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A tractable inhomogeneous closure theory for
flow over mean topography
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Abstract

The quasi-diagonal direct interaction approximation (qdia) is shown
to be a computationally tractable closure theory for inhomogeneous
two-dimensional turbulent flow over mean (single-realization) topog-
raphy. In this paper numerical results for the qdia are compared to
direct numerical simulation (dns) at moderate Reynolds number for
two cases with quite different topographic and mean field amplitudes.
The qdia is found to be in excellent agreement with dns for cases
where the small-scale topographic amplitude is significant. For cases
where the small-scale topography is weak, the qdia closely reproduces
the evolving mean field and large-scale energy containing transients
but under represents the amplitudes of the small-scale transients in
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a similar way to the homogeneous dia. We discuss the prospects of
ameliorating the small-scale deficiencies using a regularization of the
interaction coefficients.
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1 Introduction

The direct interaction approximation (dia) [1] represents a major advance
on the path to developing a tractable statistical closure for fluid turbulence.
The isotropic Eulerian dia is a second-order renormalized perturbation the-
ory in which the propagators, namely the two-point cumulant and response
function, are renormalized while the vertex term is bare and equal to the
interaction coefficient [2]. An unfortunate consequence of the bare vertex
approximation is that the dia does not adequately describe the convection
of small-scale eddies by large eddies. At very high Reynolds number this
leads to the dia predicting a k−5/2 rather than a k−3 enstrophy inertial
range [3, 4] for two dimensional turbulence. Nevertheless the dia is in good
agreement with direct numerical simulations (dns) in the energy containing
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range of large scales and contains no arbitrary parameters, unlike the eddy-
damped quasi-normal Markovian model (edqnm) [15] and test-field model
(tfm) [5, 4]. The dia is less restrictive its applications than Markovian clo-
sures but is computationally more expensive because of the potentially long
time-history integrals.

The incorporation of the statistical properties of random topography into
homogeneous closure models was achieved in two important papers by Her-
ring [8] and Holloway [9] using dia and tfm models. These papers generated
considerable insight into how the statistical properties of random topography
determine the spectra of transient vorticity variance but have left open the
question of how the mean single realization topography of oceans and atmo-
spheres determines the structures of the mean flows. Kraichnan formulated
a dia closure theory for general inhomogeneous flows [10] and noted that the
inhomogeneous dia was not computationally tractable without some form of
diagonalization [11]. Recently, Frederiksen [12] developed a quasi-diagonal
dia closure, which he applied to barotropic flow over topography, by express-
ing the off-diagonal elements of the covariance and response function matri-
ces in terms of the diagonal elements. In a previous low resolution study of
the qdia closure O’Kane & Frederiksen [16] introduced a generalized cumu-
lant update method for inhomogeneous flows, in which the potentially long
time-history integrals are periodically truncated and the two- and three-point
cumulants calculated and used in the new non-Gaussian initial conditions of
the restart procedure.

The objectives of this present paper are threefold. The first is to demon-
strate that the inhomogeneous quasi-diagonal qdia is not only computation-
ally tractable but that it gives results consistent with previous homogeneous
statistical closure studies. The second objective is to examine the effect of
various specifications of the topography and strengths of the mean fields on
the accuracy of the qdia. Thirdly we wish to extend the results of our earlier
very low resolution study (O’Kane & Frederiksen [16]) to significantly higher
resolutions. Our aim is to gain insight into the validity of the quasi-diagonal
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approximation and, given that the formal theoretical treatment assumes weak
topography and weak mean field prior to renormalization, to ascertain the
effect of strong topographies and mean fields. We are also interested to see
whether the spurious convection effects associated with the dia treatment of
the three-point term [13, 14] are increased or decreased as the topographic
amplitude is increased in the small scales.

In Section 2 we begin by defining the barotropic vorticity equation for
flow over topography and then summarize the qdia closure. In Section 3 we
present a comparison of the qdia and dns for circularly truncated k = 48
resolution (C48) at moderate large scale Reynolds number (RL u 300) and
for two different specifications of the topography and initial mean fields. In
the first case the topographic amplitude scales like 1/k and results in a strong
initial mean field at the smallest scales. In the second case the topographic
amplitude scales like 1/k2 and gives a weak initial mean field at the smallest
scales. As for previous isotropic studies [6, 7, 14] both dns and closure models
have been formulated for discrete wavenumbers. This allows us to make direct
comparison without the need to account for systematic differences arising
from the more traditional logarithmic discretization schemes and continuous
wavenumbers [13, 15] commonly employed in closure models to reach high
wavenumbers. Our conclusions appear in Section 4.

