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Finite element thin plate splines in density
estimation
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Abstract

The problem of estimating probability density functions differs sig-
nificantly from functional estimation in which a response variable is
present and has for this reason has been dealt with by substantially
different methods. We demonstrate here that it is possible to apply

∗ Research School of Information Science and Engineering, Australian National
University, Canberra ACT 0200, Australia

† School of Mathematical Sciences, Australian National University, Canberra, ACT
0200, Australia

0See http://anziamj.austms.org.au/V42/CTAC99/Hegl for this article and ancillary
services, c© Austral. Mathematical Soc. 2000. Published 27 Nov 2000.

http://anziamj.austms.org.au/V42/CTAC99/Hegl


Contents C713

spline-type functionals to the problem of density estimation for large
data sets. The resulting estimators may be regarded as kernel meth-
ods, but may also be applied to inexact or aggregated data. They
can be seen to have moments matching the empirical moments of the
data up to the degree of smoothness of the function. Finally, we will
show that these functions may be naturally approximated by a finite
element method and that doing so will make the method scalable.
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1 Introduction

Nonparametric density estimation is an essential tool in data exploration and
the presentation of large data sets. It is used in determining multimodality
and skewed-ness in data sets and as a tool for data visualisation. It may also
be found in discriminant analysis and in hill-climbing clustering algorithms.
The reader is directed to [5] for a comprehensive introduction to common
uses and standard techniques in this field. In the context of data mining,
we are faced with the need to analyse large and complex data sets, often
involving millions of records with possibly thousands of attributes which
may be needed in data models. The size and complexity of these data sets
requires us to produce methods in which we are assured of scalability with
respect to data size.

Historically the oldest, simplest and most widely used estimator is the
histogram. If we take a fixed discretisation of the region in which the Xi

lie, then for each data point we only need to add 1 to the bin in which
it falls to calculate f̂n. This is clearly a scalable routine producing a non-
negative estimate and some scaling of f̂n easily ensures a unit integrand.
This is not differentiable (or even continuous), however, and also depends on
the origin that we choose for the discretisation, making automated choices of
bins difficult [5]. Many estimators have been created based on eliminating the
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first of these problems. The most sophisticated of these being given originally
in [1] on a univariate density as the function minimising

∫
(f ′(x))2dx subject

to the requirement to match the volume of the histogram on each bin. This
has been generalised for higher dimensions and general differential operators
in [3] and the methods below may be interpreted as the solution to a related
problem.

Suppose we seek to overcome these difficulties with a kernel estimator.
For suitable kernels the estimate will be positive, differentiable and with
unit integrand, although it is often necessary to forgo positivity in order
to achieve an optimal rate of convergence. This has the disadvantage that
a naive implementation requires 0(n) operations at each data point where
the function is to be evaluated. However, a scalable approximation may be
obtained using fast Fourier transforms on a uniform grid. See [5] for details.

So far these methods appear somewhat ad hoc in the approach that they
take to density estimation. They further provide no control over the result-
ing moments of the estimate that they produce. The aim of this paper is
to explore an alternative approach to the estimation of a probability density
function that is related to the general spline smoothing problem and hence
has some relationship to the histospline problem. In doing so we will show
that we are able to match the sample integer moments of arbitrary size. The
resulting estimator can be regarded as a kernel estimate. We will also intro-
duce a finite element approximation to this estimate which may be regarded
as a generalisation of the orthogonal series estimator (see [5]), which will
ensure the scalability of our algorithms. The theoretical framework for these
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techniques will be developed in §2. We will apply a finite element approx-
imation, in particular a non-conforming approach to the thin plate spline
penalty term §3. The results of some numerical experiments will be given in
§4 and conclusions drawn in §5.

2 Development of a Spline-Smoothed Den-

sity

2.1 A Univariate Example

We will begin by developing a specific model in the univariate case and
proceed to a generalised multivariate estimator later. The idea here is to
follow a spline approach to functional estimation. The motivation for our
estimate is as follows. Let us suppose that we have some initial estimate
for the density in L2 which is based on the data {Xi}n

i=1, call it fε. In a
technique reminiscent of spline smoothing, we wish to find f̂n minimising:

J2(u) =

∫
Ω

(u(x) − fε(x))2dx + λ

∫
Ω

(u′′(x))2dx

on some domain Ω ⊂ R. We might regard this as the univariate thin plate
spline for continuous data given by fε. Here the λ will play a similar role to
that of the smoothing parameter h in the kernel estimator, but we have made
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considerably more clear the relationship between smoothness and fidelity that
we are looking for. The variational equation associated with this problem is:

