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Abstract 

Most patients with Parkinson’s Disease (PD) develop speech deficits, including reduced 

sonority, altered articulation, and abnormal prosody. This article presents a methodology to 

automatically classify patients with PD and Healthy Control (HC) subjects. In this study, 

the Hilbert-Huang Transform (HHT) and Mel-Frequency Cepstral Coefficients (MFCCs) 

were considered to model modulated phonations (changing the tone from low to high and 

vice versa) of the vowels /a/, /i/, and /u/. The HHT was used to extract the first two formants 

from audio signals with the aim of modeling the stability of the tongue while the speakers 

were producing modulated vowels. Kruskal-Wallis statistical tests were used to eliminate 

redundant and non-relevant features in order to improve classification accuracy. PD 

patients and HC subjects were automatically classified using a Radial Basis Support Vector 

Machine (RBF-SVM). The results show that the proposed approach allows an automatic 

discrimination between PD and HC subjects with accuracies of up to 75 % for women and 

73 % for men.  
 

Keywords 

Speech articulation, Classification, Hilbert-Huang, Parkinson’s Disease. 
 

Resumen 

La mayoría de las personas con la enfermedad de Parkinson (EP) desarrollan varios 

déficits del habla, incluyendo sonoridad reducida, alteración de la articulación y prosodia 

anormal. Este artículo presenta una metodología que permite la clasificación automática de 

pacientes con EP y sujetos de control sanos (CS). Se considera que la transformada de 

Hilbert-Huang (THH) y los Coeficientes Cepstrales en las frecuencias de Mel modelan las 

fonaciones moduladas (cambiando el tono de bajo a alto y de alto a bajo) de las vocales /a/, /i/, 

y /u/. La THH se utiliza para extraer los dos primeros formantes de las señales de audio, con 

el objetivo de modelar la estabilidad de la lengua mientras los hablantes producen vocales 

moduladas. Pruebas estadísticas de Kruskal-Wallis se utilizan para eliminar características 

redundantes y no relevantes, con el fin de mejorar la precisión de la clasificación. La 

clasificación automática de sujetos con EP vs. CS se realiza mediante una máquina de 

soporte vectorial de base radial. De acuerdo con los resultados, el enfoque propuesto permite 

la discriminación automática de sujetos con EP vs. CS con precisiones de hasta el 75 % para 

los hombres y 73 % para las mujeres. 
 

Palabras clave 

Articulación del habla, clasificación, Hilbert-Huang, enfermedad de Parkinson. 
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1. INTRODUCTION 

 

Parkinson’s Disease (PD) is a 

progressive neurodegenerative condition 

that affects approximately 2 % of the 

population over 65 years old [1]. 

Individuals with PD usually present 

motor deficits, such as tremor, rigidity, 

akinesia, bradykinesia, and postural 

instability. Additionally, more than 90 % of 

said patients develop several speech 

deficits such as reduced sonority, 

monotonicity, imprecise articulation, and 

abnormal prosody [2]-[4]. Most speech 

studies with PD patients evaluate 

sustained vowel phonations because it is 

one of the easiest tasks compared with 

monologues or reading long texts, and 

provides valuable information about 

phonation and articulation dimensions of 

speech production [5].  

Several studies have found articulation 

deficits in PD patients using sustained 

vowel phonations and continuous speech 

recordings. For instance, in [6], the authors 

evaluated the characteristics of the 

articulation of vowels pronounced by 35 

native Czech speakers (20 with PD and 15 

HC) while performing continuous speech 

tasks. According to their results, impaired 

vowel articulation may be considered a 

possible early biomarker of PD. They 

stressed the fact that vowel articulation 

problems may be evaluated in continuous 

speech signals to obtain accurate models of 

speech impairments in PD patients. They 

also reported classification accuracies of up 

to 80 % in the automatic discrimination 

between PD and HC subjects. 

Other studies have considered 

articulatory acoustic features extracted 

from vowels. In [7], the authors considered 

speech recordings of 68 PD patients and 32 

HC (native German speakers). The first 

two formant frequencies (F1 and F2) were 

extracted from the vowels /a/, /i/, and /u/, 

which were segmented from continuous 

speech recordings. An articulatory acoustic 

analysis was performed using the 

Triangular Vowel Space Area (tVSA) and 

the Vowel Articulation Index (VAI). Said 

authors reported VAI values significantly 

reduced in male and female PD patients 

compared to the HC group. tVSA was only 

reduced in male PD patients. Therefore, 

they concluded that VAI seemed to be more 

efficient than tVSA to identify articulation 

deficits of PD patients. These 

measurements have also been considered 

in recent studies that asses the automatic 

evaluation of articulation deficits of PD 

patients observed in sustained vowels and 

continuous speech signals [8]. 