2 The QDIA closure for 2-D turbulent flow

over general topography

The evolution of two-dimensional decaying flow over a fixed topography on
a periodic f -plane (0 ≤ x ≤ 2π), (0 ≤ y ≤ 2π) is described by the nondi-
mensional barotropic vorticity equation, which takes the form

∂ζ

∂t
= −J(ψ, ζ + h) + ν̂∇2ζ . (1)
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Here ν̂ is the bare viscosity, J(ψ, ζ) the Jacobian and the vorticity is the
Laplacian of the stream-function ζ = ∇2ψ . We may write Eq. (1) in spectral
form via the standard Fourier transform relationships. Thus the spectral
vorticity equation takes the form

(
∂

∂t
+ ν̂k2)ζk(t) =

∑
p

∑
q

δ(k + p + q)

× [K(k,p,q)ζ−pζ−q + A(k,p,q)ζ−ph−q] (2)

where k = (kx, ky), k = (k2
x + k2

y)
1/2 and ζ−k is conjugate to ζk . The inter-

action coefficients are governed by the following relationships

A(k,p,q) = −(pxqy − pyqx)/p
2 , (3)

K(k,p,q) =
1

2
(pxqy − pyqx)(p

2 − q2)/p2q2 , (4)

where δ(k + p + q) =

{
1 , if k + p + q = 0 ,

0 , otherwise.

For an ensemble of flows satisfying Eq. (2), we can express the vorticity
ζk = 〈ζk〉+ζ̂k where 〈 〉 denotes the mean andˆdenotes the deviation from the
ensemble mean. The two-time two-point cumulant Ck−l(t, t́) = 〈ζ̂k(t)ζ̂−l(t́)〉 ,
the response to infinitesimal perturbations Rkl(t, t́) = 〈δζ̂k(t)/δf̂ 0

l (t́)〉 and
we use the shorthand notation Ck = Ck−k and Rk = Rkk for the diagonal
terms. The two-time cumulant can then be expressed in terms of two- and
three-point terms

(
∂

∂t
+ ν̂k2)Ck(t, t́) =

∑
p

∑
q

δ(k + p + q)A(k,p,q)C−p−k(t, t́)h−q

+
∑
p

∑
q

δ(k + p + q)K(k,p,q) (5)

× [〈ζ−p(t)〉C−q−k(t, t́) + C−p−k(t, t́)〈ζ−q(t)〉+ 〈ζ̂−p(t)ζ̂−q(t)ζ̂−k(t́)〉] .
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Similarly the equation for the mean-field depends on the two-point single-
time cumulant

(
∂

∂t
+ ν̂k2)〈ζk(t)〉 =∑

p

∑
q

δ(k + p + q){K(k,p,q)[〈ζ−p(t)〉〈ζ−q(t)〉+ C−p−q(t, t)]

+ A(k,p,q)〈ζ−p(t)〉h−q} . (6)

Frederiksen [12] used renormalized perturbation theory to close these
equations by expressing the two- and three-point cumulants and the two-
point response function in terms of diagonal elements. Thus

Ck−l(t, t́) =

∫ t

t0

dsRk(t, s)Cl(s, t́)

× [A(k,−l, l− k)h(k−l) + 2K(k,−l, l− k)〈ζ(k−l)(s)〉]

+

∫ t́

t0

dsR−l(t́, s)Ck(t, s)

× [A(−l,k, l− k)h(k−l) + 2K(−l,k, l− k)〈ζ(k−l)(s)〉](7)

and similarly the two-point two-time response function is

Rkl(t, t́) =

∫ t

t́

dsRk(t, s)Rl(s, t́)

× [A(k,−l, l− k)h(k−l) + 2K(k,−l, l− k)〈ζ(k−l)(s)〉] .(8)

The isotropic component of the flow is contained in the three-point term and
is dealt with using the direct interaction approximation following Kraich-
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nan [1]:

〈ζ̂−l(t)ζ̂(l−k)(t)ζ̂k(t́)〉

= 2

∫ t́

t0

dsK(k,−l, l− k)C−l(t, s)C(l−k)(t, s)Rk(t́, s)

+ 2

∫ t

t0

dsK(−l, l− k,k)R−l(t, s)C(l−k)(t, s)Ck(t́, s)

+ 2

∫ t

t0

dsK(l− k,−l,k)R(l−k)(t, s)C−l(t, s)Ck(t́, s) . (9)

Finally the equation for the diagonal response function takes the form

(
∂

∂t
+ ν̂k2)Rk(t, t́) =

∫ t

t́

ds
∑
p

∑
q

δ(k + p + q)Rk(s, t́)

{4K(k,p,q)K(−p,−q,−k)R−p(t, s)C−q(t, s)

+R−p(t, s) [2K(k,p,q)〈ζ−q(t)〉+ A(k,p,q)h−q]

× [2K(−p,−k,−q)〈ζq(s)〉+ A(−p,−k,−q)hq]} (10)

with Rk(t, t) = 1 and Rk(t, t́) = 0 for t < t́ . These equations then form a
closed system for the mean field and covariance and response functions.

