
ANZIAM J. 42 (E) ppC1328–C1355, 2000 C1328

Accelerated methods for performing the LDLT
decomposition

Peter E. Strazdins∗

(Received 7 August 2000)

Abstract

This paper describes the design, implementation and performance
of parallel direct dense symmetric-indefinite matrix factorisation al-
gorithms. These algorithms use the Bunch-Kaufman diagonal pivot-
ing method. The starting point is numerically identical to lapack

sytrf() algorithm, but out-performs zsytrf() by ≈ 15% for large
matrices on the Ultrasparc family of processors. The first variant

∗Department of Computer Science, Australian National University, Canberra, ACT
0200, Australia. mailto:peter@cs.anu.edu.au

0See http://anziamj.austms.org.au/V42/CTAC99/Stra for this article and ancillary
services, c© Austral. Mathematical Soc. 2000. Published 27 Nov 2000.

mailto:peter@cs.anu.edu.au
http://anziamj.austms.org.au/V42/CTAC99/Stra

ANZIAM J. 42 (E) ppC1328–C1355, 2000 C1329

reduces symmetric interchanges, particularly important for parallel
implementation, by taking into account the growth attained by any
preceding columns that did not require any interchanges. However, it
achieves the same growth bound.

The second variant uses a lookahead technique with heuristic meth-
ods to predict whether interchanges are required over the next block
column; if so, the block column can be eliminated using modified
Cholesky methods, which can yield both computational and commu-
nication advantages.

These algorithms yield best performance gains on ‘weakly indefi-
nite’ matrices (i.e. those which have generally large diagonal elements),
which often arise from electro-magnetic field analysis applications. On
Ultrasparc processors, the first variant generally achieves a 1–2% per-
formance gain; the second is faster still for large matrices by 2% for
complex double precision and 6% for double precision.

However, larger performance gains are observed on distributed
memory machines, where symmetric interchanges are relatively more
expensive. On a 16 node 300 MHz Ultrasparc-based Fujitsu AP3000,
the first variant achieved a 10-15% improvement for small-moderate
sized matrices, decreasing to 7% for large matrices. For N = 10000,
it achieved a sustained speed of 5.6gflops and a parallel speedup of
12.8.

Contents C1330

Contents

1 Introduction C1330

2 Diagonal Pivoting Methods C1332
2.1 The LAPACK Diagonal Pivoting Algorithm C1335
2.2 Parallelizing the Diagonal Pivoting Method C1337

3 Minimizing Symmetric Interchanges C1338

4 Lookahead Techniques C1341
4.1 Details of an Effective Lookahead Algorithm C1344

5 Performance C1347

6 Conclusions C1351

References C1353

1 Introduction

Large symmetric indefinite systems of equations arise in many applications,
including incompressible flow computations and optimisation of linear and
non-linear programs. They also arise in electro-magnetic field analysis, such
as in the accufield application [8]. Here, these systems are also complex,

1 Introduction C1331

can be very large (e.g. N ≈ 30000), and often the diagonal elements are
relatively large. For such weakly indefinite systems, i.e. transformations ap-
propriate to definite systems can be applied to eliminate most columns of
these matrices without sacrificing numerical stability, important computa-
tional advantages can be gained.

Stable algorithms for solving N × N symmetric indefinite systems and
yet exploit symmetry to have only N3

3
+ O(N2) floating point operations are

well known (see [4] and the references within). While several performance
evaluations of variants of these algorithms have been given [1, 6, 7, 2], all
but [6] consider only uniprocessor implementations, and [6] only considers
parallelization on a small-scale shared memory machine.

In this paper, we describe how to derive variants of the Bunch-Kaufman
diagonal pivoting method to yield improved performance, especially on par-
allel platforms.

The parallel routines are coded entirely in terms of the dblas Distributed
blas Library [10, 12, 11], which is a portable version of parallel blas. It has
been used to implement very efficient parallel matrix factorization applica-
tions using various techniques [11]. The use of the dblas has enabled rapid
development and prototyping of several variants of the Bunch-Kaufman algo-
rithm, while enabling high reliability and performance from its highly tested
and optimized components.

