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Introduction

Since their discovery by Wilhelm Röntgen in 1895, the use of X-rays and, in the second

half of the 20th century, γ radiation for imaging the interior of the human body has

developed rapidly and revolutionized medical diagnosis. Especially the development of

tomographic techniques (also including nuclear Magnetic Resonance Imaging, MRI) has

contributed to the immense success and ever-increasing importance of medical imaging.

Positron Emission Tomography (PET) is one of these techniques. Compared to Computed

X-ray Tomography (CT) and MRI, PET has been adopted in clinical routine somewhat

later and has now been used for about 25 years in this context.

PET allows acquiring three-dimensional images of transport and metabolic processes

using short-lived positron (β+) emitting radioactive tracers. The unique functional imag-

ing capabilities provided by PET have proven extremely useful in a variety of neurological,

cardiological, and oncological applications.

The operational principle of PET is as follows. After administration of the chosen

positron emitting radiotracer, the substance distributes in the human body in a tracer-

dependent way and according to the patient’s physiological/metabolic state. On decay

of the radioactive label, the emitted positron undergoes annihilation with an electron

in the surrounding matter accompanied by emission of two 511 keV photons in opposite

directions. The detection of this photon pair in coincidence, i.e. within an extremely short

time interval of a few nanoseconds, defines the so-called Line-Of-Response (LOR) along

which the preceding radioactive decay (the “event”) has happened. Modern scanners are

also capable of time-of-flight (TOF) measurements, i.e. sufficiently precise determination

of differences in photon arrival time of both photons contributing to a detected event.

TOF-resolved events bear information regarding approximate decay position along the

LOR. Collecting this LOR and TOF information for a large number of events provides

the basis for tomographic image reconstruction of the tracer concentration distribution

within the patient’s body. The huge amount of data which have to be processed and

the complexity of the physical processes influencing the measurement process makes the

reconstruction task algorithmically challenging and computationally demanding.

PET is inherently a quantitative method allowing to assess the regional tracer con-

centration distribution in absolute terms. This offers unique advantages for diagnostic

functional imaging and also the possibility to apply pharmacokinetic approaches (tracer

kinetic modeling see, e.g., (van den Hoff, 2005)) provided sufficient quantitative accuracy
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6 Introduction

of the PET images is guaranteed. However, this is not easy to achieve. The event de-

tection process is influenced by multiple factors (scanner geometry, detector properties,

finite positron range prior to annihilation, photon absorption and scatter etc.) which all

affect the ultimate detection probability and correct interpretation of the detected events

and, consequently, the achievable spatial resolution and local quantitative accuracy of the

reconstructed images. It is necessary to adequately correct for all relevant sources of error

in order to really utilize the full potential of the PET method.

Among these corrections, attenuation correction is one of the most important ones.

The absence of attenuation correction leads to gross errors in reconstructed activity con-

centrations, making quantitative imaging impossible. Attenuation correction requires de-

termination of the fractional attenuation of 511 keV photon pairs along each LOR. This

is equivalent to knowing the spatial distribution of the linear attenuation coefficient, µ,

within the imaged object (“µ-map”). Naturally, the µ-map is patient dependent and has,

therefore, to be obtained on an individual basis. In the case of standalone PET or com-

bined PET/CT systems, a dedicated attenuation measurement can be performed. For

standalone PET machines (no longer produced nowadays), radioactive sources emitting

511 keV (or, rarely, 662 keV) photons were used for transmission measurements. In the

case of PET/CT machines, the CT component can be utilized instead to perform the PET

attenuation correction.

During the last decade combined PET/MR has been introduced as a further option.

One of the first scanners of this kind — Philips Ingenuity TF PET/MR (Philips Healthcare,

Best, The Netherlands) — has been in operation at the Helmholtz-Zentrum Dresden-

Rossendorf (HZDR) since 2011 and is now installed in the Center for Radiation Research

in Oncology (Oncoray) in Dresden, jointly operated by HZDR and the University Hospital

of the Technical University Dresden. Improving the quantitative accuracy and quality of

the image reconstruction for this system is the principal aim of the present thesis.

Due to the lack of either a CT component or radioactive transmission sources, PET/MR

systems no longer allow direct measurement of the photon attenuation. This poses com-

pletely new challenges to quantitative PET. Furthermore, the Ingenuity PET/MR is ca-

pable of TOF measurements. On the one hand, TOF imaging provides benefits in terms

of reduced image noise and improved convergence rate (Conti et al., 2005; Vunckx et al.,

2010) compared to non-TOF imaging. On the other hand, the TOF-aware scatter correc-

tion, which is required for quantitative PET, is way more complex and computationally

demanding than the non-TOF one as will be explained below.

The usual attenuation correction strategy in PET/MR is to use MR-based tissue-type

identification to choose a suitable value for the attenuation coefficient of the respective

tissue. MR-based attenuation correction methods include segmentation-based (Martinez-

Möller et al., 2009; Hu et al., 2009; Schulz et al., 2011), atlas-based (Rota Kops & Herzog,

2007), and CNN-based (Convolutional Neural Networks) (Han, 2017) variants. The last

years have seen clear progress regarding generation of accurate head attenuation maps,

especially when utilizing dedicated bone-detection MR sequences (Sekine et al., 2016;
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Mérida et al., 2017; Rota Kops et al., 2017; Sousa et al., 2018; Wiesinger et al., 2018;

Gong et al., 2018). The situation is more unfavorable regarding whole-body attenuation

correction, however. In fact, only three- (air, lungs and soft tissue) and four-tissues-

classes (air, lungs, soft and adipose tissue) segmentation methods are currently available

in clinical PET/MR systems. These approaches do not account for individual variations

in lung attenuation coefficients and completely ignore the presence of bones which can

cause up to 30% errors in quantification of lung and bone lesions activity, respectively

(Keereman et al., 2011; Samarin et al., 2012; Akbarzadeh et al., 2013). Moreover, any

kind of MR-based attenuation correction technique is prone to errors in the presence of

metal implants in the patient’s body since these cause regional signal voids (so-called

susceptibility artifacts (Keller et al., 2013)). Even though the adverse effects of metal-

induced artifacts can be reduced or corrected (Bezrukov et al., 2013; Ladefoged et al., 2013;

Schramm et al., 2014), all MR-based methods remain susceptible to mis-segmentation and

systematic errors in the resulting attenuation maps.

Consequently, there is demand for alternative approaches and, indeed, a different strat-

egy to solve the problem of attenuation correction in PET/MR has emerged. It relies on

inherent redundancy of the emission data itself which allows, in theory, to derive attenua-

tion map and activity image simultaneously in a joint reconstruction. This algorithm,

the Maximum Likelihood Activity and Attenuation estimation (MLAA) method, was

first proposed in (Nuyts et al., 1999). It combines two well-established reconstruction

algorithms for emission tomography — Maximum Likelihood Expectation Maximization

(MLEM) (Shepp & Vardi, 1982) — and transmission tomography — Maximum Likelihood

for Transmission tomography (MLTR) (Nuyts et al., 1998).

Originally intended as a method for attenuation correction for standalone PET scan-

ners, it did not find large adoption at the time due to considerable cross-talk between

attenuation and activity. However, the emergence of PET/MR as well as developments

in PET scanner hardware allowing for TOF measurements caused renewed interest in

MLAA. For one, TOF image reconstruction is less sensitive to errors in the attenuation

map (Turkington & Wilson, 2009; Conti, 2011). More important in the present context,

utilizing the TOF information for activity reconstruction within MLAA reduces localized

cross-talk between reconstructed attenuation and activity images and in principle allows

correct determination of attenuation coefficients up to a global scaling constant (Salomon

et al., 2011; Defrise et al., 2012; Rezaei et al., 2012). On the other hand, it is widely

believed that a TOF-aware implementation of the MLTR algorithm would not provide

any practical benefits, see e.g. (Rezaei et al., 2016), but no thorough investigations of this

topic were published so far.

In the last few years, numerous implementations of TOF-enhanced MLAA and MLAA-

like algorithms have appeared, e.g. (Ahn et al., 2012; Rezaei et al., 2014; Mehranian &

Zaidi, 2014; Zhu et al., 2016; Salvo & Defrise, 2017; Hwang et al., 2018) as well as non-

TOF MLAA variations constrained with MR-based priors (Heußer et al., 2016; Benoit

et al., 2016). Also, emission-based metal artifact reduction was proposed in (Fuin et al.,



8 Introduction

2017). Joint reconstruction methods have already demonstrated distinct improvements

over conventional MR image segmentation-based attenuation correction in whole-body

applications (Boellaard et al., 2014; Mehranian & Zaidi, 2015; Ahn et al., 2018; Rezaei

et al., 2018). On the other hand, compared to accepted reference — MLEM with CT

attenuation correction — tracer uptake errors in focal lesions can still exceed 10% with

joint reconstruction methods. A comprehensive review of this topic can be found in (Berker

& Li, 2016).

TOF activity image reconstruction, which is crucial for a viable MLAA implementa-

tion, has its own challenges. Specifically, the non-uniform TOF distribution of scattered

events has to be accounted for. Therefore, conventional scatter correction (SC) meth-

ods, notably the Single Scatter Simulation (SSS) approach (Watson, 2000), cannot be

used without modification. The accepted way to estimate the scatter time distribution is

to include TOF modeling directly into the scatter simulation process which leads to the

TOF extension of the SSS algorithm (Werner et al., 2006; Watson, 2007). However, the

increased complexity of the TOF-SSS algorithm causes an increase in computation time

by an implementation-dependent factor of about 3–7. This can result in significant image

reconstruction slow-down for certain practically relevant choices of iteration scheme and

reconstruction parameters.

Alternative TOF-SC approaches exist which allow to avoid this substantial computa-

tional overhead and to perform TOF scatter estimation only slightly slower than non-TOF

algorithms. The common key idea is to use a non-TOF scatter correction algorithm — in

particular SSS — to estimate the spatial distribution of scattered events in each LOR and

to model scatter time distribution in a separate step that utilizes simplifying assumptions.

The first two approaches of this kind were introduced in (Conti et al., 2005) and were

intended as a temporary solution since full TOF-SSS was still under development at the

time and not yet available. In the so-called simple scaling approach, non-TOF scatter

sinograms are produced first and then rescaled to fit the emission data registered outside

of the imaged object’s boundary individually for each TOF bin. As reported in (Conti

et al., 2005), this leads to significant overestimates of scatter in the center of large objects.

The second proposed approach (radial distortion and scaling) performs better in this re-

gard but ignores dependency of the scatter TOF profiles on the given activity distribution

which is especially problematic under high contrast conditions (e.g. between bladder and

surrounding tissue).

A further accelerated TOF-SC method was presented in (Jin et al., 2013) as part

of the MOLAR image reconstruction for the Siemens Biograph mCT (Siemens Medical

Solutions USA, Inc.). The key idea of this method is based on the assumption that both

scatter and true events have similar time distribution which, therefore, can be estimated

from the measured data alone. The specifics of the data compression performed by the

mCT scanner and a relatively small number of TOF bins (13) allowed to avoid excessive

noise in the estimated scatter time distribution. However, this approach is not suitable

for the reconstruction of uncompressed list-mode data with a larger number of TOF bins
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employed. Moreover, the initial assumption of the method will not hold for LORs in the

vicinity of large structures like the bladder exhibiting high activity concentrations. In this

case, the scatter TOF distribution will be significantly affected by neighboring activity

while the trues TOF distribution is expected to remain relatively flat. Overall, to this

day, a satisfactory alternative to TOF-SSS is still missing.

Apart from a working quantitative TOF reconstruction, further requirements have

to be fulfilled in order to realize a valid MLAA implementation. Recently, it has been

found that MLAA is extremely sensitive to inaccuracies in scatter correction as well as

to errors in time offsets and time resolution calibration (Cheng et al., 2016a; Zhu et al.,

2017; Nuyts et al., 2018). In the light of this fact, it is relevant that the time resolution

of a TOF PET system is to different extent count-rate-dependent (Surti et al., 2007).

However, count-rate-dependent time resolution calibration is usually not provided by the

vendors.

The present work is concerned with contributions to improved quantitative PET/MR

image reconstruction, specifically targeting the Philips Ingenuity PET/MR system op-

erated by HZDR and addressing the demand for a viable MLAA implementation and

accelerated TOF scatter correction described previously. It builds on previous develop-

ments performed in our group. These include the introduction of improved MR-based

attenuation correction (Schramm et al., 2014) and the development of a Tube of response

High resolution OSEM Reconstruction (THOR) (Lougovski et al., 2014, 2015). THOR

has already demonstrated superior image resolution compared to the standard vendor re-

construction software due to better system modelling and utilization of list-mode data

without any compression. Prior to the developments described in this work, THOR did

not utilize TOF information at all and only supported MR-based attenuation correction

via externally generated µ-maps. Starting from here, the following developments were

performed in the present work:

1. THOR was extended to handle TOF data with variable count-rate-dependent time

resolution. TOF-SSS was integrated into THOR.

2. A novel Maximum Likelihood Time Resolution Estimation (MLRES) algorithm for

time resolution calibration was proposed and evaluated. The algorithm utilizes the

joint reconstruction principle to maximize the likelihood by varying activity image

and time resolution in an alternating manner. It is assumed that the likelihood

reaches its maximum at the true time resolution of the scanner. This approach is

related to the one in (Vandenberghe et al., 2007) but MLRES utilizes full TOF image

reconstruction and accounts for TOF scatter correction. The latter is required for

the algorithm utilization in the real-world applications.

3. A new time efficient TOF-SC method, the Immediate Scatter Approximation (ISA)

was developed. It shares the principal idea of separate estimation of scatter spatial

distribution (via SSS) and scatter time distribution via a dedicated fast algorithm
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with existing approaches. One key difference is that the proposed scatter time distri-

bution algorithm works reliably by design for all practically relevant event numbers

and subdivisions into TOF bins. ISA also addresses the activity distribution depen-

dence of the scatter TOF profiles. The proposed approach was evaluated in dedicated

phantom measurements providing challenging high activity contrast conditions and

compared against several other reconstruction schemes including TOF-SSS. A fur-

ther evaluation was performed in representative clinical patient data sets.

4. A list-mode MLAA algorithm including corrections for scatter (either TOF-SSS or

ISA) and random events was developed, implemented, and evaluated in phantom

and patient data. So far, only very few such implementations have been reported

(Mollet & Vandenberghe, 2014; Rezaei et al., 2015; Cheng et al., 2016b). Only one

of them (Cheng et al., 2016b) includes corrections for scatter and random events and

none of them where evaluated in clinical patient data. Both, TOF and non-TOF

list-mode MLTR are supported by our implementation which allowed us to perform

the comparison of these two variants.

The thesis text is organized as follows. Chapter 1 gives an overview over PET physics,

data acquisition, and image reconstruction. Chapter 2 describes the hard- and software

as well as algorithms (including the newly developed ones) used in this work. The chapter

also comprises a description of the applied data evaluation and validation procedures.

Chapter 3 contains the detailed report of the obtained results which then are discussed in

Chapter 4.



Chapter 1

Fundamentals

1.1 Positron Emission Tomography

Positron Emission Tomography (PET) is a nuclear medicine imaging technique which al-

lows to non-invasively image functional processes in the patient body. Like Single-Photon

Emission Computed Tomography (SPECT) , PET relies on detecting gamma quanta emit-

ted from within the body by dedicated radioactive tracers. A tracer is a substance with

specially tailored properties which is administered to the patient in sufficiently small quan-

tities (in order not to disturb the investigated system/process) and allows to assess the

physiological or metabolical process in question. Usage of radioactive tracers for medical

imaging became possible after the discovery of radioactive labeling of chemical compounds

by George de Hevesy in the early 20th century for which he was awarded the Nobel Prize in

Chemistry in 1943. He demonstrated that molecules with one of the stable atoms replaced

by a radioactive isotope have – prior to radioactive decay – the same biological properties

as their stable counterparts while being detectable at the level of single molecules due to

the emitted radiation upon decay. Since then a variety of dedicated tracers for visualiz-

ing of different processes in the body have become available, making PET and SPECT

versatile tools with a wide spectrum of applications, notably in oncology, neurology, and

cardiology. As the names suggest, PET is restricted to the use of positron (β+) emitting

compounds which subsequently yield pairs of annihilation photons that are detected by the

scanner while SPECT utilizes β− or “pure” γ emitters yielding one or more photons dur-

ing the nuclear decay process. Therefore, PET and SPECT require different radionuclides

which in turn leads to tracers with different chemical properties.

1.1.1 PET tracers

Positron emitters suitable for application in PET need to have suitable radioactive half-

lives and chemical properties. Also, their production in sufficiently high amounts must be

practicable. Still, there is a variety of potentially interesting isotopes (Conti & Eriksson,

2016):

11



12 Chapter 1 Fundamentals

• Standard isotopes (with half-lives between one minute and a few hours): 11C, 13N,
15O, 18F, 68Ga, 82Rb;

• Non-standard isotopes (with half-lives of more than twelve hours): 64Cu, 76Br, 86Y,
89Zr, 124I.

Today, the radioisotopes of the first group are routinely used in PET while interest in

the second group is expected to grow in light of recent developments (Schlyer, 2004;

Vallabhajosula et al., 2011).

The short half-life of most PET isotopes poses a major challenge in the production and

delivery of radiopharmaceuticals. For example, 15O and 82Rb with half-lives of 1 to 2 min

have to be administered to the patient nearly immediately after production. Consequently,

with the exception of generator-based nuclei (currently only 68Ga and 82Rb), a PET facility

usually needs to be located in the close vicinity of the isotope production site (usually a

cyclotron). Currently, only 18F-based tracers (half-life 110 min) are partly transported

over longer distances. Proper logistics as well as optimization of the radiopharmaceutical

production process are, therefore, important aspects regarding feasibility of clinical PET.

Despite the large number of known PET tracers with potential clinical applications,

about 90% of all PET investigations worldwide are carried out with a single substance:
18F-FDG. Due to its high clinical relevance, especially in whole-body applications, 18F-

FDG will be the mainly considered tracer in this work.

1.1.2 18F-FDG

(a) (b)

Figure 1.1: Glucose molecule (a) and FDG molecule (b). (Taken from (Lougovski, 2012))

2-deoxy-2-(18F)fluoro-D-glucose (18F-FDG) is a glucose molecule analog with the hydroxyl

group in C-2 position being replaced with a radioactive fluorine isotope 18F, see Fig. 1.1.
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It has been shown that FDG as well as 2-deoxyglucose, another glucose analog, follows

the same metabolical path as normal glucose until a certain point in the metabolic chain

(Sols & Crane, 1954; Tewson & Krohn, 1998). It means that human cells consume FDG

with the same rate as they would consume regular glucose. Moreover, the glycolysis

process is being initiated on FDG molecules with hexokinase phosphorylating them and

forming FDG-6-phosphate as a result. Phosphorylation prevents FDG from diffusing

back the cellular membrane while the lack of hydroxyl group in C-2 position inhibits the

further progression of glycolysis effectively trapping FDG molecules inside of the cell and

leading to their accumulation. The accumulation rate is proportional to the tissue glucose

consumption rate and tracer blood concentration. Since the administered amount of the

radiopharmaceutical is extremely low compared to systemic glucose content the actual

metabolic activity of the organism remains unaltered. Elevated FDG uptake is exhibited

by the energy-avid brain and heart as well as tumor or inflamed tissues. High FDG

concentrations are also observed in the urinary system due to excretion of surplus FDG.

Radioactive decay of 18F in 18F-FDG molecules transforms fluorine into the stable oxygen

isotope 18O− which after a combination with H+ from surrounding water forms a hydroxyl

group. As a result, FDG-6-phosphate becomes a regular glucose-6-phosphate which can

be metabolized further.

Highly elevated glucose consumption exhibited by tumor cells makes FDG-PET an

effective tool for cancer diagnosis, staging, and restaging especially for whole-body appli-

cations when metastases are in question (Kelloff et al., 2005). Besides oncology, 18F-FDG

finds its use in neurology and cardiology as well (Gambhir et al., 2001), making it the

most popular PET tracer to date.

1.2 Physics in PET

The data acquisition procedure in PET is influenced by different physical processes in-

cluding radionuclide decay, positron propagation and annihilation, radiation transport, γ-

quanta detection, and event registration. The following chapter provides a short overview

of the most important physical processes to be considered in this context.

1.2.1 Positron emission and annihilation

As mentioned in Section 1.1.1, the observation of the tracer molecule distribution by a

PET scanner becomes possible due to their labeling with radioactive isotopes. Radioactive

decay is a stochastic process characterized by the constant decay probability of a single

nucleus per unit time as well as independence of decays from each other. It means that

the number of nuclear decays dN happening over the infinitely short time interval dt in

an ensemble of N radioactive particles is proportional to N and dt:

dN ∝ N dt. (1.1)
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Therefore, the number of radioactive nuclei decreases over time according to the radioactive

decay law

N(t) = N0 e
−Λt, (1.2a)

Λ =
log 2

T1/2
, (1.2b)

where t is the time, N0 is the number of radioactive particles in the system at t = 0, Λ is

the so-called decay constant, and T1/2 is the half-life of the radioisotope. Half-life is the

time in which half of the radioactive particles in a system decay. It is not to be confused

with the mean lifetime of the radioactive particle which is equal to reciprocal of Λ. The

number of observed radioactive decays per unit time usually closely follows the Poisson

statistics.

Radioactive decay is a common name for a whole class of different nuclear transforma-

tion processes. Of concern in the context of the present thesis are

• β+-decay: the process of emitting a positron (β+-particle) and an electron neutrino.

It results in formation of an isobar of the initial nuclide with atomic number Z

decreased by 1
A
Z X→ A

Z−1Y + e+ + ν. (1.3)

The emitted positron subsequently annihilates with an electron in the surrounding

medium accompanied by the creation of a pair of 511 keV photons which is the

radiation utilized for PET imaging.

• Electron capture (EC): the process of capturing an electron from an inner shell

of the atom by an atomic nucleus and emitting an electron neutrino. Like β+-decay,

it results in formation of an isobar of the initial nuclide with atomic number Z

decreased by 1
A
Z X + e− → A

Z−1Y + ν. (1.4)

This process belongs to the β-decay class of processes being a competitive decay

channel for β+-decay. The branching ratio between these two depends on the pene-

tration of the electron wave function into the nucleus. For light atoms the penetra-

tion is small and, therefore, β+-decay is the dominating decay channel in this case.

For heavier elements, inner electrons come closer to the nucleus which increases the

probability of the process.

Competition between electron capture and β+-decay reduces the positron yield. For

example, β+-decay branching ratio is 99.8% for 11C, 96.9% for 18F, and only 88.9% for 68Ga

(Conti & Eriksson, 2016). This effect has to be accounted for during scanner calibration

and when quantifying activity concentrations in the reconstructed images.

The positrons created by the β+-decay mostly possess substantial (non-thermal) ki-

netic energy. This excess energy is dissipated by numerous interactions with surrounding
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matter until thermal equilibrium is reached. ”In flight” annihilation prior to this point

has a probability as low as 2% (Harpen, 2004). The distance from the decay location

to the point where thermalization is achieved is referred to as positron range. The av-

erage and maximum positron range depend on energy released in the decay process and

on the medium in which propagation takes place. Therefore, it varies among different

radioisotopes. For example, mean positron range for 18F in water is 0.6 mm while for
68Ga it is 3.5 mm (Conti & Eriksson, 2016). The finite positron range is one of the factors

contributing to the principal limit of obtainable spatial resolution in PET.

Annihilation can take in two ways. The positron can either interact directly with

an electron of the medium and annihilate immediately into two photons or first form a

short-lived bound state with the electron called positronium (Ps). The positronium yield

in organic tissues has not been measured directly. Experiments using water as medium

suggest a lower bound of 37% (Castellaz et al., 2002; Harpen, 2004). Depending on the

relative orientation of the electron and positron spins, Ps can be formed as orthopositro-

nium (o-Ps, parallel spins) or as parapositronium (p-Ps, antiparallel spins). The yield

ratio between these two is 3:1, respectively, as has also been demonstrated experimentally

(Castellaz et al., 2002). p-Ps annihilates after a mean lifetime of 125 ps into 2 γ-quanta.

This 2γ decay is forbidden by parity conservation for o-Ps which, therefore, only can de-

cay into 3 γ-quanta which is much less likely. Consequently, the mean lifetime of o-Ps in

vacuum is much larger than that of p-Ps, namely 142 ns (Ley & Werth, 2001). However,

the measured o-Ps lifetime in water is considerably shorter (1.8 ns). This discrepancy is

explained by the pick-off 2γ annihilation of the bound positron in Ps with an electron of

the surrounding medium. Overall, the 3γ process, therefore, occurs only in a negligible

fraction of the annihilations.

Assuming a center-of-mass reference frame of the system of annihilating positron

and electron and accounting for the energy and momentum conservation laws, one can

conclude that two γ-quanta formed in the annihilation process both have an energy of

mec
2 = 511 keV, where me is a rest mass of the electron and c is the speed of light and

their momentum vectors are antiparallel. Thus, in the center-of-mass system, annihila-

tion photons are propagating in opposite directions along the straight line crossing the

annihilation point. However, in the laboratory frame of reference, the sum of positron

and electron momenta is usually different from zero even after positron thermalization.

Therefore, the photons propagation paths deviate from the aforementioned straight line

by a small angle (usually < 0.5°). The effect is usually referred to as photon accolinearity

and is a further factor limiting the principally achievable spatial resolution in PET.

1.2.2 Interaction of radiation with matter

Photons can interact with matter via multiple electromagnetic processes (see (Hubbell,

1999) for an overview). The relative probability of undergoing certain interactions depends

on the photon energy. In the present context, only the following processes are of relevance:
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• Photoelectric effect. This denotes the absorption of a photon by an atomic

electron and emission of the electron from the atom. This might be written as

γ + e− → e−. The process plays a significant role in the interaction of low-energy

X-ray radiation with matter but is of no real importance for the 511 keV photons

used in PET.

• Compton scattering. This denotes inelastic photon scattering at quasi-free atomic

electrons which might be written as γ + e− → γ′ + e−. This is essentially the

exclusive process leading to attenuation and scatter in PET (Hubbell, 1969). The

total Compton cross section (Klein & Nishina, 1929) is given by

σc(E) = 2πr2
e

{
1 + α(E)

α2(E)

[
2 + 2α(E)

1 + 2α(E)
− 1

α(E)
log(1 + 2α(E))

]
+

1

2α(E)
log(1 + 2α(E))− 1 + 3α(E)

(1 + 2α(E))2

}
, (1.5)

where E is the energy of the incident photon, α(E) = E/mec
2, and re = e2/mec

2 is

the so-called classical electron radius (e and me are electron charge and mass). The

dependence of the scattered photon energy on the scatter angle θ can be written in

the form

E′ =
E

1 + α(E) (1− cos θ)
. (1.6)

1.2.3 Photons detection

Valence band

Conduction band

Forbidden
gap

Activator
excited states

Activator
ground state

e¯ e¯ Visible
light

Figure 1.2: Energy states and electronic transi-
tions in a scintillation crystal.

