit are shown from Lines 16 to 19. Finally, the results are

written to res_1 or res_2 from Lines 22 to 27. For the sake of clarity, BB 3,4,

and 5 are not shown in Listing 6.3.

One of the big advantages of the invasive application patching is the direct gen-

eration of compact and low-latency machine code for accelerator calls. On the

one hand, the resulting solution can be regarded as nearly optimal with respect

to the given parameter set. On the other hand, the extensive modifications of

the GIMPLE representation at this stage of the compilation process turns out to

be very complex and error-prone1. Furthermore, the invasive modification pro-

cess creates a strong dependency on the current GIMPLE representation. This

may cause unnecessary problems when porting the plugin to a newer GCC ver-

sion. Finally, the invasive modification aggravates enhancements of the polling

loop (e.g. adding code to yield the current process) and the debugging of the

modified code.

Due to these reasons, the invasive code patching was reimplemented with the

goal of causing the least possible disturbance to the existing GIMPLE represen-

tation.

1Adding several new GIMPLE statements and removing an entire loop seems to be not intended at the end of loop-

optimization passes.

6.1. MODIFYING THE GIMPLE STRUCTURE 121

� �
...

<bb 2>:

...

if (con_1) goto <bb 4>

else goto <bb I>

<bb I>

*212996 = a_6;

*212998 = b_3;

*212992 = 1;

<bb H>:

if (*212994B != 1) goto <bb L>;

else goto <bb R>;

<bb L>:

goto <bb H>;

<bb R>:

res_1 = *213000;

res_2 = *213002;

if (bb_idx != 3) goto <bb 4>;

else goto <bb 3>;

<bb 3>:

a_12 = PHI <res_1>;

goto <bb 5>;

<bb 4>:

a_13 = PHI <a_6, res_2>;

<bb 5>:

a_14 = PHI <a12, a_14>;

...� �
Listing 6.3: GIMPLE transcript of an accel-

erator call

� �
1 ; loop bypass

2 BNEZ r4, L1

3 OR r0, r0

4

5 ; transfer parameters

6 LHI r12, 416

7 ORI r12, 4

8 S18 0(r12), r5

9 S18 2(r12), r4

10 LHI r4, 416

11 ORI r4, 0

12 MOVI r5,1

13 S18 0(r4),r5

14

15 ; polling loop

16 L2: L18 r12, 2(r4)

17 SNEI r12, 1

18 BNEZC L2

19 OR r0, r0

20

21 ; transfer results

22 LHI r4,416

23 ORI r4,8

24 L18 r5,0(r4)

25 L1: LHI r4,416

26 ORI r4,10

27 L18 r6,0(r4)� �
Listing 6.4: SpartanMC assembler code

with polling loop

6.1.3 Accelerator Invocation Using a Function Call

The second implementation of the GIMPLE code patching was presented in

[145]. It reuses several methods of the former implementation. Nevertheless,

the second approach focuses on minimizing modifications of the existing GIM-

PLE structure in order to maintain a good portability of the plugin and increase

the flexibility of the inserted code. The basic idea was to decouple the GIMPLE

patching from the communication protocol with the accelerator. Therefore, the

GIMPLE representation is only patched with a function call that implements the

actual accelerator invocation. The implementation of the function itself can be

122 CHAPTER 6. APPLICATION MODIFICATION

provided as C code. Hence, this method minimizes the required GIMPLE modi-

fications and, furthermore, allows a flexible C-based implementation of the com-

munication protocol. The C code is generated into an extra compilation unit that

is translated to a separated object. Both are linked together after the compilation

process.

Adding a function call statement on GIMPLE-level requires an appropriate func-

tion definition in GIMPLE. This includes a function name and a list of parameter

types, including the return value. The name of the new function is composed of

the wrapping functions name containing the loop candidate, the corresponding

compilation unit, and a consecutive number. The functions parameter list is used

for inputs as well as for outputs; therefore, all passed parameters are treated as

pointer types.

After creating the function definition, the invocation of the function is added as

a GIMPLE_CALL statement in a novel accelerator basic block (BB Acc in Fig-

ure 6.5 (B)). The GIMPLE_CALL is defined by the function definition and requires

a list of SSA trees that represent the actual parameters set for the function invo-

cation. The list of trees is derived from the in_var and out_var vectors of the

loop (cf. Section 6.1.1).

Later, the newly created basic block is inserted preceding the header block of

the loop. The structure of the patched CFG is shown in Figure 6.5 (B), which

originates from the sample CFG structure in Figure 6.5 (A). In contrast to the for-

mer invasive approach, the software loop and the corresponding exit edges are

preserved and remain functional. In order to retain the correct control-flow after

finishing the accelerator function, the inserted basic block is supplemented by

branches that provide exit edges to bypass the software loop. In addition, each

PHI-node within the exit blocks has to be extended by a new variable referring to

the respective output variable of the accelerator function. If the accelerator fin-

ishes its execution successfully, the control flow continues with the correspond-

ing exit node behind the loop. Analogous to the invasive approach, the condition

used to select the correct exit node is derived from the returned index of the exit

block (cf. bb_idx in Figure 6.5 (B)) . The index is read from an output register of

the hardware accelerator. Its value is always positive after the hardware acceler-

ator was executed. Consequently, negative return values can be used to indicate

an exception that results in a fall-through to software execution.

6.1. MODIFYING THE GIMPLE STRUCTURE 123

BB 3 BB 4

BB 5

(...)

Loop Body

HeaderLatch

BB 2

Loop Body

BB 3 BB 4

BB 5

A B

Header

Latch

BB 2

BB Acc

acc_call(...,&bb_idx)
switch(bb_idx)

Software Loop

(...)(...)

(...)(...)

(...)

Figure 6.5: Add function call to CFG

The GIMPLE transcript next to the corresponding SpartanMC assembler output

of a sample accelerator function call is shown in Listings 6.6 and 6.7. The used hy-

pothetical input/output data of the accelerator is congruent to the example from

Listing 6.3. The parameters of the function call (jalrs Line 8) are transferred via

Registers 12, 13, 14, and 15, which are intended for parameter transfers to sub-

routines (cf. SpartanMC architecture Section 3.2.1) and one value on the stack

(Lines 2 to 5 and Line 12). Note that r13 is written within the delay slot after the

function call. As the SpartanMC pipeline requires one clock cycle to calculate the

jump target, this empty slot can be filled by the compiler with a suitable instruc-

tion. After the return from the accelerator wrapper function (address acc_fun),

the results are read from the stack (Lines 16 to 18) by using r0 as stack pointer.

The temporaries tmp_9 and tmp_8 in the GIMPLE listing are generated return

variables that provide the return value from hardware. They correspond to the

original loop exit variables res.1 and res.2 that are still used by the software

implementation of the loop. The hardware return value and the software return

value are merged into the extended PHI-nodes of BB 3 and 4. Note that the

handling of start and ready, as well as the data transfer to registers and the polling

124 CHAPTER 6. APPLICATION MODIFICATION

� �
<bb 2>:

...

<bb Acc>

acc_call(&res_1, &res_2,

&a_6, &b3, &bb_idx);

if (bb_idx == 3) goto <bb 3>

if (bb_idx == 4) goto <bb 4>

else goto <bb H>

<bb H>:

/* software loop */

...

<bb 3>:

a_12 = PHI <res_1, tmp_8>;

goto <bb 5>;

<bb 4>:

a_13 = PHI <a_6, res_2, tmp_9>;

<bb 5>:

a_14 = PHI <a12, a_14>;� �
Listing 6.6: GIMPLE transcript of an accel-

erator function call

� �
1 ; transfer parameter one

2 S18 2(r0),r5

3 MOV r12,r6

4 MOV r13,r7

5 MOV r14,r8

6

7 ; accelerator call

8 LHI r10, %hi(acc_fun)

9 ORI r10, %lo(acc_fun)

10 JALRS r10 ;function call

11 ; transfer parameter two

12 MOV r15,r9

13

14 ; transfer results

15 ...

16 L18 r5,2(r0)

17 L18 r6,4(r0)

18 L18 r7,6(r0)� �
Listing 6.7: SpartanMC assembler code for

accelerator function call

loop, is implemented in C within the accelerator function. It is not shown in

Listings 6.3 and 6.6, which focus only on modifications of the GIMPLE structure.

Software Delegation

The delegation to software execution is used on critical errors and resource con-

flicts or to prevent the accelerator execution by user command. The decision to

execute a loop in software has to be taken before the actual execution of the

accelerator starts. Though it would be technically possible to abort the accelera-

tor during execution of the accelerator wrapper function, it is not recommended

in the current implementation as it could lead to an inconsistent memory state.

Due to the direct data access of the accelerator hardware, the data memory may

already have been modified at the point of interruption, which may cause the

following software run to produce wrong results.

Nevertheless, the possibility to fall back to software execution is essential when

targeting platforms running a full-featured operating system (OS), such as Linux

on Xilinx Zynq. As these systems typically run multiple applications at the same

6.2. ACCELERATOR FUNCTION 125

time, the applications must share the underlying hardware resources. For this

reason, management of hardware accelerators and the possibility of a seamless

fall back to software execution are vital for providing the required flexibility for

such systems.

Moreover, the option to evaluate various error codes from the hardware accel-

erator introduces a light-weight debugging interface. It can be used to signal

warnings or errors when unexpected input parameters occur (cf. Section 6.3).

6.2 Accelerator Function

The purpose of the accelerator wrapper function (hereinafter referred to as accel-

erator function) is to perform the communication with the hardware accelerator.

It encapsulates the transfer of initial parameters as well as the management of

the accelerator FSM (e.g. start and ready signal). Furthermore, it enables the

implementation of host-triggered data-transfer schemes that will be further used

for complex memory architectures.

The actual implementation of the generated accelerator function depends on the

software environment of the target architecture. Currently, the used architecture

is distinguished by the target option of the configure script of the plugin. If the

target is set to target=spartanmc, the plugin is built for the SpartanMC soft-

core. On the one hand, this implies the generation of a SpartanMC peripheral

interface; on the other hand, it presumes a bare-metal software architecture.

The second target (target=arm) prepares the plugin for generation of an AXI

interface that is used on the Xilinx Zynq platform. In contrast to the first target, it

presumes a full-featured Linux OS.

From the accelerator’s viewpoint, the major difference between a bare-metal and

an OS-based architecture is the management of memory addresses. For ARM

platforms, this problem is tackled by the accelerator function. The following sec-

tions introduce possible hardware solutions for virtual address management.

The classical embedded system is tailored for one task that is covered in exactly

one application. Usually, such applications run on bare-metal; in other words,

they run on the target machine without a further abstraction layer and with direct

access to all system resources. The communication with attached peripherals

126 CHAPTER 6. APPLICATION MODIFICATION

and memory is performed by physical addresses. For accelerators directly ex-

tracted from the C code, this implies that both parts – software and hardware

– run in the same memory domain and can use the same addresses. On these

grounds, consecutive access patterns in software imply a corresponding, consec-

utive, physical memory allocation. Such memory accesses will always succeed

as long as the calculated address refers to a valid physical address. Although this

type of memory management is handy for a small application it is hard to control

for multiple applications running in separate processes.

As a consequence, an arbitrary application running on an OS works on a virtual

address space. However, for data exchange with peripherals or external memo-

ries, the physical address of the device is still required. Therefore, the translation

to a physical address is carried out on a special hardware unit called the mem-

ory management unit (MMU). In case of automatically generated accelerators,

this implies that all memory addresses that could be determined at compile time

must be considered to be virtual and, therefore, become invalid for direct utiliza-

tion in hardware. The actual physical address is determined by the MMU at the

application’s runtime. Due to this fact, a direct physical access to the data mem-

ory of the host processor is not possible when using generated hardware on

an OS-based software architecture. This issue is solved on recent desktop plat-

forms that provide a special input/output MMU (IOMMU) to translate addresses

for DMA operations. Unfortunately, such IOMMUs are not available for current

embedded platforms. As a consequence, the address translation is delegated to

the software layer of the system or is circumvented by other mechanisms.

6.2.1 Address Translation in Related HLS Approaches

The generation of accelerators for applications running on virtual memory is a vital

piece of work in order to make automatic HLS usable for a large user community.

This section gives a brief overview of possible solutions for this issue. However,

there are only a few examples of other approaches that cope with this particular

problem. This might be because most of the HLS approaches discussed in Sec-

tion 2.3 are based on a semi-automatic HW/SW co-design that requires manual

interaction to integrate the accelerator in the software application. In that case,

the data that is required within the corresponding hardware can manually be al-

6.2. ACCELERATOR FUNCTION 127

located to physically contiguous memory or copied to suitable memory sections

beforehand.

One sample implementation of the latter methodology is used in Nymble [34]

and Comrade [39]. Both HLS tools can rely on the Accelerator-Integrating Shared

Layout for Executables (AISLE) [104]. This is a special memory layout that copes

with virtual memory management in order to provide an accelerator-friendly soft-

ware structure. The memory layout of AISLE defines each data section, .bss,

.data, stack, and heap in a single, contiguous region of physical memory. Ad-

ditionally, this region is placed in the DMA buffer which is accessible from the

host processor and the accelerator as well. With the given layout, the accelera-

tor requires only the offset between physical and virtual memory as a parameter

to access valid physical addresses. Even though this solution is effective and

easy to implement, it has poor scalability and thwarts the intended purpose of

virtual address management due to the following reasons: First, the DMA buffers

used are suitable for small amounts of data only. Second, the approach requires

pinned2 memory pages, which re-introduces the problem of memory fragmenta-

tion that was intended to be solved with virtual address management.

Instead of circumventing the problem, as shown above, some approaches di-

rectly cope with the challenge of a dynamic address translation. The most obvi-

ous idea to solve this issue is the implementation of an embedded IOMMU. The

hardware design of a full-featured IOMMU was presented in [101]. The proposed

implementation was tailored for a Xilinx FPGA architecture and consumes a rea-

sonable amount of resources (11k slices ≈ 75% of an Artix-7 FPGA). The imple-

mentation supports full virtualization of accelerators and fast context switches. A

similar approach using a shared translation lookaside buffer (TLB)3 between accel-

erator and host processor was presented in [103]. The implemented architecture,

called Processor-Hardware Accelerator Shared Environment with Virtual address-

ing (PHASE/V), was intended as improvement to the AISLE concept. Unfortu-

nately, both approaches are not trivially adaptable for the Xilinx Zynq architecture,

as it requires access to a shared TLB from both parts of the system. This can

be achieved by instrumenting the kernel functions for writing the MMU/IOMMU.

However, the required engineering work to solve this issue could be tremendous

2Once allocated, memory pages cannot be moved or reallocated.
3The TLB is a hardware cache which provides the mapping from virtual addresses to physical addresses. It can be

regarded as the key component of an MMU.

128 CHAPTER 6. APPLICATION MODIFICATION

and was not carried out in the context of this thesis. Moreover, such an imple-

mentation could turn out to be a bottleneck for the ARM subsystem due to the

unbalanced clock frequencies between both parts of the system.

Since the pure hardware implementation of an IOMMU for the Xilinx Zynq plat-

form is not easy to achieve, it seems appropriate to use a software backed ap-

proach. A sample implementation of this idea was presented in [117]. The au-

thors propose a soft-core address buffer called Remapping Address Block (RAB)

that is used as an additional input/output TLB. In order to minimize the hardware

effort, the handling of TLB misses or the prefetching of upcoming transactions is

carried out in a kernel-level driver on the host processor. For this reason, a flaw-

less operation of the RAB is ensured by providing the complete access pattern

of the accelerator at initialization time. In addition, the host processor requires

a runtime environment that keeps the RAB consistent with the current virtual

memory layout. The actual memory access is carried out with a DMA soft-core

implemented on the FPGA fabric.

Another approach was proposed in [144]. It follows the same philosophy of a

software-backed address translation, but instead of adding an additional TLB, the

presented idea introduces a cache architecture. The required management oper-

ation of the cache is implemented in software on the host processor while the

data cache itself is implemented on the FPGA fabric. Due to the large difference

in the clock frequencies between ARM processor and FPGA fabric it is possi-

ble to use the ARM to transfer data and handle cache misses in software. One

design goal of the cache architecture presented in [144] was the usage of burst

data transfers for nearly all operations. The reason for that is twofold: On the one

hand, it avoids execution of the whole software stack for each single value. On

the other hand, it enables the usage of an integrated DMA controller of the Zynq.

After initialization, it allows transferring one value per clock cycle.

For an effective implementation of the cache architecture, one needs to guess

the virtual addresses of upcoming transactions. This is supported by the mem-

ory access analysis that was described in Section 5.6. The actual implementa-

tion of the address translation uses the idea of a software-backed function, as

presented in [144]. But, instead of a hardware cache, the current implementation

uses a rather simple data prefetching mechanism that is tailored for FIFO mem-

ories. Nonetheless, this approach uses burst transfers to achieve a reasonable

6.2. ACCELERATOR FUNCTION 129

data-transfer rate. Instead of a cache architecture, the FIFO interface requires

a precise prediction of the upcoming data access. The structure of the used

hardware interface is discussed further in Chapter 8.

A discussion about the usage of virtual memory from the software point of view

can be found in Appendix D.

6.2.2 Implementation of the Accelerator Function

The type of the generated accelerator function is determined by the target

parameter during the plugin build process. It defines the host machine and the

hardware interface for which the compiler plugin will be built. Additionally, a

runtime parameter (-fplugin-arg-hw_generation-fifos) is used to allow

the generation of FIFO interfaces for the hardware accelerator. A design objective

of the generated function code was to introduce the lowest possible overhead to

the accelerator execution. Therefore, the implementation does not contain any

function calls. Besides the generated accelerator function, PIRANHA provides a

static library that includes some convenience functions to handle data transfers,

and to activate or deactivate accelerators at runtime. If this library is included in

the user’s application, the functions can be used to control the behavior of the

accelerators.

However, such a FIFO interface is not useful when building accelerators for the

SpartanMC soft-core. The use of a FIFO implies that the filling of its buffer is car-

ried out by the host processor or an additional hardware unit, for instance a DMA

controller. The benefit would be a memory access within one clock cycle for the

accelerator. For the current implementation of the SpartanMC architecture, the

latency for a direct master-mode memory access is already just one clock cycle.

Consequently, it would lead to slowdowns if the access is back-delegated to the

host processor. Nonetheless, the FIFO interface could enable the prefetching

of data in parallel to computational parts during accelerator execution. This may

improve the overall performance even on SpartanMC based systems. Unfortu-

nately, the current FIFO implementation still requires a runtime alias analysis in

software that would introduce a massive loss of performance for a SpartanMC

accelerator as both system parts nearly run at the same clock frequency. An ef-

ficient implementation of prefetching for the SpartanMC should be part of future

130 CHAPTER 6. APPLICATION MODIFICATION

research for this platform.

The current implementation of the plugin supports three possible implementation

schemes of the accelerator function.

Scheme I: Bare Metal Implementation

This scheme is triggered if the target architecture is set to SpartanMC. The run-

time parameter that enables the use of FIFOs is considered to be meaningless

for this target.

The resulting control flow of the generated accelerator function is shown in Fig-

ure 6.8 (Scheme I). First, the control flags of the accelerator library4 are checked.

If the accelerator is enabled, the following code triggers the initial register trans-

fer and starts a simple polling loop that constantly checks the accelerator status

register until the ”ready“ flag is set. As the SpartanMC architecture allows di-

rect access to its data memory, no further software assistance is required to run

the accelerator. All memory modifications are directly executed from the accel-

erator hardware. After finishing the hardware execution, the output registers of

the accelerator are read and the index of the following basic block is returned in

order to continue the software execution.

Scheme II: Random Access with Address Translation

The second access scheme, as shown in Figure 6.8 (Scheme II), is used if the

target architecture is set to ARM but the application code requires random access

operations. The underlying concept of this implementation is the back-delegation

of the address translation to the host processor. Thus, the control flow of the

polling loop is extended by an additional loop that evaluates a memory request

register. This register provides a valid virtual address to signal a read or write

request. As the data transfer is carried out by software on the host processor,

the address translation is performed implicitly. The direction of the transfer is

indicated by an additional status bit. A major drawback of this implementation

is its latency. Each request triggers the transfer of a single value on the AXI

interface. The required arbitration of the AXI bus introduces an overhead of more
4The accelerator library libacc is a predefined C library that is used to control the accelerator interface. The library

can be further used to bypass the accelerator from the user’s application.

6.2. ACCELERATOR FUNCTION 131

than 10 accelerator clock cycles. This easily sums up to a latency of several

thousand clock cycles for the whole hardware loop in case of extensive memory

accesses.

Read Output Registers

Start Accelerator

Accelerator Ready
No

Yes

Write Input Registers

Check Status Register

Accelerator
Activated

Return bb_index

Check Acc-Lib Flags

Read Output Registers

Start Accelerator

Accelerator Ready

No

Yes

Write Input Registers

Accelerator
Activated

Return bb_index

Check Acc-Lib Flags

Yes

Yes

NoNo

Addr. == Null

Read Request

Write Data RegisterRead Data Register

Check Memory Request

Check Status Register

Yes

No

NoYes

Scheme I Scheme II

Figure 6.8: Control-flow of the accelerator function for Scheme I/II

Scheme III: Prefetching with Address Translation

Due to the large latency of random memory accesses, the third access scheme is

preferred for the ARM architecture. This scheme is automatically activated if the

132 CHAPTER 6. APPLICATION MODIFICATION

plugin is parametrized to use hardware FIFOs. The FIFO interface was designed

to allow a streaming-like data transfer. Similar to Scheme II, it requires the back-

delegation of memory accesses to the software layer of the host processor. The

simplified control flow of the generated access scheme is shown in Figure 6.9. In

contrast to Scheme II, it uses burst operations to transfer data during accelerator

execution. Note that the use of burst transfers implies the need for a prefetching

mechanism for the required data, which in turn relies on the memory access

analysis introduced in Section 5.6.

One objective of the currently generated access function was the ability to run

asynchronously to the hardware execution. Although the used FIFOs provide

synchronization information, such as a full- and an empty -flag and the filling-level,

the access to these registers is not used in order to avoid the additional latency.

The current implementation of a FIFO write transfer blocks if the FIFO turns out

to be full while the read access blocks if the FIFO is empty. In order to ensure

non-blocking data transfer to the FIFO memories, the memory access analysis

must provide the length of the used data array, the direction and stride of the

index as well as the size of a single access. In the best case, this information is

provided by the memory access analysis during the compilation process5; other-

wise, a compiler warning is generated and the access is considered unsuitable

for prefetching.

If the data specifying the memory accesses is completely available, it can be

used to generate a copy loop that mimics the memory access of the original

software loop. In this way, the required data is copied in predefined chunks to

the DMA buffer and, later, to the FIFO buffer. The actual data transfer is carried

out by the DMA controller of the Zynq.

As the data transfer runs asynchronously to the hardware, it is possible that an

empty or full FIFO would block the current transmission. Such temporary stalls

are not severe as long as the whole accelerator FSM does not block due to a dead

lock situation. In order to avoid such dead locks, the data transfer is carried out in

the chronological order of the original software loop. Therefore, the domination

level of the initial GIMPLE statement is used to generate the correct sequence of

access operations in the accelerator function. This mechanism to prevent dead

5The base address is not necessarily required for using FIFOs. The actual base address is typically transferred as a

parameter on accelerator invocation.

6.2. ACCELERATOR FUNCTION 133

locks is not feasible for conditionally executed memory accesses. For that rea-

son, the control-flow of the questionable loop must be evaluated during compile

time. If the loop contains an unsuitable CFG the current implementation gen-

erates a warning. A extension of this mechanism could modify the generated

function to use synchronous FIFO transfers instead.

As shown in Figure 6.9, the first task of the generated function comprises the

Read Output Registers

Start Accelerator

Accelerator Ready

No

Write Input Registers

Accelerator
Activated

Return bb_index

Check Acc-Lib Flags

Yes

Yes

No

Maximum
 Dom. Level

Copy Chunk to DMA Buffer

DMA Transfer

Process Next Dom. Level

Yes

No

Scheme III

case n:
(read from host)

Nocase m:
(write to host)

No

switch (Dom. Level)

... ...

Copy Chunk from DMA Buffer

DMA Transfer

Yes

breakbreak

Memory Access Analysis

Reset Dom. Level

Yes

Figure 6.9: Control-flow of the accelerator function for Scheme III

134 CHAPTER 6. APPLICATION MODIFICATION

runtime evaluation of memory accesses. The alias analysis usually requires the

actual base address of concurrent memory accesses in order to identify possible

overlapping. Typically, such base addresses are part of the parameter set of the

hardware accelerator; thus, they are only available at runtime. The runtime alias

analysis will be described in detail in the following Section 6.3. If an aliasing of

the current write accesses is detected, the accelerator call is aborted and the

software execution is started.

After the memory access analysis and the parameter transfer, the data prefetch-

ing loop is carried out. This loop iterates over all domination levels (Dom. Level)

of the original software loop in chronological order. The corresponding loop body

contains a case-block for each domination level that carries out the actual data

transfer for read or write operations. Therefore, the data access of the original

loop is replicated according to the determined access patterns derived from the

memory analysis. Furthermore, the burst length of the transfer is parametriz-

able and must be taken into account during the data transfer. Listing 6.10 shows

an example of a nested C loop that contains three memory references, two read

operations, one write operation, and an absolute iteration count of 100. The arith-

metic part between the memory accesses has been omitted for sake of clarity.

� �
/* assuming a buffer containing *A, *B, *C */

int x, y, z;

for (int i = 0; i < 10; i++) {

for (int j = 0; j < 10; i++) {

x = buffer->A[i][j];

y = buffer->B[i][j];

/* ... some arithmetic defining z */

buffer->C[i][j] = z;

}

}� �
Listing 6.10: Nested C loop with three memory references

The resulting accelerator function for this example contains three case blocks

(two for memory-read and one for memory-write). Assuming a generated chunk

size of 64 values, the resulting qualitative execution trace of the communication

between host processor and accelerator is shown in Figure 6.11. The execution

trace clearly shows two copy operations that lead to hardware stalls during the

6.3. RUNTIME ALIAS ANALYSIS 135

read operations in the accelerator FSM. After the initial data transfer, the remain-

ing memory accesses during accelerator execution can rely on the prefetched

data. Despite the delay introduced by the hardware stalls, the overall burst trans-

fer is still faster than the transfer of single values.

Hardware
Accelerator

Time

SW
Execution

Parameter
Transfer

Transfer
Data

Transfer
Data

Transfer
Data

idle
Transfer

Data
Transfer

Data

Transfer
Data

idle

set
Start Flag

idleExecution of
Accelerator FSM

stall
(wait for A)

stall
(wait for A)

evaluate
Ready Flag

C[0],..,C[63]

stall
(wait for B)

B[0],..,B[63]

A[0],..,A[63]

A[63],..,A[99]

B[63],..,B[99] C[63],..,C[99]

idle

SW
Execution

(running for 64 interations) (running for 36 interations)

Host Processor

Figure 6.11: Qualitative execution trace for Listing 6.10

Similar to the former accelerator function schemes, the data transfer ends when

the accelerator sets the ready flag in its control register. Finally, the resulting

parameters are transferred and the exit block is returned to the software part of

the application.

6.3 Runtime Alias Analysis

The typical results of the alias analysis during program compilation comprise the

number of consecutive memory accesses (number of loop iterations), the stride,

the word-size, the constant offset to the base address, and the mode of operation

(either memory-read or memory-write). But even assuming all these values are

given, as long as nothing is known about the relative position of such memory

references to each other, it is not possible to determine whether they will overlap

or not. Actually, the relative position is first defined during runtime by the base

address of the memory reference. The vast majority of software loops derive this

value from one of their input parameters. Nevertheless, in some cases it could

be possible to discover the base address even during static program analysis,

e.g. if the variable points to a constant memory address. Moreover, it is possible

136 CHAPTER 6. APPLICATION MODIFICATION

to find indirect evidence that GIMPLE variables point to a disjointed memory

location for instance, if the variable originates from a malloc operation within

the current function. However, in most cases it is not possible to resolve the base

address completely at compile time. Thus, the accelerator function must perform

a runtime alias analysis in order to find aliasing between memory references.

The analysis data that is gathered during the compilation process is provided

in a generated file for the runtime alias analysis. To ensure the uniqueness of

the generated C-file for each accelerator, its name is composed by the name

of the corresponding C file, the loop number, the name of the function contain-

ing the loop, and the static string ”memref_info“. It contains the structure

memref_context, which, in turn, contains an array of memref_symbol struc-

tures. Each memref_symbol refers to a memory reference in the analyzed code

and is initialized with the corresponding analysis data. In the later compilation

process, the newly created compilation unit is linked with the patched acceler-

ator binary. After providing the required data for the runtime alias analysis, the

actual analysis is done in the function ma_impl_analyze(...) which is called

from memref_alias_analyze(...) in the accelerator function. Note that all

these functions are optimized and defined as static inline to reduce their impact

on the runtime of the accelerator call.

The runtime analysis itself uses a light-weight version of the alias matrix that

was introduced in Section 5.6.3. For all occurrences of MEMREF_MAY_ALIAS

entries in this matrix, the corresponding access pairs must be evaluated at run-

time. Therefore, an evaluation function for each entry is generated that solves

the alias problem for the given pair of accesses. According to Section 5.6.1, the

alias problem is defined by basic alias sets derived from the definitions of LibISL.

These sets are transformed to Boolean conditions in C code, which could be

easily checked during runtime. However, the crux of LibISL-generated alias sets

is that the derived conditions sometimes lead to very complex C code, which

would introduce an untenable overhead to the accelerator function. Thus, the ad-

ditional effort of a heuristic optimization of the generated runtime analysis code

was implemented in favor of a low-latency accelerator call.

6.3. RUNTIME ALIAS ANALYSIS 137

6.3.1 Alias Set Optimization and ISL Queries

The plugin generation process distinguishes between two kinds of alias sets:

sets that could be evaluated by simple Boolean conditions and sets that require

an iterative test. The optimized test code for alias sets is generated by the

isl_set_compute_divs(...) function. All resulting sets refer to an offset

d ∈ Z that is derived from the offset between two base addresses. Each alias

set covers another interval of Z. If d is within the interval, it can be evaluated

by the corresponding conditions. If the tests for a given d returns true, aliasing

occurs between the base addresses; if it returns false, the memory references

will never overlap.

In order to evaluate simple conditions first, all sets that only include d and a

constant interval are translated into conditional statements. These simple mem-

bership tests are used to evaluate whether d is in the required range for a spe-

cific set. As long as there are no other conditions except these, such tests are

sufficient to achieve clear results. For instance, the code describing the four-

dimensional matrix-vector product in Listing 5.11 results in a simple membership

test as shown in Listing 6.12.