Although the conclusions and 

observations in the literature are well 

motivated and supported on strong 

arguments, it is important to note that 

most studies in the field have considered 

classical sustained vowels and continuous 

speech signals, but not other specific tasks 

like the production of modulated vowels 

(i.e., changing the tone from low to high 

and from high to low). We think that this 

kind of tasks could be more accurate and 

robust than classical ones to observe 

specific speech deficits in PD patients 

because they are easy to perform and allow 

the measurement of frequency variations 

in the voice. For instance, modulated 

vowels were considered in [5], where 

recordings of 50 patients with PD and 50 

HC subjects (all of them Colombian 

Spanish native speakers) were 

discriminated. The feature set included the 

classical vocal formants and the 

fundamental frequency extracted using the 

Hilbert-Huang Transform (HHT).  

The automatic discrimination of PD vs. 

HC speakers was performed implementing 

a decision tree classifier. The classification 

experiments were conducted considering 

male and female speakers separately. The 

accuracies obtained with the classical 

sustained phonations were around 82 % 

and 90 %, respectively; when the 

modulated vowels were included, the 

results improved to 84 %. 
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The analysis provided by the HHT has 

been used in multiple papers. For example, 

HHT was used for a geophysical study 

about the propagation of seismic waves [9]. 

They concluded that certain Intrinsic 

Mode Functions (IMFs), those with a 

higher frequency, could be identified as 

generated near the hypocenter, while the 

high frequency content was related to a 

large tension drop associated with the 

onset of seismic events. In [10], they used 

the HHT to study financial time series and 

as a tool for the statistical analysis of 

nonlinear and non-stationary data. They 

obtained space time-frequency 

decompositions and temporal 

decompositions of the data.  

In [5], the HHT was implemented to 

compute the instantaneous energy and its 

range, as well as the instantaneous 

frequency and the difference between the 

maximum and minimum values of the 

IMFs amplitude. In turn, in this study, we 

used the Hilbert-Huang transform to 

extract the first and second IMF, which 

encode information about the temporal 

variation of the vocal formants (F1 and 

F2). We extracted features from such IMFs 

as described in Section 2.3.  

In this paper, we introduce the use of 

HHT for a robust modeling of the 

frequency bands where the first two vocal 

formants are located because these two are 

the main determinants of which vowel is 

heard, and, in general, they are 

responsible for the differences in quality 

between different periodic sounds.  

The modeling was based on the 

extraction of the IMFs that result from the 

Empirical Mode Decomposition (EMD). 

Such frequency bands around the 

formants were modeled along with their 

energy content, their first and second 

derivatives, the instantaneous frequency, 

their Teager Energy operator (TEO) value, 

and their entropy. Besides these features, 

the classical Mel-Frequency Cepstral 

Coefficients (MFCCs) were considered. 

This study aims to contribute with a 

novel, original, and robust alternative to 

model articulatory deficits exhibited by PD 

patients. The experiments employed 

recordings of the vowels /a/, /i/, and /u/ 

pronounced in a modulated tone. The same 

set of recordings of [5] was considered in 

this study to evaluate the capability of the 

proposed approach to discriminate between 

PD and HC speakers and evaluate the 

severity of their dysarthria. 

This paper is organized as 

follows: Section 2 describes the database, 

the methodology, the way the features 

were extracted, and the implemented 

algorithms. Section 3 details the 

experiments and discusses their results. 

Finally, Section 4 presents the 

conclusions and future work. 

 

 

2. MATERIALS AND METHODS 

 
2.1 Participants 

 

Recordings of the corpus PC-GITA were 

considered here. A total of 100 participants 

were included, 50 with PD and 50 HC [11]. 

All the participants were Colombian 

Spanish native speakers. Their clinical and 

demographic information is provided in 

Table 1. The recordings were captured 

with a sampling frequency of 44.1 KHz and 

a 16-bit resolution. The participants were 

asked to pronounce sustained modulated 

vowels (/a/, /i/, and /u/) during one single 

breath. All the patients were evaluated by 

an expert neurologist according to the 

Movement Disorder Society-Unified 

Parkinson’s Disease. Rating Scale (MDS-

UPDRS) [12].  
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Table 1. Clinical and demographic information of the participants. Source: Created by the authors. 