There are three main classes of detectors

which can be used for detection of high-

energy γ-quanta: proportional gas cham-

bers, semiconductor detectors, and scin-

tillation detectors using different types of

scintillators. Only the latter are used in

current PET systems. Scintillators absorb

high energy photons and emit visible light.

All scintillators used in PET are inorganic

crystals since these have the highest stop-

ping power for 511 keV radiation due to

their high density.

Scintillation crystals exhibit a specific electronic structure, see Fig. 1.2. For one, there

is a set of energy bands. The lower band is usually referred to as valence band and

is completely filled. The next available band is called conduction band since electrons

there are delocalized and can contribute to macroscopic electric current. Both bands are

separated by a forbidden gap usually containing no allowed energy states. The energy

dissipated by an incident photon can translate into excitation of valence electrons and

transfer them into the conduction band. The de-excitation process is accompanied by
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emission of photons, usually with wavelengths in the UV range. Since UV photons cannot

be efficiently detected, the electronic structure of the crystal is modified deliberately by

adding certain impurities to the crystal called activators in order to increase the wavelength

of the scintillation photons. The presence of activators adds further energy levels in

the forbidden gap, allowing electrons to de-excite in multiple steps in a process called

luminescence. Since the difference between activator states is lower than the width of

the forbidden gap, the luminescence photons are emitted in the visible spectrum which is

desirable for the registration process. The emitted light has an isotropic distribution and

its amount is proportional to the energy deposited by the incident γ-quantum.

Figure 1.3: Scintillation crystal attached to a photomultiplier tube. (Taken from Bruker AXS
GmbH, Karlruhe, Germany)

The second component of a scintillation detector converts the scintillation light into an

electric signal. The devices used for this purpose need to have a high detection efficiency

for the scintillation light and produce sufficiently strong electric signals proportional to

the incident amount of scintillation light (and, thus, also proportional to the deposited

energy by the incident γ-quantum). Today, the following options are available:

• Photomultiplier tubes (PMTs). PMTs (Fig. 1.3) are a special sort of high volt-

age vacuum tubes that have been developed more than 80 years ago. They are still in

wide use in a large variety of applications. PMTs contain a thin photocathode and a

series of amplification stages (dynodes). Scintillation light hitting the photocathode

causes emission of electrons via the photoelectric effect. Ejected electrons are being

accelerated in the electrostatic field towards the first dynode causing emission of an

increased number of secondary electrons on impact. The process repeats multiple

times on the subsequent dynodes which results in an avalanche of electrons reaching

the anode and causing a strong electric signal. The amplification factor of PMTs

can exceed 106 (Lecomte, 2009). The main disadvantages of PMTs are their big

size and extreme susceptibility to magnetic fields which can drastically compromise
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performance if not thoroughly shielded.

• Avalanche photodiodes (APDs). APDs are semiconductor photodetectors with

an internal high-voltage signal amplification zone. The electric signal in APDs ap-

pears as a result of the interaction of visible or near-UV light with electrons in a semi-

conductor causing production of electron-hole pairs. Released electrons and holes,

driven by applied voltage, participate in electric current conduction. Upon reaching

the narrow high-voltage zone, free electrons induce an avalanche of secondary elec-

trons by impact ionization leading to the signal amplification. Depending on the

applied voltage, APDs can work in a proportional mode where the signal current

is proportional to the number of absorbed photons and in a Geiger mode where

any incoming photon can cause an avalanche breakdown generating binary (yes/no)

signals. The main problem with APD detectors is the high amount of noise caused

by spontaneous electron/hole pair generation. In order to keep noise within accept-

able limits, APDs usually are operated at relatively low voltage and, consequently,

low amplification of 50-150 leading to vastly inferior signal-to-noise ratio compared

to PMTs (Lecomte, 2009). Nevertheless, APDs have several advantages over PMTs

such as better photon detection efficiency and basically complete resistance to strong

magnetic fields.

• Silicon photomultipliers (SiPMs). SiMPs represent arrays of thousands of small

(20×20 to 100×100 µm), tightly packed avalanche photodiodes operating in Geiger

mode. Scintillation light hitting the detector cells causes highly amplified breakdown

discharge signals. The signals from all cells are summed up in order to form an

integral signal of the whole detector element. Operation in the Geiger mode solves

the main problem of APDs — low gain (it can reach 106 with SiPMs) — while the

pixelization approach allows to reduce noise (Lecomte, 2009). Like APDs, SiPMs

are insensitive to magnetic fields and thus especially suitable for combined PET/MR

systems. A weak point of SiMPs is their susceptibility to small changes in operating

temperature.

Until very recently, PMTs were the only option in positron emission tomography. In

fact, most of the currently installed PET systems are still using PMTs. However, PET

systems utilizing APDs and, especially, SiPMs have started to emerge throughout the

last years. Currently, there are five different systems available in the market (Philips

Vereos PET/CT, Siemens Biograph mMR, Siemens Vision PET/CT, GE Discovery MI

PET/CT, GE Signa PET/MRI (Delso et al., 2011; Rausch et al., 2018)) and this trend

can be expected to continue.

1.2.4 Events registration

Detection of a β+-decay is based on detection of pairs of annihilation photons created

subsequent to the decay. These photons have to be registered in coincidence, i.e. within
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a short time interval T . The time interval 2T is conventionally called coincidence time

window. The width of the coincidence time window is a parameter which depends on the

scanner field-of-view (FOV) size and, to some extent, the precision of measuring the arrival

time difference of the photons in the pair (coincidence time resolution). The typical value

here is 6–8 ns for a clinical whole-body scanner (for comparison: photons travel 30 cm in

1 ns).

Suppose that the first photon hits detector A and the second photon hits detector

B as shown in Fig. 1.4 (top left). A detector pair in coincidence forms a single detector

element. Taking into account that annihilation photons travel in opposite directions, we

can assume that the radioactive decay happened somewhere on the straight line connecting

crystals A and B which is usually referred to as Line-Of-Response (LOR). This description

is not completely accurate, though. First of all, finite positron range (Section 1.2.1) and

accolinearity have to be considered. Intercrystal γ-quanta scattering (Section 1.2.2) as well

as finite detector size (Section 1.2.3), too, compromise accuracy of the event localization.

For this reason, the LOR model should rather be considered as idealization of a finite-size

Tube-Of-Response (TOR).

Apart from true coincidences, there are further types of coincidences (“events”) to be

considered, see Fig. 1.4:

• Scattered events. One (or both) of the two annihilation photons can undergo

(Compton) scatter and change propagation direction and energy. As a consequence,

the scattered photons can hit a detector at a position different from the original

destination point resulting in misregistration of the event in a different LOR not

crossing the emission point. Part of the scattered events can be identified (and

discarded) by the scanner hardware with the help of energy discrimination. The

remaining, undiscriminated scatter events still account for a substantial fraction of

all events and represent a major problem for image reconstruction.

• Random events. Two annihilation photons originating from two different decays

can accidentally be detected in coincidence while the remaining photons from the

two decays escape detection. This causes a spurious event on the respective LOR. If

more than two photons are accidentally detected in coincidence (so-called “multiple

coincidences”), the scanner hardware is able to identify these events as spurious and

can discard them.

Without correction, scattered and random events can severely compromise the image

reconstruction process and degrade the resulting image quality. Since scattered and ran-

dom events together can exceed 50% of the measured coincidences, it is mandatory to

handle them properly. Fortunately, there are several techniques available allowing to re-

duce the amount of registered randoms and scatter at the hardware level as well as during

image reconstruction, see Section 1.3.3.

Most of the current PET systems are capable of not only measuring two photon coinci-

dences for the purpose of LOR determination but also can provide information regarding
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Figure 1.4: Illustration of different types of events possible in PET: true event (top left), scattered
event (top right), random event (bottom left), multiple event (bottom right). E and E′ indicate
emission points, A, B, and C are triggered detectors, arrows show the photon paths and the blue
line is an LOR corresponding to an event. (Modified after (Lougovski, 2012))

E'

Figure 1.5: Time-of-flight acquisition principle. A and B are detectors, O is the center of the
LOR, E is the true decay location, and E′ is the measured decay location. L designates the total
length of the LOR. d is the distance between E and the LOR center. Detection probability at
position E′ is distributed according to the red curve and characterized by the FWHM of this TOF
measurement.

the arrival time difference of both photons at the respective detectors. This capability is

usually referred to as Time-Of-Flight (TOF) PET. Consider a pair of photons emitted in

opposite directions at point E and detected in LOR AB (Fig. 1.5). Then the arrival time
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difference δ can be written in the form

δ = tB − tA =
L/2 + d

c
− L/2− d

c
=

2d

c
, (1.7)

where tA and tB are the arrival times of the photons at detectors A and B, respectively, L

is the LOR length, d is the (signed) distance between point E and the LOR center, and c

is the speed of light. Equation (1.7) demonstrates that exact knowledge of δ would yield

the actual position d of the decay event. However, the actually available time resolution is

limited and characterized by the Full Width at Half Maximum (FWHM) of the Gaussian

probability distribution of the TOF measurement for a point source. In order to be useful,

the time resolution needs to be good enough to allow decay localization at least comparable

or preferably distinctly better than the diameter of the imaged object. For example, the

first clinical TOF-capable scanner Philips Gemini PET/CT has a mean time resolution of

approximately 650 ps which corresponds to event localization uncertainty of 9.75 cm (Surti

et al., 2007) while more recent systems provide time resolution down to 310 ps FWHM

(Rausch et al., 2018). Utilization of the TOF information for image reconstruction offers

various benefits in terms of image quality and convergence speed, see Section 2.3.

The data acquired by a PET scanner can be stored in two principally different ways:

• Sinogram data. In this format, the acquired data are stored as a set of special

2D histograms (called sinograms). Each element in the sinogram corresponds to

an LOR and contains the number of events registered within this LOR over the

duration of the measurement. The LORs are encoded using two coordinates: an

azimuth angle describing the orientation of the LOR and the radial offset of the LOR

(minimum distance to center), see Fig. 1.6. Sinograms are often interpolated in order

to provide uniform sampling in both coordinates. There is one sinogram for each

combination of detector rings in coincidence conventionally called plane-of-response

or just plane. The data in sinogram representation are usually compressed in order

to reduce disk space requirements and accelerate subsequent image reconstruction.

This is achieved by reducing the sampling rate in angular and axial (along the scanner

axis) directions, i.e. summing adjacent LORs from neighboring planes and angles.

The drawback of the resampling procedure is possibly reduced image resolution

compared to uncompressed data. The sinogram approach can be further extended

to storing TOF data. In this case, the events are distributed among several TOF-

bins (typically 13 or more) according to their measured TOF differences. Then a

separate sinogram for each TOF-bin and plane is built, correspondingly increasing

the resulting file size compared to the non-TOF case.

• List-mode data. List-mode is an uncompressed data format representing a chrono-

logical stream of the individual registered events. For each event, different bits

of information are stored. The provided information can vary between different

PET systems. List-mode files typically take up more disk-space than corresponding
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sinogram files. Also, list-mode-based reconstructions are usually slower than their

sinogram-based counterparts. Main advantages of utilizing list-mode data are im-

proved image quality and the possibility of utilizing event-based motion-correction.

1.3 PET image reconstruction

Mathematically, reconstruction of tomographic images from projection data belongs to the

group of so-called ill-posed inverse problems. There are two major classes of reconstruc-

tion algorithms generally used in PET: analytical and iterative reconstructions. Analytical

algorithms utilize a closed-form solution for the inverse problem in order to derive the ac-

tivity image. Iterative algorithms are search procedures successively optimizing image

estimates by performing a comparison of predicted and measured projection data (from

which correction factors to the current image estimate result). A very recent development

is the emergence of reconstruction algorithms based on data-driven supervised learning

using Convolutional Neural Networks (CNNs) (Zhu et al., 2018). Despite promising initial

results, CNN-based reconstructions are still well behind the established PET reconstruc-

tion techniques in terms of image quality. Their ultimate usefulness and reliability have

yet to be proven and they are not further considered in the present work.

1.3.1 Analytical reconstruction

y

xO

s
ϕ

Figure 1.6: LOR coordinates in
PET. s is the (signed) distance be-
tween the LOR and center of the
scanner FOV, and φ is the angle
between the x-axis and the LOR’s
normal vector.

For the sake of simplicity, we will consider the 2D recon-

struction problem. Extension to the 3D case is possible

but is substantially more complex (Bailey et al., 2005).

Let us introduce the following LOR parametrization:

by φ ∈ [0, π) we denote the angle between LOR’s normal

vector and x-axis of the laboratory frame and with s ∈
(−∞,∞) we designate the signed distance between the

LOR and center of the scanner FOV (Fig. 1.6). Then

the expected amount of counts in the LOR (s, φ) can be

calculated as a line integral

p(s, φ) =

∞∫
−∞

λ(s cosφ−t sinφ, s sinφ+t cosφ) dt, (1.8)

where λ(x, y) is the tracer concentration in the scanner

FOV. The given formula is correct up to a scan-time-dependent scaling factor. Here we

ignored the image quality degrading effects described in Section 1.2.4 and approximated

the realistic tubes-of-response by infinitely thin lines connecting the centers of the effective

detector apertures. Equation (1.8) describes the 2D Radon transform from image λ to

its projections p. The inverse Radon transform derives the image from the acquired

projections and solves the tomographic problem.
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In order to derive a closed-form inverse Radon transform formula, we assume that

projection space (s, φ) is infinitely sampled and function p(s, φ) is continuous. Performing

Fourier transform F of p(s, φ) with respect to s, we get a relation between projections and

image in frequency space

P (ν, φ) = (Fp)(ν, φ) =

=

∞∫
−∞

∞∫
−∞

ds dt λ(s cosφ− t sinφ, s sinφ+ t cosφ) exp(−2πi νs) =

=

∞∫
−∞

∞∫
−∞

dx dy λ(x, y) exp[−2πi (x ν cosφ+ y ν sinφ)] =

= Λ(ν cosφ, ν sinφ),

(1.9)

where Λ(νx, νy) = (F2 λ)(νx, νy) and F2 is the 2D Fourier transform. Equation (1.9) is

usually referred to as central section theorem (Bailey et al., 2005) and it plays a key role

in the reconstruction algorithm derivation. The theorem implies that for any given angle

φ the 1D Fourier transform of parallel projections p(s, φ) defines Λ(νx, νy) on a line in

the frequency plain which forms an angle φ with the νx-axis. Therefore, rotation of the

projection angle φ allows recovering the whole Λ(νx, νy) distribution. Going back from the

frequency domain to Cartesian coordinates, we finally arrive at the desired activity image

λ(x, y) = (F−1
2 Λ)(x, y) =

=

∞∫
−∞

∞∫
−∞

dνx dνy Λ(νx, νy) exp[2πi (x νx + y νy)] =

=

π∫
0

dφ

∞∫
−∞

dν ν Λ(ν cosφ, ν sinφ) exp[2πi (x ν cosφ+ y ν sinφ)] =

=

π∫
0

dφ pF (x cosφ+ y sinφ, φ) ,

(1.10)

where F−1
2 is inverse 2D Fourier transform and

pF (s, φ) =

∞∫
−∞

dν ν P (ν, φ) exp(2πi sν) (1.11)

is a projection p(s, φ) filtered with a ramp filter defined by its kernel ν in the frequency

domain. The integral over φ in the last part of (1.10) is conventionally called a back-

projection operation B. It has the geometrical meaning of representing the sum over the

contributions from all LORs crossing the point (x, y). This combination of filtering and

backprojection explains the name for this reconstruction method: Filtered Backprojection

algorithm (FBP). Symbolically, the FBP algorithm can be written in the following short
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form

λ(x, y) = B{F−1[ ν (Fp)(ν, φ) ]}. (1.12)

Due to their computational efficiency, analytical reconstructions were used nearly ex-

clusively in the clinical context for a long time. A major drawback of analytical reconstruc-

tions is the inability to gracefully handle data inconsistencies (including random errors —

noise). As is typical for ill-posed inverse problems, small deviations of the measured data

from the “true projections” can cause large errors in the reconstructed image. Additionally,

the derivation of the reconstruction algorithm itself requires several simplifications such

as ignoring most of the physical effects inherent to the acquisition process and assuming

continuous projections data. The acquired data can be precorrected in order to minimize

the adverse effects of the aforementioned simplifications but they cannot be eliminated

completely.

1.3.2 Iterative reconstruction

Unlike the analytical approaches which fundamentally rely on the assumption of contin-

uous data and image sampling in their derivation, iterative algorithms account for the

discrete nature of measured data and image representation of the tracer distribution from

the very beginning. Also, the acquisition model used in iterative reconstruction allows

accurate description of, both, 2D and 3D acquisition in a similar manner without any sub-

stantial modifications of the reconstruction algorithm itself. Finally, incorporation of the

noise model into the reconstruction process allows iterative algorithms to achieve superior

noise characteristics compared to FBP.

Any iterative reconstruction consists of several elements which might be grouped into

image model, acquisition model, data model, objective function, and optimization algo-

rithm as shown in Fig. 1.7.

Figure 1.7: Elements of iterative reconstruction.
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Image model

The spatial distribution of the tracer (activity distribution) in the imaged object can be

described by a continuous function λ(x, y, z) defined in V ⊂ R3. Then, the number of

decays (for a given time interval) in an infinitely small volume around (x, y, z) is a Poisson

variable with a mean proportional to λ(x, y, z). Since the tracer concentration and the

corresponding decay rate are proportional, the difference between them will be ignored in

the following. For computational purposes, the continuous activity distribution has to be

discretized. In order to do this, we introduce the finite set of M voxels defined by their

density functions ρj(x, y, z) with j = 1, . . . , M such that

⋃
j

supp (ρj(x, y, z)) ⊇ V, (1.13)

where supp stands for function support. We also require linear independence of the func-

tions in the sense that neither of ρj(x, y, z) can be represented as a linear combination of

ρk(x, y, z), k 6= j. The choice of the basis functions ρj(x, y, z) is not unique and it affects

the reconstruction results. Cubic voxels are the most popular option, but, e.g, spherical

or “blob”-type voxels (Lewitt, 1990; Matej & Lewitt, 1996) can be used instead. With

the basis functions defined, one can approximate the activity distribution λ(x, y, z) as a

linear combination of ρj(x, y, z):

λ(x, y, z) ≈
∑
j

λj ρj(x, y, z). (1.14)

The set of λj is a discrete representation of λ(x, y, z) which will be used further in the

reconstruction. In the simple case of rectangular non-overlapping voxels, λj is an integral

of λ(x, y, z) over the volume Vj corresponding to voxel j

λj =

∫
Vj

λ(x, y, z) dx dy dz. (1.15)

Together with the image itself, the image model can also include prior knowledge

regarding properties of the activity distribution in the human body. A popular choice is

a Gaussian prior which enforce image smoothness and penalizes large activity variations

between neighboring voxels in order to reduce the noise level. The latest efforts in this

field are associated with utilization of CNN based denoising priors trained on clinical data

(Kim et al., 2018). Another group of approaches involves exploiting information from other

imaging modalities like CT or MR which are usually paired with PET, see e.g. (Ehrhardt

et al., 2015). This kind of regularization allows to improve image resolution and decrease

noise level under the assumption that the tracer concentration changes slowly within the

distinct anatomical regions observable in CT and MR. Violations of this assumption,

however, lead to bias in the reconstructed activity values and image artifacts at high

regularization strength (Schramm et al., 2018).



26 Chapter 1 Fundamentals

Acquisition model

The acquisition or forward model describes the event detection process in the PET scanner

and allows to estimate the mean number of events registered by detector element i if tracer

distribution λ is given. The acquisition model includes

• Scanner model: scanner geometry, detector efficiencies and dead-time, and time-

of-flight capabilities

• Acquisition geometry: position of the imaged object relative to the scanner,

possible rigid and non-rigid movement of the tracer distribution during the scan

• Additional effects: registration of scattered and random events, photon attenua-

tion, resolution degradation (Section 1.2.4), time dependence of activity concentra-

tion due to radioactive decay

The accuracy of the forward model determines the achievable reconstructed image

quality. An insufficient acquisition model can cause a large variety of different effects

from image blurring or suboptimal image noise characteristics to substantial errors in

the reconstructed activity values (when omitting attenuation correction) or even total

failure of getting a usable image (if scanner geometry used is wrong). The most accurate

modeling of the acquisition process can be achieved with Monte-Carlo simulation but since

the simulation process is extremely time-consuming, especially if a low variance in the

simulated data is required, it is impossible to use it for clinical reconstruction. Therefore,

analytical and semi-analytical methods are commonly used for forward modeling.

Ignoring scattered and random events, the forward model of non-TOF measurements

can be derived as follows. Let nj be the (unobservable) amount of decays occurred in voxel

j. These values are independent Poisson variables with expectations E(nj |λj) = λj . Here

we assume the probability of registering decay in voxel j by detector element i = 1, . . . , N

to be known P (i|j) = cij . Values cij are traditionally called system matrix and they are

mainly defined by geometry of the system and voxel grid but further physical effects can

be taken into account. We will discuss the system matrix calculation details further in

Section 2.2.2. Knowledge of the system matrix allows us to estimate the number of counts

registered within each LOR i for a given activity distribution λ:

yi = E(ni|λ) =
∑
j

cijλj . (1.16)

This follows from the fact that

ni =
∑
j

nij , (1.17)

where nij is the number of photons originating in voxel j and detected in LOR i. Indeed,

nij as well as ni are independent variables and from the definition of cij we see that

E(nij |λ) = P (i|j)E(nj |λj) = cijλj (1.18)
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and, therefore, (1.16) results from (1.17) and linearity of the expectation operation.

Equation (1.16) is conventionally called the forward projector. The forward projector

is the core of the acquisition model and, in the given form, it allows to describe all rele-

vant effects except scattered and random events. These can be accounted for as additive

contributions si and ri to yi that have to be estimated separately.

Data model

While analytic reconstruction operates on sinogram data, iterative reconstructions are

more flexible, supporting, both, sinogram and list-mode data. In both cases, the statistical

errors contained in the data can be assumed to be adequately described by the Poisson

distribution

P (yi|〈yi〉) = e−〈yi〉
〈yi〉yi
yi!

(1.19)

yielding the probability of registering yi events in LOR i if the expectation (mean) value

is 〈yi〉. If the data are precorrected for scatter and randoms, they do no longer follow a

Poisson distribution but can still be described approximately with a shifted Poisson model

(Yavuz & Fessler, 1997).

Objective function

In order to formalize the problem of finding the best estimate of the image λ for the

measured data, the objective function is introduced. The objective function Q(λ) is defined

as the conditional probability of an activity distribution λ generating the given (measured)

counts y. The image λ∗ which maximizes Q(λ) is the most probable image

λ∗ = arg maxQ(λ). (1.20)

Determination of an optimal estimate of λ∗ is the goal of the iterative reconstruction

process.

In a Bayesian approach, the objective function can be written as

Q(λ) := P (λ|y) =
P (y|λ)P (λ)

P (y)
. (1.21)

For convenience, the logarithm of Q(λ) is commonly used

q(λ) := log P (y|λ) + log P (λ) (1.22)

as the effective objective function. This is possible since q is a strictly monotonically

increasing function of Q. The third summand (log P (y)) could be omitted here since it

does not depend on the activity image and, therefore, is irrelevant to the optimization

task (1.20).

The probability P (y|λ) in (1.22) is typically referred to as the likelihood function L(λ).



28 Chapter 1 Fundamentals

The likelihood assesses the degree of agreement between measured data and the current

image estimate when employing the given acquisition and noise models. Since the numbers

of counts registered in different LORs are independent of each other the probability for

the whole data set factorizes into a product of probabilities for each LOR

L(λ) := P (y|λ) =
∏
i

P (yi| yi), (1.23)

where yi = yi(λ) is the forward projector defined in (1.16). If Poisson noise (1.19) is

assumed then the likelihood function takes the form

L(λ) =
∏
i

e−yi
yi
yi

yi!
. (1.24)

Transition to the log-likelihood l(λ), which is required in (1.22), allows replacing the

product over LORs with a sum

l(λ) := log L(λ) =
∑
i

(yi log yi − yi) + C, (1.25)

where C is a constant independent of λ and, thus, can be omitted.

The summand logP (λ) in (1.22) penalizes convergence to the images which are a

priori unlikely according to the utilized image model. If no prior knowledge is considered

then the cost function coincides with the log-likelihood q(λ) = l(λ). Otherwise, following

Bayesian terminology, Q(λ) is a posterior probability distribution and q(λ) is in this case

frequently referred to as penalized likelihood in the literature.

Optimization algorithm

The optimization algorithm solves equation (1.20) iteratively providing a sequence of im-

ages λ(p), p = 0, 1, . . ., which converge to the true solution λ∗

lim
p→∞

λ(p) = λ∗. (1.26)

For practical reasons, it is required that the sequence {λ(p)} increases the cost function

monotonically: q(λ(p+1)) ≥ q(λ(p)). Further desirable properties of the optimization algo-

rithm are computational efficiency and fast convergence independent of the initial image

estimate λ(0).

There is a large number of numerical optimization algorithms available (Bailey et al.,

2005) among which the most popular for PET applications are MLEM (Maximum Likeli-

hood Estimation Maximization) and OSEM (Ordered Subsets Estimation Maximization)

for non-penalized image reconstruction and their analogs for maximum a posteriori (MAP)

reconstruction. MLEM and OSEM algorithms will be further discussed in Section 2.2.1.
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1.3.3 Data corrections

As mentioned in Section 1.3, it is necessary to include certain corrections into the recon-

struction process, specifically corrections regarding detector normalization, radioactive

decay, photon attenuation and scatter as well as random coincidences. Normalization and

decay corrections will be discussed in Section 2.2.2 and the others are discussed below.

Attenuation correction

I

d1 d2 d3

I0
μ1 μ2 μ3

Figure 1.8: Lambert-Beer law.

The attenuation of a given photon flux I0 resulting from

traversal through a medium is described by the Lambert-

Beer law

I = I0 exp

− d∫
0

µ(x) dx

 , (1.27)

where I0 and I are initial and final intensities, respec-

tively, µ(x) is the linear attenuation coefficient of the

medium and d is traversed path length. In the example

shown in Fig. 1.8 µ is a stepwise constant function assuming a value µi for layer i with

thickness di in which case formula (1.27) can be rewritten as I = I0 exp
(
−
∑
i
µi di

)
.

Considering the passage of a single photon through the medium, (1.27) can be inter-

preted as the probability of the photon to survive the passage up to path length d without

being eliminated (by absorption or scatter) from the incident beam. For a pair of anni-

hilation photons emerging from a point x′ on LOR i with length L we can calculate the

respective “survival probabilities ” according to

ai,1 = exp

− x′∫
−L/2

µi(x) dx

 , (1.28a)

ai,2 = exp

− L/2∫
x′

µi(x) dx

 , (1.28b)

where µi(x) is the attenuation coefficient along LOR i. Consequently, the coincidence

detection probability (or, equivalently, photon flux) for LOR i is reduced by the so-called

attenuation factor

ai = ai,1 × ai,2 = exp

− x′∫
−L/2

µi(x) dx−
L/2∫
x′

µi(x) dx

 = exp

− L/2∫
−L/2

µi(x) dx

 . (1.29)

As can be seen, the attenuation factor ai (and thus the change in coincidence detection

probability) is independent of the point of origin of the photon pair along the LOR. This is

a very advantageous property of the coincidence detection utilized in PET in comparison
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to SPECT where the depth-dependent single photon attenuation is much more difficult

to correct. It especially enables to determine the attenuation factor by a transmission

measurement with a radioactive or X-ray source.

