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Abstract

The dynamical equations of a model are used to obtain the ‘forcing
function’, which is a representation of climate change drivers, from an
observed climatic anomaly. This inversion problem is mathematically
difficult because of the two-way interaction between the mean field and
transient eddies; this is known as the turbulence closure problem. The
first method that we explore for overcoming the closure problem involves
iteratively nudging a climate simulation towards the observed climate.
We demonstrate how this method is used to successfully calculate
the climatic forcing function. The second method that we explore
involves finding approximations to the turbulence closure problem.
In this method, the transient eddy feedback term in the mean field
equation is represented as a linear combination of the mean fields and a
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constant term. We demonstrate that the closure method yields a good
approximation to the climatic forcing function. This forcing function is
then used as an improved first estimate in the iterative method, thereby
yielding a scheme that converges very quickly to the correct solution in
only a few iteration steps.
Keywords: climate change attribution; geophysical fluid dynamics;
nonlinear dynamics; statistical dynamics; non-equilibrium statistical
mechanics; inverse modelling.
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1 Introduction

Climate change attribution is a contemporary problem of great significance
in climate science. The most widely used method for this purpose is ‘optimal
fingerprinting’ which is a statistical method that estimates the amplitudes
of externally forced signals in observations [1]. This method relies on the
responses of atmospheric models to external forcing, which must specified
a priori. We pursue a novel dynamical approach to the climate change
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attribution problem by calculating the external forcing directly from the
equations of motion, given a particular climatic perturbation. This amounts
to an inversion method and enables us to overcome the problem of specifying
forcing mechanisms a priori, unlike the statistical method.

We pursue a computationally efficient approach in which the forcing is cal-
culated from the mean field perturbation, without resorting to explicitly
employing the transients corresponding to each particular perturbation, un-
like the approach of Corti et al. [2], for example. Previously, such attempts
used the fluctuation-dissipation theorem (fdt). As proposed by Leith [3]
in the atmospheric context, the fdt enables the calculation of the model
mean field response function from the time-lagged statistics of the transients.
It was applied, with reasonable success, to atmospheric models of varying
complexity [4, 5, 6]. However, the fdt method does not consistently produce
good results at all geographical locations for particular flow configurations [6].

In this study we do not employ the fdt; rather, we seek to overcome the
closure problem using two different techniques. The first technique uses an
iterative procedure to progressively relax a climate simulation towards an
observed climatic value. Starting from an initial estimate, the forcing function
is adjusted at each iteration step by a term that reduces the error between
the observed and simulated climate states. Provided the scheme converges,
after several iterations this technique yields a climatic forcing function that is
consistent with the observed climate. Although straighforward, this iterative
technique does depend on a good initial estimate of the forcing function.
Without a good initial estimate the number of iterations required might not
be feasible if the climate model in question is very computationally intensive.

For the second technique we directly compute the forcing function from
the statistical equations of motion. This problem is a difficult one because
of the two-way interaction between the mean field and transient eddies,
leading to the turbulence closure problem. We find approximations to the
closure problem by using ideas from statistical dynamical closure theories
such the quasi-diagonal direct interaction approximation (qdia) and self
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energy (se) closures [7, 8, 9] as well as the phenomenology of quasi-geostrophic
turbulence [10]. Computationally, this technique is used to obtain an initial
estimate of the climatic forcing which is then further improved by using the
iterative technique. Therefore, by combining the two techniques we obtain a
methodology that is very computationally efficient and accurate.

In Section 2 we outline the iterative method and use it to simulate the Jan-
uary 1949–1968 climate state. We then introduce an idealised thermal source
perturbation and study the efficacy of the iterative method in reproducing
this source. In Section 3 we describe the diagonal closure formulation and
apply it to the reconstruction of the thermal source. We then introduce an
improved version of the closure, the quasi-diagonal formulation, and use it to
reconstruct the same source. We also use the closure based estimate as an
initial estimate for the iterative method and show that it makes the latter
more computationally efficient.