 PD Patients HC Speakers 

 Male Female Male Female 

Number of subjects 25 25 25 25 

Age [years] (µ ± ) 61.6 ± 11.6 60.6 ±7.3 62.6 ± 9.3 61.4 ± 6.9 

Age range [years] 33–81 49–75 42–86 49–76 

Time after diagnosis [years] (µ ± ) 8.9 ± 5.9 12.6 ± 11.5 - - 

MDS-UPDRS-III (µ ± ) 37.7 ± 21.9 37.5 ± 13.9 - - 

MDS-UPDRS-III range 6–92 19–71 - - 

m-FDA(µ ± ) 28.9 ± 8.4 26.9 ± 8.3 8.7 ± 6.6 6.6 ± 7.0 

m-FDA range 13–41 13–47 0–25 0–23 

PD: Parkinson’s disease, HC: Healthy controls, µ: average, : standard deviation. 

 

Additionally, with the aim of obtaining 

a label for the dysarthria level of the 

participants, all the recordings were 

evaluated by three phoniatricians 

according to the modified version of the 

Frenchay Dysarthria Assessment tool (m-

FDA). Further information about the 

procedure and the scale can be found in 

[13].  

 
2.2 Methodology 

 

The methodology followed in this study 

is shown in Fig. 1. The procedure begins 

with the pre-processing of the audio file, 

which consists of eliminating the DC level 

of the signal and normalizing the 

amplitude. The second step is the feature 

extraction, followed by the classification, 

which, in this case, is performed using a 

Support Vector Machine (SVM).  

The performance of the system is 

evaluated using different statistics 

including accuracy (Acc), sensitivity (Sens), 

specificity (Spec), receiver Operating 

Characteristic Curve (ROC), and the Area 

Under the ROC Curve (AUC). Further 

details about each step are provided below. 

 
2.3 Feature Extraction 

 

Hilbert-Huang Transform: For an 

arbitrary time series, 𝑋(𝑡), it is always 

possible to calculate its Hilbert transform, 

𝑌(𝑡), as (1): 

 

𝑌(𝑡) =
1

𝜋
𝑃 ∫

𝑋(𝑡′)

𝑡 − 𝑡′
𝑑𝑡′ (1) 

 

where, 𝑃 indicates the principal value of 

the Cauchy integral, and 𝑡 and 𝑡′ are two 

different time instants. With this 

definition, 𝑋(𝑡) and 𝑌(𝑡) form a complex 

conjugate pair. Hence, it is possible to 

obtain the following analytic signal, 𝑍(𝑡) 

(2): 

 
𝑍(𝑡) = 𝑋(𝑡) + 𝑖𝑌(𝑡) = a(t)𝑒𝑖𝛳(𝑡) (2) 

 

such that 

 

Note that (1) defines the Hilbert 

Transform as the convolution between 𝑋(𝑡) 

and 1/𝑡. Therefore, it emphasizes the local 

properties of 𝑋(𝑡), although the 

transformation is global. In (2), the 

expression of polar coordinates further 

clarifies the local nature of this 

representation, which shows the local 

adjustment of a trigonometric function 

that varies in amplitude and phase to 𝑋(𝑡) 

(3). 
 

𝑎(𝑡) = [𝑋2(𝑡) + 𝑌2(𝑡)]
1
2 

 

𝛳(𝑡) = arctan [
𝑌(𝑡)

𝑋(𝑡)
] 

(3) 
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Fig. 1. Block diagram of the methodology implemented in this study. Source: Created by the authors. 

 

One of the advantages of the Hilbert 

transform became popular after Huang 

et.al. in [14], where the EMD method and 

the use of HT were introduced. EMD is 

necessary to pre-process the data before 

applying the HT. EMD also reduces the 

data to a collection of IMFs, which are 

defined as functions that satisfy the 

following conditions: (i) the number of 

extremes and zero crossings are the same 

or differ by a maximum of one over all the 

data, and (ii) the average value of the 

envelope defined by the local maxima and 

the envelope defined by the local minima is 

zero at any point. EMD decomposes an 

arbitrary and time-varying signal into 

IMFs that are modulated in amplitude and 

frequency [5]. Those IMFs represent the 

frequencies that are present in the signal, 

and the sum of those functions reconstructs 

the original signal. 

In speech, the resonant frequencies of 

the vocal tract are called formants. The 

most informative formants are the first 

two, F1 and F2. According to [15], the 

information of F1 and F2 per vowel is 

located around the following frequency 

bands: /a/, between 600 Hz and 1700 Hz; 

/i/, between 200 Hz and 2600 Hz; and /u/, 

between 200 Hz and 1100 Hz. Given the 

capability of IMFs to separate relevant 

information in different frequency bands, 

in this study, we take the original band-

pass filtered signals and extract their 

corresponding IMFs to automatically 

model information of F1 and F2. Note that 

only one band-pass filter is used per 

signal, which reduces the risk of 

introducing alias frequencies or the 

problem of leakage. 