The numerical strategies that we use to solve the dns and qdia closure
equations are the same as previously described in O’Kane & Frederiksen [16]
and very similar to those described by [7]. Both the dns and closure equa-
tions use the predictor-corrector scheme for time-integration and the closure
equations use the trapezoidal rule to evaluate the time-history integrals. For
both the dns and closure equations the interaction coefficients are precal-
culated as dense single dimensional arrays and the fields, cumulants and
response functions are calculated and stored for k in a half space, with com-
plex conjugacy used to obtain the complete functions. The dns results are
averages over large numbers of realizations in which the initial conditions
are sampled from multivariate Gaussian distributions with specified mean
and variance.
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3 Moderate Reynolds number turbulence

In this section we consider moderate Reynolds number turbulence making
direct comparisons with the previous isotropic turbulence studies of Herring
et al. [4] and Frederiksen & Davies [7]. Our initial transient enstrophy spec-
trum corresponds exactly to Spectrum b of Frederiksen & Davies [7] and
closely to Spectrum ii of Herring et al. [4]. Thus we start with an initial
(twice) enstrophy spectrum of

Ck(0, 0) = 1.8× 10−1k2 exp (−2

3
k) . (11)

The initial mean enstrophy spectrum is defined by an equilibrium mean vor-
ticity field

〈ζk(0)〉 = 〈ζeq
k 〉 = −bhk

k2

a+ bk2
, (12)

with parameters a and b given in Table 1 being the same as Frederiksen &
Sawford [17] used to fit the large scales of meteorological flows. The dns
and closure use nondimensional time steps of 0.003 and 0.004 for Case i and
Case ii calculations respectively, and are integrated for 100 time steps at C48
(circularly truncated wavenumber space with 1 ≤ k ≤ 48) resolution. The
dns spectra represent ensemble averages of 100 realizations with standard
deviations (not shown) comparable to those in Figure 3 of Frederiksen &
Davies [7]. A nondimensional viscosity of ν̂ = 0.0025 gives an initial Reynolds
number of ≈ 305 for Spectrum b (as in [7]).

The diagnostic quantity we use to compare the qdia to dns are band av-
eraged mean, transient and total kinetic energy E(k) for which the individual
components

ETotal
k (t) = ETrans

k (t) + EMean
k (t) =

1

2

Ck(t, t)

k2
+

1

2
〈ζk(t)〉〈ζ−k(t)〉/k2 , (13)

are averaged over wavenumber bands of unit width as for Eq. 16 of Fred-
eriksen & Davies [7]. As well we use the large-scale Reynolds number RL
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evaluated using the transient part of the field only (defined in Eqs. 14 of [7]).
In each case a single realization mean topography hk = |hk|×(cos θk+i sin θk)
with fixed specified random phase θk is considered. We compare two cases
with identical initial transient fields but with respective topographies for
which |hk|2 = 4k/(1 + k3) (Case i) and |hk|2 = 16k2/(1 + k3)2 (Case ii) and
consequently initial mean fields that strongly differ at the smallest scales.
These two cases are intended to identify the effect of the strength of the
topography at the small scales on the spectra of the mean and transient
fields. These choices of topography provide tests of the accuracy of the clo-
sure with markedly different topographic amplitudes at the small scales, and
consequently differing small-scale eddy-topographic interaction strengths.

The initial off-diagonal elements are zero and the initial conditions are
Gaussian. We find that in the presence of topographic interaction the flow
evolves more rapidly and therefore show results at final times tCaseI

f = 0.3 or
tCaseII
f = 0.4 compared to tf = 0.8 in the isotropic calculations of Frederiksen

& Davies [7]. The rapid evolution of the flow fields can be attributed to
the presence of both topography and a mean-field forcing of the small-scale
transients.