The Fujitsu AP3000 [5] is a distributed memory multicomputer, com-
prised of risc scalar processors (Ultrasparc) with a deep memory hierarchy

2 Diagonal Pivoting Methods C1332

(having a 16KB top-level data cache and a 1MB 2nd-level cache, both direct-
mapped, and a 64-entry tlb). It has communication networks with charac-
teristics shared by most other state-of-the-art distributed memory computers.

The main original contributions of this paper are as follows: it provides
an analysis of the issues of symmetric indefinite factorizations for distributed
memory platforms; and it develops and evaluates two new variants of the
diagonal pivoting algorithm that yield superior serial and especially parallel
performance, discussing issues required for their efficient parallelization.

2 Diagonal Pivoting Methods

The Bunch-Kaufman method performs the decomposition A = LDLT , where
L is an N×N lower triangular matrix with a unit diagonal, and D is a block
diagonal matrix with either 1 × 1 or 2 × 2 sub-blocks [4]. A 2 × 2 sub-
block indicates a 2 × 2 pivot was required for the stable elimination of the
corresponding columns; the corresponding sub-diagonal element of L will be
0. In a practical implementation of this method, A can then be overwritten
by L and D, with a ‘pivot vector’ recording any symmetric interchanges
(including the position of the 2× 2 pivots) [4, 1, 6].

For the sake of brevity, the notations x′ (x̃), for an integer expression x,
is a shorthand for x + 1 (x− 1).

2 Diagonal Pivoting Methods C1333

In the elimination of column j, four cases can arise with the Bunch-
Kaufman method:

D1 |Ajj| ≥ α|Aij|, where j < i < N and |Ai,j| = maxÑ
k=j′ |Ak,j|. Here,

a 1 × 1 pivot from Aj,j will be stable; no symmetric interchange is
required.

D2 the conditions for D1 and D4 do not hold. Here, Aj,j is used as a 1× 1
pivot, and no symmetric interchange is required.

D3 A 1 × 1 pivot from Aii will be stable. Here, a symmetric interchange
with row / columns i and j must be performed.

D4 A 2× 2 pivot using columns j and i will be stable. Here, a symmetric
interchange with row / columns i and j + 1 = j′ must be performed;
however, both columns are eliminated in this step.

α is a tuning constant for the algorithm; it can be shown that α = 1+
√

17
8

maximizes stability of this algorithm [4]. For definite systems, only case D1
is needed; case D3 is also needed for semi-definite systems, and case D4 is
needed for indefinite systems.

Case D2 exists primarily to avoid a situation where case D4 might be
unstable. By stability, it is meant that the growth of the trailing sub-matrix
(A′ in Figure 1) is bounded; however, due to cases D2 and D4 there is no

2 Diagonal Pivoting Methods C1334

guarantee that the growth of L is bounded [2]; recently a bounded Bunch-
Kaufman algorithm has been presented which overcomes this problem [2].

It has been argued that due to the sufficiently high stability for most
practical purposes, the choice between diagonal pivoting methods and their
main alternative, tridiagonal reduction method [4], is essentially an issue
of performance [9, 13]. For parallel implementation, it has been identified
that the symmetric interchanges (e.g. interchange of rows and columns i
and j, see Figure 1(a)), required to keep such algorithms stable, involves
high communication costs (relative to LU and llt factorizations); thus the
diagonal pivoting methods, which afford a reduction in the number of these
(especially for weakly indefinite matrices) should be strongly favoured [9, 13].

It was also noted there that while several variants of the diagonal piv-
oting method have since been proposed, the lapack implementation of the
Bunch-Kaufman method [1] has proven to be very competitive in terms of
performance over a range of platforms. Thus, this will form the starting
point for our parallel implementation.

The choice between the bounded and original Bunch-Kaufman algorithm
deserves some treatment. While the bounded algorithm offers better sta-
bility, empirical and analytical studies show that it requires on average at
least 2.5 column searches every time the test for case D1 fails [2]. Further-
more, empirical studies on random matrices have shown that the average
number of symmetric interchanges of the bounded algorithm is ≈ 1.7 times
greater [2]. Unless such stability is required for a particular application, this

2 Diagonal Pivoting Methods C1335

extra overhead favours the original algorithm.