The spatial distribution of the linear attenuation coefficient can be discretized in the

same way as the activity image as a set of µj values corresponding to a voxel j. We will

call this representation the attenuation map or µ-map. In this discrete representation, the

integral in (1.29) is replaced by the sum

ai = exp

− ∑
j∈voxels

lij µj

 , (1.30)

where lij are suitable weighting factors accounting for the contribution of voxel j to the

attenuation factor for LOR i.

As stated in Section 1.2.2, attenuation of 511 keV γ-radiation is essentially only due

to Compton scattering (and this remains true also for somewhat lower photon energies of

a few hundred keV). The scatter probability of a photon of incident energy E by a single

electron is expressed in terms of the total cross section σc(E). Multiplication of the cross

section by the electron density n yields the linear attenuation coefficient

µ(E) = nσc(E) . (1.31)

Formula (1.31) together with (1.5) allows the recalculation of the attenuation coefficients

µ(E) = µ(E0)
σc(E)

σc(E0)
, (1.32)

if µ(E0) is known and E does not become too small (in which case Compton scatter would

no longer be the only relevant process). Equation (1.32) provides the means to assess the

attenuation of the scattered photons the energy of which is bellow E0 = 511 keV.

Depending on the considered PET scanner design, different methods are utilized to

determine the µ-map.

• Standalone PET. Early clinical PET systems used 511 keV emitting radioactive

sources — usually 68Ge — rotating around the patient for transmission measure-

ments in order to determine the attenuation factors directly. The corresponding

attenuation map can be subsequently reconstructed from the acquired transmission

data. This is principally the best approach since the correct γ energy can be used

for the transmission measurement but it suffers substantially from limited statistical

accuracy and long acquisition times. In current PET/CT and PET/MR systems

this method is no longer provided.

• PET/CT. For PET/CT systems, the CT component is used for attenuation correc-

tion by performing a scaling procedure that translates the attenuation coefficients

determined at the typical X-ray energies to 511 keV as described in e.g. (Kinahan
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et al., 2003). Proper handling of both photoelectric effect and Compton scattering

(Section 1.2.2) as sources of attenuation in CT is achieved by using bilinear scaling

function. Today, this procedure is by far the most widely used approach.

• PET/MR. Attenuation correction in PET/MR is less straightforward than it is

in PET/CT since photon attenuation cannot be measured directly at all by these

systems. There are two possible solutions to this problem

– MR-based attenuation correction. The principal idea is to perform a tissue

type classification of the MR images and then to insert the principally known

attenuation coefficients of the different tissues to set up the µ-map. There

are different ways how to perform the tissue type classification such as direct

MR-image segmentation (Martinez-Möller et al., 2009; Schulz et al., 2011),

atlas-based methods (Rota Kops & Herzog, 2007), and the use of convolution

neural networks (Han, 2017). All these methods are prone to artifacts which are

caused by segmentation errors, presence of endoprostheses, etc. The principal

problem is the total lack of direct information regarding the actual occurring

photon attenuation.

– Emission-based attenuation correction. Principally, TOF PET data contain

enough information about both activity and attenuation coefficient distribu-

tions up to a global scaling factor (Defrise et al., 2012). This fact is exploited

by the Maximum Likelihood Activity and Attenuation estimation algorithm

(Rezaei et al., 2012) and its various modifications. The algorithm maximizes

the likelihood function by updating λ and µ alternately until convergence.

More details will be given in Section 2.5.

Randoms correction

The contribution of random coincidences to the acquired coincidence data can be estimated

by two different methods. Usually, only one of both methods is supported by any given

PET system.

• Using the singles rates. The randoms rate in an LOR AB can be computed as

2T SA SB if the singles rates SA and SB for detectors A and B, respectively, are

provided by the scanner (2T is the coincidence time window).

• Using a delayed coincidence channel. In this approach, the number of random

coincidences is measured directly by introducing a delay into one of the singles

channels feeding the coincidence processor. The delay is selected to be much larger

than the width of the coincidence time window in order to completely suppress the

true coincidences. Since the number of detected randoms is unaffected by this delay,

all coincidences detected in the delayed channel are random.
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Scatter correction

A substantial fraction of the detected coincidences involves scattered photons. This is the

case despite the fact that coincidences are accepted by the event-processing electronics

only in a certain energy window which already suppresses a notable fraction of the actu-

ally occurring scatter. Unfortunately, the limited energy resolution of the available PET

detectors does not allow to suppress scatter more efficiently in this way. The remaining

scatter in the measured coincidence data has, therefore, to be estimated and subtracted

from the measured data (or, alternatively, included into the forward model of the iterative

reconstruction).

Existing scatter estimation methods might be categorized as follow (Markiewicz et al.,

2007):

1. Tail fitting. For each projection angle, a simple model (e.g. a Gaussian) is fitted

to the distribution of registered coincidences in LORs not crossing the object (the

so-called “scatter tails” region) and then extrapolated to the remaining LORs (those

crossing the object under the considered projection angle). The method is prone to

errors for asymmetrical and inhomogeneous objects.

2. Multiple energy window techniques. Data are acquired in two or more en-

ergy windows from which the fraction of scatter and true events is estimated based

on their expected detection probability ratios within the different windows. The

method suffers from the violation of underlying assumptions in the case of big and

inhomogeneous objects or from insufficient statistical accuracy in the additional en-

ergy windows.

3. Integral transformation in projection space. The scatter event distribution is

estimated as convolution of the true activity distribution projections with a suitable

scatter kernel. Construction of a suitable scatter kernel which adequately takes into

account the given activity distribution and scatter medium geometry is problematic,

however.

4. Integral transformation from image to projection space. In this approach,

scatter computation is performed analytically, based on a physical model of the ac-

tual scattering process where the given scatter medium as well as activity distribu-

tion are taken into account. The Single Scatter Simulation described in Section 2.2.3

follows this strategy.

5. Monte Carlo simulation. An event-by-event simulation of the full radiation trans-

port and measurement process is performed. The method is very time-consuming

and unsuitable for routine use in PET image reconstruction.
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Materials and Methods

2.1 Philips Ingenuity PET/MR scanner

Figure 2.1: Philips Ingenuity TF PET/MR scan-
ner. MR part is on the left-hand side of the im-
age and PET part on the right-hand side. (Taken
from Philips Healthcare, Best, The Netherlands)

Patient and phantom scans were performed

with an Ingenuity TF PET/MR device

(Philips Healthcare, Best, The Nether-

lands). This is a hybrid imaging system

which combines the Philips Gemini TF

time-of-flight PET with the Achieva 3T X-

series MRI machine. Significant magnetic

shielding was added to the PET hardware

in order to avoid interference of the MRI’s

high magnetic field with the PMTs of the

PET system. Furthermore, the PMT gains

are calibrated in the presence of the MRI system in order to account for any residual

magnetic fields possibly penetrating the shielding.

The PET scanner consists of 28 detector modules forming a cylinder with 90.3 cm

diameter. Each detector module consists of a 23× 44 array of LYSO scintillation crystals,

4× 4× 22 mm3 each, resulting in a total of 28336 detector crystals grouped in 44 detector

rings, see Fig. 2.2. Signal readout is performed by 420 PMTs coupled to the crystals

forming a pixelated Anger-logic detector. Taking into account the housing, the patient

bore diameter is equal to 70.7 cm. The given detector configuration results in 18 cm

axial field-of-view (FOV) and a transaxial field-of-view of up to 67.6 cm which might

be restricted to reduce storage requirements and accelerate image reconstruction. Two

configurations are used in clinical practice: 57.6 cm FOV for whole-body scans and 25.6 cm

for brain investigations. LORs not crossing the selected transaxial FOV are ignored by

the scanner hardware.

The energy resolution of the system is specified as better than 13% and time resolution

as better than 550 ps which is in agreement with measurements performed in (Zaidi et al.,

2011) where the authors observed energy resolution of approximately 11.6% and time

33
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Figure 2.2: Philips Ingenuity TF PET/MR PET detector array geometry.

resolution of about 525 ps. However, these values were obtained with count rates close to

zero, and both figures are known to deteriorate with increasing count rate for this scanner

design (Surti et al., 2007).

The system uses an energy window of 460–665 keV and a coincidence time window

of 6 ns. Delayed coincidence window acquisition is implemented to enable randoms cor-

rection. Data are stored in proprietary Philips uncompressed list-mode format with a

list-mode TOF bin width of 25 ps. Further information about the Ingenuity TF PET/MR

system can be found in (Zaidi et al., 2011).

2.1.1 Philips Ingenuity PET/MR scanner reconstruction software

Two image reconstruction procedures are provided by the vendor. A sinogram based

3D Row-Action Maximum Likelihood Algorithm (3D-RAMLA) is used for brain investi-

gations while a list-mode ordered-subsets expectation maximization technique, featuring

blob basis functions and incorporating time-of-flight information (BLOB-OS-TF) is used

for whole-body investigations. Note that 3D-RAMLA does not allow to utilize time-of-

flight information. Both reconstruction algorithms include normalization, attenuation,

dead-time, randoms, and scatter corrections.

Due to the inability to perform attenuation measurements, either with 511 keV trans-

mission sources such as 68Ge/68Ga or with X-rays/CT, attenuation correction in PET/MR

is not straightforward (see also Section 1.3.3). Philips addresses the issue by performing

MR image segmentation and subsequent tissue type classification (Hu et al., 2009; Schulz

et al., 2011). Altogether, three classes are used: air, lung, and soft tissue whose linear

attenuation coefficients are set to 0, 0.022, and 0.096 cm−1 respectively. The reconstruc-

tion software also allows using external µ-maps generated with more elaborate methods.



2.2 THOR reconstruction software 35

For example, 4-class MR image segmentation using the Dixon MR sequence for adipose

tissues classification as proposed in (Martinez-Möller et al., 2009) was implemented by our

group. Despite its principal advantages, this method is not used in clinical routine since

it requires an additional time-consuming MR acquisition.

The vendor software also provides an attenuation map truncation compensation pro-

tocol in order to address the problem of significantly smaller field-of-view of the MR part

of the scanner compared to PET one. According to our observations, the protocol serves

its purpose reasonably well in general but can fail under certain circumstances (Schramm

et al., 2013). Moreover, the possible presence of susceptibility artifacts in the MR images

caused by metal implants in the patient body disrupts the standard segmentation proce-

dure and causes generation of erroneous attenuation maps. To reduce the adverse effects

of metal-implant-induced artifacts, an in-house MR-based attenuation correction tool was

developed in our group (Schramm et al., 2014). It utilizes the PET emission data in order

to determine the body contour, identifies regions affected by artifacts and corrects MR

image segmentation and truncation errors.

For randoms correction, the delayed coincidence channel approach is used while scatter

correction is based on the well known Single Scatter Simulation (SSS) algorithm. The over-

all scale of the generated scatter distribution is determined by matching the distribution

to the measured “scatter tails” (Polycarpou et al., 2011).

The reconstruction software allows adjusting several parameters which influence re-

construction speed/accuracy and the degree of image smoothing. Unfortunately, no in-

formation is available on how exactly these parameters modify the iteration scheme and

post-filtering smoothing kernel.

2.2 THOR reconstruction software

The reconstruction software used in this work is called THOR (Tube of Response High

Resolution OSEM Reconstruction). The name refers to the used method for system ma-

trix calculation (see Section 2.2.2). This is an in-house developed reconstruction research

toolkit based on the ordered subset accelerated version of Maximum Likelihood Expec-

tation Maximization (MLEM) algorithm by L. A. Shepp and Y. Vardi (Shepp & Vardi,

1982; Hudson & Larkin, 1994). THOR was first presented in (Lougovski et al., 2014) and

further investigated in (Lougovski et al., 2015). For reference, we provide an overview of

the concepts underlying THOR and describe the version of THOR prior to implementation

of the modifications proposed and described within this work.

2.2.1 Reconstruction algorithm

The derivation of the MLEM algorithm and the proof of its convergence are given in

the Appendix. Here we provide the canonical MLEM iteration formula without any data
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corrections applied

λ
(p+1)
j = λ

(p)
j

1∑
i
cij

∑
i

cij
yi∑

j′
cij′λj′

, (2.1)

where λj is the activity concentration estimate in voxel j in the iteration p, yi is the

number of counts registered in LOR i, and cij is the system matrix element for LOR i and

voxel j (Section 1.3.2). The sum over all voxels in the denominator is the forward projector

(1.16). It represents the projection of the activity distribution onto a given detector, i.e

the (estimated) count integral in the respective LOR. The measured-to-estimated LOR

counts ratio is projected back into the image by the outer sum over i and, therefore, this

operation is usually referred to as back projection. The final division by the sensitivity

term Sj =
∑

i cij accounts for unequal LOR coverage of the voxels.

Equation (2.1) guarantees non-negativity of the image estimate λ provided a non-

negative initial estimate λ(0) (we use λ
(0)
j = 1, j = 1, . . . , J). Usually, a pre-defined,

protocol-specific number of iterations is used for reconstruction.

The iteration formula (2.1) can be easily extended to list-mode (LM) acquisitions

(LM-MLEM). The complete derivation of LM-MLEM is given in (Parra & Barrett, 1998).

Since for list-mode acquisition the individual events are stored, the sum over all LORs i

is replaced by a sum over all events e:

λ
(p+1)
j = λ

(p)
j

1∑
i
cij

∑
e

ciej
1∑

j′
ciej′λj′

, (2.2)

where ie denotes an LOR corresponding to coincidence event e. After grouping all the

events which belong to the same LOR and taking into account that there are yi events

registered within the LOR, the list-mode and canonical MLEM formulas become the same

if the system matrix elements ciej do not differ between different events in the LOR. We

will be using this reconstruction method in this work.

MLEM reconstruction is computational very intensive so there is demand for acceler-

ation. A straightforward way to achieve this is called Ordered Subsets Estimation Max-

imization (OSEM) (Hudson & Larkin, 1994). For OSEM reconstruction, the input data

(LOR projections or list-mode) are separated into M subsets

D = D1 ∪D2 ∪D3 ∪ ... ∪DM ,

with

Di ∩Dj =

{
Di , i = j

∅ , i 6= j
(2.3)

(i.e. the subsets don’t overlap). There are different possibilities of how to subdivide the

data. For list-mode, temporal or geometrical criteria can be used. In our implementation

of LM-OSEM, we group the events by LOR. Subset Di is formed from the events which
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belong to LOR subset Li, i = 1 . . .M . The subsets Li are chosen in a way that ensures

homogeneous LORs distribution among planes, views, and radial elements, so the subsets

can be processed in any order.

For LM-OSEM the iteration formula can be represented as (Levkovitz et al., 2001)

λ
(p+1)
j = λ

(p)
j

1∑
i∈Lk

cij

∑
e∈Dk

ciej
1∑

j′
ciej′λj′

, k = 1 + pmodM, (2.4)

where mod is the modulo operation. The algorithm cycles through the subsets using a new

portion of data for each subsequent activity image update. We call an OSEM iteration

one full cycle over all subsets 1 . . .M . Note that an OSEM iteration takes approximately

the same time as an MLEM iteration, but OSEM requires M times fewer iterations to

converge (thus accelerating the reconstruction by this factor).

2.2.2 System Matrix

The system matrix is a key component of iterative PET reconstruction. Since system

matrix element cij is defined as the probability of registering a photon pair originating

from a decay in voxel j in LOR i the system matrix represents the effective model used

for description of the annihilation photons generation, propagation, and detection process.

The system matrix usually only describes detection of the unscattered correlated photon

pairs, i.e. true events. The system matrix includes the geometrical probability of reg-

istering an event within a given LOR as well as relevant physical effects influencing the

detection process. These can conceptually be divided into two groups:

1. Resolution degrading

• Positron range

• Photon accolinearity

• Photon intercrystal scattering

2. Signal diminishing

• Photon attenuation

• Limited crystal efficiency

• Activity concentration reduction due to radioactive decay

For more details, see Section 1.2.

There are different possibilities of how to account for these effects (or to neglect them

completely) before or during reconstruction. These include different data precorrection

techniques and image and sinogram blurring on the one hand, and incorporation into the

system matrix on the other hand. We have chosen the latter approach. The mentioned

resolution degrading effects were accounted for by modifying the geometrical probability

calculation in a semi-phenomenological manner. Effects of the second group enter the
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system matrix as multiplicative factors. In the following, we describe the system matrix

computation in more detail.

Geometrical detection probability

By geometrical detection probability we denote the probability of detecting a photon pair

originating from voxel j with detector pair i in the absence of any scatter and assuming

ideal detectors (detection guaranteed if the photons pass through the respective detector’s

effective “aperture”). In the following, we use the convention that cij denotes this geomet-

rical probability. All other contributions to the system matrix will be expressed explicitly

by separate factors.

Figure 2.3: Length (left) and volume (right) as a measure of intersection. (Taken from (Lougovski,
2012))

THOR utilizes a volume-of-intersection approach instead of the widely used length-of-

intersection as a measure of detection probability (Lougovski et al., 2014). The difference

between both approaches is illustrated in Fig. 2.3. Basically, the difference is to use a

Tubes-Of-Response (TOR) connecting the effective detector apertures instead of a Lines-

Of-Response (LOR) connecting the centers of these apertures. The system matrix elements

are then given by

cij =
Vint(i, j)

Vtube(i)
, (2.5)

where Vint(i, j) is the volume-of-intersection of TOR i with voxel j and Vtube(i) is the total

volume of TOR i.

The TOR approach offers a flexible way to model the event detection with finite de-

tectors of possibly spatial variant detection efficiency as well as positron range, photon

acollinearity, etc. Variation of the TOR radius (and possibly its density) are a means

to naturally describe the different resolution degrading effects mentioned above. The
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relation between the TOR-based approach and certain LOR-based approaches to image

reconstruction was further investigated in (Lougovski et al., 2015).

In order to allow on-the-fly Vint(i, j) volume computation, approximate symmetries

were employed. First of all, voxels were described as spheres instead of cubes arranged in

the same rectangular grid. Choosing a sphere radius of

Rvox =
3

√
3Vvox

4π
(2.6)

makes the sphere volume equal to that of the original cubic voxel, Vvox. Second, a constant

density cylinder was chosen as the TOR model. The TOR radius is a tunable parameter

which accounts for the assorted resolution degrading effects and the finite detector size.

A reasonable choice for the tube radius is

R 0
tube =

√
Sdet

π
, (2.7)

where Sdet is the effective detector aperture. It was shown in (Lougovski et al., 2014),

that this choice of voxel and tube size already allows achieving sub-5mm reconstructed

resolution without causing Gibbs (or ringing) artifacts at object boundaries. After further

testing, we adjusted tube radius to Rtube = 1.2R 0
tube in the present study which was found

to yield the best overall results for 18F-FDG studies.

Figure 2.4: Cylindrical LOR intersects voxel grid with spherical voxels. (Taken from (Lougovski,
2012))

The utilized model of spherical voxels and cylindrical TORs is illustrated in Fig. 2.4.

The significant computational advantage of this model stems from the fact that the in-

tersection volume between TOR i and voxel j, Vint(i, j) = V (dij), is only a function of

the “impact parameter” dij , the distance between the TOR axis and voxel center. The

impact parameter is fast to compute during forward projection while a lookup table for
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V (d) can be precomputed prior to reconstruction using elliptical integrals (Lamarche &

Leroy, June 1990) and is easily stored in memory.

Normalization

The system response to activity in the FOV is not uniform across different LORs. The

variations are related to differences between detector crystals and signal processing elec-

tronics as well as to purely geometrical effects. The process of correcting for unequal

LOR sensitivities is known as normalization. Normalization factors for individual LORs

are measured during scanner calibration which is part of routine maintenance. Since di-

rect measurement of the normalization factors is a time-consuming process the component

based approach is utilized by the manufacturer (Wang et al., 2007). The approach assumes

that LOR normalization factors can be represented as

ni = nGeomi εA εB, (2.8)

where nGeomi represents a geometry factor for LOR i and εA and εB are intrinsic efficien-

cies of the detectors defining the LOR. The detector efficiencies are determined using a

dedicated cylinder phantom and the geometry factor is derived using a plane source as

suggested in (Wang et al., 2007).

Attenuation correction

The basic principles of attenuation correction in PET were explained in Section 1.3.3. Ap-

plying these to the TOR system matrix calculation approach used in THOR, we compute

the coefficients lij needed in (1.30) as

lij = L cij , (2.9)

where L is the total length of the considered TOR. Definition (2.9) turns the sum over

all voxels in (1.30) into a product of the length of the TOR and the mean attenuation

coefficient 〈µ〉i within the TOR,

ai = exp

−L ∑
j∈voxels

Vint(i, j)

Vtube
µj

 = exp
(
− L 〈µ〉i

)
, (2.10)

which is in correspondence with (1.29).

The required attenuation maps were obtained either externally (by MR- or transmission-

scan-based methods) or internally by the MLAA approach discussed in Section 2.5.

Decay correction

Most PET tracers have very short radioactive half-lives which leads to non-negligible decay

of the tracer during the course of the measurement. For example, the popular PET isotope
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18F has a half-life of about 110 min while the acquisition can last up to more than one

hour.

According to the radioactive decay law (1.2), the remaining activity A(t) at time t is

related to initial activity at the chosen reference time A(t0) = A0 by

A(t) = A0 2−(t−t0)/ T1/2 ,

where T1/2 is the radioactive half-life. Defining the decay correction factor de

de = 2 (te−t0)/ T1/2 , (2.11)

where te is the detection time for event e and applying the radioactive decay law to the

forward projector (1.16) we get the decay corrected count rate expectation in LOR i

yi =
1

de

∑
j

cijλj

which replaces the corresponding expression in Eq. (2.1).

2.2.3 Scatter correction

We are using the Single Scatter Simulation algorithm in order to estimate the amount of

scattered events si in each LOR i. SSS was chosen among the available alternatives listed

in Section 1.3.3 since it provides a combination of still acceptable efficiency and good

accuracy. The SSS formula is an analytical description of the photon single scattering

process

sSSS
i =

∫
VS

dVS

(
σAS σBS

4π R2
ASR

2
BS

)
µS
σc

dσc
dΩ

[
IA + IB

]
, (2.12)

where VS is the scatter medium volume and S denotes the scatter point inside volume

element dVS . A and B denote the detectors defining the LOR i. RAS and RBS denote

the distances between point S and detectors A and B, respectively. σAS and σBS are the

surface areas of the detectors A and B, respectively, as they appear to an observer at the

point S. µS here is the linear attenuation coefficient of the scattering medium at S. σc is

the total Compton cross section (1.5) and dσc/dΩ the differential Compton cross section

at 511 keV (Klein & Nishina, 1929):

dσc
dΩ

= r2
e (2− cos θ)−2 [(2− cos θ)−1 + 2− cos θ − sin2 θ

]
/2 , (2.13)

where re = e2/mec
2 is the so-called classical electron radius (e and me: electron charge

and mass) and θ is the scatter angle, see Fig. 2.5.

IA and IB account for variable photon emission intensity, photon attenuation, and

photon detection probability assuming that the positron annihilation happened somewhere
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Figure 2.5: Scattering of γ-quanta in the body. (Modified after (Lougovski, 2012))

along the lines AS and BS, respectively

IA = εAS ε
′
BS exp

− A∫
S

µ(s) ds−
B∫
S

µ′(s) ds

 A∫
S

λ(s) ds , (2.14a)

IB = ε′AS εBS exp

− A∫
S

µ′(s) ds−
B∫
S

µ(s) ds

 B∫
S

λ(s) ds , (2.14b)

where λ(s) and µ(s) are activity and attenuation image samples taken along the lines

AS and BS, and εAS and εBS are the efficiencies of detectors A and B, respectively, for

511 keV γ-quanta. Primed quantities represent the respective values calculated for the

scattered photons of energy

E ′ =
mec

2

2− cos θ
. (2.15)

Attenuation coefficients µ′ can be rescaled to the target energy using (1.32). For the

detector efficiencies a model similar to the one described in (Accorsi et al., 2004) is used

εAS(E) =
εA√
2πσE

EULD∫
ELLD

exp

[
−(E′ − E)2

2σ2
E

]
dE′ =

=
εA
2

{
erf

[
2
√

log 2 (EULD − E)

EFWHM

]
− erf

[
2
√

log 2 (ELLD − E)

EFWHM

]}
(2.16)

(ELLD and EULD: lower and upper energies thresholds, σE and EFWHM : standard devi-

ation and Full Width at Half Maximum (FWHM) of the Gaussian used for describing the

energy resolution, εA: intrinsic crystal efficiency defined through the scanner calibration

procedure). The relevant values of all parameters for the Ingenuity PET/MR scanner are
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listed in Section 2.1.

For numerical integration of (2.12) , we use a sparse set of scatter points S as suggested

in (Watson, 2000). The points are distributed evenly in the field-of-view with a mean

spacing of 22.5 mm. Points with µS < 0.04cm−1 are excluded since their contribution to

the integral is relatively small. The SSS algorithm iterates over the scatter points and

determines the contribution of each point to the total scatter in LOR AB by computing

1. Scatter probability
µS
σc

dσc
dΩ

2. Geometrical detection probability
σAS σBS

4π R2
ASR

2
BS

3. Number of decays along the lines connecting scatter point S and detectors A and

B:

A∫
S

λ(s) ds and

B∫
S

λ(s) ds, respectively

4. Photon attenuation exp

− A∫
S

µ(s) ds−
B∫
S

µ′(s) ds

 and energy-dependent detec-

tion probability εAS ε
′
BS for a photon pair emitted somewhere along the line AS

(and similar quantities for a photon pair emitted along BS).

A naive straightforward implementation of SSS results in intolerably long computation

times. The algorithm can be accelerated as follows. First of all, the scatter distribution

is very smooth, i.e it varies only very slowly across different LORs. Consequently, it is

permissible to estimate the scatter contribution only for a small subset of the available

LORs and to interpolate this distribution for the remaining LORs. This optimization alone

accelerates SSS by two orders of the magnitude or even more. A further improvement arises

from the structure of the contributions IA and IB in (2.14) which are derived from line

integrals through the activity and attenuation maps. These integrals can be precalculated

for all scatter point/detector pairs and then reused multiple times for different LORs.

The scatter distribution estimated via (2.12) can not be used directly for scatter cor-

rection of the measured data. For one, the contribution of multiple scatter has to be

considered. Second, only the contribution of scatter originating from decays in the effec-

tive total FOV covered by the given scan is calculated. In most cases, however, not the

whole body of the patient is imaged and scattered photons coming from outside of the

FOV remain unaccounted for. The standard method to address both problems is a scatter

scaling procedure. More details on this topic and on our implementation of the scatter

scaling are given in Section 2.7.1.

2.2.4 Randoms correction

The Philips Ingenuity PET/MR uses delayed channel coincidences for randoms estimation.