2 Iterative method

Let a climate model be represented by

∂

∂t
xj(t) = Ij(t) + fj , (1)

where xj is a climate variable with the superscript j defining different variables
such as streamfunction, wind or temperature; Ij is generally complex and
represents internal couplings of the fields and processes such as rotation,
dissipation, effect of bottom topography and subgrid-scale parametrisations;
and fj is a forcing function which describes the effect of external drivers
such as solar radiation, greenhouse gases and aerosols. It is assumed that
the time dependence of the forcing functions occurs over a much longer
timescale than typical model fluctuations and therefore the forcing functions
are considered to be time independent. This is equivalent to relaxing the
model to some equilibrium value, which is a common procedure in climate
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studies [12]. We use a simple model of the climate defined by the two level
quasi-geostrophic equations. These equations provide a good description of
midlatitude dynamics and we previously described the details [11].

To obtain the simulated climate state from the system of equations we perform
some averaging procedure represented by angled brackets. The simulated
climate is thus represented by 〈xj〉. Starting from an initial estimate of the
forcing function, fj0, we obtain subsequent iterates by adding a term that is
proportional to the difference between the observed climate state and the
simulated climate state,

fji+1 = f
j
i + γκ

(
x̄j − 〈xji〉

)
, (2)

where the subscript i is the iteration step, x̄j is the observed climate state,
〈xji〉 is the climate state of the simulation at the ith iteration step, κ−1 is a fixed
model parameter that controls the time scale of the model fluctuations [11],
and γ is a parameter that controls the rate of convergence of the iteration
scheme. When the error x̄j − 〈xji〉 is small enough, as determined by some
suitable tolerance value, then the scheme has converged and fji is the forcing
function corresponding to the observed climatic state.

Firstly, we applied the iterative method to calculate the forcing function
corresponding to the basic January 1949–1968 climate state. We used the two
level quasi-geostrophic model, which is described in detail by Zidikheri and
Frederiksen [11]. The model was run to a statistical steady state (at which
the model statistics are time independent) and sampled, by taking the time
average, for a period of 200 days (10, 000 timesteps) for several iterations
and then sampled over a longer period of 2000 days (1, 000, 000 timesteps)
in the final few iterations. We used the observed climate state scaled by κ,
with κ−1 being 10 days, as the initial estimate of the forcing function, and set
γ = 1 . We found that after 24 iterations the pattern correlation (as defined
by Namias et al. [13], for example) between the simulated and observed
zonal wind data was around 0.99, which indicates that the iteration scheme
converged. A similar performance was found for other model fields such as
streamfunction and vorticity. We also found that the value γ = 1 is almost
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optimal; smaller values lead to slower convergence while larger values lead to
less accurate solutions.

In climate change science it is often the small perturbations to the basic
states that are of interest. We therefore introduce an idealised perturbation
to the basic climate state in the form of a conical thermal source located
at 165◦W 40◦N (an arbitrarily chosen location in the midlatitudes of the
northern hemisphere). The thermal source perturbation is equivalent to a
localised baroclinic (vertical shear) wind forcing perturbation that enhances
the baroclinicity southward of this location and reduces it northward, as
shown in Figure 1(a). The resulting model responses are shown in Figure 1(b),
for the barotropic (vertical average) zonal wind response, and Figure 1(c), for
the corresponding baroclinic response. The baroclinic response has a similar
pattern to the forcing function, although there are weaker baroclinic responses
away from the location of the source. The barotropic response is more spread
out in the zonal (east-west) direction, which is a well-known phenomenon in
quasi-geostrophic turbulence [10].

