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Use of lp norms in fitting curves and surfaces
to data

A. Atieg G. A. Watson∗

(Received 8 August 2003; revised 31 March 2004)

Abstract

Given a family of curves or surfaces in IRs, an important problem
is that of finding a member of the family which gives a “best” fit to
m given data points. A criterion which is relevant to many application
areas is orthogonal distance regression, where the sum of squares of the
orthogonal distances from the data points to the surface is minimized.
For example, this is important in metrology, where measured data
from a manufactured part may have to be modelled.

The least squares norm is not always suitable (for example, there
may be wild points in the data, accept/reject decisions may be re-
quired, etc). So we use this to justify looking at the use of other
lp norms. There are different ways to formulate the problem, and we
examine methods which generalize in a natural way those available for
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least squares. The emphasis is on the efficient numerical treatment of
the resulting problems.
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1 Introduction

Let data points xi ∈ IRs , i = 1, . . . ,m be generated, and let a parametric
curve or surface in IRs be defined by a ∈ IRn , with a point on the surface
given by x(a, t), where t ∈ IRd , and d = s − 1 normally. It is required to
determine a value of a which gives a “best” fit to the data, and we consider
different criteria. For any a ∈ IRm , ti ∈ IRd , i = 1, . . . ,m , define

ui(a, ti) = xi − x(a, ti) , i = 1, . . . ,m ,

w(a, t1, . . . , tm) =
(
u1(a, t1)

T , . . . ,um(a, tm)T
)T ∈ IRms .

Two of the criteria are based on the idea of orthogonal distances: for every xi

associate a point x(a, ti(a)) on the surface, where

ti(a) = arg min
t
‖ui(a, t)‖ , i = 1, . . . ,m ,
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and where unadorned norms are l2 norms. Define

r(a) = (‖u1(a, t1(a))‖, . . . , ‖um(a, tm(a))‖)T ∈ IRm ,

s(a) =
(
u1(a, t1(a))T , . . . ,um(a, tm(a))T

)T ∈ IRms .

Let 1 ≤ p ≤ ∞ . Then two basic fitting problems which arise from this
are to find

min
a∈IRn

‖r(a)‖p , (1)

lp orthogonal distance regression, and

min
a∈IRn

‖s(a)‖p , (2)

lp component wise orthogonal distance regression. A third problem is that of
finding

min
a,t1,...,tm

‖w(a, t1, . . . , tm)‖p , (3)

lp distance regression.

All these problems are identical if p = 2 , when we have a special case of
orthogonal distance regression, for which methods of Gauss-Newton type have
proved popular. Although the problems are identical, the direct treatment
of the problems in the forms given here lead to different algorithms. For
the Gauss-Newton method applied to (1), see for example [7, 11, 12, 15],
and applied to (2), see for example [2, 3, 4]. For a unified treatment of
these methods, and some comparisons, see [1]. The direct solution of (3)
trades the subproblems for ti(a) for an increase in the number of variables,
and generates orthogonal distances only in the limit: methods which exploit
the structure of the Jacobian in Gauss-Newton (or Levenberg-Marquardt)
methods are given in [6, 10]. Which approach should be used depends mainly
on whether or not the points x(a, ti(a)) are easy to calculate.

Attention focuses on the case p = 2 for two main reasons:
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1. relative ease of computation,

2. an assumption that when the errors are normally distributed then least
squares is appropriate.

However, the nature of the errors may be such that least squares is not partic-
ularly suitable. For example, there may be wild points in the data, in which
case the choice p = 2 may give too much weight to these. Another situation
which can arise in the modelling of manufactured parts is that accept/reject
decisions may be required, suggesting that p = 2 can be too small. There-
fore we here consider the situation when another criterion from this class is
preferable, and emphasise the numerical treatment of the resulting problems.

The problems (1), (2) and (3) are all nonlinear lp norm approximation
problems, and a natural way to proceed is, as for p = 2 , through a method of
Gauss-Newton type, or one of its variants. In the next section, we look at the
structure of the Jacobian matrices and their role in the definition of different
Gauss-Newton steps. In Section 3, we consider values of p from the range
1 < p < ∞ : the intention is to show that steps which are asymptotically
Gauss-Newton steps can be obtained with a level of complexity comparable
with that for the p = 2 case.