2.1 The LAPACK Diagonal Pivoting Algorithm

In this section, we describe a diagonal pivoting algorithm, essentially a sim-
plification of that in lapack sytrf(), which is publicly available from
NetLib [3]. A concise matrix-notation description of this algorithm is can
be found in [9]; an informal description of the partial factorization is given
in Figure 1. Here, the elements of the symmetric matrix A are stored in
its lower triangular half, with AL (the dashed trapezoid) being the panel
currently being factored. Note that wj and w′

j refer to the jth column and
row of W . For the sake of simplicity, it is assumed that the input matrix is
invertible.

At this point, we can begin to analyse the relative costs of each of the cases
D1–D4. Case D1 is the most efficient; case D2, while having the same out-
come, requires half a symmetric interchange and wastes the second matrix-
vector multiply. Case D3 is less efficient still, as it similarly wastes the
first matrix-vector multiply, and requires the symmetric interchange to be
completed. Case D4 is between cases D1 and D2 in terms of efficiency, for
although it requires a symmetric interchange, it eliminates 2 columns. Thus,
unlike cases D2 and D3, it involves no redundant matrix-vector multiplies.

As described in more detail in [9], ldlt has the following performance
advantages over llt factorization: 1(a) it must form AL via level 2 compu-

2 Diagonal Pivoting Methods C1336

j

o
j

A’

j
1

A

N

N

j

i

i

A’Aj

a

a’j

j

j

L

L

create new matrix W aligned with AL

for each j in current panel
wj ← (w′

j)
T Aj + aj;

determine the pos. i of the max. in wj

if case D1 does not apply:
(partial) interchange j + 1 with i
wj+1 ← (w′

j+1)
T Aj + aj+1

find max. of wj+1

if D3-D4 applies, complete interchange
if case D4 applies

Dj =

(
Aj,j Aj+1,j

Aj+1,j Aj+1,j+1

)

(aj , aj+1)← (wj , wj+1)D−1
j

skip column j + 1
else

aj ← wj/Aj,j

A′-=ALW T

(a) matrix components (b) lapack algorithm

Figure 1: Partial Factorization of an N ×N symmetric indefinite matrix A

2 Diagonal Pivoting Methods C1337

tations, 1(b) pipelined communication cannot be used for horizontal broad-
casts, 1(c) N column searches for the maximum elements are required (with
immediate broadcast to all processors), 1(d) advanced load balancing tech-
niques such as pipelining with lookahead [11] cannot be used, and 2(a) W
must be explicitly transposed before its vertical broadcast. The first 4 arise
from the possibility of a symmetric interchange occurring in the formation of
AL.

In turn, it has been argued that llt will generally have considerably lower
parallel speed (in flops rate) than LU [9]; thus there will be a value NLU

for which the general LU factorization will be faster if N < NLU, despite
requiring twice as many floating point operations.

2.2 Parallelizing the Diagonal Pivoting Method

The lapack ldlt algorithm, based on blas operations with a high fraction
of level-3 computations due to the blocking factor or panel width ω > 1, has
been shown to be efficient on memory hierarchy uniprocessors [1, 6, 7, 2].
Thus, in principle, as other processor’s memory can be regarded as an ex-
tra level of the memory hierarchy in the distributed memory context, the
algorithm depicted by Figure 1(b) should have a straightforward paralleliza-
tion that is also reasonably efficient. However, several modifications and
optimizations can still be performed.

We will consider the r × s block-cyclic matrix distribution over a P ×Q

3 Minimizing Symmetric Interchanges C1338

logical processor grid [10], where, for an N×N global matrix A, block (i, j) of
A will be on processor (i mod P, j mod Q). For this distribution, two estab-
lished techniques can be used to parallelize this algorithm: storage blocking,
where ω = r = s, and algorithmic blocking, where ω > r = s ≈ 1. The latter
has load balance advantages, at the expense of extra communication startup
costs; it has been shown to yield better performance across platforms with
relatively low communication costs [11]. Our implementation encompasses
both techniques.