The idealised forcing function in Figure 1(a) is used to compare the perfor-
mance of the various inverse modelling techniques considered in this study. We
conducted two experiments in reconstructing the forcing function iteratively.
In the first experiment we used a short sampling time of 200 days whereas in
the second experiment we used a long sampling time of 2000 days. In both
experiments, the forcing function was initialised with the forcing function for
the basic state (no perturbation) in the iterative process. We found that for
the short sampling experiment the pattern correlation between the actual
and reconstructed values initially grew rapidly with number of iterations,
reaching a value of 0.9 after about 30 iterations, and then saturated after
about 60 iterations with a value of 0.93. For the long sampling experiment
the pattern correlation reached a value of 0.9 after about 20 iterations and
saturated after about 80 iterations with a value of 0.97. These experiments
suggest that for many practical applications it is sufficient to sample for a
relatively short time (about 200 days) to get a good estimate of the forcing
function pattern.
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(a)

(b)

(c)

Figure 1: (a) baroclinic zonal wind forcing function perturbation (in units
of 10−5ms−2); (b) barotropic; and (c) baroclinic zonal wind climatic responses
(in units of ms−1).
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3 Closure method

We construct an inverse method that is based on the statistical dynamics
of the climate model. This method is specifically constructed to calculate
perturbations to some basic state forcing function, unlike the iterative method
which is constructed to calculate the forcing function for an arbitrary state.
Assuming that the system is at steady state, it follows from (1) that the
perturbed forcing function δfj = −δ〈Ij〉 . Also, δ〈Ij〉 = δ〈Lj〉+ δ〈Nj〉+ δ〈T〉 ,
where 〈Lj〉 consists of terms linearly dependent on the mean field, 〈Nj〉 consists
of terms nonlinearly (effectively quadratically) dependent on the mean field,
and 〈T〉 consists of terms that depend on the second order moments (variances
and covariances) [11].

It is straighforward to compute the first two terms, 〈Lj〉 and 〈Nj〉, because
they depend only on the mean field (climate state), but the last term, 〈T〉, is
problematic because it requires information about the variability of the climate
system; this is the turbulence closure problem. The physical interpretation
of 〈T〉 is that it represents the feedback of transient eddies on the mean
climate state. It is the goal of this study to parametrise 〈T〉 in terms of the
perturbed mean fields, thereby overcoming the closure problem.

Zidikheri and Frederiksen [11] proposed a spectral method for overcoming
the closure problem that parametrises the nonlinear feedback term linearly in
terms of the mean field. The coefficients in this linear model were obtained
by constructing ten samples from linear combinations of the July 1949–1968
and July 1975–1994 climate state forcing functions (which were obtained by
iteration). It was shown that the forcing function for the perturbed state
(July 1975–1994 minus July 1949–1968) was well replicated by this linear
method.

Here, we wish to go further and construct a method whose parameters are
obtained by sampling an ensemble formed from simulations employing random
perturbations of the basic state forcing function. This method is more widely
applicable as it could be used to find the forcing function for an arbitrary
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climate perturbation. We found that it is advantageous to formulate the
parametrisation in physical space, rather than in spectral space, as we are
seeking to include regional effects which is easier to accomplish in physical
space.

3.1 Diagonal formulation

The physical space analogue of the spectral formulation of Zidikheri and
Frederiksen [11] for perturbed fields is

δ
〈
T j(r)

〉
=

J∑
k=1

Ajk(r)δ
〈
xk(r)

〉
+ bj(r) , (3)

where J is the number of fields in the model. For the two level quasi-geostrophic
model, j,k = 1, 2 ; Ajk is a 2 × 2 matrix and bj a two dimensional vector,
both defined on a grid which is defined by the vector r. The components
of Ajk and bj are obtained by linear regression of an ensemble of samples,
constructed as described below.