� �
static inline bool

ma_impl_aliases_0_0_vec_out_25_with_ivtem_33_16(ptrdiff_t offset) {

if (offset >= -51LL && offset <= 15LL) {

/* above condition sufficient */

return true;

}

return false;

}� �
Listing 6.12: Generated and optimized alias test between output vector and matrix of the matrix-

vector-product example 5.11 [135]

Unfortunately, not all alias tests can be reduced to a membership test with a con-

stant interval. The more complex conditions are evaluated with the help of a di-

rect LibISL call during application runtime. Therefore, the generated string repre-

sentation of the basic alias sets is parsed and transformed into isl_basic_sets

in order to be processable as a LibISL query. The generation of isl_basic_sets

is carried out once at the startup of the application on the host machine. This is

138 CHAPTER 6. APPLICATION MODIFICATION

accomplished by using a function with the constructor GCC function attribute.

This attribute should not be confused with the constructor known from object-

oriented programming languages. In fact, it is a special GCC attribute making a

function execute right before the main function of a program is called. It is consid-

ered a convenient way to patch initialization into an application without touching

its source code.

After generating an isl_basic_set for all complex alias sets, it is possible to

evaluate such sets by calling a target version of LibISL at each accelerator call.

However, sample evaluations (cf. Section 9.2.1) reveal that the use of LibISL at

runtime will introduce a massive decline in performance, which should be avoided

by all available means. The first and most obvious way to avoid the performance

hit of the LibISL is to prevent its execution at runtime. Accordingly, all complex

alias sets would return true and would be considered to overlap. Although not

very elegant, this method is still effective for the majority of memory references.

An alternative approach was implemented in [135]. It is based on a hash table that

stores previous results of complex alias tests. Assuming that most accelerator

calls are carried out on the same or at least a very similar memory layout. There-

fore, each access pair generates its own hash table. The offset between the base

addresses is reinterpreted as unsigned value and taken modulo 1024, which is

further used as a key for the hash table. The entry contains a valid bit, an aliases

bit, and the original offset in order to detect collisions. If a collision occurs, the en-

try is treated as invalid, which triggers the regular LibISL evaluation. As non-trivial

alias sets are usually generated for accesses using arrays of structs while access-

ing different members, the keying is optimized for small offsets (|d | < 512). Such

offsets are expected for struct accesses with |d | < sizeof(T) for a structure T .

6.4 Generated Files

The largest set of input files and generated output files is involved for a plugin

configuration using FIFOs in combination with the ARM target architecture. Fig-

ure 6.13 provides a comprehensive overview on all input and output files of the

GCC plugin. It shows the compilation process for a single compilation unit that

may consist of several C and header files containing a part of the user’s applica-

tion.

6.4. GENERATED FILES 139

0011110
1100101
1101100
1101010

0101011

C Files and
Header Files

Synthesis
Plugin

process
complex alias sets

Patched Object
<name>.o

Software
Compiler

GCC

Host LibISL

Compilation Unit

memref_info_generic.h

libacc.c
libacc.h

<name>_<no>_<fun>_memref_info.c

<name>_<no>_<fun>.c

<name>_<no>_<fun>_fsm.v

<name>_<no>_<fun>_top.v

Target
libISL.so

contains initializer function

static
 __attribute__((constructor))
 void setup_libisl()

Accelerator Library

Accelerator Wrapper Library

libacc.a
...

Figure 6.13: Input and output files of the GCC plugin

In order to allow seamless integration of accelerators in the resulting software/

hardware co-design, the plugin requires additional immutable input files. First, is

the libacc.c, which represents the interface for several convenient functionalities,

e.g. DMA write and read. These functions are later required for the generated

accelerator wrappers. The libacc.c is compiled with architecture-specific C files

to the accelerator library libacc.a.

Second, the header file memref_info_generic.h is used to define the struc-

tures for the memory analysis.

The output files comprise the patched object of the compilation unit, the HDL

files of the accelerator(s), and the C files containing the generated accelerator

wrapper functions. The generated C files and Verilog files (*.v) must be unique

for each generated accelerator. Therefore, the file names as well as the names

of generated functions and variables are derived from the name of the original

140 CHAPTER 6. APPLICATION MODIFICATION

compilation unit, the number of the loop (from GIMPLE-IR), and the name of the

corresponding function.

The generated Verilog files contain the FSM of the accelerator (*_fsm.v) and

the interface to the host architecture (*_top.v). In general, the integration of

accelerator hardware requires some additional adjustments on the hardware con-

figuration files of the SoC, e.g. the project XML file of jConfig. These modifica-

tions are independent from the compilation tool-flow and, therefore, not shown

in Figure 6.13.

The generated C files <name>_<no>_<fun>.c contain the accelerator func-

tion that implements the polling loop and the data transfer for memory ref-

erences, as discussed in the previous sections. The second group of C files

(*_memref_info.c) contains the initialization of the isl_basic_sets by us-

ing the constructor attribute. They further contain the alias checks and the

data for the alias sets, created by the host version of LibISL during program com-

pilation. Furthermore, the target version of LibISL can be used to carry out the

alias analysis for complex basic sets at program runtime.

The generated C files are treated as additional compilation units that will be trans-

lated afterwards. The resulting object files are further combined within the accel-

erator wrapper library libwrapper.a (not shown in Figure 6.13), which is finally

linked with the patched application binary.

6.5 OS Integration of Accelerators

Besides the address translation and the handling of memory access, the integra-

tion of custom hardware into modern operating systems also requires support

for methods to manage parallel processes that access critical resources. Such

mechanisms are necessary, for instance, in the case of two processes sharing

one accelerator. For this reason, the required helper tools and a prototypic in-

frastructure to run accelerators on a Linux system have been developed in this

thesis.

One of the first tasks was implementing a tool-flow that combines the FPGA

configuration data with the application executable. Therefore, the Executable

and Linking Format (ELF) was extended by an additional section. The new format

6.6. BASE ADDRESS ASSIGNMENT 141

is called ZwoELF. The additional section includes the FPGA configuration and the

device tree entries of the accelerators. The extended ELF file is generated by a

newly developed tool that is also called zwoelf. In order to load the new section

to the FPGA fabric, the kernel ELF loader was extended by an additional binary

format handler that processes the ZwoELF section. The device tree entry within

ZwoELF is integrated as device tree blob (DTB), which can be generated from a

device tree source (DTS) file. The DTB is applied at application startup as a device

tree overlay introducing the new hardware to the OS.

Besides the tool-flow to load custom hardware, a device driver prototype was

implemented in order to provide a runtime interface for accelerators. The im-

plemented functionalities are accessible in user-space via an accelerator library.

These functions are utilized by the accelerator function described in Section 6.1.3.

Another task of the driver is the bookkeeping of multiple accelerators. Therefore,

the runtime status of each registered accelerator is managed within the driver-

internal structures. The accelerators are identified by their base address and

the used register window. If a resource conflict (calling a busy accelerator) is

detected the affected process must switch to software execution.

A detailed description of the implemented tools and mechanisms for OS integra-

tion is given in Appendix D.

6.6 Base Address Assignment

Even though the generation of accelerators and the corresponding C library have

been automated as far as possible, one task must still be handled manually. This

is the managing of base addresses for register windows. The correct base ad-

dress of the accelerators IO memory is required twice in the presented tool-flow.

• In the accelerator function in order to resolve the register IO of an

accelerator.

• In the DTS file, as starting position of the register window for

the device driver.

Typically, the base address of a device depends on the actual configuration of the

bus interface that is used for the accelerator. In case of both evaluated platforms,

142 CHAPTER 6. APPLICATION MODIFICATION

0011110
1100101
1101100
1101010

0101011
0011110
1100101
1101100
1101010

0101011
0011110
1100101
1101100
1101010

0101011

C Files and
Header Files

Synthesis
Plugin

Patched Objects (*.o)
Software
Compiler

GCC

Compilation Unit 1-n

DTS File

Accelerator Functions
<name>_<no>_<fun>.c

HDL Files (*.v, *.vhdl)

Software
Compiler

GCC

XPS /
jConfig

Base
Address

Linker
ld

0011110
1100101
1101100
1101010

0101011
0011110
1100101
1101100
1101010

0101011
0011110
1100101
1101100
1101010

0101011

Library Objects (*.o)

0011110
1100101
1101100
1101010

0101011

Executable
(*.elf)

Synthesis
Tools

XST/Vivado

0011110
1100101
1101100
1101010

0101011

Bit-File (*.bit)

zwoelf

0011110
1100101
1101100
1101010

0101011

Executable
ELF+ZwoELF

(*.elf)

Device Tree
Compiler

DTC

0011110
1100101
1101100
1101010

0101011

DTB File

Figure 6.14: Decomposed compilation tool-flow and patching of base addresses

SpartanMC and Zynq SoC, the base address is determined in a system-builder

application (jConfig or XPS) while adding the generated accelerators. This makes

perfect sense, as these applications are being used to manage the complete

peripheral setup of the SoC. They provide an overview of the currently used ad-

dress space and allow fitting devices optimally. Unfortunately, registration of the

accelerator hardware can take place only after all accelerators have been created.

This necessitates a decomposition of the compilation process, as shown in Fig-

ure 6.14. First, all compilation units belonging to the application are translated in

order to detect and generate the accelerators. Afterwards, the generated hard-

ware units can be added to the system-builder application to gather the base

addresses. These addresses will be further used to patch the generated C code

or the DTS files (dashed arrows in Figure 6.14). Finally, the generated C files

and the library are translated and linked with the application objects into an ex-

ecutable that is further processed by zwoelf in order to combine it with the

bit-file and DTB.

6.6. BASE ADDRESS ASSIGNMENT 143

It is obvious that the whole process can be automated by some light-weight

scripts wrapping the current work-flow. However, this has been only partially

implemented so far. On the one hand, the execution of the compilation tool-flow,

the linking, and the synthesis work-flow is carried out by the make tool-chain.

On the other hand, the patching of base addresses and the generation of the

final executable (ELF+ZwoELF) is carried out manually. These parts of the tool-

chain are only required for architectures with an OS. Thus, they are currently not

integrated to keep the tool-chain compatible with the rather simple SpartanMC

tool-flow.

7 HIGH-LEVEL HARDWARE SYNTHESIS

The following chapter describes the translation from GIMPLE-IR to the hardware

description language Verilog. This process is the substantial part of the synthesis

pass in the second GCC run (cf. Figure 5.8). The flow-chart in Figure 7.1 shows the

processing steps of the synthesis pass. The HLS flow is executed after the can-

didate selection encompassing the critical path analysis, the pseudo-scheduling,

and the memory access analysis (cf. Chapter 5). Subsequently, the HLS is carried

out, generating an accelerator for each loop candidate in the candidate list.

 Iterate Candidate List

Iterate Candidate List

GIMPLE Stmt. Analysis

Remove PHI-Nodes

Merge Basic Blocks

Create CDFG

List Schedule

Register Allocation

Chaining

Create FSM Structures

Generate Verilog Modules

Patch GIMPLE Code

Memory Access Analysis

Pseudo Scheduling

Candidate AvailableCP Analysis

Reorgenize Candidates

Candidate Available
No

Yes

No

Yes

End of Pass

Execute Sythesis Pass

Figure 7.1: Flow-chart of the synthesis pass

146 CHAPTER 7. HIGH-LEVEL HARDWARE SYNTHESIS

7.1 Variants of Processor Customizations

Before implementing the HLS part of the synthesis pass, the general efficiency of

different design approaches was evaluated in [141]. In this publication two case

studies that compare different design approaches for processor customizations

were implemented. Both approaches use the SpartanMC soft-core processor as

underlying architecture.

First, an acceleration approach based on instruction set extensions was evalu-

ated. Such extensions are already successful on other architectures, e.g. for

digital signal processors using the Tensilica Xtensa technology [93]. In [141] they

were implemented as special operations for a JPEG decoder and an AES cypher1.

The result was an intermediate speedup but also a very small resource footprint

for the accelerator. Second, both algorithms were accelerated by two rather com-

plex peripheral units. Hence, the application was executed almost completely in

hardware. Naturally, this results in better speedups but at the price of the ex-

haustive use of hardware resources. Surprisingly, the experiments have shown

that the efficiency2 of the dedicated peripheral was, by the order of a magnitude,

higher than an implementation based on the instruction set extension. Further-

more, the peripheral extensions provide better scalability of the interface and

require less engineering effort for integration in the host processor.

According to these experiments, the automatically generated hardware accelera-

tors are considered to be implemented as peripheral extensions.

7.2 From GIMPLE to HDL

The first task for the HLS is the analysis of the existing GIMPLE structure in

order to generate an internal CDFG. The generated CDFG forms the basis for all

HLS optimizations that are carried out in the plugin. The transformation to a new

internal representation is necessary, as the existing GCC structures are neither

suitable for all optimizations and modifications nor contain all required information

for hardware generation3. The created CDFG is derived from the DFG inside the
1Evaluated extensions were the inverse discrete cosine transformation (IDCT) operation in a JPEG decoder and the

MixColumn operation of an Advanced Encryption Standard (AES) cipher.
2The efficiency was measured in speedup per LUT.
3A modification of GCC internal structures is not recommended or even possible when using plugins.

7.2. FROM GIMPLE TO HDL 147

basic blocks and the CFG between the basic blocks.

The entry point for the transformation is the loop header basic block of the out-

ermost loop. The transformation ends with the corresponding final block of the

loop body – the latch block. Initially, the generated intermediate structure strictly

follows the existing GIMPLE structure. The generated blocks use the same in-

dices as the corresponding original blocks. In addition, each block is examined to

identify loop exit blocks or memory accesses. Both are attached to the graph as

attributes.

In the case of if-else or switch statements the existing DFG is mirrored to the

newly generated DFG. Hence, the resulting internal structure contains the same

basic block boundaries as the original GIMPLE representation.

7.2.1 GIMPLE Statement Analysis

In order to obtain the data-flow sequence within a basic block, each GIMPLE

statement is analyzed and translated to an internal structure that preserves the

given SSA structure of the original operands. Therefore, the GCC internal GIMPLE-

statement-iterators (GSIs) are used. Each statement contain at least one operand

for the LHS and up to two operands connected with an operator for the RHS.

These Tree SSA operands are analyzed in the recursive analyze_operand(...)

function. The Tree SSA structure itself is an acyclic tree that can be analyzed by

using the TREE_TYPE macro. It returns the corresponding subtree type or the

NULL_TREE (cf. Section 4.2.1) as the final node. The number of tree types

occurring in the GIMPLE representation, on a specific optimization level, varies

with the GCC version or the translated application. For this reason, the current

implementation follows a white list approach. The used analysis function imple-

ments only the most widely used types. If the found type is not supported, e.g.

floating-point related types like REAL_CST, the plugin throws a warning and the

loop candidate is rejected. A list of currently supported tree types is given in C.8.

As already mentioned, the operands of the RHS are commonly connected with

an operation. These operations are directly mapped to an equivalent Verilog oper-

ation. Not all possible GIMPLE operations, e.g. division or modulo, are currently

supported for hardware generation. The implementation throws a warning if an

unsupported operation occurs. The supported operations are listed in C.9.

148 CHAPTER 7. HIGH-LEVEL HARDWARE SYNTHESIS

Additional tree types as well as additional operations can be easily implemented

by extending the corresponding plugin functions. Nevertheless, such extensions

require considerable engineering effort, as they usually imply the design of spe-

cial hardware modules, for instance, a floating-point ALU.

PHI-nodes typically occur in basic blocks to join the control flow behind if-else

or switch structures. They were analyzed with a GSI especially for PHI-state-

ments. In order to simplify the generated hardware of PHI-nodes, they were

treated as unary assignments and, thus, moved upwards into the correspond-

ing branches. As a consequence, the plugin broke up with the SSA structure

for these nodes. If the speculative execution (cf. Section 7.4.1) is applied suc-

cessfully for alternative execution paths, such PHI-nodes can be translated to

multiplexers.

7.2.2 Transformation of Memory Accesses

Memory accesses on the GIMPLE-level can be lowered to TARGET_MEM_REF,

or MEM_REF, or can be described as direct pointer arithmetic. While the lat-

ter contains a direct address that can be used for memory access in hardware,

the former contains an implicit address calculation that must be expanded to

dedicated arithmetic operations. For this purpose, the generated CDFG is ex-

tended with additional operations and temporaries. The generated arithmetic for

a TARGET_MEM_REF is shown in Listings 7.2 and 7.3.

� �
D1828.1 = D_MEM_REF [

base: D1829.2,

index: i_19,

offset: 2]� �
Listing 7.2: Transcript of memory access in

GIMPLE [131]

� �
tmp1 = D1829.2 + i_19

tmp_addr = tmp1 + 2

mem_set_addr(tmp_addr)

D1828.1 = get_data()� �
Listing 7.3: Transformed memory access in

CDFG transcript [131]

For memory read4 operations, the setup of the memory address is implemented

as a separate CDFG note. For write operations, a fire-and-forget technique is

implemented. Consequently, the address setup and the write operations are
4Read and write operations are regarded from the accelerators point of view. Read means that the accelerator reads

the host processor memory. Vice versa, write describes a write operation from the accelerator to the host processor

memory.

7.3. GENERATION OF THE STATE MACHINE 149

unified in one CDFG node. If the memory access analysis finds any interdepen-

dencies for the current memory access, the corresponding accesses must retain

the domination order given by the GIMPLE representation. Otherwise, the ac-

cesses could be parallelized. However, such parallel accesses are usable only if

they are supported by the underlying memory interface. This is only the case for

the ARM FIFO interface (cf. Section 8.3). The domination order of memory ac-

cesses is stored into a separate linked list that is used also by later optimization

algorithms.

7.3 Generation of the State Machine

After generation of an internal CDFG from the GIMPLE representation, it is now

possible to generate a state machine structure that is based on the CDFG repre-

sentation. The state machine structure is an internal representation of the loop

body that contains almost all structural properties of the later hardware design.

Hence, this structure represents the last stage before the actual code generation

can be carried out.

The entry point of the state machine generation is the function generate_-

statemachine(...), which creates the main structure hw_statemachine.

This structure, as shown in Listing 7.4, contains among others a vector of generic

states as well as references to special states that define the state machine, e.g.

the IDLE state or the exit states.

Each state is defined by a list of instructions, and a list of predecessor states and

successor branch-states (cf. Listing 7.5). Hence, each state node is followed by a

conditional state transition that is specified in a branch-state (cf. Listing 7.6).

150 CHAPTER 7. HIGH-LEVEL HARDWARE SYNTHESIS

This structure contains a reference to its next state and a condition for the transi-

tion. If the state transition is unconditional the condition reference is NULL.

� �
struct GTY(()) hw_statemachine {

...

hw_state_p idle_state;

vec<hw_state_p,va_gc> *exit_states;

vec<hw_state_p,va_gc> *states;

};� �
Listing 7.4: State machine structure (cf. [131])

� �
struct GTY(()) hw_state {

...

bool exit_state;

vec<hw_state_p,va_gc> *predecessors;

vec<hw_state_branch_p,va_gc> *sucessors;

vec<hw_instruction_p,va_gc> *instructions;

...

};� �
Listing 7.5: State structure (cf. [131])

� �
struct GTY(()) hw_state_branch {

hw_cond_p condition;

hw_state_p next_state;

...

};� �
Listing 7.6: State branch structure (cf. [131])

The actual generation of the state machine structure is carried out in the func-

tion generate_-state_for_block(...). The general principle of operation

is given in Algorithm 6. This function is initially called by generate_state-

machine(...) with the header basic block of the loop as starting point. As

shown in Algorithm 6, the function generates a single state for all DFG nodes

sharing the same timeslot.

The timeslot describes the time segment for one execution step of the later data-

path. For an unoptimized CDFG, each timeslot includes only a single assignment

operation. The sequential order of timeslots is derived from the SSA order within

7.3. GENERATION OF THE STATE MACHINE 151

the current basic block.

After the iterative generation of states for each DFG node of the current basic

block, the function traverses the graph of subsequent basic blocks. In the context

of a loop body, such subsequent blocks can occur after if-than-else or switch

statements. The resulting state machine representation is a bidirectional linked

graph. This graph may also contain cycles that could be introduced by nested

loops.

Algorithm 6: Function generate_state_for_block

Input: BB ⊆ CDFG(V, E)

1 if state 6= ∅ then

2 return

3 foreach timeslot ∈ BB do

4 state←− createState()

5 foreach vi ∈ V | vi ⊆ timeslot do

6 state←− add_instruction(vi)

7 if is_branch_node(vi) then

8 foreach branch_target(vi) do

9 next_BB←− branch_target(vi)

10 generate_state_for_block(next_BB)

11 return next_state←− state

7.3.1 Generation of HDL Code

The final step, in order to generate an HDL description from GIMPLE, is the com-

position of HDL code statements. While the internal representation of the state

machine is still platform-independent, this approach was not applicable for the

HDL code generation. For instance, the memory interface of different platforms

could introduce variations of the state sequence and the interface logic. Nev-

ertheless, in context of this thesis, the generated FSMs were portable to two

target platforms with very little effort.

The concept of the FSM follows a simple but effective approach. After reset,

the generated FSM (cf. Figure 7.7) remains in the IDLE state. Before starting

the accelerator at the first time, all parameter registers must be initialized. If this

152 CHAPTER 7. HIGH-LEVEL HARDWARE SYNTHESIS

is done, the first state change could be triggered by setting the start flag in the

accelerators control register. After that, the accelerator starts the generated FSM

for the loop body. The accelerator may contain multiple loop exits that always

trigger a special exit state. These states are used to write the corresponding

return values of the loop into parameter registers. Even if there is no available

return value for a loop, there will be at least one exit state providing the value

bb_idx. This value specifies the index of the next basic block in the program

control-flow.

IDLE 0 n

start == 0

start == 1 Loop Body

exit n == true

... exit 1 exit n

exit 1 == true

...

Figure 7.7: Structure of the FSM

Besides the integrated parameter registers, the FSM performs master mode

memory accesses5 during runtime. Depending on the used interface, such ac-

cesses may introduce an indeterministic delay to the FSM execution. This is-

sue must be considered when generating states that access external memo-

ries. For this reason, each state containing a memory access is generated with

a self-referencing edge as presented in Figure 7.8. The only way to leave such

a memory-access state is an acknowledgement from the external memory in-

terface. This technique is used for memory accesses on both target platforms.

However, for a synchronous memory interface that provide a deterministic la-

tency, the acknowledgement is internally controlled by the accelerator hardware.

For instance, the memory interface for SpartanMC always provides its data within

the next clock cycle, thus the acknowledgement is set automatically.

send Address
send Request

ack == 1

ack == 0

receive Data
receive Acknowledge

Memory
Access

Figure 7.8: Memory access state

5For the Zynq platform, the FSM handles only slave mode memory requests.

7.3. GENERATION OF THE STATE MACHINE 153

The generated datapath for accelerators corresponds to the generic structure pre-

sented in Figure 7.9. It basically consists of IO registers, intermediate registers,

and arithmetic units (AU). The data-flow between these components is driven by

a set of multiplexers controlled by the current state of the FSM.

Current State / Current
StateWrite Acknowledge

Input
Register

Data In

Data Out

Address

AUR
eg

is
te

r

...
...

...

......

...

...

...

...

Output
Register

Host
Processor

Host
Processor

Figure 7.9: Generic datapath structure of the accelerator (cf. [131])

154 CHAPTER 7. HIGH-LEVEL HARDWARE SYNTHESIS

7.4 Optimization Strategies

The FSM description generated by the straight transformation process described

above produces a technically correct hardware design that would already be func-

tional when translated to Verilog code. However, it describes only a one to one

mapping of the given GIMPLE sequence.

Nevertheless, the described process and the provided intermediate representa-

tion (the CDFG) can be regarded as a good basis for applying various optimization

strategies. The following sections discuss three optimization strategies that were

implemented for this thesis, namely speculation, scheduling, and chaining. Each

presented optimization strategy can be enabled via a plugin parameter (cf. C.2).

7.4.1 Speculative Execution of Branches

The first optimization step is the speculative execution of branches that was im-

plemented in [131]. Naturally, this step is accompanied by a modification of the

basic blocks structure. Hence, the whole CFG of the loop candidate is potentially

restructured during this optimization. Meanwhile, further optimizations – sche-

duling and chaining – are limited to the DFG structure inside the basic block. For

this reason, the actual generation of the complete CDFG is scheduled after the

steps required for the speculative execution, namely ”Merge Basic Blocks“ and

”Remove PHI-Nodes“ in Figure 7.1.

Speculative execution in the context of hardware generation means the merg-

ing of parallel branches or basic blocks. Therefore, the result of each branch is

calculated regardless of the given condition. At the end of the speculative ex-

ecution path, a multiplexer decides which results will be used for the following

operations. The merging of basic blocks increases the number of nodes in a sin-

gle basic block that, in turn, provides a better schedule of the DFG within the

merged block.

Merging Basic Blocks

In order to find conditionals that can be merged, the CFG is searched for ba-

sic blocks containing GIMPLE_BRANCH or GIMPLE_SWITCH statements. If such

7.4. OPTIMIZATION STRATEGIES 155

branch statements are found, the underlying basic block structure is tested for the

specific branch type, e.g. if-then-else or switch (cf. Algorithm 7). The branches

are further checked for subordinated branches. If an innermost branch is identi-

fied as suitable for speculative execution the merging of basic blocks is carried

out.

Algorithm 7: Merging basic blocks

Input: CFGpredicative

Output: CFGspeculative

1 CFG←− CFGpredicative

2 repeat

/* find if-then-else-candidate (C) and merge blocks */

3 foreach C ⊆ CFG | contain_if_then_else(C) do

4 find_innermost(C)

5 CFG←− merge_if_then_else_blocks(C)

/* find if-candidate and merge blocks */

6 foreach C ⊆ CFG | contain_if (C) do

7 find_innermost(C)

8 CFG←− merge_if_blocks(C)

/* find switch-candidate and merge blocks */

9 foreach C ⊆ CFG | contain_switch(C) do

10 find_innermost(C)

11 CFG←− merge_switch_blocks(C)

/* find candidate for linked blocks and merge them */

12 foreach C ⊆ CFG | is_linked(C) do

13 CFG←− merge_linked_blocks(C)

14 until no blocks merged

15 return CFGspeculative ←− CFG

The actual merging of conditional basic blocks (merge_if_blocks(...), mer-

ge_switch_blocks(...) and merge_if_then_else_blocks(...) in Al-

gorithm 7) is implemented for two kinds of branch structures: conditions con-

taining empty branches and conditions without empty branches. The merging of

structures without an empty path is outlined in Figure 7.10 (A). First, the edges

to the original BB 2 and 3 are cut and a new BB 5 is integrated into the CFG.

The condition and the PHI-nodes of the original blocks are merged to a multi-

plexer structure that is integrated into the new basic block. Later, the remaining

156 CHAPTER 7. HIGH-LEVEL HARDWARE SYNTHESIS

statement lists of both branches are copied into a merged list for the new ba-

sic block. This is possible as the data-flow between arithmetic statements uses

the SSA property. If the condition contains an empty branch (Figure 7.10 (B)),

the merging process is quite similar, with the exception of the new basic block.

This additional block is not required, because the unified statement list and the

multiplexer (PHI-node and condition) can be integrated in the existing basic block

(Block 1 in Figure 7.10 (B)). The resulting chain of consecutive basic blocks is

merged afterwards in the function merge_linked_blocks(...) by a follow-

ing iteration of the embracing loop in Algorithm 7.

BB 1
A

B

 BB 2 BB 3

BB 4

BB 1

BB 2

BB 5

BB 4

BB 3

Branch
Statements

PHI-
Statements

Statements

PHI-
Statements

Statements
Statements

PHI-
Statements

BB 1

BB 2

BB 3

BB 1
BB 2

BB 3

Branch
Statements

PHI-Statements

Statements

Statements

Statements

PHI-Statements

PHI-
Statements

Figure 7.10: Merging of basic blocks for balanced (A) and unbalanced (B) branch structures [131]

7.4. OPTIMIZATION STRATEGIES 157

Speculative or Predicative Execution

If the parallel branches contain memory-write operations or the branch itself is the

loop body of a subordinated loop structure, the unmodified predicative execution

is preserved. In all other cases, the choice between speculative or predicative

execution depends on a metric that is based on the block weights of the parallel

branches. The idea behind this metric is the avoidance of a speculative execution

for very unbalanced branches that could introduce an unfavorable impact on the

overall execution time of an accelerator.

The weights are determined for each branch by using the number of statements

or the latency6 of the execution path. The actual used metric is specified with a

plugin parameter (cf. C.2). After determining all weights, the average weight

avg_weight =

∑
weights

#blocks

is calculated. Furthermore, the minimum weightmin and the maximum weightmax

of the given branches are used to determine the minimum and maximum devia-

tions from the average:

dev1 = |weightmin − avg_weight|,

dev2 = |weightmax − avg_weight|.

If the deviation either dev1 or dev2 exceeds a predefined threshold, speculative

execution is declined for the given branch.

Speculative Execution Example

Listing 7.11 shows a GIMPLE transcript containing a conditional branch. It con-

tains the variable sum in three versions: Version 1 and 2 within the branches and

Version 3 in BB 6. The value of sum is assigned in a PHI-node that decides which

version will be used for further calculations.

This code is translated to the CDFG, as shown in Figure 7.12 (A). The edges are

labeled with the variable names derived from the GIMPLE representation. Note
6This is approximated with an as soon as possible (ASAP) schedule on the internal DFG.

158 CHAPTER 7. HIGH-LEVEL HARDWARE SYNTHESIS

� �
<bb 3>:

mul_7 = a_1 * b_6;

if (mul_7 < 0) goto <bb 4>;

else goto <bb 5>;

<bb 4>:

tmp_8 = -mul_7;

sum_1 = tmp_8 + c_9;

goto <bb 6>;

<bb 5>:

sum_2 = mul_7 + d_11;

<bb 6>:

sum_3 = PHI <sum_1(4), sum_2(5)>;� �
Listing 7.11: Conditional branches – GIMPLE transcript

that the PHI-node in BB 6 is split and moved to the branches in BB 4 and 5 as

described in Section 7.2.1. If the speculation algorithm is applied to the given

CFG, the branches are merged to a new basic block (cf. Figure 7.12 (B)). The

PHI-node for sum_3 is implemented as a multiplexer in the resulting block. Even

though the critical path of the new block (BB7) is shortened by one operation, the

execution path of the former BB 5 is now dominated by the execution path of the

longer BB 4. If the deviation of the block weights was set to one, the given code

sequence would never have been a suitable candidate for speculation.

7.4.2 DFG Generation and Scheduling

After analysis of the GIMPLE representation and the generation of speculative

execution paths, scheduling can be applied to each DFG7. Therefore, the internal

representation of the DFG is generated from the list of statements, PHI-nodes,

and branch operations in each basic block. Together with the CFG from the spec-

ulative execution, they form the CDFG.

The DFG(V, E) on which the scheduling is carried out is an acyclic graph of nodes

vi ∈ V . Each node represents an operation while the edges between these

nodes are defined by a tuple (vi , vj) ∈ E with respect to the data dependency

or domination order (vi dominates vj). The entry points of the graph form a set

of edges with the predecessor node (vi , vS) /∈ E. The generation process of
7Of course, the existing DFG already provides a valid schedule which is derived from the order of GIMPLE statements,

but this schedule neither exploits parallel execution nor considers any resource constraints.