In [9], various optimizations to reduce communication startup costs in
the ldlt factorization and backsolve computations are described. These
include combining the communications for individual array elements with
other communications, and, unlike in the lapack algorithm, completing the
row swaps in L to afford a faster serial and parallel backsolve computation
that uses only standard (parallel) blas components.

3 Minimizing Symmetric Interchanges

As explained in Section 2.1, minimizing the amount of symmetric inter-
changes (while keeping the algorithm stable) has potentially large gains in
the parallel algorithm performance.

One method of achieving this is implementing a key idea in the algorithm
in [6]. This algorithm was largely motivated by the requirements of band

3 Minimizing Symmetric Interchanges C1339

matrices, where the minimization of interchanges helps preserve the structure
of these matrices [6]. Let k be the current column of AL to be eliminated, and
let column k − p, 0 < p ≤ k be the last column not eliminated by case D1.
Let λi be the absolute value of the maximum element of the ith subdiagonal.
Then the condition for determining case D1 can be relaxed to:

µk =
k∏

i=k−p+1

(
1 +
|Wi,i|

λi

)
≤
(
1 +

1

α

)p

(1)

This is stable in the sense that the overall growth of A′ from the block of
p 1 × 1 pivots still remains within its bounds [6]. Intuitively, this can be
thought of as the existence of large diagonal elements in preceding columns
reducing the growth bounds on A′ sufficiently to compensate for a smaller
current diagonal element.

The implementation of this idea is somewhat different here however. The
algorithm in [6] is based on a different (3-case) variant of the diagonal pivot-
ing method, and furthermore uses an a priori growth bound instead (which is
necessarily more conservative, see Section 4). There, the value of p becomes
reset whenever the target blocking factor ω is reached, or a symmetric in-
terchange is required. This has the undesirable consequences of the blocking
factor p often falling short of the target blocking factor ω [6], resulting in a
reduction in computational performance, and, in a distributed memory im-
plementation, it would compromise the advantages of using storage blocking,
as often the panel AL would be straddling a storage block boundary.

Our implementation limits p to the range 0 ≤ p < pmax, which is necessary

3 Minimizing Symmetric Interchanges C1340

to avoid overflow in µk. This can be efficiently achieved by storing the values
of 1+ |Wi,i|

λi
in a circular queue of size pmax. Thus, µk can include contributions

from columns in previous blocks. Furthermore, the optimal blocking factor
is always met regardless of whether Equation 1 is.

A potential problem with this reduced interchange method is that, com-
pared with the original Bunch-Kaufman method, they allow increased growth
in Lj by a factor of |aj,j

λj
| ≈ αp [2]. A compromise, which we call the guarded

reduced interchange variant, would to disallow case D1 when |aj,j

λj
| > αp0,

where p0 � pmax, i.e. p0 = 5, even when Equation 1 is satisfied.

Table 1 lists the normalized residual (using a random rhs vector with
elements from the unit circle) for these methods for sample accufield ma-
trices. The normalized residual is calculated the same way as in lapack

test programs [3]; ideally, an accurate algorithm will produce residuals of
less than unity, although in practice it may occasionally exceed unity (espe-
cially for small matrices) without implying a significant loss in accuracy. It
also shows the fraction f of columns eliminated by cases D2–D4. With the
typically large diagonal elements of these matrices, generally f < 0.1.

Figure 2 extends this study to simulated matrices of the form A = A′+βI,
where A′ has random elements from the unit circle and 0 ≤ β ≤ 10. These
represent the averaged values of the residual (and f) for 10 such matrices
as functions of the diagonal bias β. In terms of the pivot distribution f ,
the range 5 ≤ β ≤ 7 corresponds to Table 1. In terms of accuracy, the
reduced interchange method has a residual generally within twice that of

4 Lookahead Techniques C1341

Table 1: Comparison of residual (and f) for diagonal pivoting methods for
accufield matrices

N : 53 161 1601
original: 1 (.04) .01 (.06) .01 (.07)
reduced: 2 (0) .02 (.07) .02 (.01)
guarded: .02 (.05) .02 (.02) 1.0 (.02)

the original method, except for the range 3 ≤ β ≤ 5, which coincides with
the largest absolute reduction in f (note however all residuals are all within
their threshold here). The guarded method has comparable accuracy to the
original, and both of the new methods significantly reduce f for β > 1; in
particular f ≈ 0 for β > 5.