Fig. 2. shows the wave forms of the 

vowel /a/ produced with a modulated tone 

by a 63-year-old healthy control female 

(left) and by a 55-year-old female PD 

patient (right). The patient was diagnosed 

12 years ago and the label of her MDS-

UPDRS score is 43. The spectrograms of 

the original signals show the modulation of 

their frequency content. Fig. 2B, Fig. 2C, 

Fig. 2E, and Fig. 2F show the IMF signals 

and their corresponding spectrograms after 

applying the filtering around the 

frequencies of the vocal formants. The first 

IMF allows the modeling of the first 

formant (Fig. 2B and Fig. 2E), while the 

second formant is modeled by the second 

IMF (Fig. 2C and Fig. 2F). Note that the 

first two IMFs obtained from the patient 

(Fig. 2E and Fig. 2F) are jumpier, which 

indicates the possible presence of vocal 

tremor, which is one of the most common 

behaviors in PD patients and is typically 

linked to the difficulty of patients to 

produce stable vowel phonations. 

Considering that the HHT provides a 

high resolution in the frequency domain 

(especially in low-frequency bands), which 

is even better than that of the Fourier 

transform and the Wavelet transform [14], 

this method is useful when more detailed 

information of the modulated vowels is 

required. 

Several characteristics of the 2 

extracted IMFs are measured: energy 

content, first and second derivatives, 

instantaneous frequency computed in 

windows of 20 ms with a step size of 10 ms, 

Teager energy operator (TEO), and entropy 

(also considered for the audio signal). 
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Fig. 2. Waveforms of modulated vowel /a/ and their corresponding spectrogram. (a) Original audio signal of a 

63-year-old female HC, (b) first IMF of the HC signal, (c) second IMF of the HC signal, (d) original audio signal 

of a 55-year-old female PD patient with 43 points in the MDS-UPDRS-III scale and 12 years after diagnosis, 

(e) first IMF of the PD signal, (f) second IMF of the PD signal. Source: Created by the authors. 
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Mean value, standard deviation, 

skewness, and kurtosis are calculated per 

measurement to create a 32-dimensional 

feature vector per speaker. 

Mel-Frequency Cepstral 

Coefficients (MFCCs): MFCCs are very 

common in speech processing due to their 

robustness and suitability for several 

applications such as speech recognition, 

speaker verification, and speaker 

identification. They are based on the 

critical band model of sound perception, 

which is emulated by a filter bank with 

band spacing and bandwidth similar to the 

critical bands given by the Mel scale. The 

conversion from Hertz to Mels is shown 

in (4). 

As MFCCs are based on human 

perception, they have been successfully 

used to model articulation in PD [16]. The 

steps to calculate MFCCs are the following: 

1) a short-term segment of the signal is 

extracted, 2) a window (e.g., Hamming) is 

applied upon the segment, 3) Fourier 

analysis is performed by the Discrete 

Fourier Transform, 4) a triangular filter 

bank is applied to the DFT to estimate the 

Mel Energy spectrum, 5) the natural 

logarithm of Mel’s energy spectrum is 

calculated, and 6) the discrete cosine 

transform (DCT) is calculated to obtain the 

MFCC [17]. 

In this study, we are considering only 

the first 13 MFCCs as well as their first 

and second derivatives. From coefficient 14 

onwards, the information about the 

phenomenon under analysis (human voice) 

is irrelevant. The coefficients are extracted 

from 30-ms-long frames (approximately 

statistically stationary signals), with an 

overlap of 10 ms. Similar to the model of 

the IMFs, mean value, standard deviation, 

skewness, and kurtosis are calculated to 

create a 156-dimensional feature vector 

per speaker. 

 
2.4 Feature Selection 

 

Given that the number of extracted 

features is relatively high, we want to 

evaluate whether a lower dimensional 

representation is more suitable to perform 

the automatic classification of PD patients 

and HC subjects. The representation space 

can be reduced via dimensionality 

reduction strategies such as those based on 

Principal Component Analysis or Linear 

Discriminant Analysis, or via feature 

selection. In this work, we decided to 

evaluate the suitability of the second one. 