7.4. OPTIMIZATION STRATEGIES 159

A B

+

=

* +

=

*

>

BB 3

BB 4 BB 5

mul.7

a.1 b.6 0

mul.7-1c.9 d.11mul.7

sum.1

sum.3

sum.3

sum.2tmp.8

+

*

+

*

>

BB 7

mul.7

a.1 b.6 0-1c.9 d.11

sum.1/
sum.2

sum.3

Figure 7.12: Original DFG (A) and speculated DFG (B) [131]

the DFG is shown in Algorithm 8. First, the statement list of each basic block

is iterated over and a corresponding data-flow graph structure is generated. The

operators within the statements are used to define the DFG-nodes of the graph.

In addition, the memory operations are stored in a sorted list according to their

domination order, which is later required for a correct scheduling of memory op-

erations. Afterwards, the SSA property of the operands in the DFG-nodes is used

to generate the data-flow edges of the graph. Finally, the resulting DFG is ready

for scheduling.

7.4.3 List-Scheduling

The schedule is generated using a list scheduling algorithm [95, p. 207 ff.] that

was implemented in [131]. The algorithm aims to assign the starting time ti to

all nodes in a DFG in order to minimize the overall execution latency. Naturally,

scheduling algorithms are tailored for linear code sections. Thus, they cannot

handle conditional branches and loop nests. In order to achieve a correct handling

of the existing CDFG, the scheduling is executed multiple times, once for each

basic block. During the scheduling process, the algorithm requires a heuristic

priority criterion in order to choose the next operation node from a candidate list.

The plugin provides two heuristics for this task that can be used in an arbitrary

manner.

160 CHAPTER 7. HIGH-LEVEL HARDWARE SYNTHESIS

Algorithm 8: Generation of a DFG [131]

Input: List of GIMPLE statements

Output: Internal DFG(V, E)

1 foreach BB do

2 DFG(∅, ∅)←− init_DFG_structure()

3 foreach Statement do

/* Allocate DFG-node structures (V) */

4 DFG(V, ∅)←− init_DFG_node()

5 Memory_Access_List ←− find_mem_operations()

6 foreach DFG(V, ∅) do

7 foreach Node do

/* Generate DFG edges (E) */

8 DFG(V, E)←− calculate_dependencies()

9 foreach DFG(V, E) do

/* Execute optimizations, e.g. list scheduling */

10 DFG(V, E)←− do_scheduling()

First, is the mobility of an operation, which is provided in the dfg_node structure.

It defines the difference between the latest start time ti
L and the earliest start

time ti
S of an operation within the DFG, under the condition that the dependency

on the predecessor and successor node is preserved. The earliest beginning of

an operation is determined with an ASAP schedule. Therefore, the earliest start

time (ti
S) is defined by the maximum of the sum of the start time tj and the delay

time dj for each predecessor node

ti
S = max(tj + dj) ∀vi , vj : (vi , vj) ∈ E.

Vice versa, the latest start time ti
L is calculated by an as late as possible (ALAP)

schedule defining ti
L as follows:

ti
L = min(tj + dj) ∀vi , vj : (vi , vj) ∈ E.

Second, the weight of a node can be used to determine the next candidate for the

list scheduling. The implemented algorithm defines the weight wi as the number

7.4. OPTIMIZATION STRATEGIES 161

of successor nodes within the path of the current node. The implementation

uses the following recursive rule to define the weight for a node vi ∈ V :

wi =

 1, ∀vi , vj : (vi , vj) /∈ E

max(wi) + 1, ∀vi , vj : (vi , vj) ∈ E
.

If more than one node could be scheduled in case of identical weight or mobility,

the implementation of the algorithm picks the first node in the candidate list.

One feature of list scheduling is the possibility to include resource constraints.

Due to the large amount of hardware resources on current FPGAs, the required

constraints are not too harsh. Nevertheless, they are implemented in the plugin.

Typical resource types within the DFG namely, ALU, multiplier, special operation,

and memory accesses are defined in an enumeration and can be allocated by

the scheduling algorithm. The function τ is used to determine the resource type

of a node vi ∈ V . The quantity of each resource type k is provided by a list ak

with k = {1, 2, . . . , nres}. The implemented algorithm (cf. Algorithm 9) is derived

from [95]. It is implemented in two nested loops. The outer loop is executed

until all nodes are scheduled while the inner loop is used to iterate over resource

types in order to find a suitable next candidate.

Algorithm 9: List scheduling [95]

Input: DFG(V, E)

Output: DFG(V, E)scheduled

1 repeat

2 foreach k do

3 UI,k ←− get_candidate_nodes()

4 TI,k ←− get_busy_nodes()

5 Sk ←− select_next_nodes()

6 DFG(V, E)←− schedule_to_timeslot(vk ∈ Sk)

7 until ∀vi ∈ V, vi → scheduled

8 DFG(V, E)scheduled ←− DFG(V, E)

The loop body of the list scheduling comprises four steps in order to calculate a

start timeslot8 for each node.
8Possible start times are assigned on the granularity of timeslots, which corresponds to clock cycles in hardware.

162 CHAPTER 7. HIGH-LEVEL HARDWARE SYNTHESIS

1. Determining the set of candidate nodes UI,k for the timeslot I and the re-

source k (implemented in the function get_candidates(...)). Possible

candidates are nodes whose predecessors are already scheduled:

UI,k = {vj ∈ V : τ(vj) = k, ti + di ≤ I, ∀vi : (vi , vj) ∈ E}.

Moreover, all memory nodes are gathered and stored in an extra list, sorted

by their domination order. This is necessary, as memory accesses are con-

sidered to have side effects. Thus, the domination order must be preserved

during the scheduling process.

2. In the next step, the set of busy resources TI,k for the current timeslot is

determined:

TI,k = {vi ∈ V : τ(vi) = k, ti + di > I}.

3. Subsequently, the set of scheduling candidates SK (S ⊆ UI,k) is determined

under the condition that the sum of scheduling nodes and busy nodes of a

specific resource type does not exceed the number of available resources:

|Sk |+ |TI,k | ≤ ak .

Scheduling candidates are selected by the implemented heuristic (mobility

or weight).

4. The candidates are scheduled in the active timeslot until the maximum of

resources is reached. Memory nodes consisting of address-set and read

operations are categorically scheduled consecutively.

Finally, the scheduling algorithm checks for possible branch nodes. Such nodes

indicate the end of the basic block and must always be inserted in the final times-

lot.

7.4.4 Chaining

One premise of the current scheduling algorithms is that each operation node in

the execution path is scheduled in an exclusive timeslot. Hence, the operation

7.4. OPTIMIZATION STRATEGIES 163

with the highest latency determines the resulting length of the timeslots, which

further indicates the best achievable clock frequency for the whole design. For

the remaining (faster) nodes, an unnecessary slack is introduced. The idea of

chaining is to minimize this slack by combining consecutive nodes within one

timeslot. The approach is illustrated in Figure 7.13.

A B

*

>>

+

+

slack

t1

t2

t3

t0

operation
latency

*

>>
+

+

t1

t2

t0

super-node

combined
latency

Figure 7.13: Original DFG (A) and chained DFG (B)

Part (A) of the figure shows the original DFG with the execution time and slack

for each node. Figure 7.13 (B) chains the consecutive ALU nodes to a newly

generated super-node. The nodes are now executed within one timeslot which

shortens the DFG by one timeslot and reduces the slack of the resulting node.

Chaining is a post-scheduling optimization but it does not change the schedule at

all. It just combines suitable nodes in an already scheduled DFG to new super-

nodes. The resulting DFG is still intact and can be scheduled again or used for

other optimizations. The general implementation of the chaining is outlined in

Algorithm 10. It is implemented in four nested loops.

1. The outermost loop iterates over all timeslots of the acyclic DFG(V, E).

2. The subordinate loop is executed until all available nodes are chained or no

further optimizations can be applied.

3. In the next loop the candidate set UI,k and the set of free resources RI,k are

determined for the current timeslot I and each resource k.

4. In the innermost loop, candidates from the candidate set are chained until

the set is empty or the available resources are insufficient. Chaining is car-

ried out if the delay of the current candidate is larger than or equal to the

164 CHAPTER 7. HIGH-LEVEL HARDWARE SYNTHESIS

Algorithm 10: Chaining [134]

Input: DFG(V, E)

Output: DFG(V, E)chained

1 foreach Timeslot do

2 repeat

3 foreach Resource type k do

4 UI,k ←− get_candidate_nodes()

5 RI,k ←− get_free_resources()

6 repeat

7 vk ←− select_next_node()

8 DFG(V, E)←− chain_candidate(vk ∈ UI,k)

/* Remove resource for chained operation node from list

of available resources. */

9 |RI,k | − −
10 until UI,k == ∅ or |RI,k | == 1

11 until ∀UI,k ∈ V, vi →chained or optimized

12 DFG(V, E)chained ←− DFG(V, E)

slack of the upstream operations. The priority criterion for picking the next

candidate is the timeslot of its former position in the DFG. Candidates from

an earlier timeslot are chained first. If this criterion is identical for several

candidates the node priority from the previous list scheduling (weight, mo-

bility) is used. If this second criterion is also identical the nodes are picked

according to their position in the candidate list.

To ensure good utilization of timeslots, a heuristic model for the delay times of op-

erations is applied. Therefore, the delay time of each operation is assigned a value

between zero and 100. Accordingly, operations are clustered within a timeslot as

long as the sum of all delays does not exceed 100. This allows the classification

of operation delays without the need for absolute latencies that would require a

non-trivial evaluation on the underlying architecture. Nevertheless, the used val-

ues in Table C.2 represent only a heuristic model, roughly adapted to the current

FPGA architecture.

The current implementation excludes memory access nodes from chaining by

specifying a delay time of 101. This is necessary because such nodes typically

require strictly synchronous timing behavior.

7.4. OPTIMIZATION STRATEGIES 165

7.4.5 Register Allocation

The generated FSM uses internal registers between each stage to store the re-

sult of an operation for the next stage. By default, such intermediate registers are

exclusively used by the arithmetic units of the corresponding FSM state. Hence,

each intermediate register can be regarded as a dead piece of hardware if the

corresponding state is not active.

In order to minimize this obvious waste of hardware resources, several register-

sharing strategies have been evaluated. The used strategies are based on the

left-edge algorithm for register allocation, which was described in [102]. This al-

gorithm derives lifetime intervals for variables from a scheduled DFG. Initially,

the introduced algorithm was designed for sequential DFGs without branches or

loops. In order to use it in the context of the generated CDFGs, it has to be

adapted (cf. [131]) to the available representation. This was achieved by supple-

menting the classic lifetime intervals for variables with hierarchy levels for each

basic block of the CFG. As a consequence, the resulting allocation mechanism

was divided into local (inside a basic block) and global allocation steps (across

multiple basic blocks).

This implemented algorithm was tested in order to assess its impact on the area

consumption and speed of the resulting accelerator design. Surprisingly, the

gathered results indicate that the implemented register-allocation strategy seems

counterproductive when used together with the vendor-synthesis tools of the

FPGA. According to the results presented in [143], the best register-allocation

strategy is also the simplest one, which was described as the initial situation.

The best results can be achieved by using a fresh register for each variable. A

detailed description of the referred experiment and its outcomes will be given in

the evaluation part (cf. Section 9.4) of this thesis.

8 GENERATED HOST PROCESSOR INTERFACE

This chapter describes the hardware that is generated to transfer data between

host processor and accelerator. Even though the functionality of the interfaces is

very similar for both supported targets (SpartanMC and ARM), the actual imple-

mentation differs due to the underlying bus architecture. Thus, both architectures

require completely different HDL modules for their interface implementation. The

interface to the host processor includes all HDL files except the FSM module

which uses the same implementation for both platforms.

The following chapter describes the general functionality of the interfaces and

points out differences between the supported platforms.

8.1 Parameter Interface

The parameter interface is used to transfer single values to registers of the ac-

celerator. It is intended for the arguments of the accelerator function and some

status flags. Either these parameters have to be transmitted before the actual

accelerator FSM starts or they are gathered after finishing the calculation in hard-

ware. The interface is implemented as a classical memory-mapped IO. The cor-

responding registers are embedded in the peripheral address space of the host

processor. From the hardware point of view, this means that the accelerator

must provide several registers that are connected, usually with some glue logic,

to the peripheral bus of the host architecture. For such registers, the host proces-

sor always acts as the master that initializes the data transfer to the peripheral.

Therefore, both peers must agree on a minimum communication protocol in or-

der to transfer data in a bidirectional way. Furthermore, it would be a good idea

to allow the accelerator and the host processor to operate within their own clock

domain, which, in turn, requires a synchronization mechanism at the interface

between both parts of the system.

In order to support these requirements, the implementation benefits from the

special purpose of the interface. As already mentioned, the parameter transfer

is required at the beginning and at the end of the accelerator execution. This

allows the status flags, start and ready, to act as a synchronization signal

168 CHAPTER 8. GENERATED HOST PROCESSOR INTERFACE

between both system parts. The resulting communication protocol for a regular

accelerator run could be described as follows:

1. The host processor writes the input parameters provided by the accelerator

function.

2. The host processor sets the start bit.

3. The accelerator FSM switches from idle to running. The required parameter

registers are directly exposed to the accelerator FSM. Thus, inputs can be

read and the results can be written during the accelerator execution.

4. After completing execution, the FSM enters the IDLE state and the ready

bit is set.

5. The host processor recognizes the ready bit, reads back the result registers,

and continues software execution.

Due to the handshake protocol implemented by the signals start and ready

and a strict separation of input and output registers, an asynchronous access to

the parameter interface is possible. Consequently, both parts of the system can

use the peripheral registers in their own clock domain without interfering.

8.1.1 SpartanMC Parameter Interface

The parameter interface for the SpartanMC soft-core is implemented by using a

static accelerator stub module. This stub is intended as a black-box peripheral

module for the SpartanMC system builder jConfig. The corresponding Verilog

code implements the interface between the peripheral bus of the SpartanMC

and the generated modules.

Once the SoC is created by jConfig, the accelerator stub can be regarded as

one container for all accelerators. Thus, accelerators can be added or removed

without manual modifications of the SoC. The resulting work-flow is shown in

Figure 8.1 and consists of four main tasks: Create an SoC design, implement

the firmware, use the GCC plugin to compile the firmware with accelerators, and

start the vendor synthesis tools.

The idea behind the stub module is to reserve a generic address space for poten-

tial hardware accelerators. As jConfig only works on the interface’s description,

8.1. PARAMETER INTERFACE 169

Create SoC with
Accelerator Stub

Design
Firmware

Compile
Firmware with

GCC Plugin

Start Vendor
Synthesis Tools

Figure 8.1: Straight work-flow with accelerator stub module

it would treat the black-box module as a regular peripheral. The design of such a

module to mimic a SpartanMC peripheral can be accomplished by taking a part

of the 18-bit address bus and assigning it to an address decoder within the pe-

ripheral module. SpartanMC peripherals are embedded in the peripheral address

space typically starting at 0x1A000. In case of the accelerator stub, seven ad-

dress bits are reserved for the use of generated accelerators. Thus, the number

of 18-bit-registers reserved for accelerators is 128. As accelerators typically need

small amounts of input and output registers1, the number of registers should be

sufficient for more than 20 accelerators. Besides the absolute number of accel-

erators, there is still another reason to encourage small register sets.

It is characteristic for the SpartanMC peripheral interface to allow access to reg-

isters in a synchronous fashion within a single processor clock cycle. Besides

the advantage of providing very fast peripheral access, this also introduces some

minor issues for the development of peripherals. As a consequence of the fully

synchronous peripheral access, the logic path that accesses the registers must

be a part of the execute-stage of the pipeline. Therefore, the address of a distinct

register is decoded by a three-level hierarchical tree of de-multiplexers or address

decoders. The write-back port of all registers is combined with a wide OR gate.

Even though these modules are implemented prudently by using hand-optimized

code, it would not be wise to implement too large register sets for one accelera-

tor, as this could influence the critical path of the pipeline. Currently, this is not a

problem for accelerators, given the rather small parameter sets.

Figure 8.2 gives an overview on the structure of the peripheral interface. Be-

sides the connection to the peripheral bus and the accelerator stub module, it

also shows the module structure for the dynamic part of the interface. This part

consists of a generated top module that instantiates all subordinate accelerator

modules. Therefore, the file accelerator_top is composed after the genera-

tion of the accelerator FSM modules has taken place.

1Most of the accelerators require approximately five or six registers.

170 CHAPTER 8. GENERATED HOST PROCESSOR INTERFACE

...

SpartanMC
Core

Address

Data Out

Data In

Write Enable (WE)

= Module
Base Addr

Decoder

= Accelerator
Base Addr

Decoder

Register
0x00000

AND

OR

... ...

...

...
Accelerator FSM

Accelerator Stub

Accelerator 1

Accelerator 2

Accelerator n ...
Accelerator Top

Figure 8.2: SpartanMC register interface

8.1.2 ARM Parameter Interface

The implemented tool-flow for the Xilinx Zynq platform uses Xilinx Platform Stu-

dio (XPS) [123] to generate the SoC setup. In contrast to the jConfig-based SoC

design, the integration of accelerators in XPS is implemented in a more sim-

plified way. Although technically possible, the ARM interface implementation

waives the extra effort of a static accelerator stub module. This less-convenient

approach was considered to be acceptable as the support for ARM accelerators

only was implemented to evaluate the portability of the presented HLS approach.

As a consequence, the overall tool-flow for the Xilinx Zynq platform (cf. Figure 8.3)

requires an additional step in XPS (gray box in Figure 8.3) in order to integrate the

generated hardware into the existing SoC.

8.1. PARAMETER INTERFACE 171

Create basic SoC
in XPS

Design
Firmware

Compile
Firmware with

GCC Plugin

Start Vendor
Synthesis Tools

Add
Accelerators

to SoC

Figure 8.3: Work-flow with manual accelerator integration

The Xilinx Zynq platform uses the AXI bus for communication with peripheral

units. Hence, the top module used for interfacing the AXI bus is an AXI interface,

integrated into the AXI4 IP Inter Connect (IPIC) [120] module provided by XPS.

The address space used for peripherals is part of the general-purpose AXI address

space (0x40000000 – 0xBFFFFFFF) [129, p. 113], which is provided by the ARM

processor.

ARM
Core

Cortex A9

=

Accelerator
Base Addr

Decoder

Central
Interconnect

Switch

A
dd

re
ss

D
at

a
O

ut

D
at

a
In

R
ea

d
R

eq
ue

st

W
rit

e
R

eq
ue

st

W
rit

e
A

ck

R
ea

d
A

ck

Register

...
Accelerator FSM

AND

... ...

...

Access
Control
Logic

AND

AXI4 IPIC

Accelerator 1

A
dd

re
ss

D
at

a
O

ut

D
at

a
In

R
ea

d
R

eq
ue

st

W
rit

e
R

eq
ue

st

W
rit

e
A

ck

R
ea

d
A

ck

AXI4 IPIC

Accelerator n

Accelerator FSM

...

Write
Addr.

AXI Bus

Figure 8.4: ARM register interface

172 CHAPTER 8. GENERATED HOST PROCESSOR INTERFACE

As the accelerator stub interface is not implemented yet, each accelerator im-

plements its own AXI interface module. As shown in Figure 8.4, the remaining

module structure and the underlying multiplexer logic that selects single regis-

ters are very similar to the SpartanMC design. The actual structural difference

between the two designs is introduced by the communication scheme that is

used to communicate with the AXI4 IPIC. This interface is, by default, capable

of asynchronous communication. This is achieved by the use of request and ac-

knowledge signals that synchronize the data transfer for unexpected latencies or

different clock domains. This feature is necessary as the arbitration cycle of the

underlying AXI could introduce indeterministic delays. Figure 8.5 shows a sam-

ple timing diagram for a write and read transaction. The diagram starts with a

write request signal (w_req) and a valid address (addr) and data value (data_o)

from the sender. All three channels must remain stable until the next rising edge

(three clock cycles in Figure 8.5) of the write acknowledge signal (w_ack) that

finalizes the transaction. Vice versa, the read access is initialized by a r_req and

a valid address. Both signals have to remain stable until the data is received and

the read acknowledge (r_ack) has been sent.

acc_clk

t=0 t=1 t=2 t=3 t=4 t=5 t=6 t=7 t=8 t=9 t=10 t=11 t=12

addr XXX read addr. X write addr. X

data_i XXX data XXX

data_o XXX data X

Synchronization Signals

r_req

r_ack

w_req

w_ack

Figure 8.5: Write and read transaction accelerator – AXI4 IPIC IP

8.2. MEMORY INTERFACE 173

8.2 Memory Interface

Besides the register interface, almost all accelerators require an additional mem-

ory port to access the main memory of the host system during their execution.

This additional port tends to adversely affect the overall system performance, as

it does not provide the required data as quickly as the hardware consumes it.

This particularly holds true for custom hardware accelerators, which often exe-

cute many arithmetic operations in parallel. In spite of executing operations, the

accelerator is forced to stall until sufficient data has been transferred. Hence, the

implementation of the memory interface must be carried out with the required

diligence in order to limit the impact of this potential bottleneck.

8.2.1 SpartanMC Memory Interface

The implemented solution for SpartanMC is based on a characteristic design

paradigm for SpartanMC SoCs. Designed as an embedded SoC for small control

or transformation tasks, the SpartanMC soft-core only relies on FPGA internal

BRAMs for data and program memory. As BRAMs are dual ported by default,

the whole memory subsystem of a SpartanMC SoC provides two ports as well.

Typically, one of the ports is reserved for data access and the other is connected

with the instruction-fetch stage of the pipeline. Starting from the existing mem-

ory layout, an exclusive memory port to the accelerator stub is only a small step

away.

Besides the regular layout consisting of a combined data and program memory

with two exclusive access ports, the SpartanMC provides an elegant solution

for DMA-capable peripherals (cf. Section 3.2.1). As long as there is no need to

execute code from the DMA memory, a DMA interface can be implemented by

connecting one port of a BRAM to the data bus while the other is exposed to the

peripheral. The peripheral now has full master access to the provided memory

and can even use the interface in its own clock domain without any restrictions.

This mechanism is adapted to the need of the generated accelerators. Similar to

the DMA approach, the accelerators share a larger memory section with the data

access port of the SpartanMC core. But instead of an uninitialized DMA memory,

the provided BRAMs contain the data sections of the corresponding program,

174 CHAPTER 8. GENERATED HOST PROCESSOR INTERFACE

e.g. .bss, .data, .rodata, and .stack. This is accomplished by modifying

the linker script that is generated by jConfig when the accelerator stub is enabled.

Besides the adaptation of jConfig, the hardware layout of the generated DMA

memory requires further adjustments to be usable as regular data memory. The

data memory of the SpartanMC soft-core is organized in 9-bit words by using an

additional alignment bit that distinguishes between an access to the upper 9 bit

or the lower 9 bit. Among others, this allows effective string handling. However,

the DMA memory does not provide this feature by default. For this reason, the

existing DMA interface must be extended by the additional alignment signal. As

a result, the generated hardware can access the memory in one accelerator clock

cycle without interfering with the host processor. This setup would also support

a real parallel execution as the running polling loop could easily start another

software process in the meantime.

As shown in Figure 8.6, the resulting memory architecture now uses one distinct

memory block for the program section (.text), which is accessed by the instruc-

tion fetch only, and another block for the data sections that provide one port for

the data port of the processor and the second port for the accelerator. On these

grounds, the resulting architecture can be regarded as a Harvard architecture with

physically separated instruction and data memory.

In contrast to the pseudo Harvard architecture without separated memories2, the

complete Harvard architecture has fallen into disrepute due to its inflexibility. In-

deed, on a static general-purpose architecture, the size for each memory part is

hard to determine. Depending on the current application, there will be enough

memory for the program part but insufficient memory for data or the other way

around. In contrast, for a dynamic soft-core design that is, in any case, tailored to

the application, this drawback must be placed in a relative perspective. The mem-

ory of a SpartanMC SoC is quantized by the size of a single BRAM (2048 x 9 bit).

If the memory layout does not fit, it can be easily adjusted to the requirements of

the application. Thus, a Harvard architecture was considered acceptable for the

presented tool-flow.

2The classic design of the SpartanMC is a pseudo Harvard architecture (cf. Section 3.2.1).

8.2. MEMORY INTERFACE 175

SpartanMC
Core

Address
Data Out
Data In

Write Enable (WE)

OR

...

A
dd

re
ss

D
at

a
O

ut

D
at

a
In

W
rit

e
E

na
bl

e
(W

E
)

Data Memory

Instruction Memory

Alignment

A
lig

nm
en

t

18 x 1024 Bit

9 x
1024 Bit

9 x
1024 Bit

R
ea

d
R

eq
W

rit
e

R
eq

Control
Logic

W
rit

e
A

ck
R

ea
d

A
ck

Accelerator FSM

...

Accelerator 1

Accelerator 2

Accelerator n

Accelerator Top

Accelerator Stub

Figure 8.6: SpartanMC memory interface

8.2.2 Alternative Approaches

The current implementation of the memory interface is based on a pure Harvard

architecture for the whole SoC. This can be regarded as a serious intervention

in the overall architecture, which is probably not portable to other platforms. In

the following, two alternative approaches to implement the same functionality

on architectures similar to SpartanMC are given:

1. It is not mandatory to implement a master mode memory access in hard-

ware. It is also possible for the accelerator to delegates its request to

the host processor. The processor handles it in software and provide the

requested data afterwards. In particular, for host processors that use an

176 CHAPTER 8. GENERATED HOST PROCESSOR INTERFACE

exclusive interface to the memory, this may be a suitable yet flexible way

to handle memory accesses. On the downside, this approach entails some

obvious disadvantages. It introduces an additional (probably indeterminis-

tic) latency to each memory access. Furthermore, it effectively prevents the

parallel execution of other software parts during accelerator execution if the

memory access is not triggered via an interrupt.

2. For configurable architectures, it may also be conceivable to provide an extra

multiplexer for the existing memory ports. If the accelerator conducts its

memory access, the pipeline of the host processor has to stall its execution.

On the SpartanMC this mechanism would have the advantage to enable the

usage of two memory ports at once – the data port and the instruction port.

Nevertheless, this approach requires major modifications on the processor

pipeline and could affect the overall clock frequency of the host processor.

8.2.3 ARM Memory Interface

The random memory access from accelerators on the Zynq platform was imple-

mented by following the first approach mentioned above. Although this technique

introduces a high latency, it provides a simple and flexible way to perform the re-

quired address translation (cf. Section 6.2.1). Consequently, the memory access

is delegated to the software that carries out the address resolution and provides

the resulting data and signals in parameter registers. As shown in Figure 8.7, the

implemented design reuses the hardware layout of the parameter interface de-

scribed in Section 8.1.2. Nevertheless, the generated accelerator FSM requires

a comprehensive interface for the AXI interface IP core (e.g. r_req, r_ack,

w_req, w_ack etc.) in order to provide an address and data register to the host

processor. Furthermore, the generated HDL code for memory accesses must

implement an appropriate signal timing in order to use parameter registers from

a running FSM. At this point, the design benefits from the synchronous imple-

mentation of the AXI interface (cf. Figure 8.5), which still allows the accelerator

FSM to run in its own clock domain.

8.3. FIFO INTERFACE 177

ARM
Core

Cortex A9

Central
Interconnect

Switch

Main Memory

=

Accelerator
Base Addr

Decoder

A
dd

re
ss

D
at

a
O

ut

D
at

a
In

R
ea

d
R

eq
ue

st

W
rit

e
R

eq
ue

st

W
rit

e
A

ck

R
ea

d
A

ck

Data In

...
Accelerator FSM

AND

... ...

...

Access
Control
Logic

AND

AXI4 IPIC

Accelerator 1

A
dd

re
ss

D
at

a
O

ut

D
at

a
In

R
ea

d
R

eq
ue

st

W
rit

e
R

eq
ue

st

W
rit

e
A

ck

R
ea

d
A

ck

AXI4 IPIC

Accelerator n

Accelerator FSM

...

Write
Addr.

Data Out

Address
Access Control

Signals
(r_req, r_ack,
w_req, w_ack)

AXI Bus

Figure 8.7: ARM memory interface

8.3 FIFO Interface

Though the ARM interface for random memory accesses is functional, it intro-

duces large latencies to the accelerator execution. These latencies are caused,

on the one hand, by the overhead that is introduced by the software code run-

ning to handle the access and, on the other hand, by the arbitration cycle of the

AXI interface. As the ARM processor runs approximately seven times faster than

the average accelerator, the latency caused by the software execution is nearly

negligible. On these grounds, the major share of the latency goes to the AXI data

transfer.

These transactions are carried out with the AXI4 IPIC interface, which is provided

178 CHAPTER 8. GENERATED HOST PROCESSOR INTERFACE

as an AXI interface by XPS. This AXI interface IP requires an arbitration cycle of

more than 10 clock cycles for each random memory access. Even worse, the ar-

bitration is carried out with the clock frequency of the AXI interface IP (maximum

200 MHz [120, p. 46 ff.]). At least for the AXI4 IPIC as well as for alternative inter-

faces, e.g. the high-performance AXI, it must be confirmed that random memory

accesses are generally unsuitable for fast data transfers. For this reason, the

AXI interface provides the possibility for sequential accesses that introduce the

arbitration overhead only once to setup the burst transfer.

The idea of using burst transfers was adopted in hardware by implementing the

FIFO interface. Therefore, the AXI interface IP is connected with several FIFO

buffers of configurable size. The current implementation uses one FIFO buffer

for each identified memory reference3. This approach allows the usage of paral-

lel memory access from the accelerator point of view. Nevertheless, the imple-

mentation of read memory accesses in the FSM must be aware of empty FIFOs.

Thus, the access would block until data in the FIFO is available. Vice versa, a

write access must block if the FIFO is full. Therefore, the request/acknowledge

protocol of the random memory access is reused. But instead of using the syn-

chronization from the AXI interface directly, the FIFO is now in charge of generat-

ing these signals. For that reason, the FIFO could suspend the AXI interface IP or

the FSM from writing the FIFO when full or from reading the FIFO when empty.

The modified interface design is shown in Figure 8.8.

The utilization of the FIFO interface by the software was described in Section 6.2.2.

In order to enable burst transfers from the software, the presented accelerator

function uses the driver interface for DMA transfers to the accelerator mem-

ory. The hardware module used for that purpose is the build-in DMA Controller

(PL330) [90] from PrimeCell. The PL330 is connected with the AXI interface IP in

order to access the FIFO registers. Although, the used AXI4 IPIC is only a slave

interface, it is capable of handling burst transfers from another bus master.

During the development of the interface it was also considered to replace the

AXI4 IPIC module by a DMA-capable AXI interface like AXI CDMA [127] or AXI

DataMover [128].

3Assuming the memory references are not in a conditional path and do not alias with other references.

8.3. FIFO INTERFACE 179

ARM
Core

Cortex A9

=

FIFO
Base Addr

Central
Interconnect

Switch AXI Bus

D
at

a
O

ut

D
at

a
In

...

... ...

...

