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Inverse method for attribution of climate
change
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Abstract

A new inverse method for determining the anomalous mean forcing
functions responsible for climate change is presented. The method
closes the mean field equations by representing the second order statis-
tical moments as linear functions of the mean field. The coefficients of
the linear parameterisation are determined by least-squares regression.
The technique successfully reproduces the anomalous forcing functions
responsible for the observed change in climate simulations between the
periods July 1949–1968 and 1975–1994.
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1 Introduction

Studies, such as that by Frederiksen and Frederiksen [1], have shown that the
mean circulation patterns of the atmosphere have been changing systematically
over the latter half of the 20th century. Moreover, these changes in turn
account for the reduction in storm development and rainfall observed over
southern Australia and particularly over south-west of Western Australia
during winter. It is therefore of considerable interest to establish what
dynamical and physical processes are responsible for the change in the mean
circulation patterns.

In typical (forward) climate model studies one simulates the response of
the climate to a perturbation in known external forcing agents such as
greenhouse gases and sea surface temperatures. However, in the climate
change attribution problem one needs instead to determine the anomalous
external forcing responsible for the observed changes in climate. In other
words, an inverse model of climate change attribution is needed. This problem
is complicated by the two way interaction of the large scale circulation and
weather systems through heat and momentum fluxes, or potential vorticity
fluxes, resulting in vacillation cycles of growth and decay [2]. At steady state
the mean circulation is driven not only by the external forcing functions
but also by the eddy fluxes, which appear as second order moments in the
mean field equations. Formally, the problem is equivalent to the statistical
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dynamical closure problem of turbulence where determination of the moment
of a given order requires knowledge of moments of higher order.

We present a method that closes the statistical equations for the climate by
expressing the second order moments in terms of the mean field circulation.
We are guided by the Quasi-diagonal Direct Interaction Approximation (qdia)
closure theory of Frederiksen [3] for the statistical dynamics of inhomogeneous
flows. The qdia closure has been successfully applied to many situations
and shown to be in excellent agreement with direct numerical simulations
(dns) [4, 5]. However, rather than solving the complex closure equations
directly, here we close the equation for the mean climate using the dns
statistics to express the second order moments in terms of the mean field.
As in the qdia the second order moments are expressed as linear functions
of the mean field but here the coefficients in the linear fit are obtained
by least squares regression. Our approach is general and relatively simple
to implement compared with solving the computationally demanding qdia
closure equations.

This article is structured as follows. Section 2 outlines our inverse modelling
methodology in its most general form. Section 3 introduces the two level
quasigeostrophic (qg) model that is the basis of all the numerical experiments
in this study. Section 4 presents some results on the simulation of the July
1949–1968 and 1975–1994 climate states with the two level qg model. We
also apply the inverse model methodology to calculate the anomalous forcing
function responsible for the shift in climate in the two periods. Finally,
Section 5 summarises the results and presents our conclusions.

2 Inverse method

Let xj(λ,µ, t) represent a prognostic field variable on the sphere. Here, the
index j represents discrete vertical levels of different fields such vorticity,
divergence and temperature; λ is the longitude; µ is the sine of the latitude;
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and t represents time. The model that describes the evolution of the prognostic
fields may also be horizontally discretized by expanding the fields in terms of
spherical harmonics

xj(λ,µ, t) =
∑
m,n

xjmn(t)P
m
n (µ) exp (imλ). (1)

Here, Pmn (µ) are Legendre functions; m and n are zonal and total wavenum-
bers, respectively; and xjmn(t) are discretized spectral fields. Using equa-
tion (1), the prognostic equations for thermodynamical fields are written in
the spectral form

∂xjmn
∂t

=
∑

p,q,r,s,k,l

[
Kjkl(m,n;p,q; r, s)xk−pqx

l
−rs

+Ajkl(m,n;p,q; r, s)xk−pqφ
l
−rs

]
−
∑
k

Djk
0 (m,n)xkmn + f

j
0(m,n), (2)

where φjmn is the spectral component of some spatially varying but time inde-
pendent field φj(λ,µ) such as the effective topography; Kjkl(m,n;p,q; r, s)
and Ajkl(m,n;p,q; r, s) are interaction coefficients; Djk

0 (m,n) are the coeffi-
cients of the linear terms; and fj0(m,n) is the forcing function.