In terms of stability, this scheme is no worse than the original Bunch-
Kaufman method in the sense that it attains the same growth bound in A′.

4 Lookahead Techniques

As discussed at the end of Section 2.1, llt factorization has several inher-
ent performance advantages over ldlt factorization. However, for weakly
indefinite matrices, which we assume for this section, it should be possible to

4 Lookahead Techniques C1342

0
0.02
0.04
0.06
0.08

0.1
0.12
0.14

0 2 4 6 8 10

r

beta

original
reduced
guarded

0
0.1
0.2
0.3
0.4
0.5
0.6

0 2 4 6 8 10

f

beta

original
reduced
guarded

Figure 2: Averaged residual and pivot distribution for simulated 500× 500
matrices

4 Lookahead Techniques C1343

design an ldlt solver whose performance approaches that of an llt solver.

The key idea is to lookahead over the next block of ω columns in AL

and search for their (current) maximum elements λ′
k, and then predict the a

priori element growth for the 1st k diagonals of the block being used as the
pivots [6].

µp
k = µp

k−1

(
1 +

λp
k

|Wk,k|
)

(2)

λp
k = λ′

k +
k−1∑
i=0

|Ak,i|λp
i (3)

Note that the final values of the diagonal elements are required by Equa-
tion 2; this implies that the triangular part of AL must be computed first;
this can be done using a modified Cholesky level-2 factorisation (which also
produces the corresponding triangular part of W). Equation 3 thus gives
an upper bound on the growth of the maximum due to updates from the
previous k − 1 columns [6].

The algorithm of [6] terminates the search whenever this bound is ex-
ceeded, but suggests that a search over all columns would be efficient provided
this occurs infrequently. In the distributed memory setting, the simultane-
ous search over ω columns reduces the communication startup costs of the
searches by a factor of ω, in other words, reducing startup costs to O(N

ω
),

comparable to llt.

4 Lookahead Techniques C1344

Furthermore, referring again to Figure 1 with ωp = j−j0 and W ′
j being the

triangular part of W corresponding to A′
j (and similarly Wj corresponding

to Aj), the first ωp columns of Aj can be eliminated by applying the level-3
triangular matrix updateWj ← Aj(W

′
j)

−T . Wj can be horizontally and then

vertically broadcast as for llt; using then Aj = WjD
−1
j , where Dj is the

diagonal matrix corresponding to A′
j, Aj can then be reconstructed in all

processors.

Thus, the disadvantages 1(a), 1(b), 1(c) and 2(a) of Section 2.1 may be
overcome provided on average ωp ≈ ω. Apart from 1(d), the only signifi-
cant performance disadvantages over an llt algorithm would be the mem-
ory accesses in extra level-1 operations (in the column searches, and in the
reconstruction of Aj).

4.1 Details of an Effective Lookahead Algorithm

While the potential advantages of this method are many, devising an algo-
rithm that can realize them consistently and out-perform the previous variant
turns out to be non-trivial. In particular, it is desirable to exploit the advan-
tages of calculating the accumulated growth in previous columns, whether
lookahead was applied to them or not.

The first problem is that for most weakly indefinite matrices, µp
ωp exceeds

µωp for large ωp, say ωp ≥ ω = 44, often by one or two orders of magnitude.
Table 2 gives the average block sizes produced by using Equation 2 combined

4 Lookahead Techniques C1345

Table 2: Average size of block columns using a priori growth bounds for
complex simulated matrices of various β for N = 528 and a target ω = 44

β 4 6 8 10 15 20 25 30
ω̄p 2 2 2 4 6 16 32 37
ω̄p′ 10 13 18 27 37 37 40 40

with using the method of Section 3. The latter can potentially improve ωp

as it allows growth ‘credits’ from previous blocks to be used. Even so, the
averaged block size ω̄p fell far below the target blocking factor of ω = 44,
except for larger β.