Accelerator FSM

Access
Control
Logic

Accelerator 1

A
dd

re
ss

D
at

a
O

ut

D
at

a
In

R
ea

d
R

eq
ue

st

W
rit

e
R

eq
ue

st

W
rit

e
A

ck

R
ea

d
A

ck

AXI4 IPIC

Accelerator n

Accelerator FSM

...
A

dd
re

ss

R
ea

d
R

eq
ue

st

W
rit

e
R

eq
ue

st

W
rit

e
A

ck

R
ea

d
A

ck

AXI4 IPIC

Write
Addr.

Decoder

Access
Control
Logic

...

Control
Signals

Control
Signals

Output
FIFO

Input
FIFO

PL330
DMA

Controller

Figure 8.8: ARM FIFO interface

However, these modules are designed for direct memory transfer between AXI

devices by using physical addresses. As we use a software-backed address trans-

lation the PL330 was finally considered to be the best choice.

180 CHAPTER 8. GENERATED HOST PROCESSOR INTERFACE

8.4 Accelerator Address Map

Accelerators require a generic address map in order to provide a foreseeable in-

terface for the generated software function. Nevertheless, the provided address

mapping differs slightly between the described interface configurations. A com-

prehensive summary of the provided address layout for the possible interfaces

is shown in Figure 8.9. The shown addresses start from 0x0000. Thus, they

describe the relative offset for both target platforms.

The simplest layout is used for SpartanMC (Figure 8.9 (A)). It basically provides

only control registers and parameter registers. The first register (control) con-

tains two flags to start (st) or to reset (rst) the accelerator. The rst bit can be

used to set the FSM registers as well as the interface registers (e.g. parameters

and FIFOs) to zero. Furthermore, it resets the state of the accelerator FSM to

IDLE. The st bit is used to start a new accelerator run while the rdy bit in the

second register indicates the end of the accelerator execution. For compatibility

reasons between the code generation mechanisms for both address layouts, the

generated parameter register starts at the offset 0x0010. The order of the fol-

lowing parameters is derived from the list of input and output variables, which is

also used for the C code generation.

The second layout (Figure 8.9 (B)) is currently used for the ARM architecture.

It should be noted that the FIFO registers and the random access interface are

optional. Nonetheless, one of both options must be implemented in order to

enable memory accesses. The FIFOs are provided as contiguous memory blocks,

with the first one starting at 0x0400. The following FIFOs are integrated into the

address space with a distance of 1024 addresses. The actual size of a FIFO is

determined during compile time by a parameter. At the end of each FIFO address

space, a control register is generated that provides the current FIFO filling level.

The random access interface is integrated with static registers at the beginning

of the address space. It contains registers for the data input/output data_in

and data_out, a write-enable register (we), and the address register (addr). To

avoid time-consuming register transfers, the address register has a dual function.

If set to a distinct value, it is interpreted as access request and as an address.

Hence, the accelerator has to leave it as zero in the remaining execution time.

8.4. ACCELERATOR ADDRESS MAP 181

A B

r
s
t

s
t

r
d
y

control

status

acc2mem_addr

acc2mem_data

mem2acc_data

Parameter 1

Parameter 2

.
.
.

FIFO 0 Data

FIFO 0 Data

.
.
.

FIFO 0 Data

FIFO 0 Fill

.
.
.

FIFO 1 Data

FIFO 1 Data

.
.
.

FIFO 62 Data

r
s
t

s
t

r
d
y

control

status

Parameter 1

Parameter 2
.
.
.

0x0000

0x0001

0x0003

0x0004

0x0005

0x0010

0x0400

0x0401

0x05FF

0x0600

0x0800

0x0011

0x0801

0xFC00

0xFFFF

0x0000

0x0001

0x0010

0x0011

0xFFFF

Static
Registers

Parameter
Registers

Static
Registers

Parameter
Registers

FIFO
Registers

32accsignature0x0002

r
u
n

r_reqw_req
6 2711

18accsignature0x0002

r
u
n

Figure 8.9: Address mapping for SpartanMC (A) and ARM (B)

Due to the large latencies of the AXI transfers, the value of the address register

has enough time to stabilize. The only remaining control flag (we) is used to

indicate a read or write access.

Part IV

Evaluation

182

9 EVALUATION

This chapter gives an impression of how the current tool-flow works and what

results can be expected. Two sample applications with different data access

models will be evaluated here. The examples were adapted to both platforms

in order to point out the influence of the chosen target platform on the overall

performance of the hardware extension.

In addition, a set of benchmarks is used to examine different optimization strate-

gies. In this context, the evaluation focuses on different characteristics of the

generated system. The most obvious one is the impact of the hardware accel-

erators on the runtime of the entire benchmark. Furthermore, the capabilities of

the application analysis are evaluated, and examinations on the size and structure

of the generated state machines are presented.

9.1 Implementation Example

To show the capabilities of the implemented plugin, two sample loops incorpo-

rating different memory access models were presented: First, a numerical algo-

rithm that provides a fully predictable memory access is shown. Second, a loop

that traverses linked data structures, which typically requires random memory

accesses is presented.

Both examples should be simple enough to illustrate the hardware generation

process. They are not intended to show quantitative results in terms of possible

speedups or complex hardware structures.

9.1.1 Fletcher Checksum

The first example is based on Fletcher’s numerical checksum algorithm [100].

This algorithm is one of the alternative checksums for the Transmission Con-

trol Protocol/Internet Protocol (TCP/IP) and is further used for link-state-routing

protocols such as Open Shortest Path First (OSPF). The Fletcher algorithm pro-

vides a position-dependent checksum for error correction. It is intended for em-

bedded systems, as it provides a comparable quality to the well-known cyclic

184 CHAPTER 9. EVALUATION

redundancy check (CRC) but with lower computational effort. In this work, the

original Fletcher-32 algorithm was modified slightly to process fixed data chunks

of 32 bit. The main loop of the algorithm is shown in Listing 9.1.� �
uint32_t fletcher32(uint8_t *data) {

uint32_t sum1 = 0xffff, sum2 = 0xffff, idx=0;

size_t tlen = CHUNK;

size_t len = LEN;

while (len) {

tlen = CHUNK;

len -= CHUNK;

do {

sum2 += sum1 += data[idx];

idx++;

} while (--tlen);

sum1 = (sum1 & 0xffff) + (sum1 >> 16);

sum2 = (sum2 & 0xffff) + (sum2 >> 16);

}

sum1 = (sum1 & 0xffff) + (sum1 >> 16);

sum2 = (sum2 & 0xffff) + (sum2 >> 16);

return sum2 << 16 | sum1;

}� �
Figure 9.1: Fletcher-32 algorithm

The algorithm consists of two nested loops that were separately evaluated as

candidates for hardware acceleration. Note that the evaluation of the outermost

loop also involves all GIMPLE nodes of the inner loop. This allows a speedup

estimation for all nesting levels of the given loop nest in order to choose the

best candidate (nesting level) for hardware generation. Though the outermost

loop is typically the best choice for hardware generation, the process also allows

excluding outer loops if they contain unsuitable GIMPLE statements.

The resulting DFG and the state machine of the generated hardware accelerator

are shown in Figure 9.2. The DFG contains several unnecessary assign state-

ments derived from the original GIMPLE code and some consecutive arithmetic

operations. Such statements are perfectly suited for chaining and can be com-

posed to supernodes. The found supernodes are illustrated with dashed lines in

Figure 9.2.

9.1. IMPLEMENTATION EXAMPLE 185

 +

32

tmp.17 ivtmp.54 65535 65535

= = = =

= =

+

1

R

data

=

+

+

=

=

=

& >>

+

16
65535

& >>

+

16
65535

=

=

=

+

32

= ==

= = =

CFG
Branch

CFG
Branch

ivtmp.54

ivtmp.57

ivtmp.57 sum1.15

sum1.15 sum2.16

sum2.16

ivtmp.56

ivtmp.56

sum1.21 sum2.24

sum2.24sum1.21

IDLE

1

2

3

4

5

6

7

8

9

10

11

12

13

= = =

bb_idx out_21 out_24

6

14
exit

read

Figure 9.2: Datapath and FSM of the Fletcher-32 algorithm

186 CHAPTER 9. EVALUATION

Note that the applied optimizations do not provide the optimal scheduling for the

memory access node in State 4. This is due to an implicit dependency between

the address calculation in State 3 and the respective memory access in State

4. Though this dependency is obsolete when using FIFOs, it still exists in the

domination tree of the given DFG and will be considered during the scheduling.

Later improvements of the optimization algorithms should address this issue.

Due to the fixed chunk size of the given Fletcher-32 implementation, the loop

boundaries for both loops can be determined at compile time. This allows suc-

cessful analysis of the memory-read operation within the inner loop. When using

ARM as the target architecture, the resulting hardware accelerator contains one

input FIFO providing an accurate data sequence for the given loop nest. List-

ing 9.3 shows the code of the generated fill-loop1 of the accelerator function in

case of a chunk size (CHUNK) of 32 and a length (LEN) of 128.� �
...

cpy_cnt = 0;

for(i_0=0; i_0<=4; i_0++) {

for(i_1=0; i_1<=31; i_1++) {

ivtmp_buf[cpy_cnt++] = ((char*)ivtmp)[i_0*32 + i_1];

...

}

...

}� �
Figure 9.3: The generated fill-loop within the accelerator function

Running this example on the Zynq platform with a FIFO size of 128x32 produces

only one hardware stall in order to receive the first data chunk at the accelerator

startup. The following data accesses are provided without further latencies.

9.1.2 Binary Tree Search

The loop of this example was taken from an own implementation of a binary

tree search algorithm. The algorithmic task is to search for a specific key in an

ordered binary tree. The code of the loop is given in Listing 9.4. The tree el-

ements are structures containing the key and two pointers referencing the left
1The generated names and loop boundaries are simplified for the sake of clarity.

9.1. IMPLEMENTATION EXAMPLE 187

or the right sub-tree, respectively. The given function traverses the tree start-

ing at a given root node. As the function uses a tail-recursive search method,

the source code does not show any potential loop candidate. Nevertheless, the

actual loop candidate of this function is generated by the GCC loop optimizers

during the compilation process (requires at least -O2 as optimization level). Con-

sequently, the recursive function call, which would hinder accelerator generation,

is transformed into a non-recursive loop that is selected for hardware genera-

tion afterwards. The resulting GIMPLE structure of the loop candidate is shown

in Figure 9.5. The call of the accelerator function is inserted within the dashed

basic block.� �
struct tree_node {

unsigned int key;

struct tree_node *left;

struct tree_node *right;

};

typedef struct tree_node node;

node* searchtree(int key, node *root) {

node *current_node = root;

if (current_node == NULL) return NULL;

if (current_node->key == key) {

return current_node;

}

else if (current_node->key > key) {

searchtree(key, current_node->left);

}

else {

searchtree(key, current_node->right);

}

}� �
Figure 9.4: Binary tree search algorithm

From the compiler’s point of view, the memory accesses of this example are

completely unpredictable, as they depend on the given input tree. Consequently,

the scalar evolution framework of the GCC results in an unknown chrec for

all three memory references. This implies that all memory accesses must be

carried out just-in-time during accelerator execution, which introduces severe

slow-downs on the ARM architecture. Even though the given code could benefit

188 CHAPTER 9. EVALUATION

BB 3

 _12 = (unsigned int)root_8->key;
key_6 = key_4;
 if (_12 == key_6)

if (root_9 == 0B)true

false

BB 2

true

BB 4

root_14 = PHI <root_8, root_10>;
 _15 = PHI<_12, _5>;
 if (key_6 < _15)

BB 5

root_9 = root_14->left;

BB 6

root_11 = root_14->right;

BB 7

root_10 = PHI<root_11, root_9>
 if (root_10 == 0)true

BB 8

_5 = (unsigned int)root_10->key;
if (_5 == key_6)

_1 = PHI<root_8, root_10, 0, 0>
return _1

BB 9

false

false

patched basic block
containing call of

accelerator wrapper function

Figure 9.5: GIMPLE graph for the binary tree search

from an arbitrary hardware cache between accelerator and main memory, this

feature is not implemented yet. The resulting DFG and the generated FSM of the

accelerator are presented in Figure 9.6.

9.1. IMPLEMENTATION EXAMPLE 189

 IDLE

1

2

3

4

5

6

7

8

9

10

11

12

tmp.14 root.2key.1

= = =

A

AR

R

<

CFG
Branch

=

0

A

=

bb_idx

6

R

CFG
Branch

=

=

bb_idx

7

=

out.11

=

key.15

=

root.4

key.15 root.4

exit

exit

set address

read

Figure 9.6: Datapath and FSM of the binary tree search

The code provides a speculated execution path for evaluation of the left and right

sub-tree. Furthermore, the generated DFG also illustrates some limitations of

the current HLS optimizations. For instance, the chaining of the condition check

in State 5 with the memory read operation in State 4 is not carried out. This

is caused by the conservative implementation of the chaining heuristic, which

190 CHAPTER 9. EVALUATION

reserves a whole clock period for each memory access.

This example was used to evaluate the impact of random memory access on

the execution time of the accelerator. Therefore, a single memory access was

evaluated with Chipscope2 for the ARM architecture. The results show that each

random access in the current implementation consumes approximately 15 ac-

celerator cycles, which is more than the total number of state machine cycles.

Hence, the given example encompassing 10 FSM states spends more than 80%

of its execution time on the three memory accesses. On these grounds, hard-

ware accelerators with random memory access for the ARM platform, which lack

a prefetching or caching mechanism are useless in most cases.

In contrast to these results, the evaluation on the SpartanMC soft-core provides

a different picture. Even such a small accelerator without parallelizable arithmetic

operations produces a slight speedup on this architecture due to fast and direct

memory accesses and a balanced clock frequency for both system parts.

Nevertheless, this example shows that PIRANHA can still handle such arbitrary

memory accesses on C code level successfully.

9.2 Evaluation of Memory Access Analysis

The analysis of memory accesses is essential for the automatic generation of

prefetching mechanisms. In this context, the presented implementation of FIFO

buffers may be regarded as a first step toward the generation of a full-featured

streaming interface.

Nonetheless, the alias analysis requires several preconditions to produce valid

results, which raises doubts on its usability for arbitrary C code. For this reason,

the loops within the benchmarks from Section 9.3 were evaluated. The set of

benchmarks contain 57 out of 162 loops that provide suitable code for hardware

generation. Loops without memory accesses or loops that are not fit for hard-

ware generation were excluded from the evaluation. Not all remaining loops are

predicted to produce speedups. However, they were still evaluated in context of

the memory analysis.

Figure 9.7 shows the ratio of fully analyzable and partially analyzable loops for
2Chipscope is a configurable logic analyzer IP for FPGAs.

9.2. EVALUATION OF MEMORY ACCESS ANALYSIS 191

each benchmark. Loops that contain at least one undefined access are not suit-

able for the prefetching mechanism. Only fully analyzable loops with a completely

known access pattern for each memory reference are usable for the presented

FIFO interface.

AES

Bas
e6

4

Bilin
ea

r

Bina
ry

Tre
e

Bit
Rev

er
se

CRC

Euc
lid

ian

Fle
tch

er

Gray
sc

ale

Haa
r W

av
ele

t
ID

CT IIR
JP

EG

M
an

de
lbr

ot

M
at

rix
M

ult RSA
0

5

10

15

#L
oo

ps

fully analyzable partial analyzable

Figure 9.7: Analyzable loops and partial analyzable loops

The yield of analyzable loops suggests that approximately 53% of the given loop

candidates were fully analyzable. The reasons for rejecting specific loops can be

summarized as follows3:

Undefined Number of Iterations Several algorithms work on data fields of vari-

able length, e.g. on a file input. Naturally, the processing loops of such

algorithms do not provide fixed boundaries. This prevents a proper alias

analysis as the overlapping of different accesses cannot be ruled out.

Unknown Access Subscript Unknown subscripts occur if scalar evolution can-

not determine the access pattern from a given subscript. Typically, this

occurs for arbitrary pointers, for complex (non-constant) strides or for sub-

scripts that do not directly depend on the loop index variable (cf. examples

in Listing 9.8 unknown_{1,2,3}).

Undefined Base Addresses In some cases, it is not possible to determine the

origin of the base address. This occurs if the actual base address is calcu-

lated within the loop using multiple input parameters, as well as if the access

does not match any input parameter of the loop.

192 CHAPTER 9. EVALUATION

� �
void foo(const unsigned char* idx, char* buf1, char* buf2) {

char j, k, unknown_1, unknown_2, unknown_3;

for(i = 0; i < MAX; i++) {

j = *idx++

k = buf2[i];

unknown_1 = buf1[j];

unknown_3 = buf1[k];

unknown_2 = buf1[(i & 0x3F)<<3];

}

}� �
Figure 9.8: Not analyzable array subscripts (unknown_[1,2,3])

An analysis of the given benchmark set implies that 77% of all unresolved ac-

cesses are caused (among others) by an unknown iteration count. For this rea-

son, the plugin was extended by an additional runtime parameter (assume-up-

per-bound). This parameter allows the specification of a notional upper bound

for uncountable loops and can be used to generate alias sets for such loops. For

instance, setting this parameter to ”100“ means that an interference between

two symbols is detected if the distance of both base addresses is less than 100

times of the stride length.

9.2.1 Runtime Costs of ISL Queries

As mentioned in Section 6.3.1, it is necessary to evaluate alias sets at program

runtime right before the accelerator code starts. For simple alias sets, this is

carried out by conditions in the generated file (*_memref_info.c). The more

complex sets, which comprise several variables and conditions, could be eval-

uated with a runtime version of LibISL. Hence, LibISL must be regarded as a

performance critical piece of code. In order to evaluate the impact of an ISL call,

five problem sets have been defined. These represent the typical results of an

alias analysis. According to the nomenclature given in Section 5.6 the variables

αi and βi describe the access subscript while d specifies the distance between

the base addresses of two accesses. The first group of access patterns (Phole)

is generated from interleaved accesses, which is typical for arrays of structures.

The second group (Pcontiguous) is derived from the first group of access patterns
3Note that a loop could be rejected due to several reasons simultaneously.

9.2. EVALUATION OF MEMORY ACCESS ANALYSIS 193

but was modified to form contiguous accesses.

Phole1 =
{

(α1, β1, d) ∈ Z3
∣∣

0 ≤ α1 ≤ 99 ∧ 0 ≤ β1 ≤ 99 ∧ 4α1 − 4β1 + d = 0
}

Phole2 =
{

(α1,α2, β1, d) ∈ Z4
∣∣

0 ≤ αi ≤ 3 ∧ 0 ≤ βi ≤ 3 ∧ 16α1 + 4α2 − 4β1 + d = 0
}

Phole3 =
{

(α1,α2, β1, β2, d) ∈ Z5
∣∣

0 ≤ αi ≤ 3 ∧ 0 ≤ βi ≤ 3 ∧ 16α1 + 4α2 − 16β1 − 4β2 + d = 0
}

Pcontiguous1 =
{

(α1, β1, d) ∈ Z3
∣∣

0 ≤ α1 ≤ 99 ∧ 0 ≤ β1 ≤ 99 ∧ α1 − β1 + d = 0
}

Pcontiguous3 =
{

(α1,α2,α3, β1, β2, β3, d) ∈ Z7
∣∣

0 ≤ αi ≤ 3 ∧ 0 ≤ βi ≤ 3∧

16α1 + 4α2 + α3 − 16β1 − 4β2 − β3 + d = 0
}

.

As shown above, each problem set consists of an equality and several static

conditions specifying an interval for αi or βi respectively. The performance of

LibISL for testing a given d is evaluated in two different ways:

• The first approach (preconstrained) initializes the ISL-solver with all precon-

ditions denoting a static interval. Afterwards, the ISL-solver evaluates the

equality of the given problem set for a constant d . The test is executed

several times using a measurement loop.

• The second approach (intersect), uses the LibISL to eliminate all variables

but d (cf. projection, as described in Section 5.6.1). Later, the measurement

loop uses the projected set. The ISL-solver tests the intersection of this

set with a constant set containing only d . If the resulting set is not empty,

aliasing occurs.

The tests were carried out on the Zynq-7000 SoC using libisl-0.15, which was

compiled with the default configuration. The benchmark code was compiled with

-O2 and the measurement loop was iterated 105 times. The results of the per-

formance measurements are shown in Table 9.1. As the values suggest, in most

cases, the intersect method seems slightly faster for alias set evaluation than

194 CHAPTER 9. EVALUATION

Table 9.1: Benchmark results for using LibISL for alias tests. [135]

Scenario Test Method Cold Time [µs] Warm Time [µs]

hole1 preconstrained 608 135.638

hole2 preconstrained 1105 357.441

hole3 preconstrained 1253 455.936

contiguous1 preconstrained 526 51.641

contiguous3 preconstrained 110 84.193

hole1 intersect 589 195.065

hole2 intersect 460 201.132

hole3 intersect 755 326.896

contiguous1 intersect 221 54.832

contiguous3 intersect 202 55.754

the preconstrained method. For that reason, intersect was used for runtime

evaluation. Nevertheless, the results of the performance measurement were not

promising. The evaluation of a single alias set can cost more than 1 ms on a cold

processor cache4. Even the results on a warm processor cache cannot compete

with a typical accelerator runtime. The required computation time starts at ≈ 50

µs for rather simple problem sets describing contiguous accesses and ends at up

at over ≈ 450 µs for complex problem sets. Note that this corresponds to 45000

cycles at an accelerator speed of 100 MHz, which could easily exceed the total

runtime of an accelerator.

In conclusion, the raw performance of LibISL must be considered to be unsuit-

able for running right before accelerator execution. Nevertheless, the option to

use LibISL at runtime is still available in the code of the plugin.

It should be noted that none of the evaluated examples contain such complex

access patterns that a call of the runtime libISL was required. Thus, the much

faster evaluation of runtime C conditions (mostly significantly less than 1000 clock

cycles) turned out to be sufficient for all available benchmarks.

For target platforms that do not provide a runtime version of LibISL, the usage of

this library can be turned off by using a compiler parameter (cf. Appendix C.2).

In this case, the evaluation always fails if the given alias sets require complex

4The result of the first run have been taken as cold time.

9.3. BENCHMARKS 195

conditions.

Furthermore, the strategy discussed in Section 6.3, using a hash table for solved

alias sets in order to reduce the cases where LibISL needs to be run, is integrated

in the current implementaion.

9.3 Benchmarks

To evaluate the performance of the presented HLS approach, a set of compute-

intensive examples from typical application domains for embedded systems was

chosen. The benchmarks were adapted to both target platforms without major

changes. Nevertheless, the uncommon data width of 18 bit for the SpartanMC

sometimes required a slightly different implementation that introduced additional

arithmetic operations. Consequently, the HLS also provides different data-paths

for both platforms. Moreover, the data width hinders a trivial adaptation of com-

monly used benchmark suites. For that reason, most of the benchmarks are

derived from algorithmic descriptions or reference implementations.

Several benchmarks contain only one compute-intensive loop nest that is identi-

fied for acceleration. These benchmarks are marked with in the following

list. The benchmarks marked with can be regarded as complete applica-

tions containing multiple loops for acceleration.

The following list gives a brief overview of the implemented applications:

AES: An 8-bit AES implementation containing code to en-

crypt and decrypt a sample message.

Base64: A base 64 encoder and decoder.

Bit Reverse: Swaps the bits of an integer to reversed order.

Binary Tree: Generates a random binary tree and searches for an

item in this tree afterwards.

Biliniar: Interpolates a 64x48 sized RGB-picture with a bilinear

filter algorithm.

CRC: Performs a cyclic redundancy check using a polyno-

mial of the 16th degree.

196 CHAPTER 9. EVALUATION

Euclid: Implementation of the Euclidean algorithm comput-

ing the greatest common divisor of two numbers. Be-

sides the input data, this algorithm contains no further

memory accesses.

FFT: Performs a complex radix-2 fast Fourier transforma-

tion. The accelerator also handles the reordering of

the output array.

Fletcher: Performs the calculation of a Fletcher-32 checksum.

The SpartanMC implementation performs, adapted to

the 18-bit architecture, a Fletcher-16 calculation.

Grayscale: Performs a grayscale-filter algorithm on a 8x8 sized

RGB-picture. Each color is encoded with 4 bits. The

size of the input data is adapted to the host architec-

ture.

Haar Wavelet: Performs a 1-D Haar wavelet transformation.

IDCT: Performs an inverse discrete cosine transformation

on an 8x8 input buffer.

IIR: Performs a high-pass Butterworth infinite impulse re-

sponse (IIR) filter of the fifth order.

JPEG: A complete JPEG decoder optimized for architecture

with limited bit width.

Mandelbrot: Calculates whether a given complex number is a mem-

ber of the Mandelbrot set or not. Besides the input

data, this algorithm contains no further memory ac-

cesses.

Matrix Mult: Performs a matrix multiplication of two 8x8 integer

matrices.

RSA: An implementation of the RSA cipher containing code

to encrypt and decryt a sample message.

9.4. INFLUENCE OF REGISTER-ALLOCATION STRATEGIES 197

9.4 Influence of Register-Allocation Strategies

The impact of register-allocation strategies was evaluated and presented in [143].

The experiments of this publication were carried out in a very early stage of the

plugin. For that reason, the evaluation was limited to the eight applications of

the benchmark set of Section 9.3 which were available at that time. Due to

the comparable hardware structure of all accelerators, the results should also be

applicable for other benchmarks.

The resource utilization of the accelerators was measured by synthesizing the

hardware description for different FPGAs. Later, the influence of the register lay-

out on the resource footprint was evaluated based on this data. In addition, the

maximum clock frequency for each accelerator was determined in order to iden-

tify a potential frequency reduction. A drop in the maximum clock frequency was

anticipated for strategies that generate better register utilization. This was ex-

pected, as a better utilization of registers also implies a larger number of shared

registers, which may result in an extended critical path due to additional multi-

plexers on the register inputs.

In order to evaluate different register-allocation strategies, the PIRANHA HLS

code was equipped with different variations of the left-edge algorithm [102]. Af-

ter that, the HLS tool could be parametrized to generate hardware designs with

different register utilizations. The implemented strategies could be summarized

as follows:

• A classic left-edge algorithm (le_full) that tries to map as many variables

as possible to one register. This strategy probably results in an increasing

number of multiplexers and leads to a more complex control logic on the

FPGA. Note that the resulting allocation is not a global optimum in terms of

utilized registers. However, in the context of this experiment, it provides the

minimum number of registers for the evaluated accelerators.

• Four variants of a modified left-edge algorithm that use a slightly different

allocation strategy by altering the maximum number of variables per register

from two to five (le_2 – le_5).

• An allocation strategy (le_uid) that tries to avoid unnecessary variable swaps.

This is accomplished by mapping related GIMPLE variables (referencing the

198 CHAPTER 9. EVALUATION

same C variable) together into the same register. Appropriate variables are

identified by their reference to an id in the GIMPLE structures. This mapping

should result in good register utilization, in combination with a low number

of multiplexers and control logic.

• A naïve approach le_simple that maps each variable to a fresh register. Obvi-

ously, this approach neither requires multiplexers nor any additional control

logic. Additionally, it provides the maximum scope for optimizations for the

following vendor tools.

The evaluation was carried out by applying the designs to a Xilinx Artix-7 FPGA

(xc7a200tfbg), which provides the same internal structure as the FPGA fabric

(xc7Z020) on the Zynq-7000 device. Furthermore, the optimization strategy for

the vendor synthesis tool (Xilinx XST P.49d) was altered between area and fre-

quency optimization. The measured speed is determined by the critical path

delay that is given in the post place and route report from Xilinx.

At this point, it must be made clear that this approach may lead to inaccurate

results. The Xilinx synthesis tools typically stuck to the given constraints for the

current synthesis run. In case of the experiment the synthesis was constrained

by an unattainable frequency value. As a result, the post place and route report

show a negative slack for the critical path. Unfortunately, the slack and, therefore,

also the derived frequency could spread considerably. Consequently, this method

is not a good choice to determine an accurate value of the best achievable fre-

quency 5. However, the evaluation of the results will show, that the impact of the

allocation strategy on the frequency is evident even for slightly inaccurate results.

The resource footprint is quantified by the utilization of LUTs, which is also pro-

vided by the post place and route report. The resulting measurements of the

resource consumption and the clock frequency are illustrated in Figure 9.10. The

raw data can be found in Appendix E.1.

First, the results show that the difference between area and speed optimization

of the vendor toolchain is negligible for the given accelerator set. But, even more

surprising, the register allocation strategies only have a small effect on the overall

resource consumption. Nonetheless, there is a tendency for the le_simple and

5The best practice to perform an accurate measurement of the frequency would be an approach that determines

iteratively the highest working frequency of the given design.

9.4. INFLUENCE OF REGISTER-ALLOCATION STRATEGIES 199

le_uid algorithms to achieve a slightly lower resource consumption for almost

all benchmarks. Keeping in mind that both algorithms are designed to require a

minimum number of multiplexers, this goal of optimization should be considered

as a guideline for the generation of resource-efficient hardware accelerators.

Besides the resource consumption, the achievable clock frequency was the sec-

ond subject of the evaluation. As expected, the approaches that use extensive

register sharing (le_full, le_1 to le_5) suffer from long critical paths that negatively

affect the maximum clock frequency. Taking a closer look at the clock frequency

measurements, reveals that the results can be divided into two groups of bench-

marks: first, a group that only shows a minor impact on the register-allocation

strategy and the achievable frequency, and second, a group (FFT, IIR, Grayscale

and Matrix Mult.) that seems to be significantly influenced by the chosen alloca-

tion strategy. Further evaluations of the generated accelerators suggest that this

phenomenon is introduced by the usage of DSP cores in the accelerator datapath

(cf. Appendix E.1.1). As DSP cores typically provide internal registers [124], they

also add additional constraints to the datapath. In combination with a multiplexer

tree, this results in the demonstrated performance degradations.

0.4 0.5 0.6 0.7 0.8 0.9 1

0.7

0.8

0.9

1

Normalized Frequency

N
or

m
al

iz
ed

#L
U

Ts

le_full le_uid le_simple le_2 le_3 le_4 le_5

Figure 9.9: Normalized frequency plotted against the respective normalized resource consump-

tion for different register-allocation strategies applied on FFT, IIR, Grayscale and Matrix Mult.

200 CHAPTER 9. EVALUATION

Bas
e6

4

Bit
Rev

er
se

Gray
sc

ale

Haa
r W

av
ele

t

M
at

rix
M

ult FF
T IIR

0

100

200

300

400

500

Fr
eq

ue
nc

y
[M

H
z]

Speed Optimized Synthesis le_full le_uid le_simple le_2 le_3 le_4 le_5

Bas
e6

4

Bit
Rev

er
se

Gray
sc

ale

Haa
r W

av
ele

t

M
at

rix
M

ult FF
T IIR

0

200

400

600

800

1,000

1,200

LU
Ts

Bas
e6

4

Bit
Rev

er
se

Gray
sc

ale

Haa
r W

av
ele

t

M
at

rix
M

ult FF
T IIR

0

100

200

300

400

500

Fr
eq

ue
nc

y
[M

H
z]

Area Optimized Synthesis

Bas
e6

4

Bit
Rev

er
se

Gray
sc

ale

Haa
r W

av
ele

t

M
at

rix
M

ult FF
T IIR

0

200

400

600

800

1,000

1,200

LU
Ts

Figure 9.10: Resource and frequency comparison of different register-allocation strategies

(LUTs – small values are better; frequency – large values are better)

9.5. INFLUENCE OF HLS OPTIMIZATIONS 201

Figure 9.9 shows the results of all allocation strategies for the second group of

benchmarks. The frequency and the utilized LUTs are normalized to the best

result of the respective benchmark. This plot shows the predominance of the

simple register-allocation strategies le_simple and le_uid, in terms of resource

consumption and achievable clock frequency. Remember that these values suf-

fer from a certain degree of inaccuracy. Nevertheless, a difference of ≈40% (cf.