However, the measurements are typically too noisy for direct use in list-mode reconstruc-

tion. Variance reduction techniques are thus required. We are using the single-plane
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variance reduction method due to Casey (SP-C) (Casey & Hoffman, 1986) which was

also evaluated for 3D-PET (Badawi et al., 1999). This algorithm does not introduce any

bias into the estimated randoms and allows to balance between computational efficiency

and the achieved variance reduction. We assume that number of expected delayed and,

therefore, random events can be calculated as

rAB = k SASB, (2.17)

where SA and SB are the singles rates of detectors A and B, respectively, and k is a

coefficient depending on scan duration and proportional to coincidence time window 2T .

We can sum both sides of (2.17) over a certain detector group GA and then get∑
D∈GA

rAD = k SA
∑
D∈GA

SD, (2.18)

M 〈r〉AGA = kM SA 〈S〉GA , (2.19)

where M is the number of detectors in group GA, 〈S〉GA is the mean value of singles rates

of the detectors in the group GA, and 〈r〉AGA is the mean value of delayed events registered

in the LOR group AGA = {AC}C∈GA . From (2.19) we can obtain the singles-rate estimate

for detector A

SA =
1

k

〈r〉AGA
〈S〉GA

. (2.20)

Combining (2.17) and (2.20) we finally get the denoised estimate of random event count

in the LOR AB

rAB =
〈r〉AGA〈r〉BGB
k〈S〉GA〈S〉GB

=
〈r〉AGA〈r〉BGB
〈r〉GAGB

, (2.21)

where 〈r〉GAGB is the average of delayed events measured in the LOR group GAGB which

is connecting detector groups GA and GB. In our reconstruction, we use 8 non-overlapping

groups of adjacent detectors. GA and GB are defined as the groups opposite to detectors

A and B, respectively.

2.2.5 Complete MLEM algorithm

Including the aforementioned corrections into (2.2) the fully corrected MLEM iteration

formula finally reads

λ
(p+1)
j = λ

(p)
j

1∑
i
ai ni cij

∑
e

aienieciej
de∑

k

aienieciek λ
(p)
k + sie + rie

, (2.22)

where λ
(p)
j denotes estimated activity concentration in voxel j after the pth iteration, i

enumerates the different LORs, ai is the attenuation and ni the normalization factor, and

cik is the system matrix element for LOR i and voxel k. si and ri are estimated additive

contributions of scattered and random events in LOR i.
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Note that attenuation correction and normalization are incorporated into the sensitiv-

ity

Sj =
∑
i

ai ni cij , (2.23)

as well as into the forward projector (together with scatter and random corrections)

yi =
∑
k

ai ni cikλk + si + ri. (2.24)

This makes the algorithm (2.22) a list-mode analog of the ordinary Poisson OSEM (Politte

& Snyder, 1991; Conti et al., 2005) which does properly handle Poisson statistics of the

data.

2.2.6 Reconstruction of multiple bed positions

The axial FOV of clinical PET scanners is limited (18 cm for Ingenuity TF PET/MR).

In order to obtain a whole-body image, the acquisition is split into a number of scans

of sequential bed positions. A slight overlap between subsequent bed position allows

compensating for the reduction of the scanner sensitivity at the axial FOV edges.

THOR combines the information from multiple bed positions in LOR space and sim-

ulates a “virtual total body scanner” covering the whole patient which has several advan-

tages. The whole-body image is reconstructed as a whole contrary to conventional bed-

by-bed reconstruction. This allows better handling of information from the bed overlap

regions since no stitching of multiple separate images is required. Moreover, this approach

is beneficial in terms of scatter correction quality since the whole continuous scatter dis-

tribution can be generated at once with out-of-FOV (ooFOV) scatter simulation being

seamlessly integrated.

The benefits of our virtual total body scanner approach come at the price of consider-

ably increased RAM requirements to store the data for all the bed positions simultaneously.

Additionally, the scatter estimation process for a virtual total body scanner demands more

computational resources due to the greatly increased axial FOV and, therefore, increased

number of possible scatter points to consider.

2.2.7 Distributed computation

List-mode PET image reconstruction is a computationally demanding task which poses a

great challenge to the computer hardware in use. Reconstruction of a typical clinical list-

mode data set obtained with a modern PET scanner on a single CPU core requires days

of calculations and is, therefore, practically unusable. Efficient parallel implementation of

the reconstruction software is necessary in order to make reconstruction times compatible

with clinical needs.

To this end, THOR was split into a server and client applications. The client is a

small program which initializes the reconstruction process, connects to instances of the
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server program and delegates the reconstruction workload to them. It also interacts with

the server instances during the reconstruction to ensure proper synchronization between

them.

The server application is responsible for the actual computations. There is one server

instance running on each of the computers participating in the reconstruction, allowing

for distribution of the workload over the available machines. Moreover, the computations

are parallelized in the server application to take advantage of multi-core CPUs. Paral-

lelization is facilitated by the structure of the MLEM formula (2.25) where each term of

the sum is associated with a single LOR. Therefore the computation can be easily split

into multiple threads each processing a distinct subset of LORs. The same applies to

other reconstruction algorithms implemented in THOR. The results of the computations

are transferred back to the supervising client as light-weight voxel data arrays which do

not cause relevant network load.

Currently, most of the code is already optimized for parallel computation, but certain

tasks are still performed in single-threaded mode either because they are computationally

inexpensive or because the parallelization possibilities are limited. In detail, the current

state of affairs is as follows:

• Client

– Single-threaded

1. Input/Output operations

2. Image-space operations

3. Aggregating the data from the servers

– Multi-threaded

1. Interaction with servers

2. Network data transfer

• Server

– Single-threaded

1. Input/Output operations

2. Image-space operations

3. SSS scatter points generation

4. Aggregating the data from the threads

– Multi-threaded

1. Sensitivity calculation

2. Iterative algorithms (MLEM, MLRES, MLAA)

3. Single Scatter Simulation (TOF and non-TOF)

4. ISA algorithm
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5. Scatter scaling

6. Scatter interpolation

Procedures whose parallel implementation was achieved within the present work have been

underlined.

Despite the parallel implementation of the most computationally intensive tasks, re-

construction speed does not scale linearly with the number of servers and processing cores.

This is explained by limited storage and network performance as well as the remaining

fraction of single-threaded operations and the requirement for server synchronization dur-

ing the reconstruction process.

For the present work, THOR reconstruction was performed on a ten servers setup

(8 × 28 cores Intel Xeon E5-2690 v4 + 1 × 24 cores Intel Xeon E5-2690 v3 + 1 × 24

cores Intel Xeon E5-2697 v2, 128 GB RAM each). Calculations were distributed among

the servers proportional to their individual performance.

2.3 TOF extension of the reconstruction algorithm

Utilization of TOF information (Section 1.2.4) provides clear benefits for iterative PET

image reconstruction in terms of reduced image noise and improved convergence rate

(Conti et al., 2005; Vunckx et al., 2010). Moreover, it has been shown that TOF image

reconstruction is more robust in the presence of data inconsistencies such as erroneous

attenuation map or detector normalization (Turkington & Wilson, 2009; Conti, 2011; ter

Voert et al., 2017), and provides better lesion detectability (Surti et al., 2006; Kadrmas

et al., 2009; El Fakhri et al., 2011; Mühlematter et al., 2018). Finally, utilizing the TOF

information allows reducing the cross-talk between reconstructed activity and attenuation

maps in joint image reconstruction (Defrise et al., 2012).

As mentioned in Section 2.1, the Philips Ingenuity PET/MR scanner supports TOF

measurements. Naturally, proper treatment of the additional TOF information within the

reconstruction software is necessary. In this section, we introduce the TOF extension of

the list-mode MLEM algorithm (2.22). The difficulties of quantitative TOF reconstruction

as well as possible solutions are further discussed in Section 2.4 and Section 2.7.2.

2.3.1 TOF MLEM

The list-mode version of the time-of-flight MLEM algorithm can be represented as follows

λ
(p+1)
j = λ

(p)
j

1∑
i
ai ni cij

∑
e

aienieciej,δe(σTOF,e)×

× de∑
k

aienieciek,δe(σTOF,e)λ
(p)
k + sie,δe(σTOF,e) + rie,δe

, (2.25)
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where cik,δ(σTOF) is a system matrix element for LOR i and voxel k. The further index

δ explicitly denotes the dependency on the difference of photon arrival times at both

detectors. σTOF is the standard deviation of the Gaussian used to describe the finite time

resolution (response characteristic) of the coincidence measurement (which can be count-

rate-dependent (Surti et al., 2007)). Subscript e in ie, δe and σTOF,e indicates that the

respective quantity refers to a specific single event e. Accordingly, si,δ(σTOF) and ri,δ are

TOF dependent additive contributions of scattered and random events in LOR i. In the

following, we use the convention that omission of index δ designates the non-TOF value

of the respective quantity. Otherwise, the notation follows (2.22).

The TOF forward projector for TOF difference δ is then given by

yi,δ = ai ni
∑
j

cij,δ(σTOF)λj + si,δ(σTOF) + ri,δ. (2.26)

The TOF system matrix elements can be obtained from the corresponding non-TOF

system matrix elements by multiplication with the relative probability of registering a

photon pair emitted from voxel j in LOR i considering the given TOF difference

cij,δ(σTOF) = cij wi(δij ; δ, σTOF), (2.27)

where δij is a signed TOF-difference of the center of the voxel j along LOR i. Considering

δ and σTOF as parameters, the probability is normalized to fulfill

1

2T

T∫
−T

wi(δ
′; δ, σTOF) dδ ′ = 1, δ ∈ [−T, T ], σTOF > 0 , (2.28)

where 2T is the coincidence time window.

For illustration, we present the TOF-weights function wi for the limiting cases σTOF →
0 and σTOF →∞, respectively.

For σTOF → 0 (infinite time resolution) the TOF-weight w0
i (δij ; δ) can be represented as

a boxcar function, corresponding to zero detection probability if the measured annihilation

location lies outside of voxel j:

w0
i (δij ; δ) ≡ wi(δij ; δ, σTOF → 0) =


2T

∆Ti
, δij − δ ∈

[
−∆Ti

2
,

∆Ti
2

]
,

0, otherwise,

(2.29)

where δj is arrival time difference for a photon pair emitted from the center of the voxel j,

and ∆Ti is the effective length of the voxel along the LOR i (using units such that c = 1).

For σTOF →∞ (infinitely low time resolution) we simply get

w∞i (δij ; δ) ≡ wi(δij ; δ, σTOF →∞) =

{
1, δij , δ ∈ [−T, T ],

0, otherwise,
(2.30)
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since all outcomes within the given coincidence time window are equally probable in this

case (so that (2.27) approaches the non-TOF limit, cij,δ(σTOF →∞)→ cij , as it should).

In the general case of finite time resolution, the response characteristic of the coinci-

dence measurement is adequately described by a Gaussian (truncated at the borders of

the used coincidence time window) with standard deviation σTOF. By integrating this

“TOF-kernel” over the considered voxel j we obtain the probability density of detecting

the photon pair emitted from this voxel with TOF-difference δ. Dividing this probability

by the probability density function of the uniform (non-TOF) distribution we get

wi(δij ; δ, σTOF) =


A(δ, σTOF)

δij+∆Ti/2∫
δij−∆Ti/2

exp

[
−(δ ′ − δ)2

2σTOF
2

]
dδ ′, δij , δ ∈ [−T, T ],

0, otherwise,

(2.31)

where A(δ, σTOF) is a scaling factor that ensures that the normalization (2.28) is fulfilled.

Since for real-world PET systems σTOF is about 1-2 orders of magnitude larger than the

typical voxel size, variations in the integrand are in fact negligible and (2.31) approaches

w̃i(δij ; δ, σTOF) =

 Ã(δ, σTOF) exp

[
−(δij − δ)2

2σTOF
2

]
, δij , δ ∈ [−T, T ],

0, otherwise,

(2.32a)

Ã(δ, σTOF) =2T


T∫
−T

exp

[
−(δ ′ − δ)2

2σTOF
2

]
dδ ′


−1

. (2.32b)

Note that the presented formalism relies on the assumption that the TOF information

is discretized using sufficiently small bins so that discretization errors are negligible and the

use of continuous functions is permissible. Considering specifically the Philips Ingenuity

PET/MR, this assumption is fulfilled: this system uses a TOF bin size of 25 ps which is

more than 20 times smaller than actual time resolution (see Section 2.1).

2.4 TOF scatter correction

While the random coincidences contribution in (2.25) remains unaltered in comparison to

the non-TOF case ri,δ ≡ ri (since the randoms exhibit a uniform time distribution (Conti

et al., 2005)), this is not the case for scatter events. In order to account for the non-uniform

time distribution of the scatter we express the TOF scatter estimate si,δ(σTOF) for LOR

i as a product of the non-TOF scatter value si and TOF weight factor Wi(δ, σTOF)

si,δ(σTOF) = siWi(δ, σTOF). (2.33)
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Wi(δ, σTOF) thus represents the integral effect of TOF-weighting on the whole scatter

estimate in the LOR. For calculation of Wi(δ, σTOF) we use a two-step procedure. First,

we calculate “true” scatter time distributions which correspond to an “ideal” scanner with

infinite time resolution. For practical reasons, we store a discrete approximation miτ of

this distribution using a sufficiently high number Nτ of TOF bins and normalize it as

follows
Nτ∑
τ=1

miτ = 1. (2.34)

The required Wi(δ, σTOF) coefficients are then computed for each event individually during

the MLEM update as a scaled and weighted sum of the miτ

Wi(δ, σTOF) = Nτ B(δ, σTOF)

Nτ∑
τ=1

miτ

∫
∆τ

exp

[
−(δ ′ − δ)2

2σTOF
2

]
dδ ′ , (2.35a)

B(δ, σTOF) =


Nτ∑
τ=1

∫
∆τ

exp

[
−(δ ′ − δ)2

2σTOF
2

]
dδ ′


−1

, (2.35b)

where B(δ, σTOF) is a further normalization constant. The integrals in (2.35a) and (2.35b)

extend over the time intervals ∆τ corresponding to the individual time bins τ . The sum

of these integrals in (2.35b) is thus equal to the integral over all possible TOF time

differences along the whole LOR. Equation (2.35a) serves as our model to describe the

influence of finite time resolution being a convolution of a truncated Gaussian kernel

and the discretized scatter TOF-distribution miτ with a proper normalization enforced

by (2.33) and (2.34). Alternatively, the equation (2.35a) can be interpreted as a “forward

projection” of the scatter time distribution defined by miτ with weights (2.31) computed

for TOF-bins instead of voxels. Obviously, in the non-TOF limit Wi(δ, σTOF → ∞) ≡ 1

whereas for infinitely increasing time resolution Wi(δ, σTOF → 0) becomes asymptotically

identical to the product of the respective miτ and Nτ .

The crucial difference between the different TOF-SC methods considered in this work

is the way they estimate the scatter TOF distribution miτ . The most naive approach

is to assume a uniform distribution of the scatter over all time bins which enables the

use of the non-TOF SSS estimate within the TOF reconstruction. TOF-SSS estimates

si and miτ simultaneously and serves as our reference method. The newly proposed ISA

method combines a non-TOF SSS–based computation of the scatter distribution si with

a dedicated fast algorithm to estimate the scatter time distribution miτ . We now describe

these different approaches in more detail.

2.4.1 Non-TOF SSS

Formally, SSS yields scatter within the considered LOR after integration over all photon

arrival time differences, i.e. it does not provide the probability distribution of the scatter

over the different TOF bins. Nevertheless, one might consider using SSS in a TOF re-
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construction by assuming a uniform distribution of the scatter over all TOF bins. This

is equivalent to assuming that all TOF weights Wi(δ, σTOF) are equal to 1. We have in-

cluded this hybrid approach in our investigation to evaluate the importance of adequately

modeling the time structure of the scatter.

2.4.2 TOF-SSS

A B

Figure 2.6: Illustration of ISA and TOF-SSS. A,
B: detectors, S: scatter point, E: emission point.
E′ is the corresponding apparent source position
as resulting from TOF-SSS while E′′ is the posi-
tion resulting from ISA. Note that the difference
between E′ and E′′ is small despite considering
an LOR with a very large radial offset from E
and scatter at a rather distant point.

Unlike the original SSS, the time-of-flight

extension of the algorithm discriminates

between simulated scatter events according

to their point of original photon pair emis-

sion E. This allows to calculate the cor-

responding TOF difference (we are using

units such that the speed of light c = 1)

δ = REA − (RES + RSB) at which they

would be registered (REA, RES , and RSB

are the lengths of the lines EA, ES, and

SB, respectively, see Fig. 2.6). In order to

achieve this goal, a new TOF detection ef-

ficiency function ετ (δ) is introduced which

yields the probability of detecting an event with a TOF difference δ within a TOF bin τ .

Using this function, one can represent the amount of scatter registered within TOF bin τ

as

sTOF−SSS
i,τ =

∫
VS

dVS

(
σAS σBS

4π R2
ASR

2
BS

)
µS
σc

dσc
dΩ

[
IAτ + IBτ

]
, (2.36a)

IAτ = εAS ε
′
BS exp

− A∫
S

µ(s) ds−
B∫
S

µ′(s) ds

× A∫
S

ετ [RAS −RBS − 2s]λ(s) ds , (2.36b)

IBτ = ε′AS εBS exp

− A∫
S

µ′(s) ds−
B∫
S

µ(s) ds

× B∫
S

ετ [RAS −RBS + 2s]λ(s) ds . (2.36c)

The notation follows (2.12) and (2.14). Note that IAτ and IBτ are no longer scalars but

arrays representing two halves of the time distribution of scatter events originating some-

where on the lines AS and BS, respectively. For non-TOF SSS, significant acceleration

was achieved through precalculating and storing line integrals of attenuation and activity

for each pair of scatter point and detector. In TOF-SSS, however, activity integrals are

functions of TOF bin τ and therefore have to be stored accordingly.

Another complication arises from the fact that TOF detection efficiency depends on

(RAS − RBS) which is the TOF difference of the point S considering LOR AB. This

translates into an LOR-dependent shift of the activity TOF integrals. This shift cannot
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be precalculated since the same cached activity distributions are used for estimating scatter

in multiple LORs. Therefore, the unshifted integrals

A∫
S

ετ (2s)λ(s) ds (2.37)

are precomputed and the required TOF shifts are applied later during the combination of

the precomputed distributions for each scatter point and LOR.

Since in our implementation the finite time resolution of the coincidence measurement

is handled separately in (2.35a), we use perfect TOF bin separation here:

ετ (δ) =

{
1, δ ∈ ∆τ ,

0, otherwise.
(2.38)

The spatial and temporal scatter distributions sSSS
i and mi,τ can then be separated and

are given by

mi,τ =
sTOF−SSS
i,τ

sSSS
i

, (2.39)

sSSS
i =

∑
τ

sTOF−SSS
i,τ . (2.40)

Altogether, the TOF-SSS workflow can be described as follows

1. Generate a set of scatter points S

2. Compute attenuation line integrals and binned activity distributions for each pair

of detector A and scatter point S

3. For each LOR AB and scatter point S:

(a) Scale precomputed activity TOF distributions along the lines AS and BS ac-

cording to (2.36b) and (2.36c)

(b) Combine them and impose offset (RAS −RBS)

(c) Multiply the resulting TOF distribution by scatter point weighting factors ac-

cording to (2.36a) and merge the result with the current scatter TOF distribu-

tion estimate for the LOR AB

4. Interpolate the obtained scatter distribution sTOF−SSS
i,τ as described in Section 2.2.3.

5. Separate scatter spatial distribution si and temporal distribution mi,τ

6. Scale si to fit the scatter tails as described in Section 2.7.1

The LOR undersampling factor and scatter point locations were the same as those for

SSS. Note that steps 2 and 3 involve manipulations on length Nτ arrays which results in

a considerable slowdown of the scatter correction compared to SSS.
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2.4.3 Immediate Scatter Approximation (ISA)

Scatter correction via the TOF-SSS approach described in the preceding section is very

time-consuming and slows down the image reconstruction considerably. Therefore, as part

of the present work a time-efficient approximation of TOF-SSS has been developed. In

doing so, the objective was to model with sufficient accuracy the dependency of scatter

TOF profiles on activity distribution (while neglecting the additional influence of spatial

variations of the attenuation coefficient). The relevant geometry is shown in Fig. 2.6. The

method utilizes the fact that photon pairs emitted in point E and detected in LOR AB

after a single scatter at point S will, in most cases, exhibit an arrival time difference close

to (REA−REB). For illustration, Figures 2.7 and 2.8 demonstrate this behavior for a 2D

acquisition of a point source in the center of a cylindrical water phantom. In this example,

the TOF difference should thus be close to zero for most events. The simulation underlying

these plots scans a sufficiently fine grid of scatter locations and scatter angles, computing

for each grid point the resulting LOR and TOF difference as well the relative scatter

and detection probability in the given energy window. As can be seen in Fig. 2.7, the

probability of detecting a scattered event rapidly decreases with increasing LOR distance

as well as TOF difference. This behavior arises due to a combination of two factors. First,

the actual arrival time difference is (REA− (RES +RSB)) and for LORs with a sufficiently

small orthogonal distance from E (corresponding to small angle forward scattering) we

have RES + RSB ≈ REB even for relatively distant scatter points S (for which RES is

not small compared to REB). Second, although for more distant LORs the dependency

of measured TOF information on the distance RES becomes more prominent, the relative

contribution of the considered emission point to an LOR rapidly decreases with increasing

distance of the LOR from E. The reason for this is lower scatter probability at large

angles in combination with lower detection/acceptance probability of the scattered photon

by B. The latter is a consequence of the reduced energy of the scattered photon which

reduces overlap of the detector signal with the given energy window of 460–665 keV for

the considered scanner. Therefore, for the overwhelming number of events contributing to

a given LOR the TOF difference of the registered scatter events essentially only depends

on the position of the emission point relative to the LOR while the dependence on the

actual scatter point position might be neglected.

To a lesser extent, approximate independence of scatter point location is also valid for

the scatter angle: for most events the actual scatter angle is not much larger than for

a scatter occurring immediately after the emission at E. So to a rough approximation

one can compute the scatter angle for that limiting case only and neglect here, too, the

dependence on actual scatter position.

Altogether, we surmise that it should be sufficient to estimate scatter profiles miτ

based on the assumption that for all scatter events only one of the photons scatters and

does so immediately after emission. This is the key assumption of our proposed Immediate

Scatter Approximation (ISA) method. Our ISA implementation models the object as a



54 Chapter 2 Materials and Methods

Figure 2.7: Illustration of the TOF difference vs. the LOR distance distribution of the scattered
events produced by a point source located at the center of a cylindrical water phantom of 40 cm
diameter centered in the field of view. The chosen scanner geometry and the energy acquisition
window are that of the Philips Ingenuity PET/MR. The 2D case is considered. The influence of
energy-dependent attenuation (different before and after scatter), anisotropic scatter probability,
energy-dependent detection probability, and position-dependent solid angles are included while
multiple scatter was neglected. The plot shows the relative probability of detecting a scattered
event at TOF difference δ in an LOR with radial offset h. The distribution rapidly approaches
zero with an increasing LOR distance and TOF difference.
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Figure 2.8: Cumulative distribution functions (red curves) of LOR distance (left) and TOF
difference (right) obtained by integrating the probability density in Fig. 2.7 along the corresponding
axis. Shown in blue are the predictions resulting from ISA for this configuration (zero TOF
difference for all scattered events, modest overemphasis of larger LOR distances). Note the small
range of actually occurring TOF differences (60 ps corresponding to 9 mm shift in apparent event
position along the LOR relative to ISA prediction).

relatively small set of emission points E with activities IE taken from the current image

estimate. The locations of the emission points are chosen to coincide with those of the
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scatter points used for SSS according to (Watson, 2000).

For each LOR AB and emission point E, the arrival time difference of any event

originating from that point is estimated as δi,E = REA − REB (neglecting the residual

scatter point dependency as explained above). By repeating this procedure for all emission

points one arrives at the scatter time distribution

miτ = Ni

∑
E,

δi,E∈∆τ

IE
dσc
dΩ

(θ) ε(θ) ∆ΩEA ∆ΩEB , (2.41)

where θ is scattering angle (for scatter happening directly at E), [dσc/dΩ](θ) is the dif-

ferential Compton cross section at 511 keV, and ε(θ) is the energy-dependent detection

probability for the scattered photon. ∆ΩEA and ∆ΩEB are the solid angles extended by

both detectors at E. Ni is a normalization coefficient ensuring satisfaction of (2.34). Note

that the quantities [dσc/dΩ](θ), ε(θ), ∆ΩEA, ∆ΩEB in (2.41) are already required for SSS

and can, therefore, be recycled by ISA if the emission points are chosen to coincide with

the SSS scatter points.

2.5 Emission-based attenuation correction

As explained in Section 1.3.3, attenuation correction is not straightforward in PET/MR.

Furthermore, only a few of the available options are suitable for whole-body investigations.

The problem arises from large anatomical inter-subject variability which poses a major

challenge for algorithms relying on MR-based tissue classification. This problem might

be avoided by solely utilizing the PET information for attenuation correction. Such an

emission-based attenuation correction algorithm, called Maximum Likelihood reconstruc-

tion of Attenuation and Activity (MLAA), was first presented in (Nuyts et al., 1999) for

non-TOF PET and, subsequently, an improved version of it appeared in (Salomon et al.,

2011) and (Rezaei et al., 2012). Recent implementations utilize the available TOF infor-

mation in order to reduce the cross-talk between reconstructed attenuation and activity

(Defrise et al., 2012) which was a major problem in the initial implementation.

The key idea of the method is to maximize the likelihood function with respect to, both,

activity and attenuation image. The maximization is performed by changing activity and

attenuation maps alternately with separate maximum likelihood algorithms for emission

and transmission tomography. Common choices here are TOF-MLEM, described in detail

in Section 2.3.1, and Maximum Likelihood for Transmission tomography (MLTR) designed

initially for CT reconstructions (Nuyts et al., 1998). The original algorithm design assumes

sinogram-based implementation and, therefore, is not directly applicable for list-mode

reconstruction. List-mode versions of MLTR were presented in (Mollet & Vandenberghe,

2014) and (Rezaei et al., 2015) but the additive contributions, i.e. scatter and randoms,

were ignored in both cases. List-mode MLAA with all necessary corrections was used in

(Cheng et al., 2016b) but no details of the algorithm were given. We, therefore, found
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it necessary to derive a fully corrected list-mode MLTR algorithm from scratch in order

to incorporate it into our LM-MLAA implementation. This derivation is presented in the

following section.

2.5.1 Maximum likelihood for transmission tomography

In our derivation, we are following the approach described in (Van Slambrouck & Nuyts,

2014) and (Rezaei et al., 2016). The proof of convergence of the algorithm will be given

under the assumption that scatter and random contributions can be neglected.