We scale the basic state (January 1949–1968) forcing function by a factor p,
and multiply all spectral components of the forcing function which have
wavenumbers 6 5 (the largest scale) by a complex number of random phase
and magnitude [11]. The factor p is chosen to be in the range 0.0625 6
p 6 0.175 . This is chosen to roughly correspond to typical magnitudes of
atmospheric climatic anomalies over the second half of the 20th Century. We
form R perturbations for each value of p using a random number generator
and use ten different values of p, bringing the total number of samples in the
ensemble to 10R. We experimented with different values of R. On obtaining
the randomly perturbed forcing functions we ran a climatological simulation
to obtain the mean field 〈xj〉 and the nonlinear feedback term 〈T j〉 for each
perturbed forcing function. The coefficients Ajk(r) and bj(r) in (3) were
obtained by linear regression of the ensemble members. We found that the
parametrisation works best when xj represents the zonal velocity field. The
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physical reason for this is that the nonlinear feedback term T j is dependent
on the transients, and the transients in turn are dependent on the (baroclinic)
zonal velocity field. The velocity field is therefore a good predictor of the
spatial variation of the transient feedback term.

We repeated the test function reconstruction experiments of the previous
sections using the diagonal grid parametrisation. We found that the pattern
correlation between the reconstructed forcing function and the actual forcing
function increased from 0.67 with R = 1 , corresponding to 10 ensemble
members, to 0.73 with R = 3 , corresponding to 30 ensemble members.
Increasing the value of R beyond 3 does not lead to a significant increase in
the pattern correlation. The reconstructed forcing function, using 30 ensemble
members, is shown in Figure 2(b). This is to be compared to the reconstructed
forcing function of Figure 2(a) in which the perturbed nonlinear feedback
term is assumed to be zero, which is equivalent to assuming that the basic
state transients remain invariant to climatic perturbations, giving a pattern
correlation of only 0.57. The improved pattern correlation indicates that the
parametrisation in (3) plays an important role in the successful reconstruction
of the forcing function. These results demonstrate that the parametrisation
in (3) provides a good approximation to the turbulence closure problem.
Furthermore, because the samples forming the ensemble are random, this
parametrisation is expected to work well for a wide variety of perturbations
of the July 1949–1968 climatic basic state.

3.2 Quasi-diagonal formulation

The diagonal formulation of the previous section provides a good approxi-
mation to the closure problem. However, we show in this section that this
formulation may be further improved. The transients (and hence the nonlinear
feedback) at a given location depend not only on the baroclinicity at that
location but also on the baroclinicity at other locations, especially neighbour-
ing locations. This non-local interaction needs to be taken into account when
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(a)

(b)

(c)

Figure 2: Reconstructed baroclinic zonal wind forcing function perturbation
(in units 10−5ms−1) using (a) no feedback term, (b) diagonal parametrisation,
and (c) quasi-diagonal parametrisation of feedback term.
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formulating a closure scheme. Formally, we generalise equation (3) and the
problem becomes one of determining the coefficients in

δ
〈
T j(r)

〉
=

J∑
k=1

∑
r ′
Ajk(r, r ′)δ

〈
xk(r ′)

〉
+ bj(r) , (4)

where now, at a location r, we have to take into account the dependence of
the feedback term on the fields at other locations, r ′. In other words, we
need to also take into account the (spatially) non-diagonal elements of the
covariance matrix Ajk(r, r ′) . It is not feasible to calculate the full covariance
matrix with the number of samples at our disposal (10–100) so we resort to
alternative means to estimate the effect of the off-diagonal contributions. We
formulate the problem in the quasi-diagonal form

δ
〈
T j(r)

〉
=

J∑
k=1

Ajk(r)δ
〈
xk(r)

〉
+

J∑
k=1

Bjk(r)δ
〈
x̄k(r)