In some situations it may be desirable to work with rotated data in order
to simplify the model. However, for ease of presentation, we will not consider
that here: straightforward changes would be required. It is also possible to
work with implicit models.

We use ∇1(∇2) to denote the operation of taking partial derivatives of a
function of two sets of variables with respect to the first (second) set.
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2 Jacobians and Gauss-Newton subproblems

For (1), the Gauss-Newton step at a is given by the minimizer of

‖r + J1d‖p , (4)

where J1 is the m × n Jacobian matrix of r. Various modifications of this
(Levenberg-Marquardt, trust region) may be preferable, but for simplicity
we concentrate on (4). Provided ui 6= 0 , the ith row of J1 is

ρi(J1) =
ui(a, ti(a))T

‖ui(a, ti(a))‖
∇aui(a, ti(a)) =

ui(a, ti(a))T

‖ui(a, ti(a))‖
∇1ui(a, ti(a)) , (5)

because ti(a) minimizes ‖ui(a, ti)‖ so that ∇2‖ui(a, ti(a))‖ = 0 . If any ui

is zero, J1 is not defined. Away from a limit point, we may regard that as
a degenerate situation. More serious is such an occurrence at a limit point
of the iteration. That may again be regarded as a degeneracy except when
p = 1 , as the interpolation characteristics of the l1 solution means that it
is then an expected event. However, despite this, it is shown in [13] that
the convergence property of the iteration is normally just as in the usual
(smooth) case. Therefore the use of (4) does not present any particular
difficulties here.

The treatment of (2) rather than (1) means that the problem is one
in IRms, and the Gauss-Newton step at a is given by the minimizer of

‖s + J2d‖p (6)

where

J2 =


∇au1(a, t1(a))
∇au2(a, t2(a))

...
∇aum(a, tm(a))

 ∈ IRms×n.
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No problems arise here from zero ui. However, there is no corresponding
simplification to the derivative calculations, as in (5), so we need to use

∇aui(a, ti(a)) = ∇1ui(a, ti(a)) +∇2ui(a, ti(a))∇ati(a) , i = 1, . . . ,m .

Therefore unless an explicit expression is available for ti(a), it is necessary
to use approximate derivatives or alternatively to compute

∇ati(a) = −(∇22‖ui(a, ti(a)‖)−1∇12‖ui(a, ti(a)‖ ,

for each i, provided that the matrix being inverted is non-singular. This
expression comes from the fact that ti(a) is defined by ∇2‖ui(a, ti(a))‖ = 0 ,
for each i, which is therefore an identity in a.

In addition to this extra computation, the linear subproblems are larger
than before. However, (2) is equivalent to

min
a∈IRn

∥∥∥(‖u1(a, t1(a))‖p, . . . , ‖um(a, tm(a))‖p)
T
∥∥∥

p
(7)

so that the problem could again be considered as one in IRm. However,
the Gauss-Newton method will only apply directly to (7) when 1 < p < ∞ ,
because the entries of the vector whose norm is being minimized are lp norms,
and these are not normally smooth functions when p = 1 or p = ∞ .

Finally, consider the lp distance regression problem (3). Then the Gauss-
Newton step is the minimizer of

‖w + J3d‖p (8)

where J3 is the matrix of partial derivatives of w with respect to the vari-
ables a, ti, i = 1, . . . ,m . Clearly this matrix, although much larger than J1

or J2, is highly structured, because we have

J3 =


∇1u1(a, t1) ∇2u1(a, t1) 0 · · · 0
∇1u2(a, t2) 0 ∇2u1(a, t2) · · · 0

...
...

. . .
...