Particularly, we applied Kruskal-Wallis 

tests to evaluate the null hypothesis of a 

group with n independent samples that 

come from the same population or from 

identical populations with the same 

median. To determine whether any of the 

differences between the medians is 

statistically significant, the p value is 

compared with the level of significance to 

evaluate the null hypothesis. The null 

hypothesis indicates that the population 

averages are all the same. In general, a 

level of significance (namely α) of 0.05 

works properly. α = 0.05 indicates a 5 % 

risk of concluding that there is a difference 

when there is no real difference between 

the two medians. When p ≤ α, the null 

hypothesis is rejected, and it is concluded 

that not all the population medians are 

equal. In turn, when p ≥ α, there is not 

enough evidence to reject the null 

hypothesis that the population medians 

are all equal. A level of significance α = 

0.05 was established in our experiments to 

exclude redundant features that do not 

provide relevant information for the 

discrimination between classes. 

 

 

𝑀𝑒𝑙 = 2595 log10 (1 +
𝑓

7000
) = 1127 ln (1 +

𝑓

700
) (4) 
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2.5 Automatic classification 

 

To differentiate between patients and 

healthy speakers, an SVM with Gaussian 

kernel was considered. Parameters C and 

ɣ were optimized through a grid search up 

to powers of ten with C ∈ {0.001, 0.01, …, 

1000, 10000} and ɣ ∈ {0.0001, 0.001, …, 

100, 1000}. A speaker independent 10-fold 

Cross-Validation (CV) strategy was 

implemented in the training process, i.e., 

the data were divided into 10 groups 

(randomly chosen); 9 of them were used 

for training and the remaining one for the 

test. The same approach was adopted in 

[5], where the same corpus was used in 

the experiments. 

 

 

3. EXPERIMENTS AND RESULTS 

 

Two cases are considered in this study: 

(1) classification of PD vs. HC without 

discriminating by gender of the 

participants, and (2) classification of PD 

vs. HC for men and women separately. 

The experiments were carried out taking 

into account three groups of features: the 

features obtained from HHT (G1), the 

features with MFCCs (G2), and the 

combination of G1 and G2 (G3). The 

analysis of the three vowels (/a/, /i/, and 

/u/) was carried out separately and the 3 

vowels together. This is because the vocal 

space area (VSA) formed by these vowels 

provides valuable information about the 

impact of PD in voice generation, and it 

quantifies the possible reduction in the 

articulatory capability of the speaker [8]. 

 
3.1 Bi-class classification 

 

Table 2 shows the results of the 

classification between PD vs. HC subjects 

without any prior sex-based grouping. In 

G1 and G2, the best result was obtained 

from vowel /i/; meanwhile, in G3, the best 

result was obtained considering vowel /a/. 

Finally, the highest accuracy, 69 %, 

was obtained with optimal parameters C = 

10 and ɣ = 1.10−2. Note that the feature 

selection process improved the accuracy of 

the model. Despite the feature selection, 

the results did not exceed a 70 % accuracy. 

We think that it is because a prior 

grouping based on the gender of the 

speakers is required due to the fact that 

women produce more aspiration noise 

than men (which affects spectral regions 

that correspond to first formants [18]) and 

there are differences between the low-

pitched voices of men and the high-pitched 

voices of women. This is reported below.  

The results of the classification, 

considering a prior gender-based grouping 

of speakers, are reported in Table 3 and 

Tabla 4. 

Note that the results are slightly 

better than those obtained in the previous 

experiment. Relatively high accuracies 

were achieved, especially when the 

feature selection was carried out with the 

Kruskal-Wallis test. Remarkably, the 

highest accuracies, in general, were 

obtained with vowel /i/, which confirms 

that this vowel contributes to the 

computation of VSA with suitable 

information to quantify the reduction of 

the articulatory capability of PD speakers. 

When the original feature vector is 

taken into account, for men and women, in 

general, the best result was obtained with 

the vowel /i/. When the feature selection 

was performed with the Kruskal-Wallis 

test, the best results were obtained with 

vowels /i/ and /a/ and the combination of 

/a/, /i/, and /u/. Better results were 

obtained for female than male 

participants (accuracies of 75 % and 73 %, 

respectively). This can be explained 

because, compared to men with PD, 

women with PD suffer more notoriously 

from a marked subharmonic energy and 

segments with voice breaks [19]. 

Fig. 3 and Fig. 4 show the scores of the 

classifier, which refer to the distance of 

each sample to the separating hyperplane.  
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Note that, in general, the scores overlap 

and the scores of patients with PD are 

more equally dispersed than those of the 

HC group. Therefore, there is a tendency 

to confuse patients and healthy controls. 

Among other factors, this is due to the 

fact that the age of both populations is 

very similar and parameter c (which 

controls the distance to the hyperplane 

between classes), in general, is a very low 

value. 