Denoting time averaging at statistical steady state by angular brackets, from
equation (2), ∑

p,q,r,s,k,l

[
Kjkl(m,n;p,q; r, s)〈xk−pq〉〈xl−rs〉

+Ajkl(m,n;p,q; r, s)〈xk−pq〉φl−rs
]

+ 〈T jmn〉−
∑
k

Djk
0 (m,n)〈xkmn〉+ 〈f

j
0(m,n)〉 = 0 , (3)

where 〈T jmn〉 =
∑
pq

∑
rs

∑
kl

Kjkl(m,n;p,q; r, s)〈x̂k−pqx̂l−rs〉 (4)
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is the mean field nonlinear tendency due to the transient fields and we split xjmn
into mean, 〈xjmn〉, and transient, x̂jmn, parts.

The goal of the inverse climate model is to determine the mean forcing
functions, 〈fj0(m,n)〉, from the mean fields, 〈xjmn〉. However, equations (3)
and (4) show that to determine the forcing functions not only are the mean
fields required but also the second order moments 〈x̂k−pqx̂l−rs〉. This is the
turbulence closure problem and we represent 〈T jmn〉 in the form indicated by
the qdia closure at steady state as a linear function of the mean field

〈T jmn〉 = −
∑
k

Djk
t (m,n)〈xkmn〉+ f

j
t(m,n). (5)

Here, Djk
t (m,n) and fjt(m,n) (with subscript ‘t’ indicating transient contri-

bution) are coefficients that we determine from the statistics of dns as follows.
We choose some appropriate initial state and perform a forward model simula-
tion. The forcing function for this initial state may be approximated by some
other procedure such as the iterative one described in Section 4. We then
perturb this forcing function to yield a set of perturbed mean fields, 〈xjmn〉s,
and their associated nonlinear mean field tendencies, 〈T jmn〉s, where s denotes
distinct perturbations of the original climate state. Linear regression then
determines the coefficients Djk

t (m,n) and fjt(m,n) from this set of perturbed
mean fields and mean field tendencies according to equation (5).

Using equations (3), (4), and (5), the climate model is written∑
p,q,r,s,k,l

[
Kjkl(m,n;p,q; r, s)〈xk−pq〉〈xl−rs〉

+Ajkl(m,n;p,q; r, s)〈xk−pq〉φl−rs
]

−
∑
k

Djk
r (m,n)〈xkmn〉+ 〈fjr(m,n)〉 = 0 , (6)

where Djk
r (m,n) = Djk

0 (m,n) +Djk
t (m,n) (7)

and 〈fjr(m,n)〉 = 〈fj0(m,n)〉+ fjt(m,n). (8)
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Here the subscript ‘r’ indicates that the coefficient is renormalised (or rede-
fined). Unlike equation (3), equation (6) is statistically closed in the sense
that only the mean field is required to calculate the mean forcing and not
higher order moments. We examine the performance of equation (6) in rela-
tion to equation (3) to see how well the nonlinear mean field tendencies are
represented by the linear closure model. We expect that as long as the climate
state in question is sufficiently close to the climate state used to calculate the
linear regression coefficients then the linear closure would indeed be successful.
The question of how far away in phase space the new climate state can be is
addressed by experimentation in subsequent sections.