In analogy to (1.25), it can be shown that the log-likelihood function of TOF list-mode

emission data is given by

l(λ,µ) =
∑
e

log yie,δe −
∑
i

yi , (2.42)

where non-TOF and TOF forward projectors yi and yi,δ are defined in (2.24) and (2.26),

respectively. For the sake of convenience, we omit an explicit time resolution specification

and introduce a separate notation for “pure” forward projectors ψ without scatter and

random corrections

ψi =ai ni
∑
j

cij λj , (2.43a)

ψi,δ =ai ni
∑
j

cij,δ λj , (2.43b)

where all notations are shared with (2.24) and (2.26). The fully corrected forward projec-

tors can then be rewritten in the new notation as

yi =ψi + si + ri, (2.44a)

yi,δ =ψi,δ + si,δ + ri,δ. (2.44b)

MLTR assumes the likelihood to be only a function of µ. The optimization problem of

finding the µ value which maximizes the likelihood is solved by employing the strategy of

maximizing a suitable separable surrogate function instead of the likelihood itself. Using

the quadratic approximation of the Taylor expansion, we get

l(λ,µ+ δµ) ' l̃(λ,µ+ δµ) =

l(λ,µ) +
∑
j

∂ l

∂µj
(λ,µ) δµj +

1

2

∑
j, k

∂2 l

∂µj∂µk
(λ,µ) δµj δµk, (2.45)

where δµ is some small increment of µ. Taking into account that the second derivatives

of the likelihood are all negative and

2 δµj δµk ≤ δµ2
j + δµ2

k (2.46)
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we obtain the surrogate S(λ,µ, δµ)

l̃(λ,µ+ δµ) ≥ S(λ,µ, δµ) = l(λ,µ) +
∑
j

∂ l

∂µj
(λ,µ) δµj+

1

4

∑
j, k

∂2 l

∂µj ∂µk
(λ,µ) δµ2

j +
1

4

∑
j, k

∂2 l

∂µj ∂µk
(λ,µ) δµ2

k. (2.47)

Taking into account the symmetry of the second derivative, one can notice that the last

two sums in (2.47) are identical and, therefore,

S(λ,µ, δµ) = l(λ,µ) +
∑
j

∂ l

∂µj
(λ,µ) δµj +

1

2

∑
j

(∑
k

∂2 l

∂µj ∂µk
(λ,µ)

)
δµ2

j . (2.48)

The MLTR update can then be defined as a step of S(λ,µ, δµ) maximization

δµ(p) = arg max
δµ

S(λ,µ(p), δµ), (2.49a)

µ(p+1) =µ(p) + δµ(p). (2.49b)

It is easy to see that the sequence µ0, µ1, . . . increases S(λ,µ, 0) monotonically, i.e.

S(λ,µ(p+1), 0) ≥ S(λ,µ(p), 0), for all p, since

S(λ,µ(p+1), 0) = l(λ,µ(p+1)) '

l̃(λ,µ(p) + δµ(p)) ≥ S(λ,µ(p), δµ(p)) ≥ S(λ,µ(p), 0), (2.50)

as follows from (2.47), (2.49a) and (2.49b). Monotonicity and boundedness of the sequence

{S(λ,µ(p), 0)} implies its convergence to some S = S(λ,µ, 0) with {µ(p)} converging to

some µ. Substituting (2.48) to (2.49a) we obtain the following expression for δµ(p)

δµ
(p)
j = −

∂ l

∂µj
(λ,µ(p))∑

k

∂2 l

∂µk ∂µj
(λ,µ(p))

. (2.51)

Convergence of {µ(p)} demands convergence of {δµ(p)} to zero. Therefore, it follows

from (2.51) that
∂ l

∂µj
(λ,µ) = 0 (2.52)

for all j at the convergence point µ. Thus, the likelihood as a function of µ converges to

its maximum with sequence {δµ(p)} and the concavity of the likelihood guarantees that

the maximum is global.

The likelihood derivatives are straightforward to calculate by substituting the exact
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form of attenuation factors (1.30) into (2.42) and performing direct differentiation

∂ ai
∂µj

=
∂

∂µj
exp

(
−
∑
k

lik µk

)
= − lij ai, (2.53a)

∂ l

∂µj
=
∑
i

lij ψi −
∑
e

liej
ψie,δe
yie,δe

, (2.53b)

∂2 l

∂µk ∂µj
=
∑
e

liek liej

[
ψie,δe
yie,δe

−
(
ψie,δe
yie,δe

)2
]
−
∑
i

liklij ψi, (2.53c)

where all notations are the same as in Section 2.2.2 and Section 2.3.1. Combining (2.49b),

(2.51), and (2.53), we finally get an expression for the TOF LM-MLTR update

µ
(p+1)
j = µ

(p)
j +

∑
e
liej

ψie,δe
yie,δe

−
∑
i
lij ψi

∑
e
liej

[
ψie,δe
yie,δe

−
(
ψie,δe
yie,δe

)2
]
Lie −

∑
i
lij ψi Li

, (2.54)

where Li =
∑

j lij is the length of intersection of LOR i with the image. The ratio

ψie,δe/yie,δe in this formula can be interpreted as an estimated probability for the event e

registered in LOR ie with TOF difference δe to be a true event.

Formula (2.51) shows that MLTR is a variation of the (scaled) gradient ascent opti-

mization algorithm. The first derivative of the likelihood defines the algorithm’s step “di-

rection” and the second derivative (always negative) only modifies the step “size” which

affects the convergence speed. In gradient ascent algorithms, in general, the step size is

allowed to be selected rather arbitrarily as long as it does not prevent convergence and,

therefore, one can multiply δµ
(p)
j by some factor α(p) > 0 to improve the algorithm per-

formance. Furthermore, the convergence properties can be modified even more drastically

as described in (Van Slambrouck & Nuyts, 2014), leading either to a “patchwork” MLTR

which modifies only some subset of the voxels per iteration or to the so-called convex al-

gorithm ensuring faster convergence in high-attenuating regions (Lange & Fessler, 1995).

We have started our derivation with the likelihood of TOF data (2.42). Therefore,

algorithms (2.25) and (2.54) optimize the same likelihood function by design. However, it

is widely believed (Rezaei et al., 2016) that the available TOF information can be ignored

in the attenuation estimation step of the joint reconstruction and the non-TOF MLTR

algorithm can be used in MLAA instead. Non-TOF MLTR can be derived directly from

the non-TOF likelihood (1.24) or it can be obtained from (2.54) by assuming that the

ratios ψi,δ/yi,δ are independent of TOF difference δ (Rezaei et al., 2016)

ψi,δ
yi,δ
≈ ψi
yi
. (2.55)
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By substituting (2.55) into (2.54) we get the formula for a non-TOF LM-MLTR update

µ
(p+1)
j = µ

(p)
j +

∑
e
liej

ψie
yie
−
∑
i
lij ψi

∑
e
liej

[
ψie
yie
−
(
ψie
yie

)2
]
Lie −

∑
i
lij ψi Li

. (2.56)

Since TOF information is ignored in (2.56), it is easy to group all the events by LOR and

take advantage of computing the factors ψi/yi only once per LOR. The resulting formula

is a direct analogue of (2.56), suitable for a sinogram-based implementation

µ
(p+1)
j = µ

(p)
j +

∑
i
lij ψi

(
yi
yi
− 1

)
∑
i
lij ψi

(
yi
yi
− 1− yi ψi

y2
i

)
Li

. (2.57)

Usually, formula (2.57) is further simplified by assuming that yi/yi ≈ 1 in the denom-

inator, allowing to exclude the measured data from the denominator completely (Rezaei

et al., 2016). As discussed before, changes in the denominator do not affect the con-

vergence point µ of the algorithm but only alter the convergence speed. We, therefore,

do not perform the aforementioned MLTR modification due to the negligible impact on

algorithm performance and results. Assumption (2.55), on the other hand, introduces

major changes in the numerator of the MLTR formula which in theory can alter the so-

lution towards which the algorithm converges. However, so far the differences between

TOF and non-TOF MLTR in the context of MLAA reconstruction have never been thor-

oughly investigated. For this reason, we have implemented both versions of MLTR, (2.54)

and (2.56), and integrated them in THOR for further analysis.

LM-MLTR can be accelerated with an ordered subsets approach by splitting the sums

over all events in (2.54) and (2.56) into sums over event subsets Di, i = 1 . . .M , as

explained in Section 2.2.1. Accordingly, the sum over all LORs has to be reduced to a

sum over LOR subset Li corresponding to event subset Di. We used the same subsets

definition for MLEM and MLTR in our implementation.

2.5.2 Maximum likelihood reconstruction of attenuation and activity

As explained above, the MLAA algorithm maximizes the likelihood function by alternating

updates of activity and attenuation images via MLEM and MLTR algorithms, respectively.

The general MLAA workflow is illustrated in Fig. 2.9. The concrete iteration scheme does

vary in different implementations. There are two main possibilities:

1. Interleaving updates

2. Interleaving reconstructions

The first option implies alternating updates of the activity and attenuation images during
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Figure 2.9: General MLAA algorithm workflow.

a single reconstruction where one MLEM update is immediately followed by several MLTR

updates (MLTR converges slower than MLEM), see Fig. 2.10. Variations of this approach

were analyzed and discussed in detail in (Presotto et al., 2015), concluding that at least

four MLTR updates should be applied per single MLEM update.

The other iteration scheme uses multiple consecutive MLEM reconstructions of the

same dataset separated by several MLTR updates, see Fig. 2.11. In this case, each MLEM

reconstruction is performed with a single attenuation map which is only modified between

the reconstructions.

In general, the first approach is preferable for clinical applications since it requires

performing MLEM reconstruction only once which results in a severalfold speed advantage.

On the other hand, the second approach, being impractical in a clinical routine, is better

suited for investigation of MLAA capabilities and limitations. There are several reasons for

this. First of all, MLTR updates, in this case, use a fully corrected and converged activity

image as well as accurate scatter estimate (scatter is updated 2–3 times during the MLEM

reconstruction). Moreover, scatter is being recalculated in every MLEM cycle based on

the latest available attenuation map. Another advantage of the interleaved reconstruction
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Figure 2.10: MLAA algorithm with interleaved updates. Horizontal bars represent µ-map (top)
and activity image (bottom) estimated during the reconstruction. Different colors represent
changes in the estimated images and darker colors correspond approach to convergence.
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Figure 2.11: MLAA algorithm with interleaved reconstructions. Horizontal bars represent µ-map
(top) and activity image (bottom) estimated during the reconstruction. Different colors represent
changes in the estimated images and darker colors correspond to an image closer to convergence.

MLAA scheme is a higher degree of freedom in adjusting MLEM and MLTR individual

iteration schemes. It is possible to use the existing optimized reconstruction parameters

for MLEM reconstruction and then just select an appropriate number of MLEM cycle

repetitions and MLTR iterations in order to ensure overall algorithm convergence. For

these reasons, we have implemented MLAA using the interleaved reconstructions scheme.

There are several practical complications one has to handle in order to avoid errors in

the reconstructed images and achieve good MLAA performance:

1. Image scale

Even though the utilization of TOF information in MLAA reconstruction allows to

reduce local cross-talk between attenuation and activity, the global scale of activity

and attenuation images remains undefined. Indeed, if there are two sets of images

(λ,µ) and (λ′,µ′) such that λj = C λ′j and ai = a′i /C for some C > 0 and all i and

j, then they will yield the same likelihood values l(λ,µ) = l(λ′,µ′), see (2.42), and

if (λ,µ) maximizes the likelihood, then (λ′,µ′) maximizes it too. Therefore, it is

crucial to fix the scale of the reconstructed images in order to prevent quantitative

errors.

Within this study, we fixed the attenuation map scale as follows. We assume that soft

tissue is a dominant tissue class. In order to find the soft tissue voxels, the denoised

attenuation map (using a 12 mm FWHM Gaussian filter) was histogrammed with

a bin width of 0.015 cm−1 and the most populated µ-range was selected. Our

assumption implies that voxels with µ-values within this range should correspond

to soft tissue. Therefore, their average attenuation coefficient µavg should be equal

to the respective µ-value, µsoft = 0.096 cm−1. This condition was enforced by the

global attenuation map rescaling

µ′ (p) = µ(p) µsoft

µavg
, (2.58)

where µ(p) and µ′ (p) are attenuation maps before and after rescaling, respectively.

The procedure is performed after every MLTR update to prevent a drift of the µ-map

global scale.
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2. Algorithm initialization

Generally speaking, MLAA does not guarantee the convergence to the global maxi-

mum of the likelihood as a function of (λ,µ) since the existence of local maxima is

not excluded (Rezaei et al., 2012). Therefore, it is recommended to use a good atten-

uation map estimate for algorithm initialization. The common choice here is a ho-

mogeneous µ-map generated by determining the body outline from non-attenuation-

corrected activity image and assigning the attenuation coefficient of water to the

interior (Cheng et al., 2016b). In our implementation, we take advantage of the

available MR scan and use a (truncation compensated) MR-based attenuation map

as an initial µ-map guess µ(0).

3. Missing attenuation data

LORs which do not cross the activity support A need to be handled with special

care. For these LORs, ψi ≈ 0 and all of the registered events have to be either scatter

or randoms and thus contain no actual information about the attenuation factors ai.

Therefore, voxels outside of the activity support are intersected by a large number

of uninformative LORs resulting in increased noise in the background region and

in an increased chance of convergence to some local likelihood maximum instead

of the global one (Nuyts et al., 1999). Restricting MLTR to update the µ-map

only inside of the activity support is a viable solution to the problem. However, if

the activity support was delineated wrongly or if there are unaccounted attenuating

objects in the FOV (e.g. a flexible MR coil or headphones), then MLAA will perform

suboptimally. Without the possibility to update the restricted attenuation map

regions, the algorithm will erroneously predict more attenuating material inside the

patient body causing undesirable artifacts.

Another way of reducing the background noise while still allowing modification of

the µ-map outside of the patient support is suggesting to the algorithm the likeliest

µ-value instead of enforcing it. A priori knowledge regarding the attenuation in

the background can be introduced into the algorithm by modifying the likelihood

function in a way that prefers solutions with a predefined set of µ-values outside of

the activity support (Nuyts et al., 2013; Heußer et al., 2017). Another method was

proposed in (Nuyts et al., 1999). It reduces background noise by adding information

regarding attenuation in the LORs which do not contain any activity. We will ignore

the patient bed and MR hardware for now and will assume that for these LORs the

attenuation is close to zero. This assumption enters into the formula (2.57) through

modified forward projector and events count

y′i = yi, ψ′i = ψi, if i ∩A 6= 0, (2.59a)

y′i = B + si + ri, ψ′i = ai niB, otherwise, (2.59b)

where B > 0 is an arbitrary constant specifying the regularization strength and
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primed values are the new values for event count and forward projector. We used

B = 1 in the present work. The proposed modifications are not directly compatible

with the list-mode algorithms (2.54) and (2.56). Therefore, we suggest computing

the contribution of the “empty” LORs in the list-mode MLTR in the same way as

in (2.57).

4. Erroneous structures in the background

It is still possible that even after regularization (2.59) MLAA generates some attenu-

ating structures in the background which do not correspond to any real attenuating

objects in the FOV. These attenuation map artifacts do not affect the attenuation

correction performance but can interfere with scatter estimation procedures and

should be removed. Normally, the µ-values of spurious structures grow slower than

the ones corresponding to actual attenuating medium. This observation can, thus,

be used for a “cleanup” of the attenuation map: we remove too small (µ < h) µ-

values outside of the activity support every second MLTR update, thus suppressing

slowly growing attenuating structures in the background

µ
′ (p)
j = 0, if j /∈ A, µ

(p)
j < h, pmod 2 = 0, (2.60a)

µ
′ (p)
j = µ

(p)
j , otherwise, (2.60b)

where primed quantities designate the values after correction. We used h = 0.005 cm−1

in the present study.

5. Negative attenuation values

Gradient-ascent algorithms do not guarantee non-negativeness of estimated µ-values

and this constraint has to be enforced explicitly. We, therefore, remove all negative

µ-values from the attenuation map after every MLTR update

µ
′ (p)
j = max

(
µ

(p)
j , 0

)
, (2.61)

where primed quantities designate the values after correction.

6. High attenuation map noise

Attenuation maps estimated from emission data exhibit substantially higher noise

levels than those obtained with CT- or MR-based methods. Noise in the attenuation

map translates into increased image noise level and should be minimized. This can

be achieved through µ-map regularization (Ahn et al., 2012) or by simple smoothing

of the µ-map increment image δµ(p). Utilizing the latter approach, we perform a

Gaussian filtering (FWHM = 4 mm) of the δµ(p) for every p.

7. Altering of patient bed and MR hardware attenuation

The µ-map modifications performed during the MLTR update do also affect the

pre-built well-known attenuation maps of the patient bed and MR coils. To revert
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the changes made by the algorithm, we restore the bed and coils template in the

attenuation map after every MLTR update.

2.6 Data acquisition and reconstruction

All data were acquired in list-mode with the Philips Ingenuity PET/MR scanner at the

University Hospital Carl Gustav Carus, Dresden. The applied activity measurements were

performed with the clinical dose calibrator ISOMED 1000 (Nuklear-Medizintechnik, Dres-

den, Germany). Dose calibrator and scanner are cross-calibrated quarterly as described

in (Maus et al., 2014). The calibration accuracy is count-rate-dependent. It is better than

20% for singles rates < 40 Mcps and better than 10% for singles rates < 10 Mcps.

2.6.1 Phantom data

PET phantoms are dedicated vessels containing suitably shaped solid or hollow fillable

inserts to simulate relevant tissues and activity distributions. Since material composition

and geometry are known, the attenuation map of the phantom can easily be determined.

Activity concentration in each compartment, too, can be accurately measured prior to

(and independent of) the PET acquisition. Phantoms thus allow conducting studies with

a known ground truth typically unavailable for patient scans. Therefore, phantoms are

used in scanner and reconstruction calibration, performance measurements, and quality

assurance. The list of phantoms and their configurations as used in the present work is

given below.

SUV phantom

Figure 2.12: SUV calibration phantom

The standard phantom supplied with the Ingenuity

PET/MR for SUV calibration and validation pro-

cedures is shown in Fig. 2.12. The phantom is a

hollow acrylic glass cylinder with dimensions

• inner radius: 19.5 cm,

• outer radius: 20 cm,

• height: 31.3 cm,

• volume: 9345 mL.

The phantom is filled with water to which the de-

sired amount of radioactive tracer is added. Our

measurements were performed using an initial activ-

ity of 180 MBq 18F-FDG and lasted 6 hours (about

3.3 half-lives of 18F) which covers a high dynamic

count-rate range (count rates change by about a factor of ten during the measurement).
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Cylinder phantom with spherical inserts

Figure 2.13: Cylinder phantom with
spherical inserts.

The phantom is part of phantom set L981602 (PTW-

Freiburg, Freiburg, Germany) and consists of a hollow

acrylic glass cylinder with interchangeable cover that

holds six thin-walled glass spheres of different size.

The phantom is shown in Fig. 2.13. Its dimensions

are

• inner diameter: 19.4 cm,

• outer diameter: 20 cm,

• height: 19 cm,

• volume: 5616 mL.

The sphere dimensions are summarized in Table 2.1.

Sphere No. Outer diameter (mm) Inner diameter (mm) Volume (mL)

1 12.0 9.7 0.47
2 14.5 12.9 1.12
3 18.4 16.8 2.48
4 23.5 21.3 5.03
5 29.7 27.2 10.59
6 39.2 37.0 26.50

Table 2.1: Dimensions of the six spherical inserts

The spheres and the background can be filled independently with different activity

concentrations to achieve the desired activity levels and image contrasts. For the present

work, all spheres were filled with a common activity concentration. Three different configu-

rations were used representing high, medium and low contrasts, respectively, see Table 2.2.

Measurement
Spheres activity Background activity

Contrast Duration (s)
concentration (kBq/mL) concentration (kBq/mL)

1 69.42 3.68 18.86 600
2 55.60 5.39 10.31 840
3 45.38 8.86 5.12 1080

Table 2.2: Cylinder phantom study specifications

Whole-body phantom

This phantom, too, is part of phantom set L981602 (PTW-Freiburg, Freiburg, Germany)

and made of acrylic glass. The geometry is shown in Fig. 2.14. The phantom has a volume

of 9650 mL and possesses an interchangeable top cover that enables attachment of different

inserts. Three different configurations were used in the present work.
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230

300

177

Figure 2.14: Whole-body phantom
schematic view. (Modified after the phan-
tom user manual, PTW-Freiburg)

1. No inserts (homogeneous)

A nine-hour-long scan was performed with

140 MBq 18F-FDG activity mixed in the water-

filled phantom to investigate the scanner per-

formance over a very large dynamic count-rate

range.

2. Cylindrical inserts

The phantom in this configuration hosts three

cylinders of 5 cm outer diameter, see Fig. 2.15.

Two of the cylinders contain air and the last

one is made of polytetrafluoroethylene (PTFE,

e.g. Teflon™) whose linear attenuation coefficient

µ = 0.182 cm−1 is close to that of cortical bone

(µ ≈ 0.172 cm−1). The background was filled

with water solution of 18F-FDG with activity of

40 MBq and scanned for ten minutes. This setup

was used to evaluate the performance of the attenuation correction algorithms.

3. Bladder and lesion inserts (pelvis region phantom)

This configuration models the extreme high contrast conditions typical for the pelvic re-

gion. It will be referred to as “pelvis region phantom” in the following. This configuration

was used to evaluate the performance of scatter correction in a worst-case scenario. Two

spherical inserts are used in this case. The bigger one (R = 36 mm) is located in the

center and represents the bladder. The second one (R = 13.8 mm) is located 5 cm away

from the “bladder” to describe a tumor lesion near the bladder, see Fig. 2.15. We chose

a bladder:lesion:background activity concentration ratio of 40:5:1 which is comparable to

concentration ratios frequently observed in the pelvic region in clinical 18F-FDG PET

scans.

2.6.2 Clinical data

The clinical dataset contains three representative patient studies (two whole-body acqui-

sitions and one brain scan). Informed consent was obtained from all subjects. All patient

data were anonymized.

Patient A (whole-body)

The patient had a cervical lymph node metastases of squamous-cell carcinoma. He received

333 MBq dose of 18F-FDG and underwent 10-bed-positions whole-body PET scan starting

65 minutes post-injection with 2 minutes scan time per bed position.
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Figure 2.15: Whole-body phantom. Left: cylindrical air and PTFE inserts for attenuation cor-
rection assessment. Right: spherical water-filled inserts representing bladder and tumor lesion for
scatter-correction assessment.

Patient B (whole-body)

The first patient had five adenocarcinoma metastasis in the liver. He received 309 MBq
18F-FDG injection and underwent 10-bed-positions whole-body PET scan 59 min post-

injection. The patient had stent implants in the descending and abdominal aorta, and in

the vessels of the mesentery and the kidneys. These implants are prone to cause metal-

induced artifacts in MR images. The vicinity of the potentially affected areas to the lungs

can affect lungs delineation from the MR image and, therefore, poses a great challenge to

any MR-based attenuation correction technique.

Patient C (brain)

The patient exhibited a gray matter heterotopia in the left mesial temporal lobe. A brain

scan of 20 minutes was performed starting 30 minutes after the injection of 210 MBq of
18F-FDG.

2.6.3 ROIs definition

Regions-Of-Interest (ROI) based analysis was used in the present thesis in order to evaluate

the quantitative performance of the proposed methods. Description of the ROIs is given

in the following.

Pelvis region phantom

The pelvis region phantom is dedicated to scatter correction quality evaluation. Therefore,

of special interest in this context is the concentric neighborhood of the bladder since it

is most strongly affected by inaccuracies of the scatter correction. A frequently observed

problem in this region is a severe scatter overcorrection (known as photopenic or halo

artifact) which thus provides a critical test of SC accuracy. The activity in the background

was determined from a set of 14 cylindrical regions-of-interest (ROI) with a total volume
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Figure 2.16: Used pelvis region phantom geometry and ROI positions (light gray: background,
dark gray: lesion, black: bladder, light blue: ROIs). The line profiles through the reconstructed
images shown in Fig. 3.8 as well as the TOF profiles in Fig. 3.9 are along the horizontal red line
through the center of the lesion and tangential to the bladder.

of 805 cm3 equally spaced along the rim approximately 3 cm inward from the edge of the

phantom. Activities in the bladder and the lesion were measured in spherical ROIs of

59 cm3 and 2 cm3, respectively, centered within the respective region (Fig. 2.16).

Whole-body phantom with cylindrical inserts

The whole-body phantom with cylindrical inserts is divided into four compartments with

different attenuation. Estimated linear attenuation coefficients in these compartments

were taken from cylindrical ROIs which were placed inside the inserts and in the back-

ground. The ROIs in the inserts had a common size and volume (110 cm3). The back-

ground µ-value was measured in a set of two ROIs with a total volume of 1643 cm3. The

ROIs radii were selected small enough to exclude the influence of partial volume effects.

Patient 2

The noise in the reconstructed activity images and attenuation maps was determined as

fractional standard deviation of the voxel values in the spherical ROI of 33 cm3 placed in

the liver.

2.6.4 Reconstruction parameters

The image reconstruction parameters for THOR are listed in Table 2.3. The parameters

were the same for both TOF and non-TOF reconstructions. No post-smoothing was

applied. The scatter TOF bin number for each reconstruction protocol was determined

with the optimization procedure described in Section 2.7.3. 25 TOF bins yield a bin

width of 240 ps and 50 TOF bins yield a bin width of 120 ps. Note, that MLRES and

MLAA reconstruction algorithms utilize different iteration schemes which are specified in

the respective sections.
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Study
Iterations× Voxels Grid size TOF- Sc. updates
Subsets size (mm) (voxels) bins at (%)

Phantom 5 × 12 4 144 × 144 × 45 50 20/40/60
Clinical (WB) 2 × 12 4 144 × 144 × 234 25 30/60
Clinical (WB single bed) 2 × 12 4 144 × 144 × 45 25 30/60
Clinical (Brain) 3 × 12 2 256 × 256 × 90 50 20/40/60

Table 2.3: Iteration schemes and SC parameters for image reconstruction with THOR.

For TOF reconstruction, initial scatter estimation was performed in TOF mode with

respective algorithm and the scatter time distributions were derived (i.e. the time de-

manding procedure of scatter time distribution calculation was performed only once per

reconstruction). Non-TOF SSS was used for subsequent scatter updates during the iter-

ative reconstruction process. A simplified scheme of the reconstruction process is shown

in Fig. 2.17. Two scatter updates were done for the whole-body scans while three scatter

updates were done for the brain and phantom scans since these were reconstructed with

a protocol using an increased number of iterations.

If the different was not explicitly stated, attenuation maps were generated from MR

image segmentation into 3 classes (air, lungs, soft tissue) with the in-house toolkit (Sec-

tion 2.1.1). Truncation compensation was performed when necessary.

MLEM TOF-SSS
or ISA

SSSMLEM MLEM

Image

Non-TOF scatter

Scatter TOF-profiles

Figure 2.17: Simplified scheme of the reconstruction process. Horizontal bars represent the
quantities miτ , si, λj estimated during the reconstruction. Different color shades indicate changes
in the value of the respective quantity (the case of two scatter updates and 12 updates of the initial
image estimate is shown).