However, it should be clarified that 

patients with PD and HC speakers can be 

(slightly) better classified using the 

feature selection with Kruskal-Wallis test. 

 
 

Table 2. Results of PD vs. HC speakers without classification by sex 

Source: Created by the authors. 

  Original vector With feature selection 

  C ɣ 
Acc 

(%) 

Sen 

(%) 

Spe 

(%) 
C ɣ 

Acc 

(%) 

Sen 

(%) 

Spe 

(%) 

G1 

/a/ 1 0.01 68 ± 3 62 ± 5 74 ± 3 1 0.01 67 ± 2 59 ± 3 75 ± 3 

/i/ 1 1 63 ± 3 62 ± 7 65 ± 7 1 0.01 65 ± 4 73 ± 4 58 ± 8 

/u/ 1 1 62 ± 2 75 ± 4 49 ± 5 1 0.01 63 ± 3 73 ± 3 54 ± 4 

Fusion 0.5 1 63 ± 2 59 ± 4 66 ± 3 1 0.01 65 ± 3 65 ± 6 65 ± 5 

 

G2 

/a/ 1000 1 65 ± 1 60 ± 4 70 ± 4 1 0.01 64 ± 3 59 ± 3 70 ± 6 

/i/ 5 1 67 ± 4 68 ± 4 66 ± 7 5 0.01 68 ± 4 66 ± 6 69 ±4 

/u/ 5 0.01 61 ± 3 64 ± 3 57 ± 9 1 0.01 63 ± 3 58 ± 7 67 ± 7 

Fusion 5 1 63 ± 4 61 ± 9 66 ± 6 10 0.01 65 ± 3 62 ± 6 68 ± 4 

G3 

/a/ 5 1 63 ± 2 55 ± 5 72 ± 4 1 0.01 68 ± 2 65 ± 5 71 ± 4 

/i/ 1 1 69 ± 3 68 ± 4 69 ± 3 10 0.01 69 ± 3 69 ± 5 68 ± 6 

/u/ 10 1 62 ± 4 64 ± 6 60 ± 5 1 0.01 63 ± 3 65 ± 6 61 ± 6 

Fusion 0.001 0.0001 65 ± 2 64 ± 4 65 ± 4 5 0.001 66 ± 2 69 ± 3 63 ± 3 

G1:  Features obtained from HHT. G2: Features with MFCCs. G3: Fusion of G1 and G2. Acc: Accuracy.  

Sen: Sensitivity. Spe: Specificity. Fusion: Merging of the three vowels. 

 

 

Table 3. Results of male PD patients vs. male HC speakers 

Source: Created by the authors. 

  Original vector With feature selection 

  C ɣ 
Acc 

(%) 

Sen 

(%) 

Spe 

(%) 
C ɣ 

Acc 

(%) 

Sen 

(%) 

Spe 

(%) 

 

G1 

/a/ 0.001 0.0001 65 ± 4 46 ± 8 84 ± 4 0.001 0.01 69 ± 4 56 ± 7 82 ± 5 

/i/ 5 0.001 68 ± 4 68 ± 6 67 ± 9 0.001 0.0001 73 ± 4 74 ± 6 72 ± 8 

/u/ 0.001 0.001 66 ± 5 73 ± 8 59 ± 14 5 0.01 66 ± 4 73 ± 9 58 ± 11 

Fusion 50 0.0001 63 ± 6 64 ± 10 62 ± 8 5 0.01 71 ± 4 64 ± 4 78 ± 7 

 

G2 

/a/ 5 0.001 64 ± 6 63 ± 7 65 ± 11 0.001 0.1 65 ± 3 63 ± 10 68 ± 10 

/i/ 0.001 0.01 66 ± 3 73 ± 8 58 ± 10 0.001 0.01 63 ± 4 64 ± 9 63 ± 7 

/u/ 0.001 0.01 62 ± 4 72 ± 7 52 ± 9 0.001 0.01 65 ± 3 62 ± 7 68 ± 8 

Fusion 0.001 0.0001 63 ± 4 63 ± 8 63 ± 5 5 0.01 68 ± 4 71 ± 5 66 ± 5 

 

 

G3 

 

G 

/a/ 0.001 1 62 ± 4 40 ± 9 84 ± 8 1 0.01 67 ± 4 63 ± 10 71 ± 7 

/i/ 0.001 0.0001 69 ± 2 74 ± 4 65 ± 6 1 0.01 73 ± 4 76 ± 6 71 ± 5 

/u/ 0.001 0.01 65 ± 3 74 ± 7 56 ± 10 0.001 0.01 67 ± 4 67 ± 6 68 ± 6 

Fusion 0.001 0.1 61 ± 6 47 ± 10 75 ± 8 5 0.001 68 ± 4 69 ± 5 67 ± 6 

G1:  Features obtained from HHT. G2: Features with MFCCs. G3: Fusion of G1 and G2.  