Figure 9.9) between the two groups of allocation strategies imply a clear correla-

tion between the allocation strategy and the achievable clock frequency.

To summarize, the experiments show that the effort of an elaborated HLS register-

allocation strategy does not provide any significant benefits to the overall re-

source footprint or frequency of the accelerators. In some cases, the perfor-

mance can even degrade significantly. For that reason, it was considered to use

the naïve approach (le_simple) for register-allocation strategies in this thesis.

9.5 Influence of HLS Optimizations

The evaluation of different optimization strategies was carried out on the set of

benchmarks described in the previous section. Therefore, the optimization strate-

gies namely, speculation and chaining were applied consecutively to each CDFG.

After each modification, list scheduling was applied to the resulting graph.

Note that the implemented algorithms for speculation and chaining could influ-

ence the runtime of the resulting state machine negatively even when the num-

ber of states decreases. However, the presented evaluation gives a good overall

impression of the effectiveness of particular HLS optimizations.

The following Figure 9.11 shows the improvement of state machines compared

to the plain number of states after applying list scheduling only. The resulting

state machines for ARM and SpartanMC are identical. Consequently, the FSMs

can be used to evaluate the HLS optimizations for both target architectures.

202 CHAPTER 9. EVALUATION

ad
dR

ou
nd

Key

ex
pa

nd
Dec

Key
1

ex
pa

nd
Dec

Key
2

m
ixC

olu
m

ns

m
ixC

olu
m

ns
Inv

m
ain

1

m
ain

2

de
co

de
1

de
co

de
2

en
co

de
re

siz
e

bu
ild

Tre
e

ins
er

tTr
ee

se
ar

ch
Tre

e

re
ve

rs
eX

or

cr
cC

alc

eu
cli

d

fle
tch

er
0

50

100

#S
ta

te
s

speculation + chaining speculation plain estimated SW instructions

AES BASE64 Binary Tree

gr
ay

sc
ale

Fil
te

r

wav
ele

tTr
an

sfo
rm

dc
t1

Dh

dc
t1

Dv
iir1

6
loa

d1
loa

d2

ch
ec

kH
uf

fTa
ble

s

co
py

Y
qu

an
t

de
co

de
Nex

tM
CU

hu
ffC

re
at

e

idc
tC

ols

idc
tR

ow
s

up
sa

m
ple

Cb

up
sa

m
ple

Cr

inM
Set

m
at

M
ul

m
od

sq
ua

re
Roo

t
0

50

100

150

200

#S
ta

te
s

IDCT JPEG RSA

Figure 9.11: Comparison of FSM states after applying different HLS optimzations

First, speculation is applied to the basic CDFG. The speculation algorithm merges

conditional basic blocks, if possible. The resulting merged block contains all op-

erations of the conditional execution paths and calculates multiple results in par-

allel. The final output is selected at the end of the new block in a generated mul-

tiplexer node. After using this optimization, the execution time of the new block

is dominated by the longest execution path. Assuming an unfortunate control-

flow, this could increase the overall execution time, even if the number of states

was reduced. The actual impact of speculation on the overall application speedup

is presented in the following Section 5.4. Notably, speculation is available only

for CDFGs that contain conditional branches; hence, only six benchmarks pro-

9.5. INFLUENCE OF HLS OPTIMIZATIONS 203

duce relevant results for this optimization. This is caused by some restrictive

limitations of the speculation algorithm: the rejection of blocks containing mem-

ory accesses, loop exit edges, and conditions with embedded condition nodes.

Furthermore, only approximately 32% of the identified loop candidates contain

conditional branches at all.

Second, chaining was evaluated. This optimization eliminates unnecessary in-

termediate state changes between operations. Besides reducing the number of

states, it lengthens the critical path, which can reduce the overall clock frequency

of the accelerator. However, as long as the clock frequency is dominated by an-

other part of the system, e.g. the interface for memory accesses, chaining does

not introduce any unfavorable side effects. Figure 9.11 shows the influence of

chaining on the number of states for the loop candidates of all benchmarks.

Even if the current chaining algorithm does not use the full potential of the exist-

ing CDFG, the resulting state machines can be improved by an average of 26%.

Moreover, the results show that chaining is more effective for large state ma-

chines with a relatively small number of memory accesses.

Figure 9.11 shows the GCC-internal estimation of required instructions for the

respective loop candidates (blue dots). On a RISC architecture, this value should

be equivalent to the number of clock cycles required for the loop body. Besides,

this value should be also higher than the required states for the plain state ma-

chine, unfortunately this is not the case. Due to this inaccuracy, the automated

estimation of speedups (cf. Section 5.4) can give only a very coarse impression

of the expected performance.

Nearly 15% of the found loops shown in Figure 9.11 are smaller than 10 instruc-

tions. Typically, these small loops are hard to accelerate as they contain few

operations and short datapaths only. Hence, they do not provide enough code

for an effective usage of optimization strategies. Such benchmarks could benefit

from larger datapaths. This can be achieved by optimizations that generate larger

accelerator-kernels such as loop merging or partial loop unrolling.

The raw data of the presented measurements can be found in Appendix E.2.

204 CHAPTER 9. EVALUATION

9.5.1 Performance Measurement

One of the most interesting parts of the evaluation is the measurement of the

overall performance of a system. In this thesis, performance is evaluated by com-

paring the execution time of an application running with a hardware accelerator

against the pure software execution time of the same application. Hence, the

baseline for the performance measurement is based on the execution time of

the benchmark application on the respective host processor.

SpartanMC SoC

The results of the benchmark applications for the SpartanMC SoC are shown in

Figure 9.12.

AES

Bas
e6

4

Bilin
ea

r

Bina
ry

Tre
e

Bit
Rev

er
se

CRC

Euc
lid

ian

Fle
tch

er

Gray
sc

ale

Haa
r W

av
ele

t
ID

CT IIR
JP

EG

M
an

de
lbr

ot

M
at

rix
M

ult RSA
0

1

2

3

4

S
pe

ed
up

plain speculation speculation + chaining

Figure 9.12: Whole application improvements for SpartanMC

According to the results, all SpartanMC benchmarks achieved performance im-

provements. Thus, the presented plugin has shown a general viability for this

target platform. As mentioned in the previous section, programs with rather

small accelerator-kernels, e.g. Fletcher, Euclidian or RSA only show marginal

speedups. Especially, without optimizations they could also suffer from slight

slowdowns. Such slowdowns occur if the actual hardware mapping incidentally

results in a one-to-one implementation of the assembler code without any paral-

lel operations. In this case the additional overhead caused be the accelerator call

and the static data transfer causes a slowdown.

The gained speedups can be easily improved by increasing the clock frequency

9.5. INFLUENCE OF HLS OPTIMIZATIONS 205

of the generated hardware accelerators. This is possible, because the resulting

accelerator datapaths hardly utilize the capacity of the given duty cycle in contrast

to the tightly packed pipeline of the SpartanMC core. Furthermore, the used Har-

vard architecture in combination with the dual-ported BRAMs (cf. Section 8.2.1)

provides a separate memory interface for the hardware accelerators that runs in

its own clock domain. Both features enable the usage of a higher clock frequency

in favor for the accelerator. The results in Figure 9.12 were achieved by running

the SpartanMC core and the accelerators on the same frequency of 50 MHz.

Exemplary, the results for a higher accelerator frequency of 150 MHz are shown

in Appendix E.3 (column 5). Several spot-checks for the Artix FPGA suggest that

the generated accelerators could operate at a clock frequency of 150 – 250 MHz

without violating any timing constraints.

ARM SoC

Unfortunately, the frequency setup of the Zynq platform was not so advanta-

geous. The Zynq provides a powerful ARM Cortex-A9 processor running ≈7

times faster than the FPGA fabric. Together with the highly optimized ARM GCC

back-end it is nearly impossible to achieve speedups with the currently generated

accelerators and their software interface. The following results are intended to

prove that the mechanisms used for the SpartanMC architecture could be ported

to a more complex SoCs architecture without changes of the HLS approach.

Besides the difference of the clock frequencies between programmable fabric

and ARM core, the implementation of the software interface introduces addi-

tional latencies to the accelerator execution. First, each call of an accelerator

triggers an open(...) system-call of the respective hardware device in the

Linux Kernel. This includes the mapping of accelerator registers into the applica-

tion address space and the allocation of DMA buffers. At the end of the hardware

execution these buffers are freed and the device is closed. Second, the software

backed memory transfers during accelerator execution are a source of latencies.

These transfers either require DMA operations to fill FIFO buffers or a software

delegated transfer for each memory access. Both methods are devastating slow

in the current implementation. The average values for the current latencies are

shown in Appendix E.5. These latencies, together with the differential of the

206 CHAPTER 9. EVALUATION

clock frequency, lead to severe slowdowns of ARM programs when using accel-

erators. The resulting slowdowns of the benchmarks are shown in Figure 9.13.

As the latencies for initializing the accelerator are in the same order of magnitude

as the overall runtime of the accelerator, the penalty for running accelerators in

an external loop leads to even worse results. This effect can be observed for the

RSA, Fletcher, Euclidean, Mandelbrot, and AES benchmark.

AES

Bas
e6

4

Bilin
ea

r

Bina
ry

Tre
e

Bit Rev
er

se
CRC

Euc
lid

ian

Fle
tch

er

Gray
sc

ale

Haa
r W

av
ele

t
ID

CT IIR
JP

EG

M
an

de
lbr

ot

M
atr

ix
M

ult RSA
0

100

200

300

400

500

600

700

1,900

2,000

2,100

2,200

2,300

2,400

S
lo

w
do

w
n

random access pre fetching

Figure 9.13: Whole application evaluation for the ARM SoC optimized with speculation and chain-

ing (small values are better)

9.5.2 Performance Analysis

In the previous section it was claimed that the performance of accelerators on

ARM is dominated by various latencies. In the following section an analytical rela-

tionship will be introduced which confirms this statement. Therefore, a runtime-

analysis of suitable accelerators is carried out and compared to an analytic estima-

tion. Firstly, the estimation was developed for the SpartanMC architecture. Since

the SpartanMC accelerator interface provides hardware-triggered deterministic

memory accesses, the chosen analysis approach should be cycle accurate and

9.5. INFLUENCE OF HLS OPTIMIZATIONS 207

easy to prove.

The reference for the evaluation was the number of clock cycles between start

and return of the accelerator wrapper-function. Hence, the only software de-

pended latency is introduced by the static offset for transferring initial values to

the accelerator. This latency can be easily estimated with the known number of

initial input and output variables.

According to section 5.4 the cycle-count of a loop body CP can be defined as

CP = Tbody + NMem · (TMem − 1).

Where NMem is the number of memory accesses of the corresponding loop body

and TMem is the cycle-count of a memory access. The cycles of a loop Tloop

with a fixed number of iterations n can then be defined as Tloop = CP · n. As

accelerator kernels usually consist of nested loops, the individual loop bodies

must be estimated and summed separately to guarantee an exact calculation.

This results in the following relationship for m nested loops with i and k referring

to the current loop beginning with the outermost one:

Tacc =
m∑

i=1

[
i∏

k=1

·nk] · CPi with m, n, i, k ∈ Z.

Since loops in GIMPLE, and thus also in the accelerator FSMs, spare one state

in the last iteration, the number of clock cycles Tacc must be corrected by the

respective state. Therefore, the length of the execution path CP is represented

as sum of the loop body CPbody and the state CPheader , which is spared in the last

iteration:

CP = CPbody + CPheader .

208 CHAPTER 9. EVALUATION

The total number of cycles of a loop nest is then described by the following

equation:

Tacc =
m∑

i=1

[
i∏

k=1

·nk] · (CPbody i
+ CPheader i)−

m∑
i=1

[
i∏

k=1

·nk−1] · CPheader i with n0 = 1.

With the constant offset OV from Section 5.4 the number of cycles of an ac-

celerator Ttotal can be regarded as the sum Tacc and OV . The constant offset is

calculated from the number of input/output variables IO and a constant offset rep-

resenting the assembler instruction required to transfer a single value. The used

values for the SpartanMC were TMem = 0 and OV = 4 · IO. Figure 9.14 shows

the deviation of the estimated values to the measured runtime. Note that only

accelerator kernels with bounded loops, which could be calculated by means of

a static analysis, are considered for the evaluation. However, the chosen acceler-

ator kernels may still contain several different execution paths due to conditional

branches.

For that reason, Figure 9.14 distinguishes between two types of accelerators:

First, accelerators with data dependencies that were shown as blue bars. The

interval represents the possible runtimes between minimum and maximum ex-

ecution time. Second, accelerators with a static execution time that were show

as blue dots. According to the analysis results, the maximum error for acceler-

ators with static execution time on the SpartanMC architecture is 2.9%6. The

remaining error is induced from small deviations in the value for OV representing

the static IO operations. These operations are initiated from the software inter-

face, and therefore depend on the specific compilation results of the accelerator

wrapper function.

6For loops without data dependencies

9.5. INFLUENCE OF HLS OPTIMIZATIONS 209

cr
cC

alc

dc
t1

Dv

dc
t1

Dh

fle
tch

er

gr
ay

sc
ale iir

m
at

M
ul

re
ve

rs
eX

or

ex
pa

nd
Dec

Key

ad
dR

ou
nd

Key
m

ain

m
ixC

olu
m

ns

m
ixC

olu
m

ns
Inv

up
sa

m
ple

Cb

up
sa

m
ple

Cr

idc
tR

ow
s

cr
ea

te
Qua

nt

hu
ffC

re
at

e

ch
ec

kH
uf

fTa
ble

s

−40

−20

0

20

40

runtime of HW

D
ev

ia
tio

n
in

%

min/max deviation

IDCT AES JPEG

Figure 9.14: Relative error of performance analysis for SpartanMC benchmarks

After the first evaluation for the SpartanMC SoC, the same equations, with an

additional scaling factor for the clock difference, were applied for the ARM-SOC.

The memory access latency was adjusted according to the measurement of TMem

on the Zynq platform. In addition, OV was supplemented by a constant sum-

mand Tcall that represents the latency of the system calls for open(...) and

close(...). The used values were determined from the average of all kernel

calls. Besides these latencies, a discrepancy for each respective first call of an

accelerator was observed. These calls were characterized by a higher latency,

which is probably caused by a cold cache for the first use of the accelerator

device-structures. The effect was compensated by an additional latency for the

first accelerator call. The measured values for specific latencies can be looked up

in Appendix E.4.

The relative error of the performance analysis for the ARM SoC is shown in Fig-

ure 9.15. Since the runtime on the ARM SoC is dominated by the high latencies,

the different execution paths are hardly relevant. The maximum error of 11.5% is

induced by deviations of the average latencies.

210 CHAPTER 9. EVALUATION

cr
cC

alc

dc
t1

Dv

dc
t1

Dh

fle
tch

er

gr
ay

sc
ale iir

m
at

M
ul

re
ve

rs
eX

or

ex
pa

nd
Dec

Key

ad
dR

ou
nd

Key
m

ain

m
ixC

olu
m

ns

m
ixC

olu
m

ns
Inv

up
sa

m
ple

Cb

up
sa

m
ple

Cr

idc
tR

ow
s

cr
ea

te
Qua

nt

hu
ffC

re
at

e

ch
ec

kH
uf

fTa
ble

s

−40

−20

0

20

40

runtime of HW

D
ev

ia
tio

n
in

%

min/max deviation

IDCT AES JPEG

Figure 9.15: Relative error of performance analysis for ARM SoC benchmarks

Since the runtime of the accelerators can be determined with sufficient accuracy

by the analysis described above, it is now possible to analyze the runtime of

the individual subtasks. Figure 9.16 shows the results of this analysis for the

ARM SoC benchmarks. These results imply that the actual execution time of the

accelerator hardware plays a subordinate role only. In contrast, the static latency

for initializing the IO and DMA driver constitutes the major part of the execution

time.

Consequently, the runtime of accelerators could be significantly improved if the

static latencies for the open(...) and close(...) system-call could be in-

tegrated into the application startup and termination code. In addition, the DMA

controller must be modified accordingly, so that the required channels can be re-

served at application startup. These modifications are not included in the current

implementation and have to be performed manually.

Besides the elimination of the latencies, future improvements of the plugin should

address HLS optimization in order to minimize and/or speed up the generated

hardware accelerators. The given results may benefit from partial loop unrolling

in combination with modulo scheduling, but the reduction of unnecessary mem-

ory accesses could also be a future goal for improvements. For instance, the

9.5. INFLUENCE OF HLS OPTIMIZATIONS 211

identification of constant arrays and the direct mapping of this data into hard-

ware structures could improve several real-world applications.

cr
cC

alc

dc
t1

Dv

dc
t1

Dh

fle
tch

er

gr
ay

sc
ale iir

m
at

M
ul

re
ve

rs
eX

or

ex
pa

nd
Dec

Key

ad
dR

ou
nd

Key
m

ain

m
ixC

olu
m

ns

m
ixC

olu
m

ns
Inv

up
sa

m
ple

Cb

up
sa

m
ple

Cr

idc
tR

ow
s

cr
ea

te
Qua

nt

hu
ffC

re
at

e

ch
ec

kH
uf

fTa
ble

s
0

0.2

0.4

0.6

0.8

1

1.2

1.4

Ti
m

e
in
µ

s

IO Driver Initialization Memory IO Register IO Accelerator Execution

IDCT AES JPEG

Figure 9.16: Analysis of subtask execution time for ARM SoC benchmarks

10 CONCLUSION

The final chapter of this thesis summarizes the achievements of the presented

work. Therefore, a comparison of the implemented tool-flow with the objectives

stated in Introduction Part I is given. Furthermore, it discusses the known is-

sues of the current implementation and points out possible improvements of the

presented work-flow. Finally, the thesis concludes with a short summary.

10.1 Realization of Aims and Objectives

The goal of this thesis was to implement a GCC-based work-flow for the trans-

lation of high-level software applications to a hardware/software co-design for

hybrid systems. The entire work-flow was intended to be transparent for the

system developer, in order to lower the entry barrier for software designers who

lack specialized hardware knowledge.

These primary goals have been divided into single objectives, as described in

Section 1.3. The following paragraphs summarize the realization of these objec-

tives and point out which of them have been reached and which of them only

satisfy the requirements partially .

• Use of a high-level input language without annotations.

The current approach uses unrestricted, plain C as input language, as this is

a common language for embedded applications. However, the GCC front-

end still provides other language interfaces that could be used by the pre-

sented work-flow with little effort. Thus, support for a high-level language is

given. The application does not require any annotation in order to generate

an application-specific accelerator. Nonetheless, for the ARM architecture, it

may be helpful to point out that a memory reference could never alias, even

if the automatic alias analysis cannot find any evidence to prove this. This can

be done with the keyword restrict. However, the whole process could

still be used without any annotations for ARM as well as for SpartanMC.

214 CHAPTER 10. CONCLUSION

• Seamless integration of an HLS work-flow into a standard software

compiler

This is accomplished by implementing all parts of the work-flow as GCC

passes. Such passes can be integrated into the pass-schedule of the GCC

by using the plugin interface of the compiler. Consequently, the inserted

passes can take advantage of the optimized code structure that is provided

by previous passes. In order to obtain a global view of the whole application,

the compilation is run twice. The details of this process are integrated in a

wrapper script that provides a transparent usage of the whole process from

the developers viewpoint.

• Automatic selection of promising code sequences

The automatic selection of code sequences for hardware acceleration is

based on a simple heuristic that evaluates loops and uses the number of

iterations as an indicator for a later hardware mapping. After identifying a

list of accelerator candidates, the code sections in question are checked for

various criteria, which could lead to exclusion of the candidate, e.g. function

calls or unsupported GIMPLE statements. Although this may be regarded

as a simple, yet powerful, solution, current experience shows that this ap-

proach could easily end up abandoning all candidates. For this reason, the

approach offers room for improvements, which will be discussed in the fol-

lowing section.

• Automatic adaptation of software code during compilation

After performing the HLS, this step is essential in order to call the gener-

ated accelerator in a transparent way. The current approach uses a twofold

strategy: It modifies the actual GIMPLE representation of the program and

generates additional compilation units to handle the data transfer. On the

one hand, the direct modification of the compilers’ intermediate representa-

tion guarantees a seamless integration of accelerators. On the other hand,

the generation of additional compilation units provides the required flexibil-

ity to support complex interactions between software and hardware during

accelerator execution. The current implementation can be easily adapted to

other platforms or new functionalities.

10.1. REALIZATION OF AIMS AND OBJECTIVES 215

• Automatic generation of a memory interface

During the evaluation of different accelerators, the design of the memory

interface turns out to be one of the most critical aspects of the system.

At least, after HLS optimizations, the generated FSMs are usually memory-

bound. Consequently, an accelerator design that provides only a slow mem-

ory interface runs the risk of introducing a massive performance bottleneck.

The presented approach of tailored FIFOs in combination with an exact anal-

ysis of memory access patterns represents a promising concept to solve

this problem. For this reason, the current implementation must be regarded

as a first attempt with room for improvement.

• Portability to other target architectures

In the context of this thesis, the plugin has been implemented for two dif-

ferent host processor architectures (SpartanMC and ARM Cortex-A9). This

has been achieved by providing a unique implementation of the memory and

host processor interface for each target. Nevertheless, the vast majority of

the plugin sources have been used for both systems. This is supported by

the decision to use the plugin interface of the GCC instead of direct mod-

ifications of the compiler. In addition, the idea to work on an architecture-

agnostic intermediate code representation (GIMPLE) facilitates good porta-

bility of the plugin. On these grounds, the presented GCC plugin can be

regarded as well adaptable to new GCC targets and host architectures.

Besides the solution for these technical issues, the question from Section 1.3

remains: Which improvements of application performance can be achieved for

both target platforms using a static code analysis and a fully automatic accelerator

generation?

It has been shown that performance improvements by a factor of approximately

four are possible for the SpartanMC platform. This is supported by certain un-

derlying conditions, e.g. the availability of a fast and direct memory interface as

well as a balanced frequency setup between host processor and hardware accel-

erator. In fact, the results for the SpartanMC architecture can still be improved

by raising the accelerator clock frequency. Considering that the overall process

remains transparent to the end user and does not introduce any further efforts,

the results are good.

216 CHAPTER 10. CONCLUSION

Obviously, the ratio between host processor and accelerator clock frequency is

a property of the target architecture and can hardly be influenced by the used

work-flow. Unfortunately, in case of the ARM architecture, a frequency ratio of

approximately seven, in favor of the host processor, is given. Hence, the current

work-flow cannot provide any speedups for a single problem setup without ex-

tensive code refinements. Though a manual refinement of a C program is not

comparable with the effort of custom hardware development, it would also con-

tradict the intended approach to support legacy C code. Increasing the single-

accelerator performance is, however, not the only way to gain an overall appli-

cation speedup. Architectures that provide an operating system could benefit

from real task-level parallelism by using accelerators. This solution could provide

a speedup even with single accelerators running slower than the host proces-

sor. Thus, the presented system could still be used to extract parallel computing

cores automatically.

Due to the given results, the ideal use case for the presented system would be

a host processor running almost at the same clock frequency as the FPGA fabric.

Prominent examples for this setup are the Microblaze [119], NIOS [89] or Leon-

Family soft-cores [87]. There are also examples of state-of-the-art FPGA-SoC

architectures that could be suitable for the given work-flow, e.g. Microsemi’s

SmartFusion Family [109], which consists of a Flash-based FPGA fabric and an

ARM Cortex-M3, both running at a clock rate of up to 100 MHz.

To summarize, it can be concluded that the objectives of this thesis have been

reached. Nevertheless, the effort of implementing a working tool-flow for hard-

ware/software co-design was tremendous. In order to save time for future re-

search projects, the presented implementation of GCC PIRANHA can be used as

a starting point.

10.2 Limitations and Future Work

As mentioned already, not all GIMPLE operators and data types are supported

by the HLS work-flow. For this reason, the current implementation will reject

candidates containing unsupported GIMPLE expressions. The simple reason for

almost all missing expressions is the lack of an adequate Verilog representation

10.2. LIMITATIONS AND FUTURE WORK 217

for the respective operation or data type. Typically, such representations can be

added with more or less engineering effort, which would solve this issue.

Another unsolved problem is the support for unbounded loops on ARM systems

using FIFOs. This would require an additional write-back operation to be exe-

cuted after reaching the exit condition of the loop for each write-FIFO. Although

this is not supported at present, it could be implemented with little effort. In a

next step, the FIFOs and the hardware accelerators should be adapted for contin-

uous operation in order to provide a real streaming interface. Together with the

existing memory access analysis, this would allow the generation of streaming

accelerators without special code annotations.

Besides these minor issues, there is also one conceptional challenge that should

be the subject of future research. The basic idea is simple: Available optimization

passes should be actively used to modify the intermediate representation of loop

candidates to the special needs of hardware generation.

At present, the candidates are identified and processed after completing all loop

optimization passes. Note that the GCC is still a compiler for sequential gen-

eral purpose processors; thus, possible optimizations are tailored to the typical

requirements of such architectures (even on the GIMPLE-level). Therefore, the

provided intermediate structures does not represent a fully optimized version of

the current loop and there is no guarantee that all suitable optimizations for hard-

ware generation have been applied. Many interesting optimizations for instance,

modulo scheduling are carried out at the end of the compilation process by using

target-specific RTL. This makes perfect sense, as such optimizations can only be

applied for specific machines.

For such unavailable RTL optimizations, there is no other option but to reinvent

these passes on the GIMPLE-level for hardware generation. Apart from that,

there are many available GIMPLE passes and IPA passes that would be useful

for hardware generation but have already completed their optimizations when

the plugin is called. Unfortunately, due to the internal properties of GIMPLE,

it is not possible to re-execute some of these passes. The quantity of suit-

able candidates, as well as the performance of the resulting accelerators, could

be significantly improved by actively modifying the intermediate representation

of a candidate to the particular needs of hardware generation by using these

218 CHAPTER 10. CONCLUSION

optimizations1. Therefore, it would be necessary to restructure the internal work-

flow of the plugin in such a way that the list of potential candidates is com-

pletely available in the early stages of the second GCC run. This would allow to

parametrize useful GIMPLE optimizations for certain candidates before the actual

HLS plugin starts. Consequently, the remaining work-flow could take advantage

of selective modifications of the GIMPLE code of the accelerator candidate.

Another conceivable improvement is the replacement of the current random

memory access interface for the ARM architectures with the cache architecture

proposed in [144]. This would provide a prefetching mechanism even for memory

accesses that are currently not analyzable at all.

Beyond that, future work should address the migration to partial reconfiguration

in order to support accelerators in multiple applications on Linux systems. In

addition, the impact of accelerators on the systems energy consumption and the

effects of task-level parallelism should be evaluated.

10.3 Summary

In this thesis, a GCC-based work-flow for automatic accelerator generation and

integration has been presented. The intended target platforms are hybrids of

FPGA fabric and static host processor. The given work-flow performs an auto-

matic hardware/software partitioning by selecting frequently executed loops for

the mapping to hardware. Therefore, the underlying program analysis operates

on the whole application and analyzes function calls even across file boundaries.

The implemented hardware synthesis uses a target-agnostic intermediate rep-

resentation of the given C sources to generate a hardware description of the

accelerator. Moreover, an elaborated analysis of memory references is applied

in order to identify exact memory access patterns within accelerator candidates.

This enables the integration of a prefetching mechanism for the respective accel-

erator interface.

In contrast to recent approaches, the presented process neither requires HDL

skills from the user nor any special hardware knowledge of the underlying plat-

form. The integration of accelerators is carried out in a seamless and transparent

1Promising modifications would be function inlining or (partial) loop-unrolling.

10.3. SUMMARY 219

way, which also includes support for modern operating systems. The approach

avoids the use of special annotations or restrictions on to the input language that

would substantially lower the entry barrier for most software programmers.

The presented work-flow was implemented for two platforms, an FPGA-based

soft-core processor and a rather complex Zynq-7000 FPGA SoC encompassing

an ARM Cortex-A9 and an Artix-7 FPGA fabric. The evaluation of both implemen-

tations shows that the soft-core processor platform achieves an speedup of up

to four while accelerators on Zynq show slowdowns for unmodified C code. This

loss of performance could be explained by the seven times higher clock rate of

the ARM host processor and the latencies of the memory interface.

for this platform, even though, this demands additional refinements of the given

C code.

At present, the development of several HLS tools is on the threshold from the

prototype stage to commercially viable products. Nonetheless, most of these

approaches are intended for hardware developers. The underlying design strate-

gies are usually ”obsessed“ with the optimum and thus compete with hand de-

veloped HDL solutions. In contrast, the presented work-flow intends to reveal

new approaches for the ongoing development of these tools, by changing the

perspective to the software developer’s point of view.

A EXAMPLES AND CODE LISTINGS

A.1 Alias Set Generation for Interleaved Structure Access

The following C code generates an interleaved and self-aliasing access to an array of structures.

The example and the associated alias sets are taken from [135].� �
struct Foo {

int input;

int output;

};

int munge_data(struct Foo data[100]) {

int i, accum = 0;

for (i = 0; i < 100; ++i) {

accum += data[i].input;

data[i].output = accum;

}

return accum;

}� �
Figure A.1: Access to array of structures [135]

The symbols and accesses discovered for the example above by using the MemrefAnalyzer

are shown in Table A.1.

Table A.1: Fields of the memory access structure for Listing A.1

Symbol idx. Name Access idx. Code Type Width Offs. Slices

0 data 0 data[i].input LOAD 4 0 (4, 8)

0 data 1 data[i].output STORE 4 4 (4, 8)

These values are integrated into the equation system to get the universe and problem sets:

U =
{
(α1,α2,β1,β2, d) ∈ Z5 } ,

P =
{
(α1,α2,β1,β2, d) ∈ Z5

∣∣
0 ≤ α1 ≤ 99 ∧ 0 ≤ α2 ≤ 3∧

0 ≤ β1 ≤ 99 ∧ 0 ≤ β2 ≤ 3∧

4 = 8α1 + α2 − 8β1 − β2 + d
}

.

222 APPENDIX A. EXAMPLES AND CODE LISTINGS

By using the libISL to project out the variables α1, α2, β1, and β2, the following alias set A is

found:

A =
{

d ∈ Z
∣∣ ∃e0, e1 : 0 ≤ e0 ≤ 99 ∧ 0 ≤ e1 ≤ 99∧

8e1 ≥ 1 + d + 8e0 ∧ 8e1 ≤ 7 + d + 8e1
}

.