Note that for this range of β, the pivoting ratio f ≈ 0, indicating that
ω̄p ≈ ω is in principle possible.

The ω̄p achieved here is insufficient for attaining performance gains by
using the lookahead method for β < 25. This is because the a priori bounds
are too conservative to achieve large blocking factors for a broad range of
weakly indefinite matrices.

A first attempt to remedy this is, after the elimination of Aj , to recompute
µ0:ωp by performing a second column search over (A′

j |Aj). After performing
the block elimination of Aj , column j must be eliminated using the algorithm
of Figure 1. Surprisingly often, it turns out that it will be eliminated by
cases D1 or D2, which means that lookahead can be applied over the next

4 Lookahead Techniques C1346

ωp
1 ≤ ω − ωp − 1 columns. In this case, we can take advantage of the fact

that the exact values of λ0..ωp are now available to recompute the bounds on
the growths of the column maximums less conservatively:

λp
k = λ′

k +
ωp∑
i=0

|Ak,i|λi +
ω∑

i=ωp+1

|Ak,i|λp
i (4)

If this is deemed to be stable, the columns to the right of j must be updated
by (Aj+1)ωp

1 :,:(Wj+1)
T
ωp

1 :ω−1,: before elimination.

This resulted in an average blocking factor ω̄p′ more quickly approach-
ing ω, as shown in Table 2. Even this is insufficient for improvement of
performance on the accufield matrices, which correspond to 5 ≤ β ≤ 10.

This problem had to be overcome by using a heuristic estimate of the
element growth; a workable choice is to use Equation 1 but using the values
of the column maximums λ′

k before the updates for the current panel are
applied. This is based on the observation that the ratio of the diagonal
elements to their respective column maximums is likely to remain relatively
stable over the updates. However, a copy of the original panel must be kept in
case an unstable elimination is subsequently detected by the second column
search, so that the panel factorisation can be restarted from that point1.

The execution time required by computing Equations 2 and 3 would in-
troduce a significant overhead if recomputed at too many columns of a panel.

1Preliminary experiments on matrices with low f indicate this is sufficiently rare not
to imply a performance loss.

5 Performance C1347

Furthermore, lookahead will only yield any performance advantage if ωp is
sufficiently large. Thus, whenever ωp < ωp

min, our implementation does not
apply lookahead but instead eliminates the next ωp

min columns in the normal
fashion. For the Ultrasparc, a value of ωp

min = 16 was found to be optimal.

Finally, in computing Aj ← Aj(W
′
j)

−T , the standard parallel blas TRSM()

routine was extended to also compute Wj , taking advantage of the fact that
Wj is the value of Aj before the final scaling by the diagonal elements elements
in W ′

j . This avoided extra level-1 computations.

5 Performance

The components of our factorisation routine, the dblas parallel blas and
the Ultrasparc serial blas, have been very highly optimised for the AP3000;
for further details, see [9, 12]. The complex precision version of the routine
is named DZSYTRF().

The dblas implementation of ldlt decomposition allows the grid size
P × Q, the storage block size r and the algorithmic blocking size ω to be
run-time settable parameters. Thus, simply setting ω = r means that storage
blocking will be used; the dblas routines then ensure all the communication
savings from storage blocking then occur. Thus, given a matrix of size N
and PQ processors, the optimum combination of these parameters can then
be chosen. Here, mpi was used as the underlying communication library.

5 Performance C1348

Table 3: ldlt solver performance in complex mflops for accufield ma-
trices on a U300 (ω = 44)

zsytrf() DZSYTRF()

N orig. reduced lookahead
161 80 73 74 76

1601 96 108 109 111

Table 3 compares the performance of the ldlt factorisation routines on
a 300 MHz Ultrasparc II (U300). The optimum blocking factor for complex
matrices was ω = 44. See [9, 13] for a discussion of the results relative to
lapack zsytrf().