2.7 Optimization of reconstruction parameters

The THOR reconstruction tool has several parameters which can be adjusted in order

to achieve optimal reconstruction accuracy and performance. Among these are scatter

scaling parameters, the number of used scatter TOF bins, and scanner time resolution.

2.7.1 Scatter scaling

As mentioned in Section 2.2.3, the Single Scatter Simulation does not account for multiple

scatter events and out-of-FOV scatter. Therefore, scatter scaling procedure is required,
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see e.g. (Polycarpou et al., 2011). The scatter scaling approach is based on the assumption

that the total scatter including single, multiple, and ooFOV scatter has the same shape as

the single scatter in each plane. It is then possible to scale the SSS scatter distribution to

match the overall scatter amount. The accuracy of this procedure depends on the chosen

scaling method. Mostly variants of scatter tail fitting are used but other methods have

been proposed as well, such as maximum likelihood scatter scaling (Rezaei et al., 2017a)

or Monte Carlo simulation based scaling (Jinghan Ye et al., 2014).

Within this work, we are using the scatter tail fitting method. It exploits the fact that

for LORs which are not crossing the activity support all measured events are either ran-

doms or scatter. Since the randoms contribution can be reliably estimated (Section 2.2.4),

the scatter tails can be used to determine the overall scaling factor for the whole scatter

distribution in the plane-of-response (Section 1.2.4). For this, the least squares method is

normally used. The aim here is to find a scaling factor b > 0 which minimizes the sum∑
i∈tails

ki (yi − ri − b sSSS
i )2, (2.62)

where ki is the LOR weight. The resulting scatter estimate is defined then by

si = b sSSS
i (2.63)

The resulting fit quality strongly depends on the choice of the weighting coefficients ki.

The most straightforward approach here is to use an unweighted fitting procedure cor-

responding to the choice ki = 1 for all i. Another weighting method is based on the

assumption that close-to-object LORs contain the most reliable information about scat-

ter. Hence, only these LORs should be used during the fitting. We investigated several

implementations of this weighting scheme where ki was set to 1 for the first 3, 5, and

7 LORs, respectively, closest to the activity support for each projection angle and to 0

otherwise.

The last considered weighting method is inspired by the structure of the MLEM it-

eration formula (2.22) itself. As it can be seen from it, scatter errors are amplified by

a factor of 1/ai in the scatter tails region since the forward projector is close to zero.

This amplification factor can be larger than 1 outside of the activity support due to the

presence of the patient bed. This suggests using ki = (1/ai)
2 as a weighting factor during

the least squares tail fitting process. Other powers of this factor 1/ai, (1/ai)
3, (1/ai)

4,

(1/ai)
5, (1/ai)

6 were also investigated.

We determine the activity support by suitable thresholding of the attenuation map

excluding the patient bed. A safety margin of 10 mm was added to the derived body outline

in order to avoid any contamination of the LORs used for tail fitting by residual activity

contributions due to finite resolution or residual patient motion. Scaling coefficients were

calculated and applied to the scatter in each plane independently in order to allow for

variations in a scatter scale due to the variable fraction of the ooFOV scatter along the
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scanner axis.

The aforementioned methods were incorporated into the THOR scatter correction

routine and evaluated on the pelvis region phantom data (Section 2.6.1). The data were

reconstructed in the non-TOF mode. The reconstructed activities in the ROIs defined in

Section 2.6.3 were analyzed and the best performing method was selected for further use

in the reconstruction.

2.7.2 Time resolution calibration

Time resolution is an important characteristic of TOF-capable PET system. Higher time

resolution means more reliable measurements of the photon arrival time differences al-

lowing to achieve higher benefits from TOF-imaging. It is important to use a correct

time resolution during image reconstruction in order to avoid artifacts in MLEM (Daube-

Witherspoon et al., 2006) and MLAA (Cheng et al., 2016a). Time resolution depends

on the scintillation crystals response time as well as on the performance of the signal

processing electronics. In this context, it is relevant to recognize that the time resolu-

tion of a time-of-flight PET system is count-rate-dependent (Surti et al., 2007). However,

count-rate-dependent time resolution calibration was not provided by the vendor for our

scanner which is a common practice. We, therefore, developed such a procedure which is

compatible with clinical routine and is also applicable retrospectively to existing data.

Figure 2.18: MLRES algorithm general scheme.

We propose a novel Maximum Likelihood Time Resolution Estimation (MLRES) al-

gorithm that maximizes the likelihood by updating activity image and TOF-kernel width

alternately. TOF-MLEM is used to update the activity image and Newton’s-method-based

maximization of the likelihood is performed to update the time resolution. The idea of

this method is similar to that of MLAA. It is assumed that the likelihood (2.42) reaches

its maximum when both true activity distribution and true time resolution were used

(Vandenberghe et al., 2007). The simplified scheme of the algorithm is shown in Fig. 2.18.
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Newton’s optimization method used for time resolution estimation iteratively maxi-

mizes the second-order Taylor expansion of the likelihood assuming that the global likeli-

hood maximum is located close enough to initial σ
(0)
TOF guess

σ
(p+1)
TOF = σ

(p)
TOF −

l̇
(
λ(p), σ

(p)
TOF

)
l̈
(
λ(p), σ

(p)
TOF

) , (2.64)

where index p is used to enumerate both activity and time resolution updates. Single and

double dots above the letters designate, respectively, the first and the second derivative

over σTOF

l̇ (λ, σTOF) =
∂ l

∂σTOF
(λ, σTOF) , (2.65a)

l̈ (λ, σTOF) =
∂2 l

∂σTOF
2

(λ, σTOF) . (2.65b)

Direct calculation of the derivatives of the likelihood (2.42) in (2.64) gives us the time

resolution update

σ
(p+1)
TOF = σ

(p)
TOF −

∑
e

ẏie,δe
yie,δe∑

e

 ÿie,δe
yie,δe

−

(
ẏie,δe
yie,δe

)2


∣∣∣∣∣∣∣∣∣∣∣∣
σTOF=σ

(p)
TOF

, (2.66)

where yi,δ is defined in (2.26) and

ẏi,δ = ai ni
∑
j

cij ˙̃wi(δij ; δ, σTOF)λj + si Ẇi(δ, σTOF), (2.67a)

ÿi,δ = ai ni
∑
j

cij ¨̃wi(δij ; δ, σTOF)λj + si Ẅi(δ, σTOF), (2.67b)

as follows from (2.26), (2.27) and (2.33) with TOF-weighting factors w̃i(δij ; δ, σTOF) and

Wi(δ, σTOF) given by (2.32a) and (2.35a).

We further assume that the number of scatter TOF bins used is reasonably large (say,

Nτ ≥ 50) and that the effects of the TOF-kernel truncation can be ignored for most of

the events. In this approximation normalization factors Ã(δ, σTOF) and B(δ, σTOF) are

proportional to the standard Gaussian normalization factor. The derivatives of the TOF

weighting factors in (2.67) are then given by

˙̃wi(δij ; δ, σTOF) = w̃i(δij ; δ, σTOF)

[
(δij − δ)2

σ3
TOF

− 1

σTOF

]
, (2.68a)

¨̃wi(δij ; δ, σTOF) = w̃i(δij ; δ, σTOF)
1

σ2
TOF

[
2− 5

(δij − δ)2

σ2
TOF

+
(δij − δ)4

σ4
TOF

]
, (2.68b)
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Ẇi(δ, σTOF) = Nτ B(δ, σTOF)×

×
Nτ∑
τ=1

miτ

[
(δτ − δ)2

σ3
TOF

− 1

σTOF

] ∫
∆τ

exp

[
−(δ ′ − δ)2

2σTOF
2

]
dδ ′,

(2.68c)

Ẅi(δ, σTOF) = Nτ B(δ, σTOF)×

×
Nτ∑
τ=1

miτ

σ2
TOF

[
2− 5

(δτ − δ)2

σ2
TOF

+
(δτ − δ)4

σ4
TOF

] ∫
∆τ

exp

[
−(δ ′ − δ)2

2σTOF
2

]
dδ ′,

(2.68d)

where δτ is a time difference corresponding to the center of TOF bin τ and all other

notations were introduced before. As can be seen, the proposed algorithm requires three

forward projection operations per event with different TOF weighting. It is not necessary,

however, to recalculate the system matrix elements multiple times per projection operation

since values cij can be computed only once per LOR and then reused. MLRES can be

further accelerated with the ordered subsets like MLEM and MLTR, see Section 2.2.1 and

Section 2.5.1.

A closer look at (2.66) shows that outside of the activity support, only scatter data

is used to determine time resolution. Moreover, the contribution of such LORs can be

relatively high especially for small objects. Since the algorithm compares the measured

scattered data against the simulated one, the possible errors in the estimated scatter can

translate into the errors in the estimated time resolution. In order to avoid this risk, we

restrict the events set used in (2.66) and ignore all the events from the LORs which do

not cross the activity support.

The scanner time resolution calibration was performed using SUV phantom (Sec-

tion 2.6.1). The wide range of singles rates (about 5 – 30 Mcps) the phantom study

was performed at allows deriving the calibration curve which covers the clinically relevant

count-rate interval and even extends beyond it. 32 short time frames (150 – 600 s) were

extracted from the six-hours-long study and reconstructed separately in order to prevent

large variations of the singles rate exceeding 0.3 Mcps. The iteration scheme of five MLEM

iterations with 12 subsets was chosen (Table 2.3) while five time resolution updates per

single MLEM update were performed in order to achieve convergence of the algorithm.

100 TOF bins were used to avoid sampling errors. Iterations were initialized with a time

resolution of 700 ps in all cases. TOF-SSS algorithm was used for scatter correction.

2.7.3 TOF bins number

The number of scatter TOF bins, Nτ , determines the sampling of the stored scatter time

profiles miτ . Increasingly finer sampling reduces discretization errors but rapidly leads to

prohibitive RAM requirements. Therefore, it is important to determine a suitable value for

Nτ that yields sufficient scatter correction accuracy while not exceeding available memory.

For this analysis, we employed the same strategy as in Section 2.7.1 and used the pelvis

region phantom for precise scatter correction quality evaluation. The scatter correction
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was performed with the reference TOF-SSS.

The TOF bins number was varied in the range [1-100] and the dependency of the

reconstructed ROI activities (Section 2.6.3) on Nτ was determined. Suitable values of Nτ

were determined for the whole-body and brain reconstruction protocols, respectively, while

taking into account the existing requirements regarding desirable numerical accuracy and

available RAM.

2.8 Validation

2.8.1 MLRES validation

The MLRES method was validated by applying it to a set of phantom and patient studies

different from the SUV phantom dataset used for the initial calibration. This set includes

the phantom datasets listed in Section 2.6.1 and the clinical datasets listed in Section 2.6.2.

Long phantom studies were split into short time frames to reduce variations in the singles

rate to below 0.3 Mcps. MR-based attenuation maps were used for the reconstruction. The

same iteration scheme and time resolution start value were used for both calibration and

validation purposes. Results were compared with the initial time resolution calibration

and the mean absolute and relative deviations from it were calculated.

Since global convergence of MLRES is not guaranteed, we assessed the robustness of

the algorithm to initialization. For this, we performed MLRES reconstructions of the same

SUV phantom study with varying initial values of the TOF-kernel width in the range of

[500 − 1000] ps. The obtained results were compared and the deviations from the mean

were computed.

Performance of the proposed method for time resolution prediction was additionally

evaluated with MLAA reconstruction. It is known that the MLAA algorithm is sensitive

to errors in the scanner calibration in general (Nuyts et al., 2018) and to errors in the

time resolution calibration in particular (Cheng et al., 2016a). Thus, the whole-body

phantom with three cylindrical inserts (Section 2.6.1) was reconstructed with LM-MLAA

algorithm (non-TOF MLTR version) using time resolution of 550 ps provided by the

vendor and 685 ps estimated with MLRES. The transmission-scan-based attenuation map

of the phantom was used as a reference. The µ-map was acquired with ECAT EXACT

HR+ (Siemens, Knoxville, Tennessee) PET scanner. The corresponding reference activity

image was reconstructed with TOF-MLEM using time resolution of 685 ps.

The TOF-SSS algorithm was used for scatter correction for all reconstructions.

2.8.2 ISA accuracy and performance

The different TOF-SC algorithms were evaluated on a set of phantom and patient scans.

The phantom modeled extreme high contrast conditions in the pelvic region in order to

evaluate scatter correction in a worst-case scenario. The phantom setup is described in Sec-

tion 2.6.1. The accuracy of the SC algorithms was quantitatively assessed by comparing
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image-derived activity ratios of relevant regions with their true values. Performance of

the different TOF-SC algorithms was additionally assessed in scans of the patients A and

C (Section 2.6.2) representing typical whole-body and brain investigations, receptively.

The data were reconstructed with THOR in TOF and non-TOF mode. Reconstruction

settings are listed in Table 2.3.

Altogether, 5 different reconstruction/scatter correction schemes were evaluated:

1. Vendor: vendor provided reconstruction (phantom/whole-body: TOF BLOB-OS-

TF, brain: non-TOF 3D-RAMLA)

2. Non-TOF recon: non-TOF THOR + SSS

3. SSS: TOF-THOR + SSS (distributing scatter equally over TOF bins)

4. ISA: TOF-THOR + ISA

5. TOF-SSS: TOF-THOR + TOF-SSS

The vendor-provided reconstruction was included for comparison against our work and

used with its “highest quality” setting.

2.8.3 Quality of MLAA attenuation correction

Two versions of the MLAA algorithm featuring non-TOF (2.56) and TOF (2.54) LM-

MLTR as a µ-map estimation tool were evaluated on phantom and patient data. MLAA

reconstructed activity and attenuation images were compared to those obtained with the

in-house developed MR-based µ-map generation tool described in Section 2.1.1 in combi-

nation with TOF-MLEM. In the further text, we will use the abbreviation MRTR to refer

to our custom µ-map generator. The in-house developed method was used in the present

investigation due to its superior performance compared to the vendor-provided toolkit.

All reconstructions were performed with both ISA and TOF-SSS in order to assess the

influence of the selected SC method on the joint reconstruction procedure.

Altogether, six different reconstruction regimes were utilized:

1. MRTR + ISA: TOF-MLEM with ISA scatter correction and MR-based µ-map

2. MRTR + TOF-SSS: TOF-MLEM with TOF-SSS scatter correction and MR-

based µ-map

3. MLTR + ISA: MLAA (TOF-MLEM with non-TOF MLTR) with ISA scatter

correction

4. MLTR + TOF-SSS: MLAA (TOF-MLEM with non-TOF MLTR) with TOF-SSS

scatter correction

5. TOF-MLTR + ISA: MLAA (TOF-MLEM with TOF-MLTR) with ISA scatter

correction
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6. TOF-MLTR + TOF-SSS: MLAA (TOF-MLEM with TOF-MLTR) with TOF-

SSS scatter correction

The accuracy of the estimated linear attenuation coefficients was evaluated with the

whole-body phantom with three cylindrical inserts (Section 2.6.1). The reconstructed

µ-values were determined based on the ROI analysis and compared with the known at-

tenuation coefficients of air, water, and PTFE accordingly to the analyzed region.

The pelvis region phantom was employed for the algorithm performance analysis under

the high activity contrast and extensive scatter conditions. Reconstructed activity and

estimated attenuation values were sampled from the ROIs described in Section 2.6.3 and

were compared with the reference values. Since the phantom was filled with water, linear

attenuation coefficients of 0.096 cm−1 were expected in all ROIs. Any deviations from

this value can be attributed to either sensitivity of the selected reconstruction method to

errors in the estimated scatter or to the cross-talk between attenuation and activity.

MLAA capabilities in a clinical context were demonstrated using the examples of

whole-body and brain patient studies. Datasets of the patients B and C were utilized for

this purpose, respectively.

The iteration schemes and reconstruction parameters which were used for the activity

reconstruction are listed in Table 2.3. The attenuation map reconstruction with MLAA

was performed according to the interleaved reconstruction scheme (Fig. 2.11). Two MLTR

iterations with 12 subsets were applied in-between the MLEM reconstruction cycles.

Convergence properties of the different MLAA implementations were evaluated using

the whole-body phantom with cylindrical inserts. 10 MLTR reconstructions were applied

and the estimated µ-values accuracy was assessed. Both MRTR and homogeneous water-

filled attenuation maps were used for the algorithm initialization. TOF-SSS was used

for the scatter correction in this case. Consequent phantom and clinical data reconstruc-

tions were performed with the determined optimal number of MLTR reconstructions of 7

resulting in a total of 7× 2× 12 = 168 MLTR updates.
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Results

3.1 Optimization of reconstruction parameters

3.1.1 Scatter scaling

Different variants of scatter scaling (see Section 2.7.1) were investigated using the pelvis

region phantom. The reconstructed activity concentrations were compared to the true

activity concentrations prepared using a cross-calibrated dose calibrator.

For a representative transaxial slice, the reconstructed images resulting from the dif-

ferent variants of scatter tail weighting are presented in Fig. 3.1. The ROI based quantifi-

cation of these images yields the results in Table 3.1.

As is to be expected, the immediate vicinity of the “bladder” is the most sensitive region

regarding differences between the tail fitting methods. Without scatter tail weighting, the

activity concentration within this “halo region” did deviate by 33% from the true value.

The situation improved somewhat when only considering the 3 LORs closest to the object:

the deviation from ground truth was reduced to 26.0% in this case. Including 5 or 7 LORs

yielded essentially the same result (with a tendency to increase the error slightly).

Attenuation-weighted tail fitting is distinctly superior in comparison. (1/ai)
2 weight-

ing, which is suggested by the fundamental MLEM properties, already reduced the error

to 22.3% in the halo region. A further reduction of the halo artifact strength occurred

when increasing the attenuation dependence of the weighting by raising the weighting fac-

tor to higher powers n. n = 3 reduced the underestimate in the halo region to 12.4% and

n = 4 to 8.4%. The higher powers up to n = 6 did not lead to further significant changes.

This is also obvious in Fig. 3.1 where images for weighting schemes (1/ai)
4, (1/ai)

5, and

(1/ai)
6 look virtually identical. Altogether, weighting with (1/ai)

4 yielded satisfactory

quantitative agreement (see Table 3.1) in all ROIs (Section 2.6.3) and was, therefore, used

for all further reconstructions.
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Figure 3.1: Comparison of different scatter tail weighting methods. A representative transaxial
slice from a measurement with the pelvis region phantom is shown. True activity concentration
in the background is equal to one in the chosen units. Values below one thus indicate scatter
overcorrection in the affected region. Images are thresholded as indicated at the colorbar to
facilitate visual assessment of the relevant dynamic range (true contrast in the data is 40:1).
“No weights” denotes unweighted scatter tail fitting. “First N” utilizes only the first N LORs not
intersecting the object. “(1/ai)

n” utilizes the reciprocal of the specified power of the attenuation
factors as LOR weights in the fitting procedure.

Weighting method
Reconstructed activity deviation (%)

∆ Lesion ∆ Bladder ∆ Background ∆ Halo

No weighting −12.9 −2.7 −7.2 −33.3
First 3 −12.1 −2.4 −5.7 −26.0
First 5 −12.1 −2.5 −5.9 −26.7
First 7 −12.2 −2.5 −6.0 −27.2
1/ai −12.6 −2.6 −6.6 −30.5
(1/ai)

2 −11.6 −2.3 −5.0 −22.3
(1/ai)

3 −10.4 −1.9 −3.0 −12.4
(1/ai)

4 −10.0 −1.7 −2.2 −8.4
(1/ai)

5 −10.0 −1.7 −2.2 −8.2
(1/ai)

6 −10.1 −1.8 −2.5 −9.3

Table 3.1: Quantitative comparison of scatter scaling methods. Shown are the deviations from
true target region activities. “No weights” denotes unweighted scatter tail fitting. “First N”
utilizes only the first N LORs not intersecting the object. “(1/ai)

n” utilizes the reciprocal of the
specified power of the attenuation factors as LOR weights in the fitting procedure.

3.1.2 Time resolution calibration

Time resolution of the Ingenuity PET/MR scanner was estimated with the MLRES al-

gorithm using the SUV calibration phantom (see Section 2.7.2). Our evaluation yields

a perfect linear dependency (R2 = 1) of time resolution on count rate, as demonstrated

in Fig. 3.2. According to these results, the resolution approaches 551 ps as the count rate

approaches a value of zero while the resolution degrades by 145 ps when increasing the

singles count rate by ten million per second. Compared to the zero count-rate limit, time

resolution is thus reduced distinctly for clinically relevant count rates and drops to about

840 ps for a singles rate of 20 Mcps (= 20 × 106 counts per second).
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Figure 3.2: Time resolution of Philips Ingenuity PET/MR as a function of singles rate estimated
with MLRES. The range of clinically relevant singles rates is shown in blue.

3.1.3 TOF bins number

The impact of the TOF bins number on accuracy of the TOF-aware scatter correction was

evaluated with the pelvis region phantom, as described in Section 2.7.3. The dependency

of reconstructed mean activity concentration in different regions on the number of TOF

bins used to store the scatter time distributions is presented in Fig. 3.3. Asymptotically,

the chosen number of TOF bins has no longer any influence on the reconstructed images

which can be understood as being a consequence of negligible TOF discretization errors

in this regime. But before this limit is reached, the chosen number of TOF bins has

a pronounced effect and oscillating changes of the reconstructed values as a function of

TOF bin number are apparent (discriminating between odd and even numbers of TOF

bins). The oscillations vanish for Nτ ≥ 16, but only for Nτ ≥ 50 the asymptotic limit is

approached.

According to these findings, we chose to use 50 TOF bins where feasible and used a

reduced number of 25 TOF bins for those study types where available computer memory

did not allow to use a larger number. As is obvious from Fig. 3.3, even the lower number

suffices to reduce residual deviations from the asymptotic limit to essentially negligible

levels.
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Figure 3.3: Dependency of reconstructed activity values in the different ROIs on the amount of
scatter TOF bins Nτ . The ratios of the reconstructed activities to the ground truth are shown.

3.2 Validation

3.2.1 MLRES validation

Consistency of the MLRES algorithm was validated in independently acquired phantom

and clinical data as described in Section 2.8.1. The results are shown in Fig. 3.4. As can

be seen, the validation data exhibit a small systematic deviation from the prediction of the

performed calibration measurements. Mean deviation from the time resolution calibration

is 21.6 ps (2.83%) over the investigated dynamic range. The relative error is increasing

with increasing singles rate but remains below 7% over the whole range of singles rates.

Overall, MLRES yields consistent results for clinical and phantom data. Interestingly, the

highest deviations from predicted values were observed in the homogeneous whole-body

phantom measurements. The mean absolute error for the remaining dataset was only

6.6 ps.

The dependency of the MLRES result on the start value for the time resolution is

demonstrated in Fig. 3.5. MLRES results are deviating from the mean by not more than

approximately 4 ps (≈ 0.5%) for start values between 500 and 1000 ps. These results

show that the algorithm is robust against the initialization and confirm that the chosen

iteration scheme is sufficient to achieve adequate (if not perfect) convergence.

The importance of using the correct time resolution for MLAA reconstruction is demon-
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Figure 3.4: Cross-validation of time resolution calibration. The range of clinically relevant singles
rate is shown in blue.

strated in Fig. 3.6. Distinct activity and attenuation artifacts at the rim of the phantom

are present if the vendor-provided value of 550 ps is used. The artifacts disappear when

the MLRES estimate (=685 ps in this case) is used and concordance with the transmission-

based attenuation map and TOF-MLEM reconstruction is restored.

3.2.2 ISA accuracy and performance

Different variants of TOF scatter correction were investigated using the pelvis region

phantom and clinical studies, see Section 2.8.2. Selected slices from the reconstructed

image volumes are shown in Fig. 3.7. A quantitative evaluation is presented in Table 3.2.

Line profiles intersecting both the lesion and the bladder are shown in Fig. 3.8.

The vendor (BLOB-OS-TF) reconstruction cannot handle this extreme high contrast

case. Scatter is heavily overcorrected near the “bladder”, resulting in a massive halo

artifact with a spurious 65.8% signal drop. Activity in the background remote from the

central sphere approaches its true value (= 1 in the units used in Fig. 3.7) only at the very

edge of the phantom.

In comparison, non-TOF THOR utilizing SSS exhibits less severe but non-negligible
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Figure 3.5: Influence of chosen start value for the MLRES algorithm on a fit result. The start
value has only a minimal effect on the final result (uncertainty range of about −4 to 3 ps).
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Figure 3.6: Activity (top) and attenuation (bottom) images of the whole body phantom with
cylindrical inserts. Left: transmission scan plus TOF-MLEM reconstruction. Middle: MLAA
reconstruction assuming a time resolution of 550 ps (vendor-provided value). Note the indicated
artifacts at the rim of the phantom. Right: MLAA reconstruction assuming a time resolution of
685 ps (MLRES estimate). True activity concentration in the background is equal to one in the
chosen units.
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Figure 3.7: Comparison of different scatter correction and reconstruction methods in the pelvis
phantom study. The top two rows are activity images and the bottom two rows are absolute
differences between selected reconstruction method and reference TOF-SSS. Top and bottom rows
in each group show transaxial and coronal view, respectively. Image captions are explained in
Section 2.8.2. True activity concentration in the background is equal to one in the chosen units.
Images are thresholded as indicated at the colorbar to facilitate visual assessment of the relevant
dynamic range (true contrast in the data is 40:1).

scatter correction artifacts. For instance, one observes 8.4% activity underestimate (over-

correction of scatter) in the halo region. Moreover, activity distribution around the central

sphere is visibly nonuniform and introduces spurious structures in the reconstructed im-

ages.

Switching from non-TOF THOR to TOF-THOR while keeping simple SSS is not a

viable approach as can be seen in the 3rd column of Fig. 3.7: here, scatter is heavily

underestimated resulting in 138.3% higher activity around the “bladder” compared to the

ground truth.

Utilizing TOF reconstruction together with TOF-aware scatter correction improves

the situation distinctly as can be seen in the last two columns of Fig. 3.7. In fact, ISA and

TOF-SSS produce near identical results. Both are able to suppress the halo artifact nearly

completely and adequately reproduce the correct activity ratios between the different

regions. The remaining small differences between ISA and TOF-SSS, as shown in the

last two columns in the bottom half of Fig. 3.7, result in a small overestimate of mean

background by 1.5%. All other measures are virtually identical, see Table 3.2.

The difference in scatter time profiles estimated with ISA and TOF-SSS is demon-

strated in Fig. 3.9. The left plot shows the scatter TOF distribution obtained with TOF-

SSS and its ISA approximation for the horizontal LOR shown in Fig. 2.16. The right

plot shows the profiles — the actually applied TOF weights wi,δ according to (2.35a) —
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Figure 3.8: Line profiles through the reconstructed images in Fig. 3.7 along the line indicated
in Fig. 2.16. The left peak represents the intersection with the lesion, the right peak spill-out of
signal from the bladder. True activity concentration in the lesion is equal to five in the chosen
units.

