
ANZIAM J. 56 (CTAC2014) pp.C1–C15, 2015 C1

On the noise-resolution duality, Heisenberg
uncertainty and Shannon’s information

T. E. Gureyev1 F. R. de Hoog2 Ya. I. Nesterets3

D. M. Paganin4

(Received 14 March 2015; revised 15 September 2015)

Abstract

Several variations of the Heisenberg uncertainty inequality are
derived on the basis of ‘noise-resolution duality’ recently proposed by us.
The same approach leads to a related inequality that provides an upper
limit for the information capacity of imaging systems in terms of the
number of imaging quanta (particles) used in the experiment. These
results are useful in the context of biomedical imaging constrained
by the radiation dose delivered to the sample, or in imaging (e.g.,
astronomical) problems under low light conditions.
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1 Introduction

Among the most important characteristics of many imaging, scattering and
measuring experimental setups (systems) are the spatial resolution and the
signal-to-noise ratio (snr) [4, 2]. For mainly historical reasons (abundance of
photons in typical visible light imaging applications), the two properties are
usually considered separately, even though any applied physicist or optical
engineer would be aware of an intrinsic link between them. These two
characteristics, and the interplay between them, attained additional relevance
in recent years in the context of biomedical imaging, where the samples are
often sensitive to the radiation dose [15], in certain astronomical methods
where the detectable photon flux can be extremely low [10], as well as in
some other problems, including those related to the foundations of quantum
physics [1]. In x-ray medical imaging, in particular, it is critically important
to minimize the radiation dose delivered to the patient, while still being
able to obtain 2D or 3D images with sufficient spatial resolution and large
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enough snr to detect the features of interest, such as small tumours [13, 14].
In this context, an imaging system (e.g., a ct scanner) must maximize
the amount of relevant information extractable from the collected images,
while keeping sufficiently low the number of x-ray photons impinging on
the patient. This article addresses some mathematical properties of generic
imaging systems that are likely to be important in the context of designing the
next generation of medical imaging instruments, and may also have relevance
to some fundamental aspects of quantum physics and information theory.

Gureyev et al. [13, 14] recently introduced a dimensionless ‘intrinsic quality’
characteristic QS which incorporates both the noise propagation and the
spatial resolution properties of a linear shift-invariant (lsi) imaging system:

QS =
snr
snrin

(
∆xin

∆x

)n/2
=

snr

F
1/2
in (∆x)n/2

, (1)

where n is the dimensionality of the input data (n = 2 corresponds to
conventional planar images), ∆xin and ∆x are the input and output spatial
resolution of the imaging system, snrin = Sin/σin and snr = S/σ are the
input and output signal-to-noise ratios, respectively. Gureyev et al. [13, 14]
assumed that the incident fluence corresponds to a spatially stationary and
uncorrelated random process with Poisson statistics, hence snr2in = Fin(∆xin)

n

is the average number of particles incident on the input spatial resolution unit,
where Fin is incident particle/quanta fluence (the number of incident particles
per n-dimensional volume). Because QS is normalised with respect to the
incident fluence, it may be viewed as ‘imaging quality per single incident
particle’. In practice, if the incident fluence rate or the exposure time is
increased, then the quality of the resultant image is expected to increase
too (normally in proportion to F1/2in ) [13, 14]. However, in applications where
the imaging quanta are at premium (e.g., in low-light imaging) or where the
irradiation dose delivered to the sample is critical (as in x-ray or electron
imaging of biological samples), QS represents a key performance indicator of
the imaging system.

Gureyev et al. [13, 7, 17] showed that when the total number of imaging
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quanta is fixed, a duality exists between the signal-to-noise and the spatial
resolution of the imaging system and, as a result, the intrinsic quality QS has
an absolute upper limit (maximum):

Q2
S 6 1/Cn , (2)

where Cn = 2nΓ(n/2)n(n+ 2)/(n+ 4)n/2+1 is the Epanechnikov constant [9,
13, 7]. More precisely, de Hoog, Schmalz and Gureyev [7] showed that
inequality (2) holds and is exact for lsi systems with point spread func-
tions (psfs) T(x) with finite mathematical expectation, variance and energy.
The maximum is achieved on Epanechnikov psf TE(x) = (1− |x|2)+ , where
the subscript ‘+’ denotes that TE(x) = 0 at points where the expression in
brackets is negative [7]. Section 2 gives further details about this result.