First consider Case i. In Figure 1(a) the initial mean and transient spectra
are displayed with parameter values specified in Table 1. At the nondimen-
sional time of tf = 0.3 the evolved qdia mean and transient kinetic energy
spectra (Figure 1(b)) are shown to be in close agreement with dns apart
for some slight underestimation of the closure transient field at the smallest
scales. In Figure 1(c) the closure is shown to give a good estimate of the
evolved Reynolds number throughout the evolution with RDNS

L (0.3) = 164
and RQDIA

L (0.3) = 159 . In the second study at C48 resolution (Case ii) the
same initial conditions and parameters (but with 4t = 0.004) are used; how-
ever, the topography now satisfies |hk|2 = 16k2/(1 + k3)2 . This choice of
topography falls away much more rapidly at the small scales than that used
in the previous experiment thus resulting in a significantly reduced initial
mean field kinetic energy at the small scales, as seen in Figure 1(d). An
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Figure 1: C48 resolution spectra. The initial mean and transient energy
spectra are depicted in (a) and (d) with the final evolved energy shown
in (b) and (e) respectively. The component field diagrams are as follows:
dns mean-field (dashed), qdia mean-field (dotted), dns transient-field (thick
solid), qdia transient-field (thin solid). The large-scale Reynolds number
((c) and (f)) are dns (thick solid) and qdia (thin solid).
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Table 1: Parameters
Case 4 t ν̂ a b |hk|2
I 0.003 0.0025 4.824× 104 2.511× 103 4k/(1 + k3)
II 0.004 0.0025 4.824× 104 2.511× 103 16k2/(1+k3)2

additional feature of a more rapidly decreasing topographic amplitude is a
reduction in the strength of the eddy-topography interaction at the small
scales. For |hk|2 = 16k2/(1 + k3)2 the evolved (tf = 0.4) closure mean ki-
netic energy (Figure 1(e)) spectra show close agreement with dns, as was the
case when the topography falls away as 1/k. However, the transient energy
spectra have undergone significant increases for 20 < k < 48 after a period
of evolution to tf = 0.4 as compared to the initial spectra; it is also evident
that the qdia gives good results in the energy containing range of large scales
but underestimates the evolved small-scale transient energy. The failure of
the closure to accurately predict the small-scale transient kinetic energy is
not surprising given that we know spurious convection effects are inherent
in the direct interaction approximation, due to the inaccurate treatment of
the three-point cumulant term. These effects were found to be pronounced
for this initial transient spectrum in the previous studies of Herring et al. [4]
and Frederiksen & Davies [7].

Figure 1(f) shows the evolution of RL(t)/RL(0) for Case ii. The dns and
qdia closure large-scale Reynolds number are displayed and we note some
increased discrepancy between the dns and qdia evolved Reynolds numbers
for the Case ii results as compared to Case i where we have a strong small
scale topographic amplitude. The over-representation of the Reynolds num-
ber for Case ii (Fig. 1 (f)) is a direct result of the closure under-representing
the transients in the small scales. The initial Reynolds number for the Case ii
calculation is RL(0) = 305 with the evolved RL(0.4)/RL(0) = 0.77 for the
dns calculation and RL(0.4)/RL(0) = 0.81 for the qdia. However, when
the topographic strength at the small scales is increased the qdia closure
provides a better estimate of the large-scale Reynolds number (Figure 1(c)).
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4 Discussion and Conclusions

The qdia has been demonstrated to very accurately capture the evolved ki-
netic energy in the large scales in both cases considered. In addition the qdia
compares well at all scales to dns at moderate Reynolds number when the
topographic and mean-field contributions are significant at small scales. For
the case where the topographic amplitude falls away as 1/k2 and the evolved
small-scale transient field dominates, the closure is found to significantly
under-represent the small-scale transients (see Figures 1(d) and (e)). This
underestimation arises due to spurious convection effects inherent in the dia
treatment of the three-point terms. However, despite this, the closure mean-
field compares very closely to dns. Interestingly, the qdia closure performs
best when topographic amplitudes and mean fields are stronger, as evident in
Case i (Figures 1(b) and (c)), while in perturbation theory they are assumed
to be small prior to renormalization. Thus it appears that an increased to-
pographic amplitude, combined with an increased initial mean field, in the
small scales mitigates the tendency of the qdia to generate spurious con-
vection effects resulting from the lack of vertex renormalization. The energy
containing large scales demonstrate very close agreement between dns and
closure in both cases in this study. The overall close comparison with dns
underscores the validity of the quasi-diagonal approximation. Most recently
Frederiksen & Davies [14] have tackled the spurious convection problem of
the dia using a heuristic vertex renormalization wherein the eddy interac-
tions are localized using a cutoff parameter for the interaction coefficients
(as suggested in [13]). In the future we plan to generalize the heuristic ver-
tex renormalization or regularization method of Frederiksen & Davies [14]
to inhomogeneous flows in an effort to mitigate the spurious nonlocal eddy-
eddy interactions described in this present paper as well as possible nonlocal
eddy-mean field and eddy-topography interactions.
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