3 The two level quasi-geostrophic equations

We apply the climate change attribution methodology to the two level quasi-
geostrophic model of Frederiksen [6] that was also employed in the subgrid
modelling study of Zidikheri and Frederiksen [7]. For flow on the spherical
earth these equations take the form

∂qj

∂t
= −J(ψj,qj + hj) − 2

∂ψj

∂λ
−
[
αj + (−1)ρνj0∇

2ρ
]
ζj + κ

(
q̃j − qj

)
, (9)

where j = 1 is the upper level and j = 2 is the lower level. The (reduced)
potential vorticity at level j is defined as

qj = ∇2ψj + (−1)jFL
(
ψ1 −ψ2

)
, (10)

where ψj are level dependent streamfunctions, ζj = ∇2ψj are relative vor-
ticities, and FL is the layer coupling parameter. The latter is related to the
internal Rossby radius of deformation rint = (2FL)

−1/2. The model includes
drag specified by αj and prescribed viscosities νj0; ρ is a positive integer
that describes the order of the Laplacian operator. The equations are non-
dimensional, with the earth’s radius as length scale and the inverse of earth’s
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angular velocity as a time scale. The effective topography, which is indepen-
dent of time, is represented by hj = 2µHj/H0 , where Hj is the topographic
height and H0 is a scale height. We also allow for a simple representation
of the effects of heating through a specification of the field, q̃j, and dissipa-
tion, κ, that controls how rapidly the flow is being relaxed towards this field.
The parameterized heating creates a mean vertical shear in the flow that
results in the formation of energetic eddies which are model representations
of mid-latitude weather systems.

We work in the spectral domain, and the spectral model is obtained by
expanding the fields ψj, ζj, qj and hj in terms of spherical harmonics, as in
equation (1):

∂qjmn
∂t

=
∑
p,q,r,s

A(m,n;p,q; r, s)
[
ζj−pqq

j
−rs + ζ

j
−pqh

j
−rs

]
− dj0(m,n)ζkmn + κ

(
q̃jmn − q

j
mn

)
. (11)

Here,

A(m,n;p,q; r, s) = −i[q(q+ 1)]−1

×
∫ 1
−1

dµPmn (µ)

[
pPpq(µ)

d

dµ
Prs(µ) − rP

r
s(µ)

d

dµ
Ppq(µ)

]
.

(12)

In equations (11) and (12), the interaction coefficient vanishes unless the
selection rules m+p+r = 0 , n+q+s = odd integer, and |q−s| < n < q+s
are satisfied. The real part of the complex operator dj0 describes horizontal
dissipation and its imaginary part describes the frequency of Rossby waves

dj0(m,n) = αj + νj [n(n+ 1)]
ρ
− i

2m

n(n+ 1)
. (13)

Equation (11) is cast in the more general form of equation (2) by identifying xj

with qj and identifying φj with hj and limiting the indices to j,k, l = 1, 2 in
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equation (2). Additionally,

Ajkl(m,n;p,q; r, s) = ajkδjlA(m,n;p,q; r, s) (14)

and

Kjkl(m,n;p,q; r, s) =
1

2

[
Ajkl(m,n;p,q; r, s) +Ajlk(m,n; r, s;p,q)

]
. (15)

Here, δjl is the Kronecker delta function, and

a11 = a22 =
q(q+ 1) + FL
q(q+ 1) + 2FL

and a12 = a21 =
FL

q(q+ 1) + 2FL
. (16)

Moreover, the matrix dissipation operator is Djk
0 = dj0a

jk + κδjk and the bare
forcing is fj0(m,n) = κq̃jmn .

4 Numerical simulations

Firstly, we generate data by integrating equation (11) forward in time to a
statistical steady state using prescribed parameters and relaxation fields, q̃jmn.
We run two simulations with different values of q̃jmn corresponding to the
observed climatologies of the periods 1949–1968 and 1975–1994. We itera-
tively nudge the simulation climatologies towards the observed climatologies
starting with the relaxation fields set equal to the observed climatologies. For
subsequent iterations the relaxation fields are calculated as[

q̃jmn
]
i
=
[
q̃jmn

]
i−1

+ 〈
[
qjmn

]
obs
〉− 〈

[
qjmn

]
i−1
〉 (17)

with subscript i representing the iteration step and subscript “obs” indicating
the observed fields. We choose i = 22 to be the final iteration step. Other
chosen parameters are: [α1]−1 = 20 days and [α2]−1 = 5 days; ν1 = ν2 =
1.55× 1016 m4s−1 and ρ = 2 ; κ−1 = 10 days; FL = 3.125× 10−12 m−2. Global
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Figure 1: Differences between barotropic zonal winds (in m s−1) in the July
1975–1994 and July 1949–1968 climate simulations.

topographic data at the resolution of T15 is used in the lower level with a
scale height H0 = 8 km. The model resolution is T31.