Although the definition of the intrinsic quality was originally introduced for
lsi systems [13], it can be extended to some non-linear systems as shown,
for example, by Nesterets and Gureyev [17] for the famous Young double-slit
diffraction experiment. In that context Fin = Nq/A

n , where Nq is the total
number of incident quanta and An is the ‘area’ of the entrance aperture of
the imaging system, so, from equation (1),

Q2
S =

snr2

Nq

An

(∆x)n
. (3)

For Young double-slit diffraction Nesterets and Gureyev [17] used a definition
of snr corresponding to the so-called ‘ideal observer snr’ [2] which quantifies
the distinguishability of the image from two identical slits of width b = A/2
separated by distance d = ∆x from the image from one slit located in the
centre and with the same width. The number of particles Nq forming each of
the two images was assumed to be the same. The issue of distinguishability of
such images is closely related to the Rayleigh criterion of spatial resolution [4].
It was shown that, for any fixed number Nq of image-forming quanta, the
intrinsic quality, defined in equation (3), reaches its maximum at the slit
separation distance d equal to 2b, that is, when ∆x = A [17]. In other
words, the number of imaging quanta required to reliably (e.g., with snr > 5)
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distinguish an image from two identical slits from the corresponding image
from one slit, reaches it minimum when d = 2b .

In the next two sections we investigate the relationship between inequality (2)
and the Heisenberg uncertainty inequality [12]. Section 4 outlines a possible
link between the noise-resolution uncertainty (2) and the notion of infor-
mation capacity of communication and imaging systems, as introduced by
Shannon [18]. The main results are summarized in Section 5.

2 Heisenberg and noise-resolution
uncertainties

The spatial resolution of an lsi system,

S(x) =

∫
T(x− y)Sin(y)dy , x,y ∈ Rn , (4)

is defined in terms of the width ∆x of its psf T(x) where

(∆x)2 =
4π

n

∫
|x|2T(x)dx∫
T(x)dx

=
4π‖xt‖22
n‖t‖22

, (5)

and T(x) = |t(x)|2 > 0 is a non-negative function with finite L1 and L2 norms,
zero first moment and finite second moment. In particular,

∫
xT(x)dx = 0 ,

and ‖T‖1 =
∫
T(x)dx =

∫
|t(x)|2dx = ‖t‖22 = ‖t̂‖22 <∞ , where the overhead

hat symbol denotes the Fourier transform, f̂(u) =
∫
exp(−i2πu · x)f(x)dx .

We also define the ‘angular’ (or ‘momentum’) resolution as

(∆u)2 =
4π

n‖t̂‖22

∫
|u|2 |̂t(u)|2du =

4π‖ut̂‖22
n‖t‖22

. (6)

Then the Heisenberg uncertainty inequality [12] states that

∆x∆u > 1 . (7)
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The momentum of a mono-energetic plane-wave photon is equal to p = ~k ,
where k is the wave vector, ~ = h/(2π) and h is the Planck constant.
Identifying k ≡ 2πu and ∆p ≡ ~∆k = h∆u , inequality (7) is written in a
more conventional form:

∆x∆p > h . (8)

The absence of the usual factor 1/(4π) on the right-hand side of the last
inequality is due to the normalization factor 4π/n included in equations
(5) and (6). We choose such a normalization because in the imaging context
it leads to a more natural scaling of the width of psf [13]: for example,
for a rectangular psf with the side length equal to A, from equation (5),
∆x = A

√
π/3 in Rn.

The noise-resolution uncertainty inequality (2) implies

(∆x)n > CnF
−1
in snr2 . (9)

To compare this result with the Heisenberg uncertainty principle (7), we also
need an analogue of equation (9) for ∆u that corresponds to equation (6).

According to the well-known properties of lsi systems [2], the snr from
equation (1) is

snr =
S

σ
=

∫
Sin(y)T(x− y)dy(∫
Win|T̂(u)|2du

)1/2 =
Fin(∆xin)

n‖T‖1
W

1/2
in ‖T‖2

, (10)

where Sin = Fin(∆xin)
n is the (constant) input signal andWin is the (constant)

power spectral density of the uncorrelated noise in the input signal. Similarly
to the variance of the output noise σ in the denominator of equation (10),
we express the variance of the input noise via its power spectral density:
σ2in =

∫
Windu =Win(∆xin)

−n . As the incident fluence is spatially stationary
over the entrance aperture, is spatially uncorrelated, and satisfies Poisson
statistics, its variance is also constant across the aperture and is equal to
σ2in = Sin = Fin(∆xin)

n. Hence, Win = Fin(∆xin)
2n, and substituting this
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expression into equation (10),

snr2 =
Fin‖T‖21
‖T ||22

=
Fin‖t‖42
||t‖44

. (11)

Substituting this into equation(9), we obtain

(∆x)n > Cn‖t‖42/‖t‖44 , (12)

where ∆x is defined by equation (5).