The resulting expressions are hard to understand and expensive to evaluate. However, after

applying the optimizations described in Section 5.6.4, the basic sets reduce to three disjoint sets.

A = A0 ∪ A1 ∪ A2,

A0 =

{
d ∈ Z|∃e0 =

⌊
7 + 7d

8

⌋
: − 1 ≤ d ≤ 791 ∧ 8e0 ≤ 7 + 7d ∧ 8e0 ≥ 1 + 7d

}
,

A1 =

{
d ∈ Z|∃e0 =

⌊
7 + d

8

⌋
: − 799 ≤ d ≤ −8 ∧ 8e0 ≥ 1 + d ∧ 8e0 ≤ 1 + d

}
,

A2 = {d ∈ Z| − 7 ≤ d ≤ −2}.

Each of the resulting sets has a constraint on the range of d but covers another part of Z for d .

As d refers to a self-alias query (cf. Listing A.1), this implies that d must be zero. Thus, the only

valid condition is A0 which can be decomposed to the following, more trivial, conditions:

e0 =

⌊
7 + 7d

8

⌋
= 0,

8e0 ≤ 7 + 7d ⇒ 8 · 0 ≤ 7 + 7 · 0 ⇒ 0 ≤ 7, which is true,

8e0 ≥ 1 + 7d ⇒ 8 · 0 ≥ 1 + 7 · 0 ⇒ 0 ≥ 1, which is false.

Consequently, d is not in A0 and no aliasing occurs.

A.2 GIMPLE Example

The following listings show the high GIMPLE and low GIMPLE representation for the sample

code in Listing 4.7.

A.2. GIMPLE EXAMPLE 223

High GIMPLE� �
foo_sum (int * a) {

unsigned int i.1, D.6506;

int D.6508, D.6511, sum;

int * D.6507;

{

int i;

i = 0; sum = 0;

goto <D.6488>;

<D.6487>:

i.1 = (unsigned int) i;

D.6506 = i.1 * 4;

D.6507 = a + D.6506;

D.6508 = *D.6507;

if (D.6508 < 0) goto <D.6509>;

else goto <D.6510>;

<D.6509>:

D.6511 = error ();

return D.6511;

<D.6510>:

i.1 = (unsigned int) i;

D.6506 = i.1 * 4;

D.6507 = a + D.6506;

D.6508 = *D.6507;

sum = D.6508 + sum;

i = i + 1;

<D.6488>:

if (i <= 99) goto <D.6487>;

else goto <D.6489>;

<D.6489>:

}

D.6511 = sum;

return D.6511;

}� �
Listing A.2: High GIMPLE example

Low GIMPLE� �
foo_sum (int * a) {

int i, sum, D.6511, D.6508;

unsigned int D.6506, i.1;

int * D.6507;

i = 0; sum = 0;

goto <D.6488>;

<D.6487>:

i.1 = (unsigned int) i;

D.6506 = i.1 * 4;

D.6507 = a + D.6506;

D.6508 = *D.6507;

if (D.6508 < 0) goto <D.6509>;

else goto <D.6510>;

<D.6509>:

D.6511 = error ();

goto <D.6512>;

<D.6510>:

i.1 = (unsigned int) i;

D.6506 = i.1 * 4;

D.6507 = a + D.6506;

D.6508 = *D.6507;

sum = D.6508 + sum;

i = i + 1;

<D.6488>:

if (i <= 99) goto <D.6487>;

else goto <D.6489>;

<D.6489>:

D.6511 = sum;

goto <D.6512>;

<D.6512>:

return D.6511;

}� �
Listing A.3: Low GIMPLE example

224 APPENDIX A. EXAMPLES AND CODE LISTINGS

� �
unit1.c

1451067104

=

function=fun2

frequency=1

%

uid=0

lineno=10

index=3

countable=1

header_frequ=1

latch_frequ=0

count.low=29

count.high=0

gcountable=1

countall.low=29

countall.high=0

instr_sw=9

instr_hw=8

deps_computed=0

deps=0

wrefs=0

rrefs=0

innermost=1

call=1

well_nested=0

-fun3

=

function=fun1

frequency=1

%

uid=1

lineno=5

index=3

countable=1

header_frequ=1

latch_frequ=0

count.low=9

count.high=0� �

� �
gcountable=1

countall.low=9

countall.high=0

instr_sw=8

instr_hw=7

deps_computed=0

deps=0

wrefs=0

rrefs=0

innermost=1

call=1

well_nested=0

-fun2

unit2.c

1451067115

=

function=fun3

frequency=1

%

uid=0

lineno=3

index=3

countable=1

header_frequ=1

latch_frequ=0

count.low=99

count.high=0

gcountable=1

countall.low=99

countall.high=0

instr_sw=6

instr_hw=6

deps_computed=1

deps=0

wrefs=0

rrefs=0

innermost=1

call=0

well_nested=1� �
Listing A.4: Complete transcript file of unit1.c and unit2.c [145]

B PLATFORM

B.1 SpartanMC Instruction Set

Table B.1: SpartanMC instruction coding matrices – Main Matrix (IR 17-13)

IR 4-0 ..000 ..001 ..010 ..011 ..100 ..101 ..110 ..111

00.. Spec. 1 Spec. 2 J JALS BEQZ BNEZ BEQZC BNEZC

01.. ADDI MAVI LHI SIGEX ANDI ORI XORI MULI

10.. L9 S9 L18 S18 SLLI — SRLI SRAI

11.. SEQI SNEI SLTI SGTI SLEI SGEI IFADDUI IFSIBUI

Table B.2: SpartanMC instruction coding matrices – Submatrix Special 1 (IR 4-0)

IR 4-0 ..000 ..001 ..010 ..011 ..100 ..101 ..110 ..111

00.. — — — — SLL MOV SRL SRA

01.. SEQU SNEU SLTU SGTU SLEU SGEU — —

10.. — — — — — — CBITS SBITS

11.. — — — — — — — NOT

Table B.3: SpartanMC instruction coding matrices – Submatrix Special 2 (IR 4-0)

IR 4-0 ..000 ..001 ..010 ..011 ..100 ..101 ..110 ..111

00.. RFE TRAP JR JALR JRS JALRS — —

01.. — — — — — — — —

10.. ADD ADDU SUB SUBU AND OR XOR MUL

11.. SEQ SNE SLT SGT SLE SGE MOVI2S MOVS2I

226 APPENDIX B. PLATFORM

B.2 SpartanMC Pipeline

The SpartanMC pipeline consists of three stages driven by one clock signal. Instruction fetch (IF),

instruction decode (ID), and the first part of operand fetch (OF1) are combined in the first stage.

The second part of operand fetch (OF2), execution (EX), and the first part of the memory access

(MEM1) form the second stage while the second part of the memory access (MEM2) and write

back (WB) are combined in the third stage.

18
unsig.

pc_new

addr

18

P
C

reset_vec

In
st

ru
ct

io
n

M
em

or
y

IR

clk1

unsig.

pc_delay

pc_trap

pc_intr

18

18

pc_plusone

pc_jump18

18

offset

imm

1

0

18

18

clk1

disp

7

window_p1

window

offset

imm_high

imm

18

18

18

18{0}13 ## ir[4:0]

{ir[12]}5 ## ir[12:0]

ir[8:0] ## {0}9

ir[8:5]

ir[12:9]

r_no_b

r_no_a

{sign_ext & ir[9]}9 ## ir[9:0]

ir

P
ip

el
in

e
C

on
tro

l 1

R
eg

is
te

r

write_reg_number

write_reg_data

10

18

10

10reg_no_a

reg_no_b

alu_opa

alu_opb

r_no_awb

pc_plus
one

pc_jump

-1

r_no_a

11

reg_no_b

reg_no_a

r_no_b

window

10

10

4

4

7

clk1

pi
pe

_1reg_a

Fi
le

 reg_b

3-
P

or
t

data_in

IF ID OF1

10

delay_window_r

reg_no_a

reg_no_b

git-commit-hash: ebbf16479adbdf3d7b718dcb1d1c79a026013456

last_reg_no_a 10

(internal repository of RS chair TU Darmstadt)

Figure B.1: SpartanMC pipeline architecture (IF, ID, OF1) [139]

B.2. SPARTANMC PIPELINE 227

clk1

pi
pe

_1

r_no_b_p1

reg_no_a_p1

reg_no_b_p1

alu_opa_p1

alu_opb_p1

r_no_awb_p1

window_p1

buf_sto_p1

reg_a

reg_b

last_alu_result

last_alu_result

pc_plusone

window_p2

window

last_alu_result

SFR_MUL

buf_sto_p1

18

18

pc_delay

S
pe

ci
al

R

eg
is

te
r

Fu
nc

tio
n

do_delay_bj

mem_addr[17:0]

sfr_data_out

alu_opa_p1

product[17:0]

pr
od

uc
t

[3
5:

18
]

sfr_addr

sfr_data_in

4
4

ALU

*

cmp (=0?)

delay_window_w 7

4

pi
pe

_2

clk1

alu_op_b

alu_op_a 18

18

18

18

36

18

D
at

a
M

em
or

ymm ##
mem_addr[17:1]

data_addr

reg_a

buf_sto_p1

last_alu_result store_a[17:9]

store_a[8:0]

store_a[8:0]

write_data_high

data

9

9
18 9

18

9

(a
nd

 IO
)

7

10

18

10

7
window_p2

write_reg_no

last_reg_no_a

reg_no_a_p2

n*18 io

m*18 lmd

O
R

18

alu_result

lmd_io[17:0]

{0}9 ## lmd_io[17:9]

{0}9 ## lmd_io[8:0]

18

write_reg_data

last_alu_result

n = SPARTANMC_PERIPHERAL_REGS
m = SPARTANMC_RAMBLOCKS

io = SPARTANMC_DI_PERI

1
mm

1
cc

18
sfr_data_out

18
pc_trap

7
leds

18
window

18
pc_intr

clk1

1

OF2 EX MEM1 MEM2 WB

mm

18
dbg_dat_out

18
dbg_idx_out

P
ip

el
in

e
C

on
tro

l 2 6mem_addr[0]

last_reg_no_a

P
ip

el
in

e
C

on
tro

l 36

10

Figure B.2: SpartanMC pipeline architecture (OF2, EX, MEM1, MEM2, WB) [139]

C GCC PLUGIN

C.1 PIRANHA Parameters

Plugin parameters have to use the following synopsis -fplugin-arg-<plugin>-<key>[=val-

ue]. The provided shared objects hw_analysis.so and hw_generation.so determine the

name of the plugin. The following listing shows only the key of the respective commands. If

nothing different is specified, the default value of parameters is ”0“.

Table C.1: GCC plugin parameters

Key Type Description

Analysis Plugin

debug bool Debug output for analysis plugin.

extract-file string Name of analysis transcript file.

ignore-uncountable bool Ignore loop in case of an unknown iteration count.

Synthesis Plugin

codegen-debug bool Debug output for code generation.

log string Configure logging for a specific subsystem logger

and logging level. The subsystem loggers (e.g.

memref or chaining) specify the part of the plugin

for which logging should be configured. Each subsys-

tem logger is subordinated to the root logger. The

logging level specifies the verbosity of the subsys-

tem logger.

Possible levels are all, debug, info, warning,

error, exception and nothing. For instance,

root:all would show the entire logging output of

the plugin.

log-file string Configure the logging level and a file name

for the file-output of the logging system, e.g.

buildlog.xml:debug.

By default, the output files are provided in XML for-

mat with integrated style information.

log-stdio string Configure the logging level for stdout. (default

value is warning)

stats-memory-analysis bool Create a *.json file for each accelerator with mem-

ory analysis statistics

230 APPENDIX C. GCC PLUGIN

Key Type Description

Synthesis Plugin

path string Specifies the output path for generated Verilog files.

addr-space-begin uint Specifies the begin of the address space for acceler-

ators. (in hexadecimal)

max-regs uint The maximum number of generated registers of an

accelerator. (default is 512)

compare string Specifies the compare function for loop ordering dur-

ing analysis. Possible values are:

lcmp_iterations Sort loops by iterations.

lcmp_iterations_strict –”–.

lcmp_instructions Sort loops by instructions.

lcmp_instructions_strict –”–.

The strict variant of the compare functions assumes

an iteration count of one for uncountable functions

(default is infinite).

ninstr uint Define maximum number of instructions for all

loop candidates. This value is only used by

lcmp_instructions (default is 100).

nloops uint Define maximum number of loop candidates. (de-

fault is 100)

synth-strategy uint Specify the candidate selection strategy. Possible

values are:

0 Use the given minimum efficiency as the lower

bound for candidate selection. If the efficiency

is not predictable, the loop candidate is synthe-

sized.

1 Use the given minimum efficiency as the lower

bound for candidate selection. If the efficiency

is not predictable, the loop candidate is re-

jected.

2 Take all candidates.

C.1. PIRANHA PARAMETERS 231

Key Type Description

Synthesis Plugin

min-efficiency uint Specify the minimum efficiency. Default value is

”0“; thus, all candidates are taken for synthesis if

a speedup is predicted.

For Synthesis Strategy 2, this value is irrelevant.

freq-cpu uint Specifies the clock rate of the host system in MHz

(default is 100).

freq-acc uint Specifies the clock rate of the accelerators in MHz

(default is 100).

chaining bool Activates chaining.

spec-exec bool Activates speculative execution.

spec-max-wight uint Specifies the maximum deviation of weight differ-

ence for speculation

block-wights bool Defines the weighting method for speculative execu-

tion. Possible values are:

instr_cnt Take the number of instructions to

weight an execution path.

block_latency Take the latency of an execution

path for weighting.

fifos bool Enable FIFOs for memory accesses. This parameter

is only available for ARM.

runtime-isl bool Enable runtime ISL evaluation of alias sets.

assume-loop-bounds uint Assume a fixed iteration count for uncountable loops

in order to enable a proper memory access analysis

(default is ”-1“).

232 APPENDIX C. GCC PLUGIN

C.2 Heuristic Delay Times for Operations

Table C.2: Delay times for different operations

Type Operation Delay

Assignments = 0

Boolean Operations <<, >>, XOR, AND, NOT , OR 5

Comparison Operations ==, <, ≤, ≥, >, 6= 5

Branch Operations if, else, switch, loop_exit, default 10

Simple Arithmetic +,− 10

Complex Arithmetic ∗,% 50

Memory Operations MEM_READ, MEM_WRITE 101

Unknown Operations 100

C.3 Generated Structures for Memory Analysis

Table C.3: Fields of the memref_symbol runtime structure [135]

Type Name Description

void* base The base, if it has been determined at compile time (e.g. be-

cause it is a reference to a static const).

bool base_known Is true if the base has been determined at compile time.

bool random_access After run time alias analysis, this field indicates whether ran-

dom access mode needs to be used with this symbol.

accesses A pointer to a NULL-terminated sequence of accesses for this

symbol.

Table C.4: Fields of the memref_access runtime structure [135]

Type Name Description

int mode The mode of the access, either AM_LOAD or AM_STORE.

size_t word_size The width of a single access in bytes.

ptrdiff_t min_offset The constant offset from the base.

size_t bit_offset Only for component_refs, this is the bit offset of the ac-

cessed field relative to the previous byte.

size_t slice_count The count of nested slices this access uses.

slices The pointer to a sequence of slices for this access.

C.4. GIMPLE STATEMENTS 233

Table C.5: Fields of the memref_slice runtime structure [135]

Type Name Description

ptrdiff_t stride The stride of the slice. A negative stride indicates

that the access runs toward “reverse”.

size_t iterations_minus_one The number of iterations of the slice, minus one.

C.4 GIMPLE Statements

The following Table C.6 describes the GIMPLE statements that are important for this thesis.

An overview of all available GIMPLE statements and their scope of usage (high GIMPLE or low

GIMPLE) is given in Table C.7.

Table C.6: Assorted GIMPLE statements

Statement Description

GIMPLE_ASSIGN This statement assigns a value to the operand on the left-hand-side (LHS).

The value is either taken directly from the first right-hand side operand

(RHS1) or calculated from RHS1 and RHS2 by using an expression (cf.

Table C.9).

GIMPLE_ASM This statement describes inline assembler instructions. Loop candidates

containing this statement will be excluded from synthesis.

GIMPLE_COND This statement is generated for if-else-branches and uses one LHS and

one RHS operand. The function gimple_cond_code returns the actual

condition status of this statement.

GIMPLE_SWITCH This statement implements a switch-branch. The index variable in-

cluded in this statement can be determined by using the GCC

function gimple_switch_index. The labels are accessible via

gimple_switch_num_labels and gimple_switch_label, respec-

tively.

GIMPLE_CALL This statement represents a function call using its LHS as a return value.

A function call statement is specified by a FUNCTION_DECL tree and a list

of trees as parameter-list. The GIMPLE_CALL statement is generated to

patch the existing code with the call of the accelerator wrapper function.

234 APPENDIX C. GCC PLUGIN

Table C.7: All GIMPLE statements and their scope of usage

Instruction High GIMPLE Low GIMPLE

GIMPLE_ASM x x

GIMPLE_ASSIGN x x

GIMPLE_BIND x

GIMPLE_CALL x x

GIMPLE_CATCH x

GIMPLE_COND x x

GIMPLE_DEBUG x x

GIMPLE_EH_FILTER x

GIMPLE_GOTO x x

GIMPLE_LABEL x x

GIMPLE_NOP x x

GIMPLE_OMP_ATOMIC_LOAD x x

GIMPLE_OMP_ATOMIC_STORE x x

GIMPLE_OMP_CONTINUE x x

GIMPLE_OMP_CRITICAL x x

GIMPLE_OMP_FOR x x

GIMPLE_OMP_MASTER x x

GIMPLE_OMP_ORDERED x x

GIMPLE_OMP_PARALLEL x x

GIMPLE_OMP_RETURN x x

GIMPLE_OMP_SECTION x x

GIMPLE_OMP_SECTIONS x x

GIMPLE_OMP_SECTIONS_SWITCH x x

GIMPLE_OMP_SINGLE x x

GIMPLE_PHI x

GIMPLE_RESX x

GIMPLE_RETURN x x

GIMPLE_SWITCH x x

GIMPLE_TRY x

C.5 Tree Types

A subsequent tree for a given tree node can be determined with the GCC macro TREE_TYPE.

This macro, again returns a tree type; thus, it can be used to examine tree nodes recursively

until the NULL_TREE is reached. The actual enumeration value specifying the tree type can be

determined with the macro TREE_CODE.

C.5. TREE TYPES 235

Sub-operands of a tree node for instance, for a TARGET_MEM_REF-type (base, index etc.), can be

determined via the TREE_OPERAND-macro. The following table shows the currently supported

tree types.

Table C.8: Tree types

Tree Type Description

LABEL_DECL This type represents a label within a function. Typically, it is used as a

target for GIMPLE_GOTO statements.

INTEGER_CST This type describes an integer constant. The actual value is accessed

with the macro TREE_INT_CST_LOW.

REAL_CST This type describes a floating-point constant. If this type is found during

application analysis, the current loop candidate is rejected.

ADDR_EXPR This type describes the value of a memory address.

MEM_REF This type describes a memory access by two arguments (cf. 4.2.1).

ARRAY_REF This type describes the access to the elements of an array.

TARGET_MEM_REF This type describes memory accesses by five arguments (cf. 4.2.1).

INDIRECT_REF A type describing a memory access by dereferencing a pointer.

COMPONENT_REF This type describes a memory access to a member of a structure.

PARM_DECL This type is used for function parameters.

VAR_DECL This type is used for variables.

CONST_DECL This type is used for enumeration constants.

REAL_DECL This type is used for floating-point variables. If this type is found during

application analysis, the current loop candidate is rejected.

POINTER_TYPE This type represents a pointer. The actual data type of the pointer is

determined via TREE_TYPE.

BOOLEAN_TYPE A type describing a Boolean value.

INTEGER_TYPE A type describing an integer value.

ENUMERAL_TYPE A type describing an enumeration value.

236 APPENDIX C. GCC PLUGIN

C.6 Operations

The type of a complete GIMPLE statement is determined with the macro TREE_CODE. The cur-

rently supported return values are listed in the following table. Note that the occurrence of

unsupported operations emits a warning during plugin execution.

Table C.9: GIMPLE expressions

Tree Type Description

BIT_IOR_EXPR Bitwise OR

BIT_XOR_EXPR Bitwise XOR

BIT_AND_EXPR Bitwise AND

BIT_NOT_EXPR Bitwise NOT

LSHIFT_EXPR Left shift

RSHIFT_EXPR Right shift

NEGATE_EXPR Sign reversal

MIN_EXPR Return the minimum of two operands

MAX_EXPR Return the maximum of two operands

PLUS_EXPR Arithmetic addition

POINTER_PLUS_EXPR Pointer increment

MINUS_EXPR Arithmetic subtraction

MULT_EXPR Arithmetic multiplication

LT_EXPR Less than

LE_EXPR Less than or equal to

GT_EXPR Greater than

GE_EXPR Greater than or equal to

EQ_EXPR Equal to

NE_EXPR Not Equal to

NOP_EXPR Do nothing

D OS INTEGRATION

A common mechanism used by operating systems for managing access to critical resources or

preventing processes from interfering with each other is the usage of CPU privilege levels. The

kernel of the operating system typically runs on the highest privilege level, the kernel-mode.

Meanwhile, processes that are spawned by the kernel, operate on a lower privilege level, the

user-mode. Hence, the interface to hardware accelerators must be provided by a kernel-mode

application that implements the bookkeeping of hardware resources and allows access to accel-

erators and memory from a user-mode application.

The integration of hardware accelerators in separate processes on a full-featured OS has hardly

been explored in the research field of HLS and configurable architectures. One of the rare ex-

amples of a toolchain supporting custom accelerators within an OS was presented by A. Agne

et al. in [88]. The proposed system ReconOS1 defines an interface for an operating system to

integrate and manage automatically generated accelerators. Therefore, the concept of hardware

threads for accelerators that could be used alongside classical software threads is introduced.

Both types of threads use a POSIX thread-like API. The build process of the underlying eCos OS

links application threads and OS threads together to form a monolithic bare-metal binary. Conse-

quently, the resulting system requires neither virtual memory management nor special treatment

of the accelerators. The data exchange between accelerator and host system is implemented

as a shared memory between hardware and software threads. The drawback of the system is

the rather coarse scope on complete threads. Due to this issue, the approach can be considered

as incompatible with the presented GCC-based HLS system, which works on the granularity of

loops.

In the initial version, the plugin used the helper-library libacc.a to handle accesses to the

accelerators from user space. The library maps the accelerator address space into the process

address space by using mmap. This approach assumed the usage of only one accelerator at

a time or, at least, the cooperative behavior of all involved processes and accelerators when

running simultaneously. However, from the system designer’s point of view, this contradicts the

idea of different privilege levels. Thus, for PIRANHA, the integration of generated hardware into

the application is supported by a generic OS interface that handles the accelerator invocation, the

data transfer, the address translation, and the hardware resource management.

D.0.1 Customized Application Binary

The current design of the tool-flow generates an ELF file containing the patched application and a

separate FPGA design file (bit-file). Virtually, the executable is logically connected with the bit-file

that contains the required accelerators. The accelerators are usable only if the corresponding

1Contrary to what the name suggests, ReconOS is not a full OS but rather an interface for custom hardware. Never-

theless it is based on the popular embedded OS eCos [97].

238 APPENDIX D. OS INTEGRATION

bit-file could be loaded; otherwise, the running program must execute its software path.

In order to resolve this dependency, the bit-file was embedded into the executable file. This

approach was implemented in [136]. Besides applying an implicit connection between bit-file

and software binary, it provides the intuitive handling of applications using accelerators. It would

allow the end user to load the FPGA design transparently during program execution, which would

enable the usage of accelerators even for users who lack background knowledge about the hybrid

design of the underlying architecture.

ELF Header
Program Header Table

(required during execution time)
Section 1

(e.g. .text)
Section 2

(e.g. .rodata)
Section n

(e.g. .data)
Section Header Table

(required during linking time)
...

Segments

Sections

Figure D.1: Structure of an ELF file [136]

ELF is broadly used and could be regarded as the actual standard executable file format for

Linux systems. One premise for the extension of this format was the avoidance of compatibility

issues with traditional tools. As shown in Figure D.1, the ELF file format starts with an ELF

header, followed by the program header table, and the actual data, which is organized in sections.

Typically, the ELF file contains the section header table at its end. As the ELF file could be

interpreted during program execution or at link time one distinguishes two different views of the

file. While the program header shows the segments used at the time of execution, the section

header lists the set of sections for the linking view. Note that the ordering of sections and headers

shown in Figure D.1 must be regarded as best practice only. It applies for most binaries, but it

is not mandatory in the file formats definition. Unfortunately, this aggravates the design of an

ELF parser. Nevertheless, one great advantage of the ELF format is its flexibility. It could contain

arbitrary sections that make it easily extensible and well suited for our purpose.

The connection between bit-file and ELF format could be implemented by two orthogonal meth-

ods. On the one hand, it would be possible to embed a pointer into the ELF file, referencing the

external bit-file. On the other hand, the bit-file data could be integrated directly into the ELF file.

The former method would be similar to the usage of shared libraries. Hence, it would be suitable

for setups that share an accelerator between multiple applications. However, although possible,

this is not a common use case of PIRANHA. As the extended ELF file describes a one-to-one

mapping between accelerator and a specific software binary, it could also store the whole bit-file.

For that reason, the latter method was preferred. This approach still allows the usage of shared

objects in the ELF format and also enables the sharing of bit-files between multiple applications.

239

Extended ELF File Format

The ELF file format allows the definition of sections holding arbitrary data. Each section type

is identified by a 32-bit value in the section header table. The mechanism is used to describe

segments from the program headers point of view. The reserved range for custom types for OS-

specific sections and segments is defined by 0x60000000-0x6FFFFFFF. To identify the bit-file

section, the ELF file was extended by a new section and program header of type 0x68777475.

This random type identifier lies in the middle of the reserved range. This should minimize the

risk of colliding with another type that is probably defined in another system environment2. The

newly inserted section, called ZwoELF, contains the bit-file and some additional fields that are

shown in the C representation in Listing D.2. In order to detect corruption of the included data,

ZwoELF contains a checksum field (using a SHA256 hash of the data field). Moreover, it provides

a version field that can be used for future consistency checks between different tool-chain com-

ponents. Finally, two length fields (dtbfile_len and bitfile_len) determine the length of

the following data fields, which further consist of the DTB defining the hardware device for the

OS (cf. Section D.0.4) followed by the bit-file containing the hardware design. The new section is

named .tudos.hwacc.XXXXXXXX, with XXXXXXXX containing the first digits of the checksum

in hexadecimal.� �
#define ZWOELF_DIGEST_SIZE SHA256_DIGEST_SIZE

#define ZWOELF_VERSION_SIZE 32

struct zwoelf {

__u8 checksum[ZWOELF_DIGEST_SIZE];

__u8 version[ZWOELF_VERSION_SIZE];

__u32 dtbfile_len;

__u32 bitfile_len;

__8 data[0];

}� �
Listing D.2: ZwoELF header definition [136]

Adding the ZwoELF section to an existing bit-file is carried out by a stand alone C++ program

called zwoelf. This is necessary because the classic way – using objcopy from the binutils

package – was unable to create the program headers which are required when loading executa-

bles. The implemented program takes an existing ELF binary, a bit-file, and a DTB as arguments,

and outputs a new ELF file containing the additional ZwoELF section. Furthermore, it extends the

program header and section header tables. The offsets within the header tables are later used by

the kernel to map the sections into the process’s address space. As the insertion of a new entry

could invalidate the offsets of the remaining entries by changing their position in the file, it is also

a task of the zwoelf program to realign the sections in order to correct such offsets.

2Most present OS environments tend to define these values at the beginning or end of the allowed range.

240 APPENDIX D. OS INTEGRATION

Bit-File Loading from ELF

After bringing bit-file and ELF binary together, the application loader process must be adapted in

order to trigger the loading of the bit-file at application startup. The first and probably most obvious

approach was the integration of the bit-file loader into the Linux runtime-loader ld.so. However,

a naïve implementation of this approach is inelegant for two reasons. First, the runtime-loader

ld.so cannot be used for statically linked binaries. Second, it would allow the user-space process

to modify the FPGA content without considering other processes or the current configuration of

the FPGA. For a potentially open system running third-party applications, this could induce a

security problem. Hence, the kernel needs to be in charge of the bookkeeping of loaded bit-files

and accelerators. As a consequence the kernel ELF loader is used directly.

The mechanism implemented in [136] registers a new binary format to the list of existing formats

supported by the kernel subsystem implementing the loading of executables. By default, this

list contains common formats, such as binfmt_elf, implementing support for loading ELF or

binfmt_aout for a.out binaries. As shown in Algorithm 11, the kernel internal loader traverses

each entry of this list and tries to recognize the format of the given binary in order to use the

correct execution handler. Depending on the return code of the handler, the traversal stops

(return ”0“ or error) or the next format is evaluated (return -ENOEXEC). If the traversal terminates

without finding anything to execute, the code ENOEXEC is returned to the user-land.

Algorithm 11: Kernel internal binary loader

Input: List (L) of Formats

Output: Return Value ret

1 foreach Format ∈ L do

2 ret ←− execute_format()

3 switch ret do

4 case ENOEXEC do

5 continue

6 case ”0“ do

7 return 0

8 case error do

9 return error

10 return ENOEXEC

In order to utilize this process in a minimally invasive manner and without interfering with the

current loading process of ELF files, an additional binary format is registered with respect to the

following conditions:

241

• The new binary format handler supports a minimum of the ELF format just enough to iden-

tify the ZwoELF section.

• The new binary format is inserted in the list before the actual loading of binfmt_elf takes

place.

• The new binary format handler returns -ENOEXEC instead of ”0“ after loading.

Hence, the loading process of the bit-file does not stop the kernel internal loader, which, in turn,

allows the loading of the remaining ELF file afterwards.

The implemented format handler for the Linux kernel is called binfmt_tudos_zwoelf. In or-

der to register the new format handler prior to the binfmt_elf handler, the kernel function

insert_binfmt(...) is used. This function requires a pointer to the struct linux_binfmt

as its argument, which describes the actual format. Among others, the structure contains the

function pointer .load_binary, which refers to an actual implemented loader function for the

specific handler. For binfmt_tudos_zwoelf this function is called load_tudos_zwoelf_-

binary(...). It reuses some basic mechanisms from its pendant in binfmt_elf.

The task of this loader function is to identify the ZwoELF segment that has the program header

type PT_TUDOS_ZWOELF. If such a section could be found within the binary, its data is extracted

and handed over to the actual accelerator driver. For Linux kernel version 4.4 or higher, the loading

of bit-files can be carried out with integrated kernel functions provided by the FPGA manager

module (fpga_mgr). Older versions of the Linux kernel have to use the xdevcfg kernel driver

provided by Xilinx. Both variants are supported by the current accelerator driver.

As already mentioned above, the return code of the loader is always -ENOEXEC in order to enable

binfmt_elf to load the remaining ELF file afterwards. This even holds true in the case of an

error. Instead of returning an error code, binfmt_elf will be allowed to try again, which would

potentially lead to the pure software execution of the binary.