Acc: Accuracy.  Sen: Sensitivity. Spe: Specificity. Fusion: Merging of the three vowels. 
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Table 4. Results of female PD patients vs. female HC speakers 

Source: Created by the authors. 

  Original vector With feature selection 

  C ɣ 
Acc 

(%) 

Sen 

(%) 

Spe 

(%) 
C ɣ 

Acc 

(%) 

Sen 

(%) 

Spe 

(%) 

 

 

G1 

/a/ 0.001 0.01 70 ± 2 59 ± 5 81 ± 6 0.001 0.0001 71 ± 5 65 ± 10 75 ± 8 

/i/ 0.001 0.001 66 ± 4 64 ± 8 68 ± 7 0.001 0.01 69 ± 4 67 ± 7 70 ± 5 

/u/ 0.001 0.001 67 ± 4 71 ± 6 64 ± 9 0.001 0.1 69 ± 4 73 ± 7 65 ± 3 

Fusion 0.001 0.001 68 v 4 63 ± 6 74 ± 6 0.001 0.0001 73 ± 2 73 ± 6 72 ± 6 

 

 

G2 

/a/ 5 0.001 63 ± 3 72 ± 8 55 ± 5 0.001 0.1 64 ± 5 64 ± 11 64 ± 10 

/i/ 5 0.001 71 ± 3 70 ± 7 73 ± 5 5 0.001 75 ± 4 71 ± 7 78 ± 7 

/u/ 50 0.001 62 ± 5 57 ± 12 67 ± 9 0.001 0.01 67 ± 7 64 ± 9 70 ± 8 

Fusion 10 0.0001 67 ± 4 69 ± 8 65 ± 9 0.001 0.01 69 ± 4 62 ± 7 76 ± 3 

G3 

/a/ 1 0.01 64 ± 4 62 ± 8 67 ± 5 0.001 0.01 70 ± 5 67 ± 8 73 ± 6 

/i/ 10 0.0001 72 ± 4 70 ± 6 73 ± 5 0.001 0.01 69 ± 3 67 ± 6 71 ± 6 

/u/ 0.001 1 64 ± 4 60 ± 9 68 ± 8 0.001 0.01 68 ± 3 64 ± 7 72 ± 5 

Fusion 0.001 0.0001 66 ± 5 66 ± 8 66 ± 9 0.001 0.0001 67 ± 3 68 ± 5 67 ± 7 

G1:  Features obtained from HHT. G2: Features with MFCCs. G3: Fusion of G1 and G2.  

Acc: Accuracy.  Sen: Sensitivity. Spe: Specificity. Fusion: Merging of the three vowels. 

 

 
 

 
Fig. 3. Probability density distributions and histograms of the best scores in the SVM of PD patients vs. HC 

speakers without sex classification. a) Original vector. b) Vector with feature selection through Kruskal-Wallis 

test. Source: Created by the authors. 
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Fig. 4. Probability density distributions and histograms of the best scores in the SVM of a) male PD patients 

vs. male HC speakers with original vector, b) vector with feature selection through Kruskal-Wallis test, 

 c) female PD patients vs. female HC speakers with original vector, and d) vector with feature selection 

through Kruskal-Wallis test. Source: Created by the authors. 

 

Figure 5 shows an additional 

comparison of the best results obtained in 

the classification of PD patients vs. HC 

speakers considering the two experiments 

(with and without sex-based grouping). 

The Receiver Operating Characteristic 

(ROC) curve represents the results in a 

more compact way and is a standard 

measure of performance in medical 

applications [20]. Fig. 5.B shows that the 

best results were obtained for female 

speakers. Also note that the feature 

selection process improves the results in 

all cases. 

 

3.2 Estimation of speakers’ dysarthria level: 

Multi-class classification and 

Regression. 

 

To predict the severity of the 

dysarthria of patients with PD, we only 

used the group of features with the best 

performance in the bi-class classification. 

The MDS-UPDRS-III scale evaluates 

the motor skills of different limbs (e.g., 

hands and arms). However, only one out of 

the 33 items in the scale is about speech 

assessment. This causes a limitation to 

the evaluation of patients’ neurological 

state considering only speech recordings. 
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Fig. 5. ROC curves of the best results. a) Male PD vs Male HC. b) Female PD vs Female HC. c) PD vs HC 

without sex-based grouping. Source: Created by the authors. 