∫
Ω

s(x)(u(x) − fε(x))dx + λ

∫
Ω

u′′(x)s′′(x)dx = 0 , ∀s ∈ H2

which may be rewritten as:
∫

Ω

u(x)s(x)dx + λ

∫
Ω

u′′(x)s′′(x)dx = E(s) , ∀s ∈ H2

where E(s) =
∫

s(x)fε(x)dx. We will now assume that fε is close to our
data, take the usual estimate:

E(s) ≈ 1

n

n∑
i=1

s(Xi)

and derive the final variational form for our estimator; f̂n satisfies

∫
Ω

f̂n(x)s(x)dx + λ

∫
Ω

f̂n

′′
(x)s′′(x)dx =

1

n

n∑
i=1

s(Xi) ∀s ∈ H2(Ω). (1)

We will regard this as the defining equation for f̂n; it corresponds exactly
to fε = 1

n

∑n
i=1 δXi

where δXi
is the Dirac delta function centred on Xi.

Clearly, such a definition cannot be used in the minimisation of J2. We
have that evaluation is a bounded functional on H2(Ω) ⊂ C0(Ω̄) and that
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u(x)2dx +

∫
u′′(x)2dx is elliptic with respect to the standard norm on H2.

It follows that there is a unique H2(Ω) function satisfying (1) (cf. [2]).

It is worth making a few comments about the estimator as defined so
far. To begin with, it is clear that the approximation used for E(s) can be
modified to take account of inexact or aggregate data. We may be given data
already aggregated into a histogram, for example. Alternatively, if we know
that there is an error of size ε, say, associated with the measurement of the
data, we may prefer to use an initial estimate of fε = 1

2εn

∑n
i=1 I[Xi−ε,Xi+ε]

where IΩ is the indicator function of the set Ω. This would correspond to
a naive kernel estimate allowing each Xi to vary within its margin of error,
it would also be carried out at the cost of scalability in the finite element
approximation we will introduce below.

It can also be seen from (1) that if we let s = 1 we immediately have that
f̂n has unit integrand. Equally, s = x shows that E(f̂n) is equal to the mean
of {Xi}n

i=1. This is quite new as far as non-parametric density estimators are
concerned and we will generalise this property to match higher moments as
well. Clearly, this correspondence between the empirical moments and those
of our estimators will be preserved for other approximations to E(s) in the
sense of preserving the moments of fε.

Suppose we take R as our domain, then we can derive the Euler equations
as:

u(x) + λu(4)(x) =
1

n

n∑
i=1

δXi
(x)
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If we have g a Green’s function satisfying:

g(x) + g(4)(x) = δ0(x)

then the fundamental solution may be seen to be:

f̂n(x) =
1

nλ1/4

n∑
i=1

g

(
x − Xi

λ1/4

)

and this approximation is a kernel estimate with kernel

g(x) =
1√
2
e

−|x|√
2

(
cos

( |x|√
2

)
+ sin

( |x|√
2

))
.

A similar analysis may be performed for the general equations presented
below.

2.2 The Generalised Density Spline

In a generalised setting, we use multivariate data and replace
∫

u′′(x)s′′(x) dx
with a bilinear form C(u, s) which we will assume to be continuous on a
Hilbert space H ⊂ L2 on which functional evaluation (at least at our data
points) is bounded. Working on d dimensional space, H(d+1)/2 for d odd, and
H(d/2)+1 for d even will be sufficient. Then we take f̂n to satisfy the Galerkin
equations: ∫

Ω

f̂n(x)s(x)dx + λC(f̂n, s) =
1

n

n∑
i=1

s(Xi) (2)
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Typically we will choose

C(u, s) =

∫
Ω

Lu(x) · Ls(x) dx

for some differential operator L. In particular, if we wish to preserve the
sample moments up degree r, we can choose L so that

Lu · Ls =
∑

|α|=r+1

(
r + 1

α

)
DαuDαs,

where the binomial terms ensure rotational invariance of the functional ([6]).
In this case our approximation must be in the Hilbert space Hr+1.

In the following, we will be interested in a two dimensional distribution
over some domain Ω, using a penalty term:

C(u, s) =

∫
Ω

(ux1,x1sx1,x1 + 2ux1,x2sx1,x2 + ux2,x2sx2,x2)dx (3)

in which first order moments are preserved.