D.0.2 Managing Bit-Files and Utilizing the Device Tree

After extracting the bit-file on program execution, there still remains the task of loading the hard-

ware design onto the reconfigurable fabric. This task is carried out by a device driver that should

also allow the OS to handle the new hardware resources. At present, the plugin only supports

generating a single bit-file occupying the whole FPGA. It may contain multiple hardware accel-

erators, but they always belong to the same application. Nevertheless, the device driver should

be capable of keeping track of multiple bit-files, each corresponding to a free slot on the FPGA.

However, the current implementation provides only one slot, which represents the whole FPGA.

In this case, the implemented mechanism only avoids interfering with a running accelerator that

may be used by another process. Nevertheless, the support for managing multiple bit-files is

considered a long-term goal of PIRANHA. Although not supported by the tool-chain at present,

it is conceivable to utilize partial reconfiguration techniques in conjunction with the PIRANHA

242 APPENDIX D. OS INTEGRATION

HLS tool-flow. This would allow a convenient usage of the reconfigurable fabric even for multiple

applications with accelerators running in parallel.

Besides the managing of bit-files, the kernel needs to deduce which registers and base addresses

are used by the current accelerator set in order to provide a convenient interface to the user-land.

Unfortunately, this information cannot be extracted from the bit-file itself, which is an opaque

object from the kernel’s point of view. For this reason, the ZwoELF section contains the DTB

field that describes the required set of devices. On embedded systems like ARM, there typically

is no standardized firmware available to describe the hardware configuration of the machine3;

instead, they usually run a rather simple boot loader from a flash memory. The actual hardware

configuration is determined during system startup from a device tree that has to be provided

to the kernel at boot-time. The device tree defines the configuration of all available hardware

components through a file-system like tree. The DTBs contained inside the ZwoELF section

represent the flattened device tree for a set of system components. They are generated from a

DTS file by using the device tree compiler (dtc). The DTS represents a human-readable form of

the DTB.� �
/dts-v1/;

/ {

arbitrary_name {

compatible = "tudos,hwacc";

tudos,fpga-tile-id = <0xffffffff>

reg = <

0x76c00000 0x00100000

0x78800000 0x00100000

>;

tudos, hwacc-name =

"acc1_name"

"acc2_name";

};

};� �
Listing D.3: Example DTS file for two accelerators

An example of a DTS file is shown in Listing D.3. It contains the register configuration of two

accelerators. The accelerators are identified by their unique names defined in the tudos,

hwacc-name field. In the context of this thesis, the compatible field and the reg field are

of particular importance. The compatible field is used to find generated accelerators in the

device tree. Formally, it is a string that specifies which device and driver is compatible with the

3On PC-compatible systems this task is carried out by the PC BIOS (basic input/output system) or a UEFI BIOS (united

extensible firmware interface).

243

given tree node. It is usually specified as a <vendor>,<device> combination. The reg field

is used to specify the register interface of the accelerator. It is an n-tuple of 32-bit values defin-

ing one or more register windows, each specified by a start address and a length. In order to

distinguish multiple register windows within the reg field, one needs to know the number of

32-bit values that define the start and the length of the window, respectively. This is deduced

from two parameters, #size-cells and #addr-cells, which are provided by the parent bus4.

The length of the start address – defined by the number of consecutive 32-bit values – is spec-

ified by #addr-cells, while the length of the size field is defined by #size-cells. For in-

stance, a value of #addr-cells of two and #size-cells of one would define a 64-bit start

address and a 32-bit range for the register window. A value of zero for #size-cells implies that

#addr-cells is directly used to address a distinct set of registers. Besides reg, compatible,

and tudos,hwacc-name, the DTS contains the vendor-specific field tudos,fpga-tile-id.

This field is used to identify which tiles of the FPGA are replaced by the bit-file. All bits set to one

(0xffffffff) mean that the whole FPGA is used for the bit-file.

Typically, the DTB can be either provided to the kernel by the boot loader, or directly integrated

into the kernel image. This means the device tree is static during system runtime. Fortunately,

most recent Linux kernels provide mechanisms to dynamically add or remove devices from the

tree in order to provide a hot plugging mechanism. In this context, the dynamic modification of

the device tree is supported through so-called device tree changesets. The required branch of the

device tree is generated by the plugin as DTS during compilation time. Afterwards, it is compiled

into a DTB that is finally added to the ZwoELF section of the binary. The compatible field of

the device is set to ”tudos,hwacc“. Later, this allows the accelerator driver to be registered for

this type of device, which then triggers a notification by the kernel if such a device is added or

removed. Finally, the generated devices are applied to the device tree during application startup.

D.0.3 The User-Land Interface

The access to the device driver is implemented by using the canonical approach provided by

the Linux kernel. It uses a device special file that is, as the name implies, a special file-system

entry typically located in /dev. The Linux device driver definition provides two types of device

nodes that differ in their supported access patterns: character device and block device. In order

to support a direct and fine-grained access, the character device model was chosen. As devices

are represented as file-system entry, the access to the device driver is limited to regular file

operations, such as open(...), close(...), read(...), and write(...). The current

implementation provides one device file (/dev/hwacc/<acc_name>) per accelerator, which is

identified by the unique accelerator name.

The access to accelerators is carried out by reading and writing of registers that are addressed

within the corresponding IO memory. In case of generated accelerators, the address is resolved

4In our case, the parameters are defined by the AXI bus interface.

244 APPENDIX D. OS INTEGRATION

by the use of the base address and the offset to the specific register. As the base address is

implicitly defined by the accelerator device, the actual register access only requires the relative

offset within the register window. In order to access the accelerator, the standard user-land

functions pread(...) and pwrite(...) are used. The parameter ”offset“ of these func-

tions corresponds the offset in the register window. Unfortunately, standard functions such as

pread(...) or pwrite(...) do not fit well into the semantic of accessing a single register.

On these grounds, an additional memory mapped approach, based on mmap(...), is used for

non-DMA or single register accesses.

D.0.4 Prototype of a Linux Accelerator Driver

The device driver created in [136] is registered as a platform device driver. Typically, a driver needs

to allocate a major device number and a minor number for registration. The major number defines

the device class, while the minor number is used to manage multiple devices of this class. The

driver registers a static major device number while for each accelerator a minor device number is

allocated as needed.

As defined in the drivers file_operations structure, the device driver supports the IO opera-

tions pread(...), pwrite(...) as well as mmap(...) and the file operations open(...)

and close(...).

Managing Accelerators at Runtime

Accelerators are used by calling open(...) and close(...) on the accelerator device file.

Thus, the kernel can easily check the presence and status of the used accelerator. If it turns out

that the accelerator does not exist or is currently in use, open(...) returns an error. In this

case, the calling process switches to software execution for the hardware accelerated loop. The

kernel checks the range of the requested memory of a read or write operation by default. If an

IO operation tries to access a memory address that does not belong to the memory range of the

requested accelerator’s register window, the signal SIGSEGV is sent to the calling process. This

harsh reaction is clearly intended and could help point out a potential bug in the GCC plugin that

shall never generate invalid memory accesses. Hence, this behavior could indicate a severe error

within the generated code.

Registration of Bit-Files

Another task is the creation of the internal accelerator representation in a consistent way during

bit-file loading. Unfortunately, applying device tree changeset introduces some issues that affect

proper bookkeeping of the created accelerators. The problem can be described as follows:

Before adding an accelerator to the device tree the kernel has to check the required resources for

the new hardware in order to avoid multiple allocations of IO addresses. This would be achievable

245

by applying the complete DTB that is contained in the ZwoELF section of the executable. This is

necessary, because #addr-cells and #size-cells must be derived from the parent device

in the device tree in order to find the correct interpretation of the reg field in the DTB. The

interpretation depends on the parameters of the used peripheral bus. Hence, the actual amount

of required resources become available only after applying the complete device tree changeset.

At this point, the problem seems to be solvable by applying the DTB before loading the bit-

file. Unfortunately, this provokes an inconsistent system state. The attaching of a new device

triggers the kernel to probe for the new hardware that should provide the claimed registers at

this moment. Hence, the driver must apply the bit-file beforehand, without actually knowing if it

contains a valid configuration.

Apply DTB

Probing Hardware

Program Bit-File to Slot

Accelerator
in Use

Search Base Address

Yes

No

Notify via Callback Function
pdrv_probe

Allocate Register Window

Success

Yes

Accelerator Ready for Use

No

Free Accalerator Structure

Free Device Tree Oerlay

Return Errno EBUSY

Use pure Software
Continue with ELF Loading

Continue with ELF Loading

Device Driver Kernel Subsystem

fpga_mgr

Evaluate Acc. Structure

Register Hardware

Figure D.4: Loading of bit-file and DTB in accelerator driver

This problem is circumvented by evaluating the tile ID field of the DTB at the beginning of the

accelerator registration. Each tile ID corresponds to a base address. Consequently, tile IDs

246 APPENDIX D. OS INTEGRATION

must be given in a global and consistent way during compilation of the program. The current

version of the plugin has no option for partial reconfiguration, thus, it always uses the whole

FPGA (fpga-tile-id: <0xffffffff>) for all accelerators of an application. As long as the

address space of those accelerators is generated in a consistent way no resource conflicts will

occur. Nevertheless, the device driver already has a built-in support for reconfigurable tiles and

multiple applications with accelerators.

The resulting mechanism of accelerator creation is shown in Figure D.4. It distinguishes between

tasks that are carried out in the kernel subsystem (right side) and tasks that are carried out by

the device driver (left side). As already mentioned, in the first step, the tile ID with the respec-

tive base address of the requesting accelerator is evaluated. In the following, all devices using

the compatible field with the value ”tudos,hwacc“ are searched in the driver internal tree

structure in order to find a violation with the base address of the requesting accelerator. If the

accelerator does not exist and an FPGA slot is available, the FPGA is programmed with the bit-file;

otherwise, the driver returns the busy error code (EBUSY). Afterwards, the DTB is used to make

the accelerator available to the OS. If the final allocation of the accelerator fails for instance, due

to a wrong DTB, the already allocated resources and the FPGA slot are marked as free again. As

a result of this, the hardware design cannot be loaded and the program runs in pure software

mode. The return status of the loading process is logged to the regular kernel message buffer.

E EVALUATION RESULTS

E.1 Comparison of Register-Allocation Strategies

The following tables contain the estimated frequency and resource consumption of eight accel-

erators for different register allocation strategies.

Speed Optimized Synthesis (Frequency in MHz)

Benchmark
Allocation Strategy

le_full le_uid le_simple le_2 le_3 le_4 le_5

Base64 339.44 401.28 412.54 369.27 390.77 287.93 337.83

Bit Reverse 257.59 374.67 379.93 381.97 319.48 298.41 301.93

Grayscale 222.59 367.24 367.24 224.76 219.29 211.50 196.34

Haar Wavelet 412.88 406.83 427.89 421.40 412.88 412.88 412.88

Matrix Mult 152.43 336.13 349.28 195.65 187.58 172.08 171.46

FFT 182.41 349.28 349.28 215.51 181.98 222.02 177.71

IIR 161.34 330.36 349.28 211.23 193.72 164.77 167.89

Speed Optimized Synthesis (Resource Footprint in LUTs)

Benchmark
Allocation Strategy

le_full le_uid le_simple le_2 le_3 le_4 le_5

Base64 670 581 575 728 613 684 640

Bit Reverse 401 246 438 439 433 454 418

Grayscale 305 245 221 276 303 301 316

Haar Wavelet 230 233 254 247 230 230 230

Matrix Mult 832 656 850 840 736 750 827

FFT 634 550 491 658 663 612 678

IIR 1087 823 801 1052 1079 1023 1092

248 APPENDIX E. EVALUATION RESULTS

Area Optimized Synthesis (Frequency in MHz)

Benchmark
Allocation Strategy

le_full le_uid le_simple le_2 le_3 le_4 le_5

Base64 292.99 383.58 382.70 385.80 335.68 310.84 278.62

Bit Reverse 258.59 355.49 361.27 324.14 271.96 291.88 275.86

Grayscale 210.26 367.24 367.24 217.06 224.92 220.02 177.87

Haar Wavelet 414.93 402.25 411.69 403.38 414.93 414.93 414.93

Matrix Mult 135.28 319.18 313.67 217.29 190.51 169.26 172.29

FFT 172.35 349.28 349.28 196.46 173.16 210.08 179.14

IIR 148.94 324.78 349.28 184.12 191.79 159.23 152.85

Area Optimized Synthesis (Resource Footprint in LUTs)

Benchmark
Allocation Strategy

le_full le_uid le_simple le_2 le_3 le_4 le_5

Base64 644 537 576 658 598 673 635

Bit Reverse 392 198 330 378 404 421 387

Grayscale 307 208 180 280 306 286 297

Haar Wavelet 237 229 238 242 237 237 237

Matrix Mult 814 671 605 750 740 739 800

FFT 633 510 518 626 655 613 634

IIR 1018 804 685 974 1052 991 1071

E.1.1 Benchmark Characteristics

This table shows the characteristics of the benchmarks for the register allocation experiment on

GIMPLE-level.

Benchmark
#GIMPLE #Basic

#Branches
#ALU #DSP

Variables Blocks Operations Operations

Base64 50 3 0 21 0

Bit Reverse 62 22 10 61 0

Grayscale 29 3 0 17 2

Haar Wavelet 14 3 0 7 0

Matrix Mult 59 3 0 25 8

FFT 51 6 1 22 4

IIR 79 6 1 29 11

E.2. STATE MACHINE EVALUATION 249

E.2 State Machine Evaluation

The following tables show the number of states of the generated state machines for different

HLS optimizations and give information about possible prefetching and conditional branches. Ad-

ditionally, the GCC-estimated number of software instructions for each loop candidate is given.

AES

Function
State Machine States Instr. Cond. Pre-

plain spec. chain. Software Branches fetching

addRoundKey 10 10 8 10 �

expandDecKey1 23 23 23 28 �

expandDecKey2 23 23 23 28 �

mixColumns 56 28 23 63 � �

mixColumnsInv 135 92 40 133 � �

main1 4 4 4 6

main2 4 4 4 6

Base64

Function
State Machine States Instr. Cond. Pre-

plain spec. chain. Software Branches fetching

decode1 36 36 27 35 �

decode2 40 40 34 39 �

encode 20 20 17 32

Bilinear

Function
State Machine States Instr. Cond. Pre-

plain spec. chain. Software Branches fetching

resize 30 30 18 48

250 APPENDIX E. EVALUATION RESULTS

Binary Tree

Function
State Machine States Instr. Cond. Pre-

plain spec. chain. Software Branches fetching

buildTree 12 12 8 12

insertTree 12 12 12 8

searchTree 14 14 14 10

Bit Reverse

Function
State Machine States Instr. Cond. Pre-

plain spec. chain. Software Branches fetching

reverseXor 56 56 38 71 � �

CRC

Function
State Machine States Instr. Cond. Pre-

plain spec. chain. Software Branches fetching

crcCalc 24 20 11 19 � �

Euclidian

Function
State Machine States Instr. Cond. Pre-

plain spec. chain. Software Branches fetching

euclid 8 5 4 7 �

Fletcher

Function
State Machine States Instr. Cond. Pre-

plain spec. chain. Software Branches fetching

fletcher 14 14 10 17 �

Grayscale

Function
State Machine States Instr. Cond. Pre-

plain spec. chain. Software Branches fetching

grayscaleFilter 24 24 12 30 �

E.2. STATE MACHINE EVALUATION 251

Haar Wavelet

Function
State Machine States Instr. Cond. Pre-

plain spec. chain. Software Branches fetching

waveletTransform 17 17 14 21

IDCT

Function
State Machine States Instr. Cond. Pre-

plain spec. chain. Software Branches fetching

dct1Dh 28 28 26 50 �

dct1Dv 20 20 15 22 �

IIR

Function
State Machine States Instr. Cond. Pre-

plain spec. chain. Software Branches fetching

iir16 31 31 28 60 �

JPEG

Function
State Machine States Instr. Cond. Pre-

plain spec. chain. Software Branches fetching

load1 15 15 12 16

load2 21 21 18 26

checkHuffTables 19 19 14 12 �

copyY 9 9 9 11

quant 11 11 9 11 �

decodeNextMCUsub 10 10 7 7

huffCreate 16 16 11 20 �

idctCols 220 160 78 189 �

idctRows 83 28 23 101 � �

upsampleCb 150 150 106 124 � �

upsampleCr 150 150 106 124 � �

252 APPENDIX E. EVALUATION RESULTS

Mandelbrot Set

Function
State Machine States Instr. Cond. Pre-

plain spec. chain. Software Branches fetching

inMSet 12 12 8 14

Matrix Multiplication

Function
State Machine States Instr. Cond. Pre-

plain spec. chain. Software Branches fetching

matMul 30 30 26 55 �

RSA

Function
State Machine States Instr. Cond. Pre-

plain spec. chain. Software Branches fetching

mod 6 6 4 6

squareRoot 9 9 7 11

E.3. PERFORMANCE EVALUATION 253

E.3 Performance Evaluation

This section presents the performance evaluation for each benchmark with respect to different

HLS optimizations. The benchmarks for SpartanMC were evaluated after consecutively applying

list scheduling (plain), speculative execution of branches (spec.), and chaining of operands (chain.).

In addition, column five (1:3) shows the speedups for a host processor clock frequency of 50 MHz

and an accelerator clock frequency of 150 MHz.

The evaluation of the same benchmarks for ARM1 distinguishs between the runtime using ran-

dom memory accesses and the prefetching mechanism. Note that prefetching is only applied on

benchmarks that contain fully analyzable loops.

Benchmark
Speedups for SpartanMC Slowdowns for ARM SoC

Kernel
plain spec. chain. 1:3 random prefetch.

AES 1,11 1,16 1,28 1,57 705.45 730.17 7

Base64 1,94 1,94 2,41 8,70 70.95 – 3

Bilinear 1,94 1,94 3,42 10,96 58.52 – 1

Binary Tree 1,22 1,22 1,22 4,57 34.71 – 3

Bit Reverse 2,38 2,37 3,30 11,68 99.74 92.49 1

CRC 1,37 1,64 3,27 11,93 53.23 47.36 1

Euclidian 0,83 0,95 1,05 1,59 2316.41 – 1

Fletcher 0,90 0,90 1,06 1,38 363.33 341.46 1

Grayscale 2,03 2,03 4,37 13,16 169.82 116.15 1

Haar Wavelet 1,56 1,56 1,61 4,87 161.58 – 1

IDCT 1,79 1,76 2,18 7,61 151.50 116.21 2

IIR 2,44 2,44 2,69 7,98 238.35 221.71 1

JPEG 1,27 1,35 1,60 2,27 248.26 171.69 11

Mandelbrot Set 1,18 1,19 1,41 1,78 334.26 – 1

Matrix Mult 2,36 2,37 2,51 6,81 251.81 112.38 1

RSA 1,10 1,11 1,20 2,32 1915.25 – 2

1The runtime for the ARM SoC was measured after chaining.

254 APPENDIX E. EVALUATION RESULTS

E.4 Performance Estimation

The following tables show the hardware runtime of accelerator kernels (with wrapper function

code) and an analytic estimation of the runtime for the respective accelerator. The estimation

is only predictable for accelerators with bounded loops. Accelerators that contain conditional

branches are shown with a minimum and maximum runtime.

The timing on the ARM SoC was measured with the C library function clock_gettime(...).

Each benchmark was measured at least 100 times, the average was taken for the evaluation.

SpartanMC

Benchmark Function
HW Exec. Estimated Runtime Relative

clk. cyc. min. clk. cyc. max. clk. cyc. Deviation in %

AES

mixColumnsInv 340 317 377 -6.76 – 10.88

expandDecKey 97 98 – 1.03

mixColumns 200 193 209 -3.50 – 4.50

addRoundKey 168 166 – -1.19

main 68 70 – 2.94

Bit Reverse reverseXor 2444 2107 3259 -13.79 – 33.34

CRC crcCalc 11264 10645 11893 -5.55 – 5.58

Fletcher fletcher 450 454 – -0.89

Grayscale grayscaleFilter 1096 1099 – 0.27

IDCT
dct1Dv 4363 4363 – 0

dct1Dh 1469 1467 – 0.14

IIR iir16 1472 1482 – 0.68

JPEG

upsampleCr 1549 1470 1822 -8.65 – 24.38

upsampleCb 1550 1416 1928 2.03

idctRows 542 553 – -8.65 – 24.39

quant 668 672 – 0.59

huffCreate 175 171 250 -2.29 – 42.86

checkHuffTables 73 71 – -2.74

Matrix Mult. matMul 4554 4555 – 0.02

E.5. DATA TRANSFER EVALUATION 255

ARM SoC

Benchmark Function
HW Exec. Estimated Runtime Relative

avg. in µs min. in µs max. in µs Deviation in %

AES

mixColumnsInv 0.6272 0.6373 0.6380 1.61 – 1.72

expandDecKey 0.6345 0.6365 – 0.33

mixColumns 0.6326 0.6360 0.6300 -0.41 – 0.53

addRoundKey 0.6585 0.6427 – -2.40

main 0.8556 0.8070 – -5.68

Bit Reverse reverseXor 0.8919 0.8867 0.8924 -0.57 – 0.059

CRC crcCalc 0.9260 0.8452 0.8590 -8.73 – -7.24

Fletcher fletcher 0.8449 0.8590 – 1.67

Grayscale grayscaleFilter 0.9306 0.8698 – -6.53

IDCT
dct1Dv 1.1953 1.1646 – -2.56

dct1Dh 1.3564 1.3779 – -1.58

IIR iir16 0.9000 0.9364 – 4.04

JPEG

upsampleCr 0.8189 0.7700 0.7755 -5.97 – -5.30

upsampleCb 0.9874 0.8740 0.7767 -11.49

idctRows 0.8230 0.7710 – -6.31 – -5.61

quant 0.9986 0.9071 – -9.16

huffCreate 0.9213 0.8338 0.8347 -9.49 – -9.40

checkHuffTables 0.9017 0.8032 – -10.92

Matrix Mult. matMul 1.4138 1.3489 – -4.59

E.5 Data Transfer Evaluation

The following table give an impression of the latencies caused by the system calls of a DMA

transfer using the PL330 controller. The experiment was carried out 600 times with an synthetic

benchmark transferring a chunk of 1024x32 bit. The measured DMA transfers for read (rd) and

write (wr) were divided into six parts.

copy Copy data to DMA buffers

prep Setup DMA registers for data transfer

sync Sync DMA controller (cache flush)

transfer Actual data transfer

wait_rdy Spinlock waits for completion of DMA transfer

back_transfer Copy data to userland

256 APPENDIX E. EVALUATION RESULTS

Besides the DMA transfer, the latencies for the open(. . .) and close(. . .) calls of the device

were evaluated. These functions were used to setup/release the DMA buffers and channels. The

first call of an accelerator causes a larger latency (1st_call).

Function
Time in µs Clock Cycles (ARM at 667 MHz)

max. avg. min. max. avg. min.

wr_cpy 8.769 6.38 5.23 5866 4267 3502

wr_prep 15.173 10.62 9.49 10150 7102 6346

wr_sync 21.980 16.61 14.63 14704 11112 9786

wr_transfer 202.796 55.72 31.29 135670 37275 20931

wr_waitrdy 1038.962 173.74 7.85 695065 116234 5250

wr_btransfer 11.880 10.11 8.68 7947 6766 5808

wr_total 1299.560 273.18 77.17 869405 182759 51624

rd_cpy 9.94 8.81 7.46 6649 5894 4989

rd_prep 12.33 10.71 9.66 8246 7162 6466

rd_sync 19.02 16.58 14.41 12722 11092 9641

rd_transfer 62.24 48.32 33.91 41640 32324 22687

rd_waitrdy 838.23 167.22 81.22 560777 111868 54334

rd_btransfer 16.29 13.33 11.64 10898 8917 7789

rd_total 958.05 264.96 158.31 640934 177259 105908

open 493.76 325.39 313.46 330323 217686 209702

close 302.74 289.36 210.35 202533 193587 140721

1st_call 210.43 182.23 963.24 140779 121915 64440

LIST OF FIGURES

1.1 Operating principle of the hybrid hardware/software work-flow 10

2.1 Gajski and Walker Y-chart showing high-level-synthesis 17

2.2 High-Level-Synthesis design steps . 19

2.3 Liquid metal compilation and runtime system (derived from [33]) 28

2.4 Altera OpenCL hardware architecture [7] . 30

2.5 Altera OpenCL tool-flow [22] . 31

2.6 SystemC design of a 4-bit adder [114] . 33

2.7 Vivado design-flow (adapted from [60] . 35

2.8 Nymble hardware/software co-compilation [34] . 37

2.9 Switch between hardware and software [34] . 37

2.10 LegUp design-flow [17] . 39

2.11 GCC plugin-based HLS work-flow for configurable architectures 45

2.12 GCC plugin-based HLS work-flow for FPGA-based architectures 46

3.1 Xilinx Artix FPGA layout [125, 113] . 51

3.2 SpartanMC instruction types [139] . 53

3.3 SpartanMC sliding register window [139] . 54

3.4 SpartanMC memory Architecture [139] . 56

3.5 SpartanMC tool-flow [139] . 57

3.6 Zynq architectural overview [145] . 59

4.1 GCC compilation flow with common optimizations, adapted from [80]. 63

4.2 Tree structure of an PLUS_EXPR with TARGET_MEM_REF 65

4.3 Example loop with memory accesses . 67

4.4 GIMPLE transcript of the loop body showing memory references 67

4.5 C code with conditional . 68

4.6 SSA values with PHI function . 68

4.7 C code example . 69

4.8 GENERIC code transcript . 69

4.9 Example transcript of a CFG with GIMPLE basic blocks 71

258 LIST OF FIGURES

4.10 Simplified call graph for -O0 and -O1 – -O3 . 74

4.11 Register pass-info for plugin . 76

5.1 First GCC compilation run collecting loop-data . 81

5.2 Example call graph (A) and inverted call graph for bar (B) 82

5.3 Source code of unit1.c [145] . 84

5.4 Source code of unit2.c [145] . 84

5.5 Analysis transcript file after compiling unit1.c and unit2.c [145] 84

5.6 Second GCC compilation run analyzing loop-data 85

5.7 Interface for compare functions [133] . 86

5.8 Second compilation run with synthesis pass . 88

5.9 Flow-chart of the pseudo-scheduling . 92

5.10 Potential pointer aliasing . 94

5.11 Four-dimensional matrix-vector product [135] . 98

5.12 Memory access pattern produced by two nested slices S0 and S1 [135] 98

6.1 Overall software-flow of an accelerator call . 116

6.2 Remove loop and CFG modifications . 119

6.3 GIMPLE transcript of an accelerator call . 121

6.4 SpartanMC assembler code with polling loop . 121

6.5 Add function call to CFG . 123

6.6 GIMPLE transcript of an accelerator function call 124

6.7 SpartanMC assembler code for accelerator function call 124

6.8 Control-flow of the accelerator function for Scheme I/II 131

6.9 Control-flow of the accelerator function for Scheme III 133

6.10 Nested C loop with three memory references . 134

6.11 Qualitative execution trace for Listing 6.10 . 135

6.12 Generated and optimized alias test between output vector and matrix of the matrix-

vector-product example 5.11 [135] . 137

6.13 Input and output files of the GCC plugin . 139

6.14 Decomposed compilation tool-flow and patching of base addresses 142

7.1 Flow-chart of the synthesis pass . 145

7.2 Transcript of memory access in GIMPLE [131] . 148

LIST OF FIGURES 259

7.3 Transformed memory access in CDFG transcript [131] 148

7.4 State machine structure (cf. [131]) . 150

7.5 State structure (cf. [131]) . 150

7.6 State branch structure (cf. [131]) . 150

7.7 Structure of the FSM . 152

7.8 Memory access state . 152

7.9 Generic datapath structure of the accelerator (cf. [131]) 153

7.10 Merging of basic blocks for balanced (A) and unbalanced (B) branch structures [131] 156

7.11 Conditional branches – GIMPLE transcript . 158

7.12 Original DFG (A) and speculated DFG (B) [131] . 159

7.13 Original DFG (A) and chained DFG (B) . 163

8.1 Straight work-flow with accelerator stub module 169

8.2 SpartanMC register interface . 170

8.3 Work-flow with manual accelerator integration . 171

8.4 ARM register interface . 171

8.5 Write and read transaction accelerator – AXI4 IPIC IP 172

8.6 SpartanMC memory interface . 175

8.7 ARM memory interface . 177

8.8 ARM FIFO interface . 179

8.9 Address mapping for SpartanMC (A) and ARM (B) 181

9.1 Fletcher-32 algorithm . 184

9.2 Datapath and FSM of the Fletcher-32 algorithm . 185

9.3 The generated fill-loop within the accelerator function 186

9.4 Binary tree search algorithm . 187

9.5 GIMPLE graph for the binary tree search . 188

9.6 Datapath and FSM of the binary tree search . 189

9.7 Analyzable loops and partial analyzable loops . 191

9.8 Not analyzable array subscripts (unknown_[1,2,3]) 192

9.9 Normalized frequency plotted against the respective normalized resource consump-

tion for different register-allocation strategies applied on FFT, IIR, Grayscale and

Matrix Mult. 199

260 LIST OF FIGURES

9.10 Resource and frequency comparison of different register-allocation strategies (LUTs

– small values are better; frequency – large values are better) 200

9.11 Comparison of FSM states after applying different HLS optimzations 202

9.12 Whole application improvements for SpartanMC 204

9.13 Whole application evaluation for the ARM SoC optimized with speculation and

chaining (small values are better) . 206

9.14 Relative error of performance analysis for SpartanMC benchmarks 209

9.15 Relative error of performance analysis for ARM SoC benchmarks 210

9.16 Analysis of subtask execution time for ARM SoC benchmarks 211

A.1 Access to array of structures [135] . 221

A.2 High GIMPLE example . 223

A.3 Low GIMPLE example . 223

A.4 Complete transcript file of unit1.c and unit2.c [145] 224

B.1 SpartanMC pipeline architecture (IF, ID, OF1) [139] 226

B.2 SpartanMC pipeline architecture (OF2, EX, MEM1, MEM2, WB) [139] 227

D.1 Structure of an ELF file [136] . 238

D.2 ZwoELF header definition [136] . 239

D.3 Example DTS file for two accelerators . 242

D.4 Loading of bit-file and DTB in accelerator driver . 245

LIST OF TABLES

2.-8 Overview of Related HLS Projects (1) . 41

2.-9 Overview of Related HLS Projects (2) . 42

5.1 Alias matrix for Listing 5.11 . 112

9.1 Benchmark results for using LibISL for alias tests. [135] 194

A.1 Fields of the memory access structure for Listing A.1 221

B.1 SpartanMC instruction coding matrices – Main Matrix (IR 17-13) 225

B.2 SpartanMC instruction coding matrices – Submatrix Special 1 (IR 4-0) 225

B.3 SpartanMC instruction coding matrices – Submatrix Special 2 (IR 4-0) 225

C.1 GCC plugin parameters . 229

C.2 Delay times for different operations . 232

C.3 Fields of the memref_symbol runtime structure [135] 232

C.4 Fields of the memref_access runtime structure [135] 232

C.5 Fields of the memref_slice runtime structure [135] 233

C.6 Assorted GIMPLE statements . 233

C.7 All GIMPLE statements and their scope of usage 234

C.8 Tree types . 235

C.9 GIMPLE expressions . 236

LIST OF ALGORITHMS

1 Function analyze_data_access_base [135] . 109

2 Function analyze_data_access_base_chrec [135] 110

3 Function normalize_base [135] . 111

4 Identify input variables . 117

5 Identify loop exit variables . 118

6 Function generate_state_for_block . 151

7 Merging basic blocks . 155

8 Generation of a DFG [131] . 160

9 List scheduling [95] . 161

10 Chaining [134] . 164

11 Kernel internal binary loader . 240

RELATED PUBLICATIONS ON HLS APPROACHES

[1] PandA Bambu Framework. http://panda.dei.polimi.it. Accessed: 2015-09-30.