SC & reconstruction
Reconstructed activity deviation (%)

method ∆ Lesion ∆ Bladder ∆ Background ∆ Halo

Vendor recon −16.3 −13.6 −12.1 −65.8
THOR: non-TOF −10.0 −1.7 −2.2 −8.4
THOR: SSS 8.2 4.1 13.6 138.3
THOR: ISA −5.7 −0.4 1.5 2.5
THOR: TOF-SSS −5.9 −0.6 0.2 −0.5

Table 3.2: Quantitative comparison of scatter correction and reconstruction methods. Shown are
the deviations from true target region activities.

when taking into account the finite time resolution of the PET scanner. It is apparent,

that the deviations of ISA from TOF-SSS are mostly very small and larger deviations are

sharply localized (notably at the edges of the central peak). The smoothing effect of the

finite time resolution eliminates these differences essentially completely as is obvious on

the right-hand side of Fig. 3.9.

The different reconstruction and scatter correction methods were also evaluated in

representative clinical PET scans (patients A and C, Section 2.6.2). A whole-body in-

vestigation is shown in Fig. 3.10 and a long duration/high statistics brain investigation

in Fig. 3.11 (as mentioned in Section 2.1.1, in the latter case the vendor uses a different
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Figure 3.9: Representative TOF profile miτ and its ISA approximation (left) and the correspond-
ing TOF weights Wi(δ, σTOF) (right) as a function of TOF difference δ at σTOF = 600 ps. The
respective distributions were obtained in the pelvis region phantom for an LOR along the red line
in Fig. 2.16.

reconstruction than for whole-body studies). The results are qualitatively in agreement

with those from the phantom study. Due to the less extreme contrast conditions deviations

from the TOF-SSS results are visually less obvious, but quantitatively relevant (except

for ISA which again yields virtually the same results as TOF-SSS) as can be appreciated

from the difference images in the bottom half of both figures.

SC & reconstruction
Whole body Whole body (single bed) Brain

method Time (min) Time (%) Time (min) Time (%) Time (min) Time (%)

THOR: SSS 5.0 100.0 0.3 100.0 0.4 100.0
THOR: ISA 5.8 115.7 0.3 124.6 0.5 124.1
THOR: TOF-SSS 23.8 477.2 1.5 581.5 1.1 273.6

Table 3.3: Performance comparison of different scatter estimation methods. Scatter calculation
time compared to SSS is shown.

SC & reconstruction
Whole body Whole body (single bed) Brain

method Time (min) Time (%) Time (min) Time (%) Time (min) Time (%)

THOR: SSS 21.5 100.0 3.0 100.0 16.3 100.0
THOR: non-TOF 20.1 93.5 2.9 96.4 13.4 82.5
THOR: ISA 22.4 103.9 3.1 101.6 16.4 100.5
THOR: TOF-SSS 41.6 193.3 4.2 141.0 16.9 104.1

Table 3.4: Performance comparison of different scatter correction and reconstruction methods.
Reconstruction time compared to THOR: SSS is shown.

The runtime performance of the implemented approaches for these clinical data is

summarized in Table 3.3 and Table 3.4. As can be seen, ISA outperforms TOF-SSS by

a factor of 2–5 and is only 16–24% slower than non-TOF SSS. The performance gain of

ISA over TOF-SSS translates into nearly a factor of two acceleration of the whole-body



86 Chapter 3 Results

Vendor Non−TOF recon SSS ISA TOF−SSS

0

2

4

6

8

10

S
U

V

Vendor Non−TOF recon SSS ISA ISA x10

−2

−1

0

1

2

∆ 
S

U
V

 

Figure 3.10: Comparison of scatter correction and reconstruction methods in a clinical whole-
body study. Image captions are explained in Section 2.8.2. The top two rows are activity images
reconstructed with the different algorithms, and the bottom two rows are absolute differences
between the indicated respective reconstruction method and TOF-SSS. Top and bottom rows
in each group show coronal and sagittal views, respectively. In the different variants of TOF
reconstruction red regions reflect undercorrection of scatter and blue ones overcorrection relative
to TOF-SSS.
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Figure 3.11: Comparison of scatter correction and reconstruction methods in a clinical brain study.
Image captions are explained in Section 2.8.2. The top row shows a transaxial view of the activity
images reconstructed with the different algorithms, and the bottom row the absolute differences
between the indicated respective reconstruction method and TOF-SSS. In TOF reconstructions
red regions reflect undercorrection of scatter and blue ones overcorrection relative to TOF-SSS.

reconstruction, resulting in a reconstruction time comparable to the one required when

using ordinary SSS which indicates that scatter correction is responsible for a substantial

part of total reconstruction time. Reconstructing a single bed position of the same study

we observe acceleration of the reconstruction by a factor of 1.4 in comparison to TOF-

SSS when using ISA and basically identical performance compared to SSS. For the long-

duration (large number of events) brain investigation the overall time gain achieved with

ISA vs. TOF-SSS is only minimal (< 4%).

3.2.3 Quality of MLAA attenuation correction

The convergence properties of different MLAA variants were investigated using the whole-

body phantom with cylindrical inserts. The attenuation correction algorithms performance

was also evaluated with selected phantom and clinical datasets (see Section 2.8.3).

Convergence properties

The convergence of MLAA-reconstructed linear attenuation coefficients with increasing

number of MLTR updates is shown in Fig. 3.12 for the case when using a homogeneous

µ-map to initialize the iterations. The convergence rates of non-TOF and TOF MLTR

as a part of MLAA are similar although the TOF variant converges slightly slower in the

air-filled regions. Both algorithms converge much faster in the bone-like region than in

the air region. With the used iteration scheme, full convergence is achieved after 150–200

updates or 7–8 MLTR reconstruction cycles. TOF-MLTR reproduces the true attenuation
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Figure 3.12: Comparison of MLAA implementations with non-TOF and TOF MLTR. A homo-
geneous µ-map was used for algorithm initialization.

coefficient in the PTFE insert nearly exactly while non-TOF variant overestimates it by

about 3%.

Initialization of the algorithms with the MRTR-derived µ-map yields the results shown

in Fig. 3.13. This µ-map provides a better initial estimate of the actual µ-value in the air-

filled cavities than the homogeneous map used in the previous run. Consequently, faster

convergence of the MLAA algorithm is observed in these regions: the true mean µ-value

in the air-filled cylinders is reached after about 50 updates.

Image quality: phantom studies

Reconstructed activity and attenuation images obtained with different combinations of

µ-map estimation and TOF-SC methods are shown in Fig. 3.14. µ-values obtained with

the different methods in different regions of the phantom are summarized in Table 3.5.

For comparison, a T1-weighted MR image is shown as well in Fig. 3.14. As can be seen,

no differentiation between air and PTFE inserts would be possible with MR data alone,

making derivation of a valid MR-based attenuation map unfeasible. The MRTR algorithm,

according to its internal logic, assigned the attenuation value of lungs to the two upper

cylinders and that of water to the bottom cylinder, which is incorrect.

The MLAA reconstructions, on the other hand, are able to correctly identify PTFE

and air. The true µ-value of PTFE (µ = 0.182 cm−1) was estimated with different
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Figure 3.13: Comparison of MLAA implementations with non-TOF and TOF MLTR. The MR-
based µ-map (MRTR), was used for algorithm initialization (Fig. 3.14).
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Figure 3.14: Transaxial (rows 1, 3) and coronal (rows 2, 4) views of activity images (rows 1,
2) and attenuation maps (rows 3, 4) of the whole-body phantom with three cylindrical inserts.
Each column represents a different combination of µ-map estimation and TOF-SC methods. Two
inserts are air-filled, the third consists of PTFE. Image captions are explained in Section 2.8.3. A
T1-weighted MR image (T1w MR) is shown for comparison.

accuracy by different MLAA implementations. TOF-MLTR-based reconstructions yielded

the most accurate results (0.1819 cm−1 with ISA and 0.1849 cm−1 with TOF-SSS scatter
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µ-map estimation SC
Reconstructed attenuation (1/cm)

method method Background Air insert #1 Air insert #2 PTFE insert

True values — 0.0960 0.0000 0.0000 0.1820
MRTR — 0.0960 0.0221 0.0221 0.0960
MLTR ISA 0.0948 0.0000 0.0000 0.1875
MLTR TOF-SSS 0.0951 0.0001 0.0001 0.1899
TOF-MLTR ISA 0.0951 0.0007 0.0007 0.1819
TOF-MLTR TOF-SSS 0.0958 0.0011 0.0012 0.1849

Table 3.5: Comparison of attenuation coefficients in selected regions of the whole-body phantom
with three cylindrical inserts derived with different combinations of µ-map estimation and TOF-SC
methods (“—” indicates that scatter correction is not required). Abbreviations are explained in
Section 2.8.3. The true µ-values in the corresponding ROIs are given for comparison.

corrections). MLTR-based reconstructions yielded 0.1875 cm−1 and 0.1899 cm−1 with

ISA and TOF-SSS SC, respectively, i.e. approximately a 3% overestimate. All MLAA-

estimated air attenuation coefficients were close to zero ([0.0000–0.0012] cm−1). MLTR-

based MLAA reconstructions yielded air attenuation values closest to the true value,

presumably due to faster convergence. Mean background µ-values were in the range of

[0.0948–0.0958] cm−1 for all the MLAA implementations, slightly underestimating the

attenuation coefficient of water. The true value was reproduced exactly (at the specified

level of accuracy) by the µ-map scaling procedure.
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Figure 3.15: Transaxial (rows 1, 3) and coronal (rows 2, 4) views of activity images (rows 1,
2) and attenuation maps (rows 3, 4) of the pelvis region phantom. Each column represents a
different combination of µ-map estimation and TOF-SC methods. Image captions are explained
in Section 2.8.3. A T1-weighted MR image (T1w MR) is shown for comparison.

Results for the pelvis region phantom are shown in Fig. 3.15. This extreme case of

very high activity concentration contrasts and nearly perfectly homogeneous attenuation

map (neglecting the very minor influence of structural materials like supporting rods

and insert walls) is not handled completely satisfactory by MLAA (as is also apparent

in Table 3.6): only in the halo region the attenuation coefficient is estimated correctly.
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Elsewhere, µ is overestimated to a different extent. The largest overestimation is observed

in the bladder insert with the least serious overestimation obtained by a combination

of TOF-MLTR and TOF-SSS (yielding µ = 0.1075 cm−1). In general, one can conclude

that joint reconstruction with TOF-MLTR and TOF-SSS produces the least biased µ-map

among the considered MLAA implementations but still does exhibit substantial artifacts

which in turn lead to errors in the reconstructed activity distribution.

µ-map estimation SC
Reconstructed attenuation (1/cm)

method method Lesion Bladder Background Halo

True values — 0.0960 0.0960 0.0960 0.0960
MRTR — 0.0960 0.0960 0.0959 0.0960
MLTR ISA 0.1016 0.1138 0.1054 0.0961
MLTR TOF-SSS 0.1026 0.1100 0.1010 0.0966
TOF-MLTR ISA 0.1019 0.1111 0.1046 0.0965
TOF-MLTR TOF-SSS 0.1030 0.1075 0.1007 0.0963

Table 3.6: Comparison of attenuation coefficients in selected regions of the pelvis region phantom
derived with different combinations of µ-map estimation and TOF-SC methods (“—” indicates that
scatter correction is not required). Abbreviations are explained in Section 2.8.3. True µ-values in
the corresponding ROIs are given for comparison.

The propagation of the attenuation map artifacts to the activity image is clearly visi-

ble in Fig. 3.15. The MLAA-reconstructed images demonstrate discernible spurious back-

ground inhomogeneities and left-to-right asymmetry. The latter effect is more noticeable

for ISA-based reconstructions. The ROI analysis results in Table 3.7 underline that non-

regularized joint reconstruction is very sensitive to minor uncertainties in the estimated

scatter (which are mostly irrelevant for standard MLEM). For example, using ISA for

scatter correction in MLAA leads to 15.2–16.7% activity overestimation in the bladder

and 13.0–15.0% overestimation in the background. Utilizing TOF-SSS instead reduces

the respective values to 8.8–9.7% and 4.7–6.1%. The difference between TOF and non-

TOF MLTR, on the other hand, is only minimal and does not exceed 1.5% for most of

the ROIs.

µ-map estimation SC
Reconstructed activity deviation (%)

method method ∆ Lesion ∆ Bladder ∆ Background ∆ Halo

MRTR ISA −5.7 −0.4 1.5 2.5
MRTR TOF-SSS −5.9 −0.6 0.2 −0.5
MLTR ISA −2.1 16.7 15.0 −2.6
MLTR TOF-SSS −2.8 9.7 4.7 −5.8
TOF-MLTR ISA −1.8 15.2 13.0 −6.5
TOF-MLTR TOF-SSS −1.4 8.8 6.1 −5.4

Table 3.7: Comparison of reconstructed activities in selected regions of the pelvis region phantom
derived with different combinations of µ-map estimation and TOF-SC methods. Abbreviations are
explained in Section 2.8.3. Shown are the deviations from true target region activities.
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Image quality: clinical studies
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Figure 3.16: Comparison of activity images (top rows) and attenuation maps (bottom rows) of the
whole-body patient study obtained using different µ-map estimation methods in conjunction with
different TOF-SC methods. Top and bottom rows in each group show coronal and sagittal views,
respectively. Image captions are explained in Section 2.8.3. T1-weighted MR image (framed red) is
given in the bottom row for comparison. Artifacts in automatically generated MRTR attenuation
map and corresponding activity images are shown by arrows.

Reconstructed activity and attenuation images of a clinical whole-body investigation

(patient B, Section 2.6.2) obtained with different combinations of µ-map estimation and

TOF-SC methods are shown in Fig. 3.16. The MR image exhibits a severe metal artifact

in the abdomen and thorax area overlapping partly with the lungs. The MRTR generation

tool automatically identifies the lungs as a region with very low MR-signal and suitable

size and position. As such, the attenuation coefficient was correctly assigned to the lungs,

however, a large part of the metal artifact was also incorrectly identified as part of the

lung. This leads to a massive activity drop in the thorax in the reconstructed images.
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Application of the joint reconstruction techniques allows to determine the actual lungs

boundaries and correctly estimate the attenuation coefficients in the surrounding regions.

Additionally, MLAA recovered the correct position of air in the whole respiratory tract as

well as the air cavity behind the bladder which is also visible in the MR image. Finally,

the large osseous structures such as the pelvic bone, femur, and spine are identifiable in

the reconstructed µ-maps.
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Figure 3.17: Comparison of activity images (top rows) and attenuation maps (bottom rows) of
the brain patient study obtained using different µ-map estimation methods in conjunction with
different TOF-SC methods. Top and bottom rows in each group show different coronal slices of
the same image. Image captions are explained in Section 2.8.3. T1-weighted MR image (framed
red) is given in the bottom row for comparison.

Reconstructed activity and attenuation images of a clinical brain investigation (patient

B, Section 2.6.2) reconstructed using different implementations of MLEM and MLAA are

shown in Fig. 3.17. The MRTR µ-map generation tool does not account for osseous struc-

tures at all but simply fills the delineated head contour with the attenuation coefficient of

water. MLAA algorithms, on the other hand, are able to identify these structures as well

as the air in the nasal cavity, paranasal sinuses, and inner ear. All recovered structures

with low attenuation correspond to low signal intensity regions in attenuation MR image.

However, only larger bones were properly recovered by MLAA due to partial volume ef-

fects. Moreover, a difference in µ-values between gray and white matter is visible in the

upper row of the attenuation images. This can be attributed to cross-talk between attenu-



94 Chapter 3 Results

ation and activity as there is a pronounced difference in glucose metabolism between gray

and white matter while both tissue types have essentially the same attenuation coefficient.

In these clinical examples, differences between ISA and TOF-SSS based reconstructions

are very small. The apparent differences in images, like the one seen in ISA + MLTR versus

TOF-SSS + MLTR in Fig. 3.16, are presumably due to imperfections of the activity and

attenuation scaling procedure used in the present investigation. The differences between

non-TOF and TOF MLTR are distinctly more pronounced: non-TOF MLTR leads to

a higher air-to-tissue contrast in the µ-maps, presumably due to faster convergence in

low attenuation regions. On the other hand, lower µ-map noise was observed with TOF-

MLTR when applied to the relatively low-statistics whole-body investigation. The values

of 5.5% versus 7.9% (fractional standard deviations) were obtained in a liver ROI with the

TOF and the non-TOF MLTR, respectively. The reduced amount of noise in the µ-maps

achieved with TOF-MLTR translates into minor (only about 1%) noise reduction in the

corresponding activity images in the given example.
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Discussion

The present work addresses two persistent issues of image reconstruction for time-of-flight

(TOF) PET: improvement of emission-based attenuation correction and time efficiency of

TOF scatter correction. Due to the missing capability to measure the attenuation directly,

improving attenuation correction using the MLAA technique is of special relevance for

PET/MR while accelerating TOF scatter correction is of equal importance for TOF-

capable PET/CT systems as well.

The following discussion is subdivided into three main parts, mostly adhering to the

same logical structure as Sections 2.7-2.8 and Chapter 3.

4.1 Optimization of reconstruction parameters

A crucial requirement for accurate scatter correction is reliable scaling of the derived scat-

ter distribution. We chose a weighted scatter tail fitting technique for this purpose. The

performed measurements (Fig. 3.1) and their analysis (Table 3.1) revealed that rather

strong weighting of the LORs in the scatter tails with (1/ai)
4 (ai is the LOR-specific

attenuation factor) led to the best results. This weighting strongly favors LORs crossing

the patient bed (i.e. those not crossing the phantom or patient but still exhibiting notable

attenuation). Other tail fitting approaches, such as exclusive usage of closest-to-object

LORs or unweighted fitting, demonstrated inferior quality in our evaluation. One possible

explanation for this behavior could be that the SSS algorithm potentially predicts scatter

distributions with higher accuracy for LORs intersecting attenuating structures devoid

of activity (like the patient bed) compared to “empty” LORs. Further investigation of

this conjecture would, however, require a dedicated simulation study which could not be

included in the present investigation. In the present context, the empirical finding that

the applied weighting scheme and resulting scaling of the scatter distribution leads to sat-

isfactory quantitative performance of the scatter correction is sufficient. Very recently, a

seemingly promising new alternative solution to the scatter scaling problem has been pro-

posed (maximum likelihood scatter scaling (Rezaei et al., 2017a)). It would be interesting,

in the future, to compare performance of this new approach with the one developed in the

95
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present work.

Knowledge of the actual time resolution operational in the considered PET scan is

mandatory for a viable MLAA implementation. Since vendor-provided figures regarding

the time resolution are not necessarily reliable and do not cover count-rate-dependent

effects at all, a new algorithm was developed and implemented to determine the time

resolution as a function of count rate. This algorithm (MLRES) is based on the maximum

likelihood principle. Using phantom data covering the full dynamic range of relevant

count rates, we observed a perfectly linear dependency of time resolution on singles rate

(Fig. 3.2). This observation is in concordance with previously published results for the

Philips Gemini TF PET/CT scanner (Philips Healthcare, Best, The Netherlands) (Surti

et al., 2007) which uses a PET design very similar to that of the Ingenuity PET/MR.

Quantitatively, however, there are differences regarding the count-rate dependency of the

time resolution between both systems. Our results demonstrate that at count rates close

to zero the Ingenuity PET/MR possesses approximately 30 ps better time resolution than

the Gemini PET/CT. On the other hand, the time resolution of the Ingenuity PET/MR

degrades about two times faster than that of the Gemini PET/CT.

Stability and consistency of the MLRES procedure were investigated by also evaluating

various additional phantom and clinical data sets (Fig. 3.4). We could demonstrate very

good concordance of results for most of the data sets which implies that the procedure

is not notably affected by changes in the regional activity distribution. For one of the

performed measurements this assessment is not strictly correct, however. This measure-

ment was performed with a homogeneously filled whole-body phantom. At higher count

rates, systematic deviations from the time resolution expected according to the preceding

calibration measurement can be seen in Fig. 3.4. Since the deviations are much smaller

than the changes in time resolution over the practically relevant range of count rates, the

performed time resolution calibration is not invalidated although a small negative bias

would be the consequence for this special geometry/phantom. Considering possible ex-

planations for the discrepant behavior of the homogeneously filled whole-body phantom,

two things come to mind: this configuration exhibits a high scatter fraction and, more

relevant, is devoid of any internal structures which could provide additional information

to the algorithm. This conjecture is supported by the observation that adding cylindrical

inserts devoid of activity (and thus visible structure) to the phantom restores complete

concordance with the calibration measurement, see Fig. 3.4. In any case, as already stated

above, the object dependence is a minor effect that manifests itself only in extreme corner

cases without invalidating use of MLRES for determination of a sufficiently accurate value

of the effective time resolution.

As with some iterative algorithms (like MLAA), convergence of MLRES to the desired

solution (here: global maximum of the likelihood) is not automatically guaranteed. Our

investigation of the convergence properties revealed, however, that the algorithm always

unambiguously converges to the same solution, independent of the chosen start value
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(initial estimate of the time resolution) as Fig. 3.5 demonstrates.

Overall, MLRES thus presents a viable means to reliably determine the count-rate-

dependent time resolution of a given PET system. As mentioned before, this information is

especially important for MLAA reconstruction: as Fig. 3.6 demonstrates, underestimating

the actual TOF kernel width leads to clear activity and attenuation artifacts at the rim of

the imaged object. This observation also is in concordance with the literature (Zhu et al.,

2017).

In the present context, it is relevant to mention that the effective time resolution

(the one accounting for all sources of errors) depends on the accuracy of the time offsets

calibration (Clementel et al., 2013; Werner & Karp, 2013). Time offsets are additive

corrections which have to be applied to the photon registration time differences in order

to compensate for variations in detector response speed. These corrections are determined

for each LOR during the routine scanner maintenance. However, the accuracy at which

these correction factors are calculated was found to be insufficient for joint reconstruction

(Nuyts et al., 2018) and more accurate data-driven calibration methods have been proposed

(Rezaei et al., 2017b; Defrise et al., 2018). Published simulation results demonstrate that

in the context of MLAA 10% error in the TOF offsets is equivalent to 20% error in TOF

kernel width used during reconstruction (Zhu et al., 2017). Therefore, we assume that

implementation of the improved time offsets calibration scheme would substantially reduce

effective time resolution (as estimated with MLRES) and, consequently, would allow using

narrower TOF kernels without appearance of rim MLAA artifacts. This assumption has

to be, however, verified in the future studies.

A further parameter that needs to be adjusted is the used scatter TOF bin width or,

equivalently, the total number of TOF bins used for scatter time distributions storage (not

to be confused with the TOF bins used in the coincidence list-mode data). As usual, it

is desirable to minimize the number of bins — and, therefore, memory demand — as far

as possible without causing notable discretization errors. Due to the absence of the fine

details in the scatter time profiles, the scatter TOF bin width can be chosen to be rather

large without introducing notable errors. In the present investigation, between 25 and 50

TOF bins turned out to be a reasonable choice where the lower number was selected for

whole-body studies to comply with the available memory resources. In this case, the bin

width equals 240 ps. Although this is only 2–3 times smaller than the time resolution of the

scanner (> 600 ps in clinical operation), no adverse effects on the accuracy of the scatter

correction are observed, see Fig. 3.3. This can be qualitatively understood from Fig. 3.9

which demonstrates that the TOF profiles for patient-sized objects are much broader than

the time resolution of the considered system and that the stated sampling width actually

suffices to capture the relevant information contained in the profiles (this is especially true

for the profiles after convolution with the given time resolution of the scanner, see the

right-hand side in Fig. 3.9).
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4.2 ISA

One of the main results of the present work is that ISA-based scatter correction yields

reconstructed images that are virtually identical to those obtained using full TOF-SSS

while accelerating the computation of the required TOF scatter by a factor of 2–5. Our

phantom results demonstrate that ISA, like TOF-SSS, is capable of minimizing scatter

related image artifacts and deviations from true contrast between different regions even

under extreme high contrast conditions. According to these results, ISA could be used as

a drop-in replacement for TOF-SSS in clinical PET image reconstruction without com-

promising quantitative accuracy.

The very similar quantitative performance of ISA and TOF-SSS can be traced back

to the fact that the resulting scatter TOF weights are almost identical, see Fig. 3.9. The

TOF-weights are computed from an estimate of the scatter time distributions (correspond-

ing to infinite time resolution) by convolution with a scanner-specific TOF kernel. The

scatter in the LOR considered for illustration has a non-trivial time profile shape (su-

perposition of a broad and a sharply peaked distribution) caused by immediate vicinity

of the central sphere of the phantom. Despite these challenging conditions, the scatter

time distribution estimated by TOF-SSS is remarkably similar to its ISA approximation.

Remaining differences are negligible in view of the scanner’s limited time resolution. The

scatter TOF weights in Fig. 3.9 were calculated for the modest time resolution of the

Philips Ingenuity PET/MR scanner used in the present study, but the same reasoning will

remain valid for any realistic time resolution (say ≥ 200 ps). Altogether, it is the good

approximation of the scatter time distributions which justifies the ISA approach.

In comparison to ISA and TOF-SSS, the other reconstruction and scatter correction

schemes have to be considered unsatisfactory to a varying extent. The discrepancies are

most pronounced in the phantom measurements shown in Fig. 3.7 due to the chosen

very high contrast but are also visible in the clinical data sets in Figures 3.10 and 3.11.

Regarding the vendor provided reconstruction, no implementation details are available and

we are not in a position to explain the reason for the observed overcorrection of scatter in

most areas. The effect becomes severe at high contrasts and generates notable artifacts

not only in the phantom but in the whole-body scan in Figures 3.10, too.

Compared to non-TOF THOR, ISA and TOF-SSS reconstructions clearly show the

benefits of fully utilizing available TOF information in order to improve quantitative accu-

racy and avoidance of image artifacts. Regarding specific reasons for inferior performance

of non-TOF THOR, we verified that insufficient convergence of non-TOF vs. TOF recon-

struction is not the cause (increasing the iteration count did not lead to relevant changes).

Rather, the differences seemingly have to be attributed to principally inferior performance

of non-TOF reconstruction and scatter correction. Regarding the clinical data sets, they

might also be partly explained by the known sensitivity of non-TOF reconstruction to pos-

sible inconsistencies/errors in the MR-derived attenuation maps (which are much better

tolerated by TOF reconstruction).
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Compared to the non-TOF reconstruction, the attempt to combine TOF reconstruction

with non-TOF scatter correction (by distributing the scatter equally over all TOF bins)

leads to distinctly more severe image artifacts and increased quantitative errors resulting

from a rather pronounced under-correction of the scatter (and thus a positive bias in

the resulting images). Explanation of this observation is rather straightforward if one

considers the scatter TOF profiles in Fig. 3.9 which reveal that the scatter is by no means

uniformly distributed over the TOF bins but rather localized within the imaged object

boundary. Disregarding this behavior results, in our case, in scatter underestimation by a

factor of up to 6.

The speed advantage of ISA over TOF-SSS arises from the fact that it requires neither

TOF forward projections in the SSS caching step nor heavy cached arrays manipulations

and merging for each scatter point and LOR in the combination step, effectively replacing

them by very few (about 5) floating point operations. The reduction in overall image

reconstruction time achieved when replacing full TOF-SSS by ISA depends of course on

the considered specific implementation of iterative image reconstruction as well as on the

input data.