〉
+ bj(r) , (5)

where Ajk(r), Bjk(r) and bj(r) are determined by linear regression as before.
In equation (5) we defined a new field

x̄k(r) =
∑
r′∈R

xk(r′) , (6)

where R is a region defined by the set of points (λ ′,φ ′) = r′ , (λ,φ) = r
such that |λ − λ ′| 6 λm , |φ − φ ′| 6 φm , and λm , φm are values chosen to
minimize the least-squares linear regression error. We found empirically that
λm = φm = 45◦ give optimal results. This amounts to calculating a regional
average of the mean fields at a given location. It has the effect of including
the average effect of all the mean fields in the vicinity of the location r on
the nonlinear feedback term at that location. However, the precise coupling
between the feedback term at the location r and the mean fields at other
locations r ′ is lost. Nevertheless, we expect that these mean field averages will
lead to an improvement in the purely diagonal formulation of equation (3),
which only takes into account the coupling between the fields at the location r.
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The reconstructed forcing function using the quasi-diagonal form of the
parametrisation is shown in Figure 2(c), again using 30 ensemble members.
The pattern correlation of the reconstructed forcing function with the actual
forcing function is an improved value of 0.8, when compared to the value
of 0.73 obtained with the diagonal formulation. Both the diagonal and quasi-
diagonal closure formulations underestimate the actual forcing function peak
values. It is possible to further improve the results obtained with the closure
methods by using them as initial values in the iterative method. Because
in this case the initial estimate is already very good, being in the order of
pattern correlation 0.8, the iterative method is expected to converge quickly
to the correct value. This is indeed the case, as demonstrated in Figure 3.
The iterative method initiated with the basic state forcing function takes
about 14 iteration steps to reach the 0.8 pattern correlation level. On the
other hand, the iterative method initiated with the closure based estimate
reached a pattern correlation level of about 0.9 in the same number of iteration
steps.

4 Conclusion

In this study we explored two techniques for calculating the forcing functions
corresponding to climatic perturbations. In the first technique, we employed
an iterative method to reconstruct a thermal source perturbation forcing
function from climatic simulation data. We showed that the source is well
reproduced even with relatively short sampling times, yielding a pattern
correlation of 0.93. In the second technique, we used parametrised forms of
the nonlinear eddy feedback term to directly calculate the perturbed forcing
function using only information about the perturbed mean fields. We showed
that pattern correlations of up to 0.8 could be obtained using this technique.
Finally, we showed that the computational effort required in the iterative
method, due to the potentially large number of iterations required to converge
to the solution, might be overcome by using the estimates obtained in the
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Figure 3: Variation of iteratively calculated baroclinic zonal wind forcing
function pattern correlation coeffients with number of iterations for basic
state initial estimate (thin line with crosses) and closure based initial estimate
(solid line with asterisks).

closure based methods as an initial estimate. From a computational point of
view, the iterative method then becomes a means of refining the first estimate
obtained by the closure methods. The ability of the closure methods to provide
good estimates of the forcing functions becomes particularly important if the
forcing functions in very computationally intensive climate models, such as
coupled atmosphere-ocean models, are to be successfully calculated.

Acknowledgements We acknowledge support by the West Australian
Department of Environment and Conservation under the IOCI-3 program



References C231

and the ACCSP program of the Australian Department of Climate Change
and Energy Efficiency.

References

[1] G. C. Hegerl, T. R. Karl, M. Allen, N. L. Bindoff, N. Gillett, D. Karoly,
X. Zhang and F. Zwiers. Climate change detection and attribution:
beyond mean temperature signals. J. Clim., 19:5058–5077, 2006.
doi:10.1175/JCLI3900.1 C218

[2] S. Corti, A. Giannini, S. Tibaldi and F. Molteni. Patterns of
low-frequency variability in a three-level quasi-geostrophic model. Clim.
Dyn., 13:883–904, 1997. doi:10.1007/s003820050203 C219

[3] C. E. Leith. Climate response and fluctuation dissipation. J. Atmos.
Sci., 32:2022–2026, 1975.
doi:10.1175/1520-0469(1975)032<2022:CRAFD>2.0.CO;2 C219