A similar ‘noise-resolution uncertainty’ inequality is now written for ∆u (as
defined in (6)) by replacing t(x) with t̂(u) in (12):

(∆u)n > Cn‖t‖42/‖t̂‖44 . (13)

Multiplying (12) and (13) gives us an inequality similar to the Heisenberg
uncertainty (7):

V[t](∆x∆u)n > C2n , (14)
where the dimensionless quantity

V[t] = ‖t‖44 ‖t̂‖44/‖t‖82 , (15)

represents a kind of a ‘phase-space noise-to-signal ratio’ (normalized with
respect to the incident fluence) which characterizes a particular imaging
(measuring) system.

The functional V[t] is bi-invariant with respect to the scaling of its argument,
that is, V[at(bx)] = V[t(x)] for any positive constants a and b, hence it does
not depend on the ‘height’ or ‘width’ of the function t(x), but only on its

functional form. For Gaussian functions tG(x) =
(
a
√
2π
)−1

exp[−|x|2/(2b)] ,
one always has V[tG] = 1 . In this case, inequality (14) is weaker than (7),
since the Epanechnikov constants Cn are slightly smaller than 1 (for example,
C1 = 6

√
π/125 ∼= 0.95 , C2 = 8/9 and C3 = 60

√
π/75/2 ∼= 0.82) . Appendix A

shows that the functional V[t] can be arbitrarily close to zero for some
functions t(x) and can be arbitrarily large for other functions. The former
means that for some functions t(x) inequality (14) gives a stronger estimate
(higher lower bound) than the Heisenberg uncertainty (7).
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3 ‘Incoherent’ version of Heisenberg
uncertainty inequality

Let us define an alternative (‘incoherent’) angular resolution by

(∆̃u)2 =
4π

n‖T̂‖1

∫
|u|2|T̂(u)|du , (16)

that is, equal to the width of the modulation transfer function |T̂(u)| . We
also introduce a new snr; similarly to (11) but with |T̂(u)| in place of T(x),

s̃nr2 =
Fin‖T̂‖21
‖T‖22

. (17)

Then an analogue of (9) for |T̂(u)| in place of T(x) is

(∆̃u)n > CnF
−1
in s̃nr2. (18)

Multiplying (9) and (18), we obtain:

(∆x ∆̃u)n > C2n‖T‖21 ‖T̂‖21/‖T‖42 . (19)

It is easy to show that ‖T‖21 ‖T̂‖21/‖T‖42 > 1 . Indeed,∫
T 2(x)dx =

∫
T(x)

∫
exp(i2πxu)T̂(u)dudx 6

∫
|T(x)|dx

∫
|T̂(u)|du .

Therefore,
∆x ∆̃u > C2/nn . (20)

This can be viewed as an alternative (‘incoherent’) form of the Heisenberg
uncertainty principle.

Equation (20) is re-written as

4π2
∫
|x|2|T(x)|dx∫
|T(x)|dx

∫
|u|2|T̂(u)|du∫
|T̂(u)|du

>
n2

4
C4/nn . (21)
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The optimal (sharp) lower bound for the left-hand side of (21) in the 1D case
is the Laue constant λ0 [16] and Dreier et al. [8] showed that 0.543 < λ0 <
0.85024. The constant C41/4 ∼= 0.205 is much lower than the optimal bound,
although strictly speaking the Laue constant is an optimal lower bound only
for symmetric 1D functions T(x) [16].

4 Noise-resolution uncertainty and Shannon’s
information capacity

Another uncertainty relationship is obtained for a (broad) class of imaging
(or measuring) systems with the (output) spatial resolution not exceeding
the size of the entrance aperture, that is, ∆x 6 A . Multiplying both sides of
equation (9) by (∆u)n,

(∆x∆u)n > CnF
−1
in (∆u)nsnr2. (22)

As F−1in = An/Nq , F−1in (∆u)n = An(∆u)n/Nq > 1/Nq , because A∆u >
∆x∆u > 1 . Then

(∆x∆u)n > Cnsnr2/Nq . (23)

In one limiting case, when all output quanta are collected in a single ‘detector
pixel’ with the Poisson statistics, we have snr2/Nq = 1 . In this case
inequality (23) gives only a slightly smaller lower limit for its left-hand side
than the conventional Heisenberg uncertainty (7). At the other limit, when
the output signal is uniformly spread over multiple ‘pixels’ (corresponding
to narrow psfs with An‖T ||22 � ‖T‖21 in (11)), the snr can be close to
1, even for large Nq , and hence snr2/Nqnt ∼ 1/Nqnt , indicating that the
right-hand side of (23) can in principle become arbitrarily small. Since
snr2/Nq = Q

2
S(∆x)

n/An 6 Q2
S 6 1/Cn , hence the right-hand side of (23) is

always smaller than or equal to 1, that is, it is weaker than the Heisenberg
uncertainty inequality.
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Inequality (23) is related to expressions for the information capacity (limits)
obtained by Shannon for communication systems [18] and by Gabor and others
for imaging and electromagnetic fields [11, 5]. According to Shannon [18], the
number of bits Nbits that can be transmitted within a time interval At over a
communication channel with bandwidth Wt = 1/∆t is limited by

Nbits 6 AtWt log snr . (24)

In a related result, Felgett and Linfoot [11] showed that the information
capacity of a 2D (incoherent) optical system with the field of view AxAy and
the spatial bandwidth WxWy = 1/(∆x∆y) is limited by

Nbits 6 2AxWxAyWy log snr . (25)

These results were generalized further by Cox and Sheppard [5].