The results are presented in terms of the barotropic (vertically averaged) flow
instead of the flow at Levels 1 and 2. The differences in the time average of
the barotropic flow field between the two climate periods, 1975–1994 and 1949–
1968, are shown in Figure 1. In the southern hemisphere the barotropic zonal
winds are reduced in midlatitudes and enhanced poleward. Figure 3(a) shows
the corresponding barotropic zonal wind forcing function differences. Our
goal is to reproduce the forcing function differences in Figure 3(a) responsible
for the climate differences in Figure 1 using the inverse model proposed in
the previous sections. Figure 2(a) shows the differences in the nonlinear
tendency 〈T jmn〉 in physical space and scaled by κ−1 between the two periods.
This is the field that must be parameterized in terms of the mean field so that
the forcing functions can be computed directly. It describes the contribution
of the transient fields to the mean (mainly large scale) fields.
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(a)

(b)

Figure 2: Differences between barotropic zonal wind nonlinear tendencies
(in m s−1 and scaled by κ−1) in the July 1975–1994 and July 1949–1968
climate simulations as obtained from (a) numerical simulations and (b) linear
regression.
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To calculate the model response to anomalous forcing we generate an ensemble
of ten perturbed model climates by perturbing the relaxation fields. The
perturbed relaxation fields

[
q̃jmn

]
p

are obtained by linearly combining the

1949–1968 (
[
q̃jmn

]
A

) and 1975–1994 (
[
q̃jmn

]
B
) climate relaxation fields[

q̃jmn
]
s
= γs

[
q̃jmn

]
A
+ (1− γs)

[
q̃jmn

]
B

. (18)

The parameter γs is chosen to have the range [0.525, 0.75] so that all the
perturbed climates are closer to the earlier (1949–1968) climate than to the
later (1975–1994) climate. This choice is motivated by the fact that we want
to use the later climate as a test case for evaluating the performance of our
inverse model. Choosing perturbed climate states closer to the earlier climate
ensures that the results are not biased towards the later climate. Figure 2(b)
shows the mean field nonlinear tendency differences between the periods
1949–1968 and 1975–1994 reconstructed using equation (5) after obtaining the
coefficientsDjk

t (m,n) and fjt(m,n) from the perturbed states. Comparing this
figure to Figure 2(a), see that the linear approximation does indeed work quite
well, with most large scale structures being reproduced successfully. Finally,
Figure 3(b) shows the reconstructed difference (1975–1994 and 1949–1968) in
forcing functions using the parameterized form of 〈T jmn〉. The reconstructed
anomalous forcing function is in good agreement with the actual anomaly
used in the numerical climate simulation (Figure 3(a)).

5 Conclusion

We proposed a scheme to close the equations describing climate at the first
order by parametrising the nonlinear transient field term as a term linear in
the mean fields. In this scheme, the coefficients required in the linear model
are determined by linearly regressing an ensemble of perturbed climate states.
We found that the time average of the nonlinear term in the numerical climate
simulations is qualitatively well reproduced by this method. The utility of this
method is that the anomalous forcing function responsible for an observed
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(a)

(b)

Figure 3: Differences between barotropic zonal wind forcing functions (in
m s−1 and scaled by κ−1) in the July 1975–1994 and July 1949–1968 climate
simulations used in (a) numerical simulations and (b) obtained from the
inverse model.
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shift in a climate state can be directly calculated from the climate states
without an explicit knowledge of the second order moments that would be
required in a fully nonlinear model. Such an efficient inverse model is of great
use in the problem of attributing climate change to a variety of physical and
dynamical processes. In future studies we aim to apply the method to more
complex climate models such general circulation models.
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