The above results belie the potential of the lookahead method for im-
proving computational speed. A clearer improvement for double precision is
observed because a larger blocking factor of ω = 64 is required and there is a
greater difference between matrix-vector multiply and matrix-matrix multi-
ply speeds. Figure 3(a) shows some results comparing the lookahead version
with the reduced interchange version. For β = 10, f < 0.01 for both versions;
for β = 100, f = 0, i.e. the matrices were positive definite and an llt algo-
rithm could be used for comparison. Here, we see that the lookahead method
did indeed approach llt speed, gaining a 5–6% improvement over the entire
range. Note that the residuals for the lookahead version were generally less
than the reduced interchange version.

5 Performance C1349

160

180

200

220

240

500 1000 1500 2000 2500 3000

(d
ou

bl
e)

 M
F

LO
P

S

N

red. int., beta=10,100
lookahead, beta=10

lookahead, beta=100
LLT, beta=100

0

20

40

60

80

100

1000 2000 3000 4000 5000 6000 7000 8000 9000 10000

(c
om

pl
ex

)
M

F
LO

P
S

/c
el

l

N

orig,w=r=44
red.,w=r=44

red.,w=44,r=1
red.,w=48,r=4
LU,w=48,r=4

(a) double; 1× 1, 170 MHz (b) complex; 4× 4, 300 MHz

Figure 3: ldlt performance for simulated N ×N matrices on an AP3000

5 Performance C1350

Figure 3(b) gives parallel factorisation performance for simulated matrices
with β = 7. It was found that the pivoting ratio f increases significantly with
N ; e.g. at N = 10000, f = 0.20 for the original method, and f = 0.05 with
reduced interchange.

Comparing with Table 3, it can be seen that communication overheads
prevent efficiencies that are possible in the serial case. Comparing the plots
for ω = r = 44, we can see that much of this overhead is from the inter-
changes, with the reduced interchange version being faster by ≈ 10− 15% at
the low-mid ranges, decreasing to ≈ 7% at the upper range.

Comparing the plots for the reduced version, we see that storage block-
ing (ω = r = 44) has a small but consistent advantage over algorithmic
blocking (ω ≈ 44 with r = 1, 4). This is to be expected for small N , as
algorithmic blocking incurs an extra lg2 QN startups and an extra lg2 QN

P

communication volume to broadcast horizontally aj for the vector-matrix
multiply. For moderate-large N , storage blocking has an unusual advantage
on the AP3000: its larger messages in the broadcast of AL and W T have an
effectively higher bandwidth.

However, for LU, and to a lesser extent ldlt without reduced inter-
changes, algorithmic blocking at ω = 48, r = 4 slightly out-performed stor-
age blocking for N > 5000. While LU achieves somewhat higher speeds for
a given N , they are never greater than 2 (i.e. NLU < 1000 here). In other
words, the ldlt factorization is quicker than LU in this range, with the
residuals for LU being only marginally smaller.

6 Conclusions C1351

6 Conclusions

Symmetric indefinite matrix factorization is an interesting computation where
there is a trade-off in accuracy and performance. We have presented and
developed variants of the diagonal pivoting method which yield improved
performance, especially for ‘weakly indefinite’ systems where it is easier to
obtain high accuracy. These variants are also useful for preserving the struc-
ture of banded matrices.

Our choice of algorithms was guided by a need for methods which afford
a reduction of symmetric interchanges, due to their relatively high costs on
distributed memory platforms. This lead to the adoption of the diagonal
pivoting method, and the developments of variants which could afford further
reductions. Our starting point was thus based on the lapack sytrf()

routine, but with its low-level components highly optimized. This already
yielded a clear performance gain over sytrf() for large matrices on the
Ultrasparc family of processors; to our knowledge, this is the first time such
a result has been demonstrated.

The first variant afforded a further reduction in symmetric interchanges
by considering the accumulated growth of previous columns. While this
yielded only modest performance improvements for serial computation, on
state of the art distributed memory platforms such as the Fujitsu AP3000,
the reduction in communication costs resulted in a 15–7% increase from small
to large matrices.

6 Conclusions C1352

The second variant achieved a similar reduction in symmetric interchanges
but applied lookahead to predict where block columns could be stably elim-
inated using modified Cholesky methods. However, non-trivial issues had to
be addressed before this variant could yield a consistent improvement over
the first. This included the introduction of heuristic a priori growth esti-
mates. The higher fraction of level 3 computation afforded by this method
yielded a 6% performance increase for (nearly-) definite double precision ma-
trices, even for large sizes, approaching llt factorization speed. It also has
considerable scope for reducing communication startup and volume costs.