2.3 Positivity—the Roberts Estimate

Before continuing, we will make a few remarks about positivity. It is clear
that in general, the method we have outlined above will not produce a non-
negative result. In one particular case, however, it is possible to achieve
this.
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Theorem 1 If u satisfies:
∫

Ω

u(x)s(x)dx + λ

∫
Ω

(∇u(x) · ∇s(x))dx = Ê(s) , ∀s ∈ H1(Ω) (4)

then u is non-negative.

Here we take Ê to be an H1(Ω)-bounded functional. In particular, point-
wise evaluation is not bounded in H1 and we are unable to use the standard
estimate; taking the integral of s against a histogram generated from the
data is a reasonable alternative. This has been labelled the Roberts estimate
after the author who recognised this property.

Proof: This is seen by reducing (4) to the Euler equation; u satisfies

u(x) − λ∆u(x) = h(x) (5)

where h is the (non-negative) histogram we are integrating s against and has
boundary conditions:

∂u

∂n
= 0

Letting Ω− be the set of points where u is negative we have that

∂u

∂n
≥ 0
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on δΩ−. Then we can assert that:∫
Ω−

∆u(x)dx =

∫
δΩ−

∂u

∂n
(x)dx ≥ 0

contradicting the non-negativity of h in (5). ♠
This estimate comes at the penalty of reducing our control over moments

to ensuring a unit integrand. Positivity will also not necessarily be main-
tained in an approximation. Nevertheless, it may be useful to consider.

3 Approximating a Solution

3.1 A Finite Element Discretisation

We have seen that the functions resulting from our estimation techniques
result in kernel methods. This is true for more general differential operators
and for bounded domains. However, in a more general case, particularly
when we wish to place a bound on our domain, the kernels that result will
not necessarily be easily computable and may well have to be approximated.
An alternative would be to calculate the kernels for the infinite domain and
truncate them at the boundary (assuming that ρ = IΩρ), but this would
violate the unit integrand requirement. Neither solution offers the prospect
of scalability and it is therefore proposed that the fundamental solution to (2)
should be approximated using the finite element method.
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The usual theorems tell us that (2) will hold on a finite dimensional
subspace V ⊂ H . We are then able to derive the usual linear equations on a
basis for V . What we notice in doing this is that the data only appears in the
load vector, in evaluating 1

n

∑n
i=1 φj(Xi). If we assume that V has dimension

k � n, then the evaluation of the load vector is scalable. The linear system
we solve is sparse, so that we obtain a method which may be completed in
O(n + k) operations. Making use of the standard conformal finite element
method error estimates, this will give us an 0(hr+1) approximation in L2(Ω) to
the fundamental solution to the equation in (2) with an rth order differential
penalty term.

We note that provided the finite element basis we are using is capable of
producing polynomials xp on the domain Ω, for 0 ≤ p ≤ r − 1 (and an rth
order B-spline basis will do this nicely) then we can again produce a unit
integrand and match the empirical pth moments.

We can, in some sense, regard the finite element approximation as a gener-
alisation of the orthogonal series estimate. If {φi}∞i=1 represents an orthogonal
system, then substituting this in our finite element calculations, we can re-
gard the method as a choice of tapering parameters for an already-truncated
estimator. The method we have, then, allows us to control the interaction
between terms in an estimator from a series which is not orthogonal.



3 Approximating a Solution C724

3.2 A Non-conforming Method

In the remainder of this paper, we examine the use of a bilinear form as
in (3) in our estimate, which would require an approximating subspace to
have H2 basis functions. The proposal here is to adapt the non-conforming
method in [4] to this problem and allow us to use only H1 elements. For
u = (u1, u2) ∈ H1(Ω)2 let Pu be a solution to

(∇v,∇Pu) = (∇v,u) , ∀v ∈ H1(Ω) (6)

where (·, ·) denotes the usual L2 inner product. As it stands this problem
is not well defined, and we will rectify this by requiring Pu to have zero
mean. We will later add in an appropriate constant and use Pu as the final
estimate. We will now re-write our variational equations as:

(Pu, P s) + λ((u1, s1)H1(Ω) + (u2, s2)H1(Ω)) =
1

n

n∑
i=1

P s(Xi). (7)

Theorem 2 There is a unique solution u to the problem (7).

Proof: It is clear that the right hand side of (7) is continuous as P s ∈
H2(Ω) implicitly. Similarly,

a(u,u) = (Pu, Pu) + λ(|u1|2H1(Ω) + |u2|2H1(Ω))
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is also a continuous, positive functional. It remains to show that a is elliptic
in the H1(Ω)2 norm.