[2] IEEE Unapproved IEEE Draft Standard for System Verilog: Unified Hardware Design, Spec-

ification and Verification Language (Superseded by P1800/D6). IEEE Std P1800/D6, 2005.

[3] C-to-Silicon Compiler High-Level Synthesis – Automated High-Level Synthesis for Design

and Verification. Documentation, 2011.

[4] IEEE Standard for Standard SystemC Language Reference Manual. IEEE Std 1666-2011

(Revision of IEEE Std 1666-2005), pages 1–638, Jan 2012.

[5] Carte++ Application Development Process. White Paper, 2015.

[6] M. Aldham, J. Anderson, S. Brown, and A. Canis. Low-cost hardware profiling of run-time

and energy in FPGA embedded processors. In Application-Specific Systems, Architectures

and Processors (ASAP), 2011 IEEE International Conference on, pages 61–68, Sept 2011.

[7] Altera Corporation. Implementing FPGA Design with the OpenCL Standard. White Paper

01172-2.0, 2011.

[8] J. Auerbach, D.F. Bacon, P. Cheng, and R. Rabbah. Lime: A java-compatible and synthesiz-

able language for heterogeneous architectures. In ACM, pages 89–108, 2010.

[9] C. Baaij, M. Kooijman, J. Kuper, A. Boeijink, and M. Gerards. CλaSH: Structural Descrip-

tions of Synchronous Hardware using Haskell. In Proceedings of the 13th EUROMICRO

Conference on Digital System Design: Architectures, Methods and Tools, pages 714–721.

IEEE Computer Society, September 2010.

[10] N. Bansal, S. Gupta, N. Dutt, A. Nicolau, and R. Gupta. Network topology exploration of

mesh-based coarse-grain reconfigurable architectures. In Design, Automation and Test in

Europe (DATE), 2004, pages 474–479, 2003.

[11] Y. Ben-Asher and N. Rotem. Synthesis for variable pipelined function units. In System-on-

Chip, 2008. SOC 2008. International Symposium on, pages 1–4, Nov 2008.

[12] P. Bjesse, K. Claessen, M. Sheeran, and S. Singh. Lava: Hardware Design in Haskell. In Pro-

ceedings of the Third ACM SIGPLAN International Conference on Functional Programming,

ICFP ’98, pages 174–184. ACM, 1998.

[13] T. Bollaert. Catapult Synthesis: A Practical Introduction to Interactive C Synthesis. In

P. Coussy and A. Morawiec, editors, High-Level Synthesis, pages 29–52. Springer Nether-

lands, 2008.

[14] M. Bowen. Handel-C – Language Reference Manual. Documentation, 2007.

266 BIBLIOGRAPHY

[15] M. Budiu. Spatial Computation. Phd thesis, Carnegie Mellon University, 2003.

[16] T. Callahan. Kernel Formation in Garpcc. In Proceedings of the 11th Annual IEEE Sympo-

sium on Field-Programmable Custom Computing Machines, FCCM ’03, pages 308–. IEEE

Computer Society, 2003.

[17] A. Canis, J. Choi, M. Aldham, V. Zhang, A. Kammoona, J.H. Anderson, S. Brown, and T. Cza-

jkowski. LegUp: High-Level synthesis for FPGA-based processor/accelerator systems. In

ACM/SIGDA, pages 33–36, 2011.

[18] A. Canis, J. Choi, B. Fort, R. Lian, O. Huang, N. Calagar, M. Gort, J.J. Qin, M. Aldham, T. Cza-

jkowski, D. Brown, and J. Anderson. From Software to Accelerators with LegUp High-level

Synthesis. In Proceedings of the 2013 International Conference on Compilers, Architec-

tures and Synthesis for Embedded Systems, CASES ’13, pages 18:1–18:9, Piscataway, NJ,

USA, 2013. IEEE Press.

[19] J. Cong, F. Yiping, G. Han, Wei Jiang, and Zhiru Zhang. Platform-Based Behavior-Level

and System-Level Synthesis. In SOC Conference, 2006 IEEE International, pages 199–202,

Sept 2006.

[20] P. Coussy, G. Lhairech-Lebreton, D. Heller, and E. Martin. GAUT – A free and open source

high-level synthesis tool. In IEEE Design Automation and Test in Europe, 2010.

[21] T.S. Czajkowski, U. Aydonat, D. Denisenko, J. Freeman, M. Kinsner, D. Neto, J. Wong,

P. Yiannacouras, and D.P. Singh. From opencl to high-performance hardware on FPGAS. In

Field Programmable Logic and Applications (FPL), 2012 22nd International Conference on,

pages 531–534, Aug 2012.

[22] T.S. Czajkowski, D. Neto, M. Kinsner, U. Aydonat, J. Wong, D. Denisenko, P. Yiannacouras,

J. Freeman, D.P. Singh, and S.D. Brown. OpenCL for FPGAs: Prototyping a compiler. In

Int’l Conf. on Engineering of Reconfigurable Systems and Algorithms (ERSA), pages 3–12,

2012.

[23] C. Dase, J.S. Falcon, and B. MacCleery. Motorcycle control prototyping using an FPGA-

based embedded control system. Control Systems, IEEE, 26(5):17–21, Oct 2006.

[24] B. Fort, A. Canis, J. Choi, N. Calagar, R. Lian, S. Hadjis, Yu Ting Chen, M. Hall, B. Syrowik,

T. Czajkowski, S. Brown, and J. Anderson. Automating the Design of Processor/Accelerator

Embedded Systems with LegUp High-Level Synthesis. In EUC, pages 120–129, 2014.

[25] H. Gadke and A. Koch. Comrade - A Compiler for Adaptive Computing Systems using a

Novel Fast Speculation Technique. In Field Programmable Logic and Applications, 2007.

FPL 2007. International Conference on, pages 503–504, Aug 2007.

[26] S. Gatzka and C. Hochberger. The amidar class of reconfigurable processors. J. Supercom-

put., 32(2):163–181, May 2005.

BIBLIOGRAPHY 267

[27] G. Genest, R. Chamberlain, and R. Bruce. Programming an FPGA-based Super Computer

Using a C-to-VHDL Compiler: DIME-C. In Adaptive Hardware and Systems, 2007. AHS

2007. Second NASA/ESA Conference on, pages 280–286, 2007.

[28] M. Gokhale, J. Stone, J. Arnold, and M. Kalinowski. Stream-oriented FPGA computing in

the Streams-C high level language. In Field-Programmable Custom Computing Machines,

2000 IEEE Symposium on, pages 49–56, 2000.

[29] S.T. Gurumani, H. Cholakkal, L. Yun, K. Rupnow, and C. Deming. High-level synthesis of

multiple dependent CUDA kernels on FPGA. In Design Automation Conference (ASP-DAC),

2013 18th Asia and South Pacific, pages 305–312, Jan 2013.

[30] M. Haldar, A. Nayak, N. Shenoy, A. Choudhary, and P. Banerjee. FPGA hardware synthesis

from MATLAB. In VLSI Design, 2001. International Conference on, pages 299–304, 2001.

[31] R. Harr. The Nimble Compiler for Agile Hardware: A Research Platform. System Synthesis,

International Symposium on, 0, 2000.

[32] J.R. Hauser and J. Wawrzynek. Garp: A MIPS Processor with a Reconfigurable Copro-

cessor. In Proceedings of the 5th IEEE Symposium on FPGA-Based Custom Computing

Machines, FCCM ’97, pages 12–. IEEE Computer Society, 1997.

[33] S. Huang, A. Hormati, D.F. Bacon, and R. Rabbah. Liquid metal: Object-oriented program-

ming across the hardware/software boundary. In J. Vitek, editor, ECOOP 2008 – Object-

Oriented Programming, volume 5142, pages 76–103. 2008.

[34] J. Huthmann, B. Liebig, J. Oppermann, and A. Koch. Hardware/software co-compilation

with the Nymble system. In ReCoSoC, pages 1–8, 2013.

[35] P.O. Jääskeläinen, de C.S. La Lama, P. Huerta, and J.H. Takala. OpenCL-based de-

sign methodology for application-specific processors. In Embedded Computer Systems

(SAMOS), 2010 International Conference on, pages 223–230. IEEE, 2010.

[36] N. Kavvadias. HercuLeS 1.0 reference manual. Menual, 2013.

[37] N. Kavvadias and K. Masselos. Hardware Design Space Exploration Using HercuLeS HLS.

In Proceedings of the 17th Panhellenic Conference on Informatics, PCI ’13, pages 195–202,

New York, NY, USA, 2013. ACM.

[38] D.W. Knapp. Behavioral Synthesis: Digital System Design Using the Synopsys Behavioral

Compiler. Electronic and digital design. Prentice Hall PTR, 1996.

[39] H. Lange and A. Koch. An Execution Model for Hardware/Software Compilation and its

System-Level Realization. In FPL, pages 285–292, 2007.

[40] S.J. Lee, D.K. Raila, and V.V. Kindratenko. LLVM-CHiMPS: Compilation Environment for

FPGAs Using LLVM Compiler Infrastructure and CHiMPS Computational Model. In Recon-

figurable Systems Summer Institute 2008 (RSSI’08), 2008.

268 BIBLIOGRAPHY

[41] Y. Li and M. Leeser. Hml, a novel hardware description language and its translation to vhdl.

Very Large Scale Integration (VLSI) Systems, IEEE Transactions on, 8(1):1–8, 2000.

[42] D. MacMillen. Nimble Compiler Environment for Agile Hardware. report, 1998.

[43] E. Martin, O. Sentieys, H. Dubois, and J.L. Philippe. GAUT: An architectural synthesis tool for

dedicated signal processors. In Design Automation Conference, 1993, with EURO-VHDL

’93. Proceedings EURO-DAC ’93., European, pages 14–19, Sep 1993.

[44] J. Matthews, B. Cook, and J. Launchbury. Microprocessor specification in Hawk. In Com-

puter Languages, 1998. Proceedings. 1998 International Conference on, pages 90–101,

May 1998.

[45] Mentor Graphics. Designing High Performance DSP Hardware Using Catapult C Synthesis

and The Altera Accelerated Libraries. White Paper, 2007.

[46] R. Nikhil. Bluespec: A General-Purpose Approach to High-Level Synthesis Based on Parallel

Atomic Transactions. In P. Coussy and A. Morawiec, editors, High-Level Synthesis, pages

129–146. Springer Netherlands, 2008.

[47] H. Nikolov, T. Stefanov, and E. Deprettere. Systematic and Automated Multiprocessor Sys-

tem Design, Programming, and Implementation. Computer-Aided Design of Integrated

Circuits and Systems, IEEE Transactions on, 27(3):542–555, March 2008.

[48] A. Papakonstantinou, K. Gururaj, J.A. Stratton, D.C. Chen, J. Cong, and W.-M.W. Hwu.

High-performance cuda kernel execution on fpgas. In Proceedings of the 23rd International

Conference on Supercomputing, ICS ’09, pages 515–516, New York, NY, USA, 2009. ACM.

[49] M.M. Pereira and L. Carro. Dynamic Reconfigurable Computing: The Alternative to Homo-

geneous Multicores under Massive Defect Rates. International Journal of Reconfigurable

Computing, 2011:21 – 37, 2011.

[50] C. Pilato and F. Ferrandi. Bambu: A modular framework for the high level synthesis of

memory-intensive applications. In Field Programmable Logic and Applications (FPL), 2013

23rd International Conference on, pages 1–4, Sept 2013.

[51] F. Plavec. Stream Computing on FPGAs. Phd thesis, University of Toronto, 2010.

[52] A.R. Putnam, D. Bennett, E. Dellinger, J. Mason, and P. Sundararajan. CHiMPS: A High-

level Compilation Flow for Hybrid CPU-FPGA Architectures. In Proceedings of the 16th In-

ternational ACM/SIGDA Symposium on Field Programmable Gate Arrays, FPGA ’08, pages

261–261. ACM, 2008.

[53] S. O Settle. High-performance Dynamic Programming on FPGAs with OpenCL, 2013.

[54] S. Sharma and W. Chen. Using Model-Based Design to Accelerate FPGA Development for

Automotive Applications. In Proceedings of SAE International J. Passenger Cars – Electron.

Electr. Systems, pages 150–158. SAE, 2009.

BIBLIOGRAPHY 269

[55] M. Sheeran. muFP, a Language for VLSI Design. In Proceedings of the 1984 ACM Sympo-

sium on LISP and Functional Programming, LFP ’84, pages 104–112. ACM, 1984.

[56] B. Shehan, R. Jahr, S. Uhrig, and T. Ungerer. Reconfigurable Grid ALU Processor: Optimiza-

tion and Design Space Exploration. In DSD, pages 71 – 79. IEEE, September 2010.

[57] S. Singh and D.J. Greaves. Kiwi: Synthesis of FPGA Circuits from Parallel Programs. In

Proceedings of the 2008 16th International Symposium on Field-Programmable Custom

Computing Machines, FCCM ’08, pages 3–12. IEEE Computer Society, 2008.

[58] M.C. Smith, J.S. Vetter, and X. Liang. Accelerating scientific applications with the src-6 re-

configurable computer: Methodologies and analysis. In Parallel and Distributed Processing

Symposium, 2005. Proceedings. 19th IEEE International, pages 157b–157b, April 2005.

[59] D. Soderman and Y. Panchul. Implementing C algorithms in reconfigurable hardware using

C2Verilog. In FPGAs for Custom Computing Machines, 1998. Proceedings. IEEE Sympo-

sium on, pages 339–342, Apr 1998.

[60] T. Feist. Vivado Design Suite. White Paper, 2012.

[61] Impulse Accelerated Technology. Accelerate Software Algorithms on FPGAs. http://

www.impulseaccelerated.com. Accessed: 2015-09-30.

[62] M. Thompson, H. Nikolov, T. Stefanov, A.D. Pimentel, C. Erbas, S. Polstra, and E.F. De-

prettere. A Framework for Rapid System-Level Exploration, Synthesis, and Program-

ming of Multimedia MP-SoCs. In Hardware/Software Codesign and System Synthesis

(CODES+ISSS), 2007 5th IEEE/ACM/IFIP International Conference on, pages 9–14, Sept

2007.

[63] J.J.P. van Zuijlen. Feasibility study on Handel C for Embedded Control. Pre-msc report

014ce2007, University of Twente, May 2007.

[64] J. Villarreal, A. Park, W. Najjar, and R. Halstead. Designing Modular Hardware Accelerators

in C with ROCCC 2.0. In FCCM, pages 127–134, 2010.

[65] F. Winterstein, S. Bayliss, and G.A. Constantinides. High-level synthesis of dynamic data

structures: A case study using Vivado HLS. In Field-Programmable Technology (FPT), 2013

International Conference on, pages 362–365, Dec 2013.

[66] Inc. Y Explorations. eXCite – C to RTL Behavioral Synthesis. http://www.yxi.com/

products.php, 2013. Accessed: 2015-10-05.

[67] Y. Zhu, Y. Liu, D. Zhang, S. Li, P. Zhang, and T. Hadley. Acceleration of pedestrian detection

algorithm on novel C2RTL HW/SW Co-design platform. In Green Circuits and Systems

(ICGCS), 2010 International Conference on, pages 615–620, 2010.

RELATED PUBLICATIONS ON THE GCC FRAMEWORK

AND COMPILER TECHNIQUES

[68] Compilers. Pearson, second edition, 2007.

[69] K. Aardal, C.AJ. Hurkens, and A.K. Lenstra. Solving a system of linear diophantine equa-

tions with lower and upper bounds on the variables. Mathematics of Operations Research,

25(3):427–442, 2000.

[70] O. Bachmann, P.S. Wang, and E.V. Zima. Chains of recurrences–a method to expedite

the evaluation of closed-form functions. In Proceedings of the International Symposium

on Symbolic and Algebraic Computation, ISSAC ’94, pages 242–249, New York, NY, USA,

1994. ACM.

[71] D. Berlin and D. Edelsohn. High-level Loop Optimizations for GCC. In In Proceedings of the

2004 GCC Developers Summit, pages 37–54, 2004.

[72] D. Novillo. Design and Implementation of Tree SSA. In Proceedings of the 2004 GCC

Developers Summit, pages 119–130, 2004.

[73] Inc. Free Software Foundation. GNU BinUtils. https://sourceware.org/binutils/,

2016. Accessed: 2016-01-20.

[74] L.J. Hendren, C. Donawa, M. Emami, G.R. Gao, J., and B. Sridharan. Designing the McCAT

Compiler Based on a Family of Structured Intermediate Representations. In In Proceedings

of the 5th International Workshop on Languages and Compilers for Parallel Computing,

number 757 in LNCS, pages 406–420. Springer-Verlag, 1992.

[75] Y. Huang, L. Peng, C. Wu, Y. Kashnikov, J. Rennecke, and G. Fursin. Transforming GCC into a

Research-Friendly Environment: Plugins for Optimization Tuning and Reordering, Function

Cloning and Program Instrumentation. In 2nd International Workshop on GCC Research

Opportunities (GROW’10), Pisa, Italy, January 2010.

[76] J. Hubička. The GCC call graph module: A framework fir inter-procedural optimization. In

Proceedings of the 2004 GCC Developers Summit, pages 65–78, 5 2004.

[77] U. Khedker. Plugin Mechanism in GCC. Technical report, GCC Resource Center, Depart-

ment of Computer Science and Engineering, Indian Institute of Technology, Bombay, 2014.

[78] J. Merrill. GENERIC and GIMPLE: A New Tree Representation for Entire Functions. In In

Proceedings of the 2003 GCC Summi, pages 171–180, 2003.

[79] D. Novillo. Tree SSA - A New Optimization Infrastructure for GCC. In in ‘Proceedings of the

2003 GCC Summit, pages 181–194, 2003.

272 BIBLIOGRAPHY

[80] D. Novillo. GCC—An Architectural Overview, Current Status, and Future Directions. In Linux

Symposium. Vol. 2. 2006, pages 185–200, 2006.

[81] S. Pop, A. Cohen, C. Bastoul, S. Girbal, G.-A. Silber, and N. Vasilache. Graphite: Polyhedral

analyses and optimizations for gcc. In Proceedings of the 2006 GCC Developers Summit,

page 2006. Citeseer, 2006.

[82] R.M. Stallman and the GCC Developer Community. GNU Compiler Collection Internals

(Version 4.8.1). Free Software Foundation, 2013.

[83] S. Verdoolaege. isl: An Integer Set Library for the Polyhedral Model. In K. Fukuda, J. Ho-

even, M. Joswig, and N. Takayama, editors, Mathematical Software – ICMS 2010, volume

6327 of Lecture Notes in Computer Science, pages 299–302. Springer Berlin Heidelberg,

2010.

UNCATEGORIZED RELATED PUBLICATIONS

[84] IEEE Standard for Verilog Hardware Description Language. IEEE Std 1364-2005 (Revision

of IEEE Std 1364-2001), pages 1–560, 2006.

[85] IEEE Standard VHDL Language Reference Manual. IEEE Std 1076-2008 (Revision of IEEE

Std 1076-2002), pages c1–626, Jan 2009.

[86] Taming the Challenges of 20nm Custom/Analog Design. Technical report, Cadence Design

Systems, Inc., 2012.

[87] Inc. Aeroflex. Processors, 2015. Accessed: 2015-11-20.

[88] A. Agne, M. Happe, A. Keller, E. Lubbers, B. Plattner, M. Platzner, and C. Plessl. ReconOS:

An Operating System Approach for Reconfigurable Computing. Micro, IEEE, 34(1):60–71,

Jan 2014.

[89] Altera. Nios II Processors - World’s Most Versatile Embedded Processors. http://

www.altera.com/products/ip/processors/nios2/ni2-index.html, 2015. Ac-

cessed: 2015-10-10.

[90] ARM Limited. PrimeCell DMA Controller (PL330) – Technical Reference Guide, 2007.

[91] Avnet, Inc. Zedboard – Zynq Evaluation and Development Hardware User’s Guide –Version

2.2, 2014.

[92] M. Barr and A. Massa. Programming Embedded Systems: With C and GNU Development

Tools. O’Reilly Media, 2006.

[93] Cadance Design Systems, Inc. Xtensa LX6 Customizable DPU – Tensilica Datasheet, 2014.

[94] C.E. Cummings. Verilog-2001 Behavioral and Synthesis Enhancements. Sunburst Design,

Inc., 2002.

[95] G. De Micheli. Synthesis and Optimization of Digital Circuits. McGraw-Hill series in electrical

and computer engineering. McGraw-Hill, 1994.

[96] Inc. Free Software Foundation. GNU Automake (Version 1.15) – Manual. https://www.

gnu.org/software/automake/manual/html_node/index.html#Top, 2014. Ac-

cessed: 2015-11-20.

[97] Inc. Free Software Foundation. eCos – Homepage. http://ecos.sourceware.org,

2015. Accessed: 2015-12-05.

[98] D.D. Gajski and R. Kuhn. Guest Editors’ Introduction. In New VLSI Tools, Computer 16(12),

pages 11–14, December 1983.

274 BIBLIOGRAPHY

[99] Yan Han and E. Oruklu. Real-time traffic sign recognition based on zynq fpga and arm socs.

In EIT, pages 373–376, 2014.

[100] J. Kodis. Fletcher’s checksum error correction at a fraction of the cost. j-DDJ, 17(5):32, 34,

36, 38, May 1992.

[101] G. Kornaros, K. Harteros, I. Christoforakis, and M. Astrinaki. I/O Virtualization Utilizing an

Efficient Hardware System-Level Memory Management Unit. In System-on-Chip (SoC),

2014 International Symposium on, pages 1–4, Oct 2014.

[102] F.J. Kurdahi and A.C. Parker. REAL: A Program for REgister ALlocation. In Design Automa-

tion, 1987. 24th Conference on, pages 210–215, June 1987.

[103] H. Lange and A. Koch. Low-Latency High-Bandwidth HW/SW Communication in a Virtual

Memory Environment. In Field Programmable Logic and Applications, 2008. FPL 2008.

International Conference on, pages 281–286, Sept 2008.

[104] H. Lange and A. Koch. Architectures and Execution Models for Hardware/Software Compi-

lation and Their System-Level Realization. Computers, IEEE Transactions on, 59(10):1363–

1377, Oct 2010.

[105] H. Lange, T. Wink, and A. Koch. MARC II: A Parametrized Speculative Multi-Ported Memory

Subsystem for Reconfigurable Computers. In Design, Automation Test in Europe Confer-

ence Exhibition (DATE), 2011, pages 1–6, March 2011.

[106] Z. Li, J. Li, Y. Zhao, C. Rong, and J. Ma. A soc design and implementation of h.264 video

encoding system based on fpga. In IHMSC, volume 2, pages 321–324, 2014.

[107] Mentor Graphics, Corp. Functional Verification Study, 2014.

[108] P. Metzgen. Optimizing a high performance 32-bit processor for programmable logic. In

ISSOC 2004, page 13. IEEE Computer Society, 2004.

[109] Microsemi Corporation. SmartFusion: FPGA Fabric Synthesis Guidelines – Application Note

AC361, 2011.

[110] University of Cambridge. The Tiger MIPS processor. https://www.cl.cam.ac.uk/

teaching/0910/ECAD+Arch/mips.html, 2010. Accessed: 2015-09-30.

[111] Inc. Qualcomm Technologies. Qualcomm Snapdragon TM 4K Ultra HD. https://www.

qualcomm.com/documents/snapdragon-4k-datasheet, 2014. Accessed: 2015-09-

30.

[112] L. Ramachandran, F. Vahid, S. Narayan, and D.D. Gajski. Semantics and synthesis of signals

in behavioral VHDL. In Design Automation Conference, 1992., EURO-VHDL ’92, EURO-DAC

’92. European, pages 616–621, Sep 1992.

BIBLIOGRAPHY 275

[113] S. Ramalingam. Xilinx Stacked Silicon Interconnect Technology – Producing a New Class of

High-capacity, Resource-rich FPGAs. ISSUU - MEPTEC Report, pages 22–25, 2011.

[114] D.K. Tala. SystemC Adder. Accessed: 2015-11-20.

[115] J. Teich. Digitale Hardware/Software-Systeme: Synthese und Optimierung. Springer-

Lehrbuch. Springer Berlin Heidelberg, 2013.

[116] J. Trommer, M. Raitza, A. Heinzig, T. Baldauf, T. Mikoajick, M. Völp, and W.M. Weber. Re-

configurable Nanowire Transistors with Multiple Independent Gates for Efficient and Pro-

grammable Combinational Circuits. In In publication at Conference on Design, Automation

& Test in Europe, DATE ’16, 2016.

[117] P. Vogel, A. Marongiu, and L. Benini. Lightweight Virtual Memory Support for Many-Core

Accelerators in Heterogeneous Embedded SoCs. In Hardware/Software Codesign and Sys-

tem Synthesis (CODES+ISSS), 2015 International Conference on, pages 45–54, Oct 2015.

[118] R.A. Walker and D.E. Thomas. A model of design representation and synthesis. In Proceed-

ings of the 22Nd ACM/IEEE Design Automation Conference, DAC ’85, pages 453–459. IEEE

Press, 1985.

[119] Xilinx, Inc. MicroBlaze Processor Reference Guide Embedded Development Kit EDK 8.2i,

June 2006.

[120] Xilinx, Inc. LogiCORE IP AXI Slave Burst (IPIC) – Product Specification (DS769 v1.00.a),

2010.

[121] Xilinx, Inc. LogiCORE IP Fast Simplex Link (FSL) V20 Bus – Product Specification (DS449

v2.11c), 2010.

[122] Xilinx, Inc. AXI Reference Guide (UG761 v13.4), 2012.

[123] Xilinx, Inc. Platform Studio User Guide – Embedded Development Kit EDK 6.2i (UG113

v1.0), 2012.

[124] Xilinx, Inc. 7 Series DSP48ES Slice – User Guide (UG479 v1.8), 2014.

[125] Xilinx, Inc. 7 Series FPGAs Configurable Logic Block – User Guide (UG474 v1.7), 2014.

[126] Xilinx, Inc. 7 Series FPGAs Overview – Product Specification (DS180 v1.17), 2015.

[127] Xilinx, Inc. LogiCORE IP AXI Central Direct Memory Access v4.1 – Product Guide (PG034),

2015.

[128] Xilinx, Inc. LogiCORE IP AXI DataMover v5.1 – Product Guide (PG022), 2015.

[129] Xilinx, Inc. Zynq-7000 All Programmable SoC –Manual (UG585 v1.10), 2015.

RELATED STUDENT WORKS

[130] J. Hoyer. Automatische Erzeugung von Hardware zur Applikationsbeschleunigung. Studi-

enarbeit, Technische Universität Dresden, 2012.

[131] J. Hoyer. Erweiterung automatisch erzeugter Prozessorerweiterungen um Speicherzugriffe.

Diplomarbeit, Technische Universität Dresden, 2013.

[132] C. Lohse. Verbesserung der GCC-basierten Applikationsanalyse zur Synthese von

Prozessor-Erweiterungen für den SpartanMC. Studienarbeit, Technische Universität Dres-

den, 2014.

[133] M. Raitza. Untersuchung von Möglichkeiten zur Beschleunigung von Anwendungen für den

SpartanMC anhand des GCC. Studienarbeit, Technische Universität Dresden, 2011.

[134] J. Rohde. Erweiterung von Hardwarebeschleunigern um Chaining. Studienarbeit, Technis-

che Universität Darmstadt, 2014.

[135] J. Wielicki. Entwicklung einer GCC basierten Analyse von Speicherzugriffen. Bachelor’s

Thesis, Technische Universität Dresden, 2015.

[136] A. Wiese. Integration and Management of Automatically Generated Hardware Accelerators

on the Linux OS. Diplomarbeit, Technische Universität Dresden, 2015.

OWN PUBLICATIONS

[137] R. Backasch, G. Hempel, S. Werner, S. Groppe, and T. Pionteck. Identifying homogenous

reconfigurable regions in heterogeneous FPGAs for module relocation. In ReConFigurable

Computing and FPGAs (ReConFig), International Conference on, pages 1–6, December

2014.

[138] R. Backasch, G. Hempel, S. Werner, S. Groppe, and T. Pionteck. An Architectural Template

for Composing Application Specific Datapaths at Runtime. In ReConFigurable Computing

and FPGAs (ReConFig), International Conference on, Dec 2015.

[139] G. Hempel and C. Hochberger. A resource optimized Processor Core for FPGA based

SoCs. In Digital System Design Architectures, Methods and Tools (DSD), 10th Euromicro

Conference on, pages 51–58, August 2007.

[140] G. Hempel and C. Hochberger. A resource optimized SoC Kit for FPGAs. In Field Pro-

grammable Logic and Applications (FPL), International Conference on, pages 761–764, Au-

gust 2007.

[141] G. Hempel, C. Hochberger, and A. Koch. A Comparison of Hardware Acceleration Interfaces

in a Customizable Soft Core Processor. In Field Programmable Logic and Applications (FPL),

International Conference on, pages 469–474, August 2010.

[142] G. Hempel, C. Hochberger, and M. Raitza. Towards GCC-based automatic soft-core cus-

tomization. In Field Programmable Logic and Applications (FPL), International Conference

on, pages 687–690, August 2012.

[143] G. Hempel, J. Hoyer, T. Pionteck, and C. Hochberger. Register allocation for high-level syn-

thesis of hardware accelerators targeting FPGAs. In Reconfigurable and Communication-

Centric Systems-on-Chip (ReCoSoC), International Workshop on, pages 1–6, July 2013.

[144] G. Hempel, M. Vogt, J. Castrillon, and C. Hochberger. Software-Backed Caching and Vir-

tual Addressing for Generated Accelerators in SoC FPGAs. In Software Engineering and

Advanced Applications - Work in Progress Session (DSD), 41th Euromicro Conference on,

August 2015.

[145] M. Vogt, G. Hempel, J. Castrillón, and C. Hochberger. GCC-Plugin for Automated Accel-

erator Generation and Integration on Hybrid FPGA-SoCs. CoRR, abs/1509.00025, August

2015.

Declaration

I confirm that I independently prepared this thesis, and that I used only the indicated references

and auxiliary means.

Dresden, December 20th, 2017 Gerald Hempel