Acknowledgements: The author thanks Mark Jones, Linda Kaufman and
John Lewis for their insights into why tridiagonal-based methods have re-
ceived so little development over recent years. Many thanks also to John
Lewis for suggestions leading to the guarded reduced interchange method.
Finally, the author would also like to thank the Fujitsu Parallel Research
Computing Facilities for the use of their AP3000.

References C1353

References

[1] C. Anderson and J. Dongarra. Evaluating block algorithm variants in
LAPACK. In Fourth SIAM Conference for Parallel Processing for
Scientific Computing, Chicago, December 1989. 6 pages. C1331,
C1332, C1334, C1337

[2] Cleve Ashcraft, Roger G. Grimes, and John G. Lewis. Accurate
symmetric indefinite linear equation solvers. Simax, 1999. 49 pages.
C1331, C1334, C1334, C1334, C1334, C1337, C1340

[3] C. Anderson et al. LAPACK User’s Guide. SIAM Press, Philadelphia,
1992. C1335, C1340

[4] Gene Golub and Charles Van Loan. Matrix Computations. John
Hopkins University Press, Baltimore, second edition, 1989. C1331,
C1332, C1332, C1333, C1334

[5] H. Ishihata, M. Takahashi, and H. Sato. Hardware of the AP3000
parallel server. Fujitsu Scientific and Technical Journal, 33(1):24–29,
1997. C1331

[6] Mark T. Jones and Merrell L. Patrick. Factoring symmetric indefinite
matrices on high-performance architectures. SIAM Journal on Matrix
Analysis and Applications, 12(3):273–283, July 1991. C1331, C1331,
C1331, C1332, C1337, C1338, C1339, C1339, C1339, C1339, C1343,
C1343, C1343

References C1354

[7] Linda Kaufman. Computing the MDMT decomposition. ACM
Transactions on Mathematical Software, 21(4):476–489, December
1995. C1331, C1337

[8] Dr. Noro. Private communications, 1998–1999. C1330

[9] P. E. Strazdins. A dense complex symmetric indefinite solver for the
Fujitsu AP3000. Technical Report TR-CS-99-01, Computer Science
Dept, Australian National University, May 1999,
http://cs.anu.edu.au/techreports/1999/TR-CS-99-01.html.
C1334, C1334, C1335, C1335, C1337, C1338, C1347, C1348

[10] P.E. Strazdins. Reducing software overheads in parallel linear algebra
libraries. In The 4th Annual Australasian Conference on Parallel And
Real-Time Systems, pages 73–84, Newcastle Australia, September
1997. Springer. C1331, C1338

[11] P.E. Strazdins. Lookahead and algorithmic blocking techniques
compared for parallel matrix factorization. In PDCN’98: 10th
International Conference on Parallel and Distributed Computing and
Systems, pages 291–297, Las Vegas, September 1998. IASTED.
C1331, C1331, C1337, C1338

[12] Peter E. Strazdins. Transporting distributed BLAS to the Fujitsu
AP3000 and VPP-300. In Proceedings of the Eighth Parallel
Computing Workshop, pages 69–76, Singapore, September 1998. School

http://cs.anu.edu.au/techreports/1999/TR-CS-99-01.html

References C1355

of Computing, National University of Singapore. paper P1-E. C1331,
C1347

[13] Peter E. Strazdins. Parallelizing dense symmetric indefinite solvers. In
Proceedings of 6th Annual Australasian Conference on Parallel And
Real-Time Systems, pages 398–410, Melbourne, November 1999,
Springer-Verlag. C1334, C1334, C1348

	Introduction
	Diagonal Pivoting Methods
	The LAPACK Diagonal Pivoting Algorithm
	Parallelizing the Diagonal Pivoting Method

	Minimizing Symmetric Interchanges
	Lookahead Techniques
	Details of an Effective Lookahead Algorithm

	Performance
	Conclusions
	References