In this study, we have used THOR, our tube-of-response list-mode OSEM reconstruc-

tion. This type of reconstruction, notably the resolution modeling achieved by the tube-

of-response approach, is computationally quite intensive and THOR thus is not as fast as

highly optimized scanner specific sinogram based reconstructions. Nevertheless, we ob-

serve nearly a factor of two reduction in overall computation time of whole-body studies

when performing the initial scatter time distribution computation with ISA rather than

with TOF-SSS. This demonstrates that in this case the scatter estimation procedure is

responsible for a large fraction of the computation time. The acceleration factor reduces

to 1.4 if a single bed position of a whole-body study is being reconstructed whereas the

scatter estimation alone is accelerated by a factor of about five, demonstrating the reduced

contribution of scatter correction to total reconstruction time. For the long-duration/high-

statistics brain scan, the overall reconstruction time — which in this case is completely

dominated by the actual image reconstruction process — is only reduced by about 4%.

To better understand the rather pronounced differences between the different scenarios

(whole-body, low statistics/large object single-bed, high statistics/small object single-bed

scan) it first should be noted that the computation times for MLEM update and scatter

simulation, respectively, scale differently with scan statistics, number of bed positions,

and dimensions of the reconstruction grid. Second, the number of emission/scatter points

over which the SC algorithm iterates is much higher for scans of thorax or abdomen

than in brain investigations due to distinctly larger transaxial object extension. The

number of emission/scatter points is further increased in multi-bed studies by utilizing

adjacent bed positions to also account for out-of-FOV scatter (Section 2.2.6) which explains

the discrepancy between one-bed and multi-bed whole-body reconstruction acceleration

factors.

Overall, it is thus clear that the benefits of switching from TOF-SSS to ISA are most
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important for whole-body studies but also are notable for single-bed scans of the thorax or

abdomen. In view of the fact that oncological whole-body studies are currently by far the

most frequent application of clinical PET, an achievable factor of up to two reduction in

overall reconstruction time for this type of study when using TOF-aware scatter correction

seems highly relevant.

The influence of small variations/errors in the underlying attenuation map (e.g., dif-

ferences between attenuation maps derived in PET/MR and PET/CT, respectively) has

been found to be negligible for non-TOF SSS in brain PET (Burgos et al., 2014; Teuho

et al., 2017) and the situation should be similar for whole-body PET. ISA does not utilize

attenuation information beyond the non-TOF SSS calculation effectively used for correct

scaling of the TOF profiles. It might thus be concluded that ISA is not affected any more

by uncertainties of the attenuation map than non-TOF SSS.

ISA also has some potential shortcomings. Unlike TOF-SSS, ISA does not account

for the influence of spatially variant attenuation along ES (Fig. 2.6) on the resulting

TOF scatter profiles. However, in our data, we were so far not able to see any adverse

consequences of this fact, e.g. in the lungs in Fig. 3.10. Nevertheless, a more comprehensive

investigation of this question might be worthwhile.

Another potential shortcoming of ISA is that it does not explicitly account for the

influence of the actual scatter medium geometry on the contributions from different emis-

sion points. This could be modeled in (2.41) by an additional emission point position and

scatter angle dependent factor accounting for the difference between ISA and TOF-SSS

predictions such as those shown in Fig. 2.8. However, the presented results and prelim-

inary testing of tentative further modifications to ISA do not indicate that this effect is

a practically relevant issue, presumably, because the averaging of the contributions from

a huge number of emission points in (2.41) leads to canceling of the residual differences

present for the individual emission points.

4.3 MLAA

The implemented TOF-extension of the THOR reconstruction tool together with develop-

ment of a time resolution calibration method provided the basis for a viable implementation

of the MLAA algorithm. Our implementation has some unique traits.

First of all, there are only very few list-mode MLAA (LM-MLAA) implementations

with scatter and randoms corrections included (Cheng et al., 2016b). Only by including

these corrections, LM-MLAA can be sensibly applied to clinical data sets and its usefulness

can be evaluated beyond simulations and phantom studies.

Another unique feature of our LM-MLAA implementation is the possibility to use ei-

ther non-TOF or TOF-aware LM-MLTR for the attenuation map updates and to compare

both approaches directly within the framework of otherwise identical image reconstruction.

Our corresponding results show that TOF-MLTR is more accurate than the non-TOF ver-

sion, see Fig. 3.12 and Fig. 3.13. It also exhibits lower noise levels in the reconstructed
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attenuation maps (µ-maps) and activity images. This is especially noticeable in whole-

body investigations (Fig. 3.16). On the other hand, TOF-MLTR converges slightly slower

in regions with low attenuation coefficients such as air cavities but the effect is only minor

and of no practical relevance. It is nevertheless interesting to understand this behavior.

On first glance, it seems somewhat counter-intuitive since TOF-MLEM not only exhibits

reduced noise but also converges faster than non-TOF MLEM and the same might be

expected for TOF-MLTR.

The explanation for this discrepant behavior of MLEM and MLTR is related to the

fundamentally different impact of TOF information on activity and attenuation recon-

struction, respectively. Since attenuation for a coincidence event in the given LOR does

not depend on the location of the photon pair creation, TOF information bears no ad-

ditional value for transmission reconstruction if only true coincidences are considered.

Utilization of the TOF information only affects the ratio between estimated additive con-

tributions (randoms, scatter) and estimated trues. The improved noise characteristics and

accuracy of TOF-MLTR can, thus, be understood as a consequence of better consistency

of randoms and scatter correction in TOF-MLTR and TOF-MLEM as well as the fact

that these two algorithms optimize the same TOF-likelihood function (2.42) while regular

MLTR optimizes the non-TOF likelihood (1.25). On the other hand, convergence speed

differences of two MLTR implementations is, presumably, the consequence of the bias in

the converged estimate of µ-values with non-TOF MLTR.

MLAA is very sensitive to data inconsistencies caused by inaccuracies in scatter cor-

rection and scanner calibration (Zhu et al., 2017; Nuyts et al., 2018). For this reason,

it was important to evaluate the consequences of using the newly proposed ISA scatter

correction in the context of MLAA. The direct comparison of ISA and TOF-SSS (with

TOF and non-TOF MLTR) shows that in most cases the difference between using either

ISA or TOF-SSS for MLAA is negligible and much lower then the difference between both

MLAA implementations (incorporating either non-TOF or TOF-MLTR) when using the

same scatter correction approach, see Figures 3.14, 3.16, and 3.17. Only for the extreme

high activity contrast realized in the pelvis region phantom, a difference between ISA

and TOF-SSS becomes apparent. In fact, neither of both methods led to satisfactory

MLAA results in this challenging case. For instance, up to 20% variations of µ-values

were observed in the reconstructed attenuation maps of this completely water-filled phan-

tom (ignoring the very minor distortions caused by support rods and insert walls), see

Table 3.6. Furthermore, a clear left-to-right asymmetry is apparent which is somewhat

more pronounced for ISA. Altogether, the investigated MLAA variants are not able to

deal with such extreme cases with a combination of very high activity contrasts and very

low attenuation contrast.

Regarding performance for more usual clinical conditions, our comparison between

MR-based and emission-based attenuation correction demonstrates that the implemented

MLAA algorithms are capable of recovering air cavities and osseous structures in the

µ-maps. These structures are missing in the MR-based attenuation maps (which also
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were used for initialization of the MLAA reconstruction). The obtained µ-values are in

reasonable agreement with the expected population-based values. Unfortunately, no CT-

based µ-maps were available which could have served as a reference for evaluation of

absolute quantitative accuracy with MLAA in vivo in the patient studies. At least for

the phantom study shown in Fig. 3.14, the true attenuation coefficients of the different

regions are reproduced with reasonable accuracy, demonstrating the principle usefulness

and potential of MLAA.

One especially interesting aspect of MLAA for PET/MR concerns the ability of MLAA

to reduce metal-implants-induced artifacts which can spoil MR-based µ-maps. Despite

some progress regarding automated metal artifacts correction (Schramm et al., 2014), the

fundamental problem of tissue misclassification in regions affected by MR susceptibility

artifacts is not solved as demonstrated by Fig. 3.16. The Figure shows a patient with stent

implant causing a massive MR signal void in the chest and abdomen. In this example,

this spurious signal void intersects the lungs and prevents proper lung segmentation of

the MR image and thus leads to an erroneous attenuation map. A dedicated correction

tool developed in our group was used in this work and allowed supression of artifact

propagation into the abdomen but still failed for the chest region. MLAA, on the other

hand, can handle the presence of metal implants quite well as was confirmed in the present

investigation. This finding is also in accord with the literature (Fuin et al., 2017).

Despite these promising results, the implemented MLAA algorithm still have severe

shortcomings which prevent immediate clinical application. First, the implemented al-

gorithm for global µ-map scaling is not sufficiently reliable: while working well in our

phantom studies, it sometimes fails for clinical data sets see Fig. 3.16. This is a well

known problem and several solutions have already been proposed in the literature (Cheng

et al., 2016a; Feng et al., 2018; Rezaei et al., 2018). Combining the available MR infor-

mation with MLAA is an obvious possibility. Notably, MR-based MLAA regularization

seems to be an appealing approach. Since MR excels in imaging of soft tissues, the infor-

mation provided by this modality might be utilized to drive the MLAA estimate of the

attenuation coefficients for soft-tissue voxels — as determined from MR data — to the

correct value (near 0.096 cm−1) (Ahn et al., 2012; Mehranian & Zaidi, 2014). Feasibility

of this approach has been reported (Mehranian & Zaidi, 2015). More recently, even the

possibility to apply MR-enhanced MLAA for non-TOF joint reconstruction tasks has been

reported (Heußer et al., 2016; Benoit et al., 2016).

MR-based regularization seems to be the solution for another problem, also observed

in our MLAA implementation (Ahn et al., 2018). This is the non-negligible local cross-talk

between attenuation and activity. Despite the theoretically demonstrated resolution of the

cross-talk problem by utilization of TOF information (Defrise et al., 2012), we were not able

to confirm a complete cross-talk artifact elimination in practice, see Fig. 3.17. However,

this might be a consequence of the relatively low time resolution of our PET/MR system

together with possibly inaccurate TOF-offsets calibration (Nuyts et al., 2018). Finally,

utilization of the MR-derived priors allows to extend MLAA applications for non-FDG
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tracers with more specific uptake in target regions (Ahn et al., 2018). This would be

relevant, e.g., for 18F-Fluoride studies (Grant et al., 2007) which are targeting osseous

structures that are generally affected by erroneous MR-based attenuation correction.

Overall, more work on MLAA will be necessary to unambiguously demonstrate its suit-

ability for clinical routine use. This includes implementing of MR-based MLAA regulariza-

tion which is going to be our next step. To the extent that some of the remaining problems

are related to small residual errors of the available scatter correction procedures, the devel-

opment of advanced SC methods beyond single-scatter-approximation-based approaches

seems to be worthwhile. After these steps, an improved PET image reconstruction with

THOR utilizing MLAA for attenuation correction could be introduced into clinical rou-

tine to provide physicians more quantitatively accurate images for cancer diagnostics and

therapy assessment.
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Summary

The present work addresses two persistent issues of image reconstruction for time-of-flight

(TOF) PET: acceleration of TOF scatter correction and improvement of emission-based

attenuation correction. Due to the missing capability to measure photon attenuation

directly, improving attenuation correction by joint reconstruction of the activity and at-

tenuation coefficient distribution using the MLAA technique is of special relevance for

PET/MR while accelerating TOF scatter correction is of equal importance for TOF-

capable PET/CT systems as well.

To achieve the stated goals, in a first step the high-resolution PET image reconstruction

THOR, previously developed in our group, was adapted to take advantage of the TOF

information delivered by state-of-the-art PET systems. TOF-aware image reconstruction

reduces image noise and improves convergence rate both of which is highly desirable.

Based on these adaptations, this thesis describes new developments for improvement

of TOF scatter correction and MLAA reconstruction and reports results obtained with

the new algorithms on the Philips Ingenuity PET/MR jointly operated by the Helmholtz-

Zentrum Dresden-Rossendorf (HZDR) and the University Hospital.

A crucial requirement for quantitative TOF image reconstruction is TOF-aware scatter

correction. The currently accepted reference method — the TOF extension of the single

scatter simulation approach (TOF-SSS) — was implemented as part of the TOF-related

modifications of THOR. The major drawback of TOF-SSS is a 3–7 fold increase in com-

putation time required for the scatter estimation, compared to regular SSS, which in turn

does lead to a considerable image reconstruction slowdown. This problem was addressed

by development and implementation of a novel accelerated TOF scatter correction algo-

rithm called ISA. This new algorithm proved to be a viable alternative to TOF-SSS and

speeds up scatter correction by a factor of up to five in comparison to TOF-SSS. Images

reconstructed using ISA are in excellent quantitative agreement with those obtained when

using TOF-SSS while overall reconstruction time is reduced by a factor of two in whole-

body investigations. This can be considered a major achievement especially with regard

to the use of advanced image reconstruction in a clinical context.

The second major topic of this thesis is contribution to improved attenuation correc-

tion in PET/MR by utilization of MLAA reconstruction. First of all, knowledge of the

actual time resolution operational in the considered PET scan is mandatory for a viable

MLAA implementation. Since vendor-provided figures regarding the time resolution are
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not necessarily reliable and do not cover count-rate dependent effects at all, a new al-

gorithm was developed and implemented to determine the time resolution as a function

of count rate. This algorithm (MLRES) is based on the maximum likelihood principle

and allows to determine the functional dependency of the time resolution of the Philips

Ingenuity PET/MR on the given count rate and to integrate this information into THOR.

Notably, the present work proves that the time resolution of the Ingenuity PET/MR can

degrade by more than 250 ps for the clinically relevant range of count rates in comparison

to the vendor-provided figure of 550 ps which is only realized in the limit of extremely low

count rates.

Based on the previously described developments, MLAA could be integrated into

THOR. The performed list-mode MLAA implementation is capable of deriving realistic,

patient-specific attenuation maps. Especially, correct identification of osseous structures

and air cavities could be demonstrated which is very difficult or even impossible with MR-

based approaches to attenuation correction. Moreover, we have confirmed that MLAA

is capable of reducing metal-induced artifacts which are otherwise present in MR-based

attenuation maps. However, the detailed analysis of the obtained MLAA results revealed

remaining problems regarding stability of global scaling as well as local cross-talk be-

tween activity and attenuation estimates. Therefore, further work beyond the scope of

the present work will be necessary to address these remaining issues.



Zusammenfassung

In der vorliegenden Dissertation wurden zwei fortdauernde Probleme der Bildrekonstruk-

tion in der time-of-flight (TOF) PET bearbeitet: Beschleunigung der TOF-Streukorrektur

sowie Verbesserung der emissionsbasierten Schwächungskorrektur. Aufgrund der fehlen-

den Möglichkeit, die Photonenabschwächung direkt zu messen, ist eine Verbesserung der

Schwächungskorrektur durch eine gemeinsame Rekonstruktion der Aktivitäts- und Schwäch-

ungskoeffizienten-Verteilung mittels der MLAA-Methode von besonderer Bedeutung für

die PET/MRT, während eine Beschleunigung der TOF-Streukorrektur gleichermaßen auch

für TOF-fähige PET/CT-Systeme relevant ist.

Für das Erreichen dieser Ziele wurde in einem ersten Schritt die hochauflösende PET-

Bildrekonstruktion THOR, die bereits zuvor in unserer Gruppe entwickelt wurde, an-

gepasst, um die TOF-Information nutzen zu können, welche von allen modernen PET-

Systemen zur Verfügung gestellt wird. Die Nutzung der TOF-Information in der Bildre-

konstruktion führt zu reduziertem Bildrauschen und zu einer verbesserten Konvergenzge-

schwindigkeit.

Basierend auf diesen Anpassungen werden in der vorliegenden Arbeit neue Entwick-

lungen für eine Verbesserung der TOF-Streukorrektur und der MLAA-Rekonstruktion

beschrieben. Es werden sodann Ergebnisse vorgestellt, welche mit den neuen Algorithmen

am Philips Ingenuity PET/MRT-Gerät erzielt wurden, das gemeinsam vom Helmholtz-

Zentrum Dresden-Rossendorf (HZDR) und dem Universitätsklinikum betrieben wird.

Eine wesentliche Voraussetzung für eine quantitative TOF-Bildrekonstruktionen ist

eine Streukorrektur, welche die TOF-Information mit einbezieht. Die derzeit übliche Re-

ferenzmethode hierfür ist eine TOF-Erweiterung des single scatter simulation Ansatzes

(TOF-SSS). Diese Methode wurde im Rahmen der TOF-Erweiterung von THOR im-

plementiert. Der größte Nachteil der TOF-SSS ist eine 3–7-fach erhöhte Rechenzeit für

die Berechnung der Streuschätzung im Vergleich zur non-TOF-SSS, wodurch die Bild-

rekonstruktionsdauer deutlich erhöht wird. Um dieses Problem zu beheben, wurde eine

neue, schnellere TOF-Streukorrektur (ISA) entwickelt und implementiert. Es konnte ge-

zeigt werden, dass dieser neue Algorithmus eine brauchbare Alternative zur TOF-SSS

darstellt, welche die Rechenzeit auf ein Fünftel reduziert, wobei mithilfe von ISA und

TOF-SSS rekonstruierte Schnittbilder quantitativ ausgezeichnet übereinstimmen. Die Ge-

samtrekonstruktionszeit konnte mithilfe ISA bei Ganzkörperuntersuchungen insgesamt um

den Faktor Zwei reduziert werden. Dies kann als maßgeblicher Fortschritt betrachtet wer-
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den, speziell im Hinblick auf die Nutzung fortgeschrittener Bildrekonstruktionsverfahren

im klinischen Umfeld.

Das zweite große Thema dieser Arbeit ist ein Beitrag zur verbesserten Schwächungs-

korrektur in der PET/MRT mittels MLAA-Rekonstruktion. Hierfür ist zunächst eine ge-

naue Kenntnis der tatsächlichen Zeitauflösung in der betrachten PET-Aufnahme zwingend

notwendig. Da die vom Hersteller zur Verfügung gestellten Zahlen nicht immer verlässlich

sind und zudem die Zählratenabhängigkeit nicht berücksichtigen, wurde ein neuer Al-

gorithmus entwickelt und implementiert, um die Zeitauflösung in Abhängigkeit von der

Zählrate zu bestimmen. Dieser Algorithmus (MLRES) basiert auf dem maximum like-

lihood Prinzip und erlaubt es, die funktionale Abhängigkeit der Zeitauflösung des Philips

Ingenuity PET/MRT von der Zählrate zu bestimmen. In der vorliegenden Arbeit konn-

te insbesondere gezeigt werden, dass sich die Zeitauflösung des Ingenuity PET/MRT im

klinisch relevanten Zählratenbereich um mehr als 250 ps gegenüber der vom Hersteller

genannten Auflösung von 550 ps verschlechtern kann, welche tatsächlich nur bei extrem

niedrigen Zählraten erreicht wird.

Basierend auf den oben beschrieben Entwicklungen konnte MLAA in THOR integriert

werden. Die MLAA-Implementierung erlaubt die Generierung realistischer patientenspezi-

fischer Schwächungsbilder. Es konnte insbesondere gezeigt werden, dass auch Knochen und

Hohlräume korrekt identifiziert werden, was mittels MRT-basierter Schwächungskorrektur

sehr schwierig oder sogar unmöglich ist. Zudem konnten wir bestätigen, dass es mit

MLAA möglich ist, metallbedingte Artefakte zu reduzieren, die ansonsten in den MRT-

basierten Schwächungsbildern immer zu finden sind. Eine detaillierte Analyse der Ergeb-

nisse zeigte allerdings verbleibende Probleme bezüglich der globalen Skalierung und des

lokalen Übersprechens zwischen Aktivitäts- und Schwächungsschätzung auf. Daher werden

zusätzliche Entwicklungen erforderlich sein, um auch diese Defizite zu beheben.
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Appendix: derivation of the

MLEM algorithm

Here we provide a brief justification and derivation of the MLEM algorithm. We will be

following the definitions and assumptions introduced in Section 1.3.2. Ignoring scatter

and random events for now, we presume the forward model (1.16), no prior knowledge,

and pure Poisson noise (1.19). Therefore, the cost function is given by the Poisson log-

likelihood (1.25) and the acquisition process is fully described by the system matrix ele-

ments cij . From the probabilistic definition of cij , it is clear that the following condition

is fulfilled:

Sj =
∑
i

cij ≤ 1, (4.1)

where Sj is the scanner sensitivity to events originating from voxel j. It represents the

fractional detection probability (ratio of detected to total number of decay events in voxel

j). Sj = 1 would represent the ideal case of a scanner with full (4π) solid angle coverage

and no photon losses, i.e. 100% detection probability. From (4.1) and (1.18) it follows

that ∑
i

E(nij |λ) = Sj E(nj |λ) . (4.2)

Before we continue let us demonstrate some useful relations which follow from the

properties of the Poisson processes we are dealing with. It is well known that for two Pois-

son variables X and Y with means λX and λY , respectively, the conditional expectation

of X given X + Y is

E(X|X + Y ) = (X + Y )
λX

λX + λY
. (4.3)

Consequently, considering the number of all the detected events originating in voxel j,

ndj =
∑

i nij , and the number of all the photon pairs emitted from j, nj , one can conclude

that

E(ndj |nj) =
nj

E(nj |λ)

∑
i

E(nij |λ) = njSj . (4.4)

We can then calculate the expected number of detected events originating in voxel j when
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y and λ are given. Directly using the definition of expectation operation we get

E(ndj |λ,y) =
∞∑

ndj=0

ndj P (ndj |λ,y) =
∞∑

ndj=0

∞∑
nj=0

ndj P (ndj |nj)P (nj |λ,y) =

=

∞∑
nj=0

E(ndj |nj)P (nj |λ,y) = Sj

∞∑
nj=0

nj P (nj |λ,y)

In this way we get a useful relation between conditional expectations of detected and

emitted photon pairs originating from a certain voxel which is similar to (4.2) but has a

different conditioning: ∑
i

E(nij |λ,y) = Sj E(nj |λ,y). (4.5)

Considering (1.16), (4.3), and the natural condition
∑

j nij = yi we see that

E(nij |λ,y) = yi
cijλj∑

j′
cij′λj′

. (4.6)

The optimization problem only makes sense if the objective function has one and

only one global maximum. The Log-likelihood function satisfies this condition since it is

concave which can be seen as follows. By direct differentiation of (1.25) we get

∂ l(λ)

∂λj
=
∑
i

cij yi∑
j′
cij′λj′

− cij

 . (4.7)

Using (1.16), (4.6), (1.18), and (4.5) this can be rewritten as

∂ l(λ)

∂λj
=

1

λj

∑
i

yi cijλj∑
j′
cij′λj′

− cijλj

 =

=
1

λj

∑
i

[E(nij |λ,y)− E(nij |λ)] =

=
Sj
λj

[E(nj |λ,y)− E(nj |λ)] . (4.8)

Equation (4.8) demonstrates that if l(λ) reaches its maximum at a certain λ then

conditional and unconditional expectations of nj given λ are equal to each other for all

voxels j. Further differentiation of (4.7) leads us to

∂2 l(λ)

∂λj∂λk
= −

∑
i

cijcik
yi
yi

2 . (4.9)

The matrix elements in (4.9) form the Hessian matrix H(λ) of the log-likelihood function.
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For any x = (x1, . . . , xJ)T , the quadratic form xTH(λ)x can be represented as

xT H(λ)x = −
∑
i

yi
yi

2

∑
j

cijxj
∑
k

cikxk = −
∑
i

yi
yi

2

∑
j

cijxj

2

(4.10)

and since all the summands in (4.10) are non-negative, the quadratic form (and thus the

Hessian) is negative semidefinite which proofs that the log-likelihood l(λ) is concave.

Following (Shepp & Vardi, 1982) we search for the image which maximizes the likeli-

hood by applying the Estimation Maximization algorithm (Dempster et al., 1977). The

algorithm consists of two steps:

1. Estimation (E-step): Estimate the number of decays in each voxel j from current

activity estimate λ(p) and measured data y

n
(p)
j = E(nj |λ(p),y) (4.11)

2. Maximization (M-step): Determine new image estimate λ(p+1) as a solution of

E(nj |λ(p+1)) = n
(p)
j (4.12)

The value p is the iteration counter. From the equations above it follows that if the

algorithm converges to a certain image λ(∞) then λ(p+1) = λ(p) = λ(∞) and, there-

fore, E(nj |λ(∞)) = E(nj |λ(∞),y). Using these expectations in (4.8), we see that λ(∞)

actually maximizes the likelihood. Convergence is secured by special properties of Es-

timation Maximization algorithms: it follows from (Dempster et al., 1977), Theorem 1

that l(λ(p+1)) ≥ l(λ(p)) for any λ(p+1) satisfying (4.11) and (4.12). Equality holds only

if λ(p+1) = λ(p) which implies convergence. Monotonic increase of the sequence ( l(λ(0)),

l(λ(1)), . . . ) together with continuity and boundedness of the likelihood function l(λ) fol-

lowing from its concavity implies the convergence of the algorithm and, thus, the existence

of the likelihood maximizing solution λ(∞).

The MLEM algorithm can be brought into a more convenient form. Equation in (4.12)

is trivial and the right-hand side of (4.11) can be easily obtained from (4.5) and (4.6).

Thus, substituting n
(p)
j in (4.12) by (4.11) we, finally, get (2.1).



134 Appendix



Acknowledgments

The Ph.D. study is now over and the dissertation is finally finished. The last three years

were not only exciting but also difficult for me: new country, new culture, new people, and

the whole new scientific field. It would have been impossible for me to reach this point

and overcome all difficulties without help from my colleges and friends.

First of all, I would like to express my gratitude and appreciation to my supervisor,

Prof. Dr. Jörg van den Hoff who provided me an opportunity to work in his excellent

group. I am thankful for his wise guidance, precious advice, meaningful discussions, and,

of course, for his patience. I would like to give a special thanks to Dr. Alexandr Lougovski

for his kind help in the first few months of my stay in Germany as well as for development

and implementation of THOR — the reconstruction tool without which my work would

have been impossible. I would also like to thank all my colleges in HZDR and University

Hospital Carl Gustav Carus I had the pleasure to work with, especially Dr. Jens Maus,

Dr. Frank Hofheinz, Dr. Jan Petr, Dr. Liane Oehme, Prof. Dr. Jörg Kotzerke, Dr. Irina Ko-

rovina, Dr. Nadia Licciardello, and Dr. Massimo Sgarzi. Their knowledge, expertise, and

assistance were invaluable for me on my way to understanding the new topic of medical

physics, writing the thesis and preparing for the defense procedure.

The time I spent working in the Institute of Radiopharmaceutical Cancer Research,

HZDR, was truly great! For exceptional working conditions, I would like to express my

gratitude to Prof. Dr. Jörg Steinbach and Prof. Dr. Michael Bachmann.

Finally, I sincerely thank my friends and family for the support they gave and continue

giving to me when I need it the most.

135





Anlage 1

Technische Universität Dresden

Medizinische Fakultät Carl Gustav Carus

Promotionsordnung vom 24. Juli 2011
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