[4] T. L. Bell. Climate sensitivity from fluctuation dissipation: some simple
model results. J. Atmos. Sci., 37:1700–1707, 1980.
doi:10.1175/1520-0469(1980)037<1700:CSFFDS>2.0.CO;2 C219

[5] A. S. Gritsun. Fluctuation-dissipation theorem on attractors of
atmospheric models. Russ. J. Numer. Anal. Math. Modelling,
16:115–133, 2001. C219

[6] A. Gritsun and G. Branstator. Climate response using a
three-dimensional operator based on the fluctuation-dissipation theorem.
J. Atmos. Sci., 64:2558–2575, 2007. doi:10.1175/JAS3943.1 C219

[7] J. S. Frederiksen. Subgrid-scale parametrisations of eddy-topographic
force, eddy viscosity, and stochastic backscatter for flow over
topography. J. Atmos. Sci., 56:1481–1494, 1999.
doi:10.1175/1520-0469(1999)056<1481:SSPOET>2.0.CO;2 C220

http://dx.doi.org/10.1175/JCLI3900.1
http://dx.doi.org/10.1007/s003820050203
http://dx.doi.org/10.1175/1520-0469(1975)032<2022:CRAFD>2.0.CO;2
http://dx.doi.org/10.1175/1520-0469(1980)037<1700:CSFFDS>2.0.CO;2
http://dx.doi.org/10.1175/JAS3943.1
http://dx.doi.org/10.1175/1520-0469(1999)056<1481:SSPOET>2.0.CO;2


References C232

[8] J. S. Frederiksen. Statistical dynamical closures and subgrid modeling
for inhomogeneous QG and 3D turbulence. Entropy, 14:32–57, 2012.
doi:10.3390/e14010032 C220

[9] J. S. Frederiksen. Self-energy closure for inhomogeneous turbulent flows
and subgrid modeling. Entropy, 14:769–799, 2012.
doi:10.3390/e14040769 C220

[10] R. Salmon. Lectures on Geophysical Fluid Dynamics, 1998. Oxford
University Press. C220, C222

[11] M. J. Zidikheri and J. S. Frederiksen. Inverse method for attribution of
climate change. ANZIAM J., 52:C823–C836, 2011. http://journal.
austms.org.au/ojs/index.php/ANZIAMJ/article/view/3930. C221,
C224, C225

[12] I. M. Held and M. J. Suarez. A proposal for the intercomparison of the
dynamical cores of atmospheric general circulation models. Bull. Amer.
Meteor, Soc., 75:1825–1830, 1994.
doi:10.1175/1520-0477(1994)075<1825:APFTIO>2.0.CO;2 C221

[13] J. Namias, X. Yuan and D. R. Cayan. Persistence of North Pacific sea
surface temperature and atmospheric flow patterns. J. Clim., 1:682–703,
1988. doi:10.1175/1520-0442(1988)001<0682:PONPSS>2.0.CO;2 C221

Author addresses

1. Meelis J. Zidikheri, Centre for Australian Weather and Climate
Research, Bureau of Meteorology, Docklands, Victoria, Australia.
mailto:m.zidikheri@bom.gov.au

2. Jorgen S. Frederiksen, Climate Adaptation Flagship, CSIRO
Marine and Atmospheric Research, Aspendale, Victoria, Australia.

http://dx.doi.org/10.3390/e14010032
http://dx.doi.org/10.3390/e14040769
http://journal.austms.org.au/ojs/index.php/ANZIAMJ/article/view/3930
http://journal.austms.org.au/ojs/index.php/ANZIAMJ/article/view/3930
http://dx.doi.org/10.1175/1520-0477(1994)075<1825:APFTIO>2.0.CO;2
http://dx.doi.org/10.1175/1520-0442(1988)001<0682:PONPSS>2.0.CO;2
mailto:m.zidikheri@bom.gov.au

	Introduction
	Iterative method
	Closure method
	Diagonal formulation
	Quasi-diagonal formulation

	Conclusion
	References