 

The m-FDA scale was introduced in 

[13] with the aim of providing patients 

and clinicians with a tool that enables a 

more accurate evaluation of patients’ 

dysarthria level. Such scale considers 

several aspects of speech, including 

breathiness, lip movement, palate 

movement, laryngeal capacity, tongue 

posture and movement, monotonicity, and 

intelligibility [13]. 

The m-FDA scale classifies speakers 

into four groups: speakers with m-FDA 

scores between 0 and 9 (N1), between 10 

and 19 (N2), between 20 and 29 (N3), and 

over 30 (N4). 
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The results of the multi-class 

classification (N1 vs N2 vs N3 vs N4) are 

presented in Table 5, along with the 

accuracy, F1-score, Unweighted Average 

Recall, and confusion matrix. Note that, 

as in the bi-class classification 

experiments, the best results here were 

obtained when the female speakers were 

considered separately (51 % maximum 

accuracy), which is significantly higher 

than when men were studied separately 

(32 % accuracy) or when men and women 

were analyzed together (41 % accuracy). 

Table 6 reports the results of the 

regression experiments in terms of m-FDA 

scores. It presents a maximum 

Spearman’s rank correlation coefficient of 

0.446, which was obtained for the group of 

female speakers. This low value is due to 

the fact that the tasks only considered 

vowel pronunciations. We believe that 

these results might improve if longer 

tasks with continuous speech signals are 

employed.  

 

 

4. CONCLUSIONS 

 

This paper introduces a novel method 

based on the HHT, and it shows that 

articulation-based features are suitable to 

discriminate between PD patients and HC 

speakers considering sustained modulated 

vowels. The feature selection strategy 

proposed in this paper, based on the 

results of Kruskal-Wallis tests, seems to 

improve the accuracy of the proposed 

approach. Additionally, a gender-based 

pre-grouping of speakers can enhance the 

results, especially in the case of female 

participants. 

 The main advantage of this approach 

is that only modulated vowels are 

considered to perform the evaluation. 

Other studies in the literature require 

longer tasks like reading texts and 

monologues, which are more expensive, 

time consuming, and even more invasive. 

Although better results were obtained in 

[5] with a similar approach, our 

methodology is focused on modeling the 

first two vocal formants using the HHT.  
 

Table 5. Confusion matrix with the results of the classification of healthy controls  

and patients with PD at different stages of the disease. Source: Created by the authors. 

 Male and female together Male Female 

 Acc=0.41, F1=0.32, UAR=0.36 Acc=0.32, F1=0.25, UAR=0.31 Acc=0.51, F1=0.46, UAR=0.45 

 N1 N2 N3 N4 N1 N2 N3 N4 N1 N2 N3 N4 

N1 23 0 7 1 5 3 2 4 13 1 2 1 

N2 10 0 10 1 8 2 1 1 2 1 4 2 

N3 12 0 14 2 6 0 4 2 2 3 9 2 

N4 5 0 11 4 1 3 2 6 1 2 3 2 

Acc: Accuracy. F1: F1-score. UAR: Unweighted Average Recall 

N1: Speakers with m-FDA scores between 0 and 9. N2: Speakers with m-FDA scores between 10 and 19 

N3: Speakers with m-FDA scores between 20 and 29. N4: Speakers with m-FDA scores over 30. 

 

 

Table 6. Results of the regression taking into account the different levels  

of the disease Source: Created by the authors. 

Feature 
Male and female Together Male Female 

𝑪𝒔 MAE 𝑪𝒔 MAE 𝑪𝒔 MAE 

G1 0.264 11.032 0.196 11.502 0.228 10.840 

G2 0.229 10.952 0.203 11.319 0.283 10.379 

G3 0.244 10.575 0.216 11.377 0.446 9.234 

𝑪𝒔: Spearman rank-order correlation coefficient. MAE: Mean absolute error. 
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To the best of our knowledge, this is the 

first study that considers the HHT to 

model the temporal dynamics of F1 and F2.  

The main motivation behind the use of 

the HHT to model the vocal formants is 

that it allows the analysis of the 

articulatory capacity of speakers, which, in 

general, is compromised in patients with 

PD. The results indicate that the HHT 

enables us to obtain relevant information 

in certain frequency bands that could be 

considered a suitable bio-marker to model 

the speech of PD patients. 

Future work will consider nonlinear 

dynamical features to assess the 

complementarity between the information 

of HHT-based models and NLD features. 

Moreover, higher accuracies can be 

achieved considering measurements such 

as jitter, shimmer, noise measurements, 

periodicity, and stability of the first and 

second formant as well as the original 

signal.  
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