Returning to (23), let Wout = 1/∆x be the effective output bandwidth and
A = 1/∆u be the effective output aperture of the imaging system, then (23)
is re-written as

snr2(AoutWout)
n 6 Nq/Cn . (26)

This is quite a natural inequality as it states that:

• the maximum ‘information capacity’ of an imaging system is limited
ultimately by the number of quanta used in the image formation;

• the size of an image, its bandwidth and the snr (or, equivalently, the
spatial and angular resolutions, and the snr) can be traded-off against
each other, but the product of the three cannot exceed the number of
image-forming quanta.

Inequality (26) (noise-resolution uncertainty) in the 1D and 2D cases gives
complementary results to (24) and (25). Indeed it follows from (26) that
snr2AxWx 6 C−1

1 Nq and snr2AxWxAyWy 6 C−1
2 Nq . Since (AoutWout)

n =
(Aout/∆x)

n = Nv represents the number of effective resolution units (‘voxels’),
the information capacity of a communication channel or an imaging system in
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any dimension is ultimately limited by the number of imaging (signal) quanta
(e.g., photons) used:

Nbits 6 Nv log snr2 6 Nvsnr2 6 NvNq/(CnNv) 6 C
−1
n Nq . (27)

It will be interesting to consider this result in the context of scattering theory
and, in particular, the limits for the information about the scatterer that can
be obtained in a particular imaging scheme (e.g., a ct scan) involving a fixed
number of scattering (imaging) quanta (e.g., photons). Such an investigation
would be relevant to some important practical questions, for example those
arising in radiation dose limited biomedical imaging or in certain astronomical
problems.

5 Conclusions

We derived several forms of uncertainty inequalities which are related to
the Heisenberg uncertainty principle [12] and the information capacity of
communication and imaging systems described by Shannon [18] and others [11,
5]. We showed that our inequality (14) potentially provides a more accurate
lower bound for the phase-space volume (which quantifies the Heisenberg
uncertainty) than the conventional uncertainty relationship (7). The new
lower bound is related to the phase-space noise-to-signal ratio (15) of a given
imaging/measuring system. We also suggested an alternative derivation of
an ‘incoherent’ version (20) of the Heisenberg uncertainty inequality (which
may be termed the Laue inequality [8]). Finally, we obtained an estimate
for the information capacity of imaging (scattering) systems which appears
complementary to results of Shannon [18], Gabor and others [11, 5] concerning
the information capacity of communication and imaging systems. According
to this last result, the number of bits of information about the sample that
can be obtained in an imaging (scattering) experiment cannot exceed the total
number of the imaging quanta (probing particles) used in the experiment,
while the spatial resolution (number of effective voxels) and the signal-to-noise
ratio can be traded-off against each other.
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A Unboundedness of the functional V [t]

Recall that

V[t] =
‖t‖44 ‖t̂‖44
‖t‖82

. (28)

Let us assume that V[t] > K8 for some K > 0 , then, from Lemma 3.3 in
Follard and Sitaram [12] it follows that this is equivalent to the inequality

‖t‖4 + ‖t̂‖4 > 2K‖t‖2 . (29)

However, Cowling and Price [6] showed that this inequality is not valid. Thus
a non-zero lower bound does not exist.

Turning now to the upper bound, let

t(x) =
(
1+ x2

)− 3
8 , (30)

for which it is clearly the case that both ‖t‖2 and ‖t‖4 are strictly positive
and finite. From Bateman and Erdelyi [3],

t̂(ξ) =
2π

3
8K 1

8
(2π|ξ|)

|ξ|
1
8 Γ
(
3
8

) , (31)

where Kν is a modified Bessel function which, for small arguments, behaves as

Kν(z) ∼
1

2
Γ(ν)

(
1

2
z

)−ν

as z→ 0 . (32)

http://www.jstor.org/stable/119352
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Hence

t̂4(ξ) ∼

(
π

1
4 Γ
(
1
8

)
Γ
(
3
8

) )4 |ξ|−1 as ξ→ 0 , (33)

and, as a consequence, ‖t̂‖4 is unbounded. Thus V[t] does not have a finite
upper bound.
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