We will begin by denoting c1 =
∫
Ω

u1dx, c2 =
∫
Ω

u2dx and observing that
the Poincaré inequality give us that:

||u||2H1(Ω)2 ≤ k1(c
2
1 + c2

2) + |u|2H1(Ω)2

We now have that:

c2
1 + c2

2 ≤ k2 [c1 c2] X [c1c2]
T = k2||c1x1 + c2x2||2L2(Ω)

where [X]ij =
∫

Ω
xixjdxidxj is a positive definite matrix. Now P [c1 c2] =

c1x1 + c2x2 and this will also be the case in an H1 finite element subspace.
Hence:

||u||2H1(Ω)2 ≤ k3

(
||P [c1 c2]||2L2(Ω) + |u|2H1(Ω)2

)

Finally we note that:

||P [c1 c2]||2L2(Ω) ≤ ||Pu||2L2(Ω) + ||P (u− [c1 c2])||2L2(Ω)

≤ ||Pu||2L2(Ω) + ||u− [c1 c2]||2H1(Ω)2

≤ ||Pu||2L2(Ω) + |u|2H1(Ω)2 .

Consequently:

||u||2H1(Ω)2 ≤ k4

(
||Pu||2L2(Ω) + |u|2H1(Ω)2

)
≤ k5a(u,u)
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and the ki depend only on Ω and λ. It follows that there is a unique solu-
tion to this problem and that this result will hold in a non-conforming H1

approximation. ♠
Constraining this equation to the closed subspace of H1(Ω)2 on which u

has zero curl there is again a unique solution. We have that u = ∇(Pu)
and have recovered exactly the original equation (2). We will follow [4] in
ignoring this condition.

Applying a finite element approximation on a basis {φi}k
i=1, the prob-

lem (6) may be approximated as a discrete problem in H1 by:

Cuh
0 = B1u

h
1 + B2u

h
2

where [C]ij = (∇φi,∇φj), [Bk]ij = (∂φi/∂xk, φj) and Phu =
∑k

i=1[u
h
0 ]iφi.

Writing

~C =

[
C 0
0 C

]
, B = [B1 B2], uh =

[
uh

1

uh
2

]

We can express the discretised (7) in matrix form as:

(BT C−1AC−1B + λ~C)uh = BT C−1n

with [A]ij = (φi, φj), [n]j =
∑n

i=1 φj(Xi). This will now be a 2k set of linear
equations which will no longer be sparse. It can, however, be solved implicitly
by iterative methods requiring only multiplication by sparse matrices.
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4 Computational Experiments

We will here make a demonstration of our method on an example prob-
lem. We have simulated a tri-model bivariate data set using scaling and
translations of the Matlab function “randn” to produce data points. All
computations have been done in Matlab on a workstation at ANU.

Implementing a naive Gaussian kernel estimate for this data set, we find
that a data set of 1000 points takes a reasonable time to compute whereas
the nonconforming estimate and the Roberts estimate both produced results
happily with ten times that number. The smoothing parameters in the re-
sults below have been chosen visually, with λ = 0.1 for the spline smoothed
densities and h = 1.2 for the kernel. We have also used Generalised Cross
Validation techniques to automatically chose the smoothing parameter, but
have found that for some choices of discretisation (h) the gcv function does
not have a well defined minimum. This is due to the fact that h also acts as a
smoothing parameter, and so must also be taken into account when choosing
the smoothing parameter. We are still continuing our research into a robust
choice of α and h simultaneously. As such, for the present study we have
chosen the parameters manually for a fixed grid common to all the methods.
A visual comparison can be made using the results in Figures 1–5. It is clear
that the methods outlined here produce good results and the nonconforming
method provides a good fit for the H2 thin plate density.
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Figure 1: The exact density function
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Figure 2: a Gaussian kernel estimate on 1000 points.
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Figure 3: finite element density spline on 10,000 points—Roberts estimate.
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Figure 4: finite element density spline on 10,000 points—TPS - Conforming
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Figure 5: finite element density spline on 10,000 points—TPS - Noncon-
forming
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5 Conclusion

We have here succeeded in producing a density estimator motivated by the
use of smoothing splines. We can think of this estimator as an approximation
to a kernel method. In employing the finite element method we have created
an estimator which is scalable, smooth, global and will fit moments of any
given order. We have demonstrated the application of a non-conforming
method to the problem with a thin plate spline penalty term and observed
that this gives good results and allows us to reduce the complexity of our
finite element subspace.
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