∇1um(a, tm) 0 0 · · · ∇2u1(a, tm)

 . (9)
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Table 1: Properties of different formulations, 1 < p < ∞ .
Problem formulation usual derivative dimensions

level needed of Jacobian
(1) (1) 1 m× n
(2) (2) 2 ms× n
(2) (7) 2 m× n
(3) (3) 1 ms× (n + md)
(3) (10) 1 m× n

Note that as a final equivalence, the problem (3) for 1 < p < ∞ corresponds
to finding

min
a∈IRn

∥∥∥(
‖u1(a, t̂1(a))‖p, . . . , ‖um(a, t̂m(a))‖p

)T
∥∥∥

p
, (10)

where
t̂i(a) = arg min

t
‖ui(a, t)‖p , i = 1, . . . ,m .

Although the treatment of the problem in this form would result in a Jacobian
matrix which is m× n and which can be formed using first derivatives only,
analogous to (5), the subproblems for t̂i(a) are never likely to be worth
solving.

3 The cases 1 < p < ∞

Table 1 summarizes the equivalences identified in the previous section and
some properties of the different formulations when 1 < p < ∞ .

When p = 1, 2,∞ , then the problems of minimizing (4), (6) and (8) are
all finite. However, for other values of p, this not the case, and the Gauss-
Newton method becomes a doubly infinite process. It is clearly desirable
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to replace these problems by simpler problems, and we can do that in the
following way.

Consider the general nonlinear lp problem of minimizing ‖f(a)‖p, where
f ∈ IRm, a ∈ IRn and f is differentiable. Let A = ∇af . As indicated, the
conventional Gauss-Newton method involves the subproblem:

minimize ‖Ad + f‖p ,

to identify a search direction d. For 1 < p < ∞ , if d1 is a solution, and
c = Ad1 + f , then d1 satisfies the zero derivative condition

AT DcAd1 + AT Dcf = 0 , (11)

where
Dc = diag {|cj|p−2 , j = 1, . . . ,m} ,

if this matrix is defined. This definition will be used with other vector sub-
scripts on D. Note that d1 is always defined, although when 1 < p < 2 ,
Dc is only defined if cj 6= 0 , for all j.1

The above system of equations (11) is a nonlinear system of equations
for d1. Now consider Newton’s method for minimizing

F (a) = ‖f(a)‖p
p =

m∑
i=1

|fi(a)|p .

Then

g(a) = ∇aF (a)T = p

m∑
i=1

|fi|p−1sign(fi)∇af
T
i = pAT Df f ,

and Newton’s method involves the subproblem

g +∇ag dN = 0 ,

1A referee made the interesting suggestion that a way around potential difficulties with
cj = 0 in the cases 1 < p < 2 could be to reformulate (11) to use V -invariant solution
methods [8, 9], with V = D−1

c .
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for the Newton step dN . Now

∇ag = p
m∑

i=1

|fi|p−2∇af
T
i ∇afi

+ p(p− 2)
m∑

i=1

|fi|p−3sign(fi)fi∇af
T
i ∇afi + p

m∑
i=1

|fi|p−2fi∇2
afi

= p(p− 1)AT DfA + p
m∑

i=1

|fi|p−2fi∇2
afi.

Ignoring the second derivative term, then an approximate Newton step d2 is
given by

(p− 1)AT DfAd2 + AT Df f = 0 .

This is a descent step for F (a) if AT DfA is positive definite, unless AT Df f =
0 , but of course then we have a zero derivative of F .

Note that d2 can be obtained in two steps:

1. Find d to minimize ‖D1/2
f Ad + D

1/2
f f‖ ;

2. Set d2 = 1
p−1

d .

In other words the step d2 is readily obtained from a linear least squares
problem. Note that when p < 2 , no component of fi can become zero,
otherwise Df is not defined, and so neither is d2. There is no corresponding
restriction when p ≥ 2 .

Theorem 1 Let a be such that Df and Dc are both defined. Then d2 =
d1 +O(‖d1‖2) .
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Proof: If c = Ad1 + f , then by Taylor expansion, for each i,

|ci|p−2 = |fi|p−2 + (p− 2)|fi|p−4fi(Ad1)i +O(‖d1‖2) .

Thus
Dc = Df + (p− 2)diag{|fi|p−4fi(Ad1)i}+O(‖d1‖2) .

By definition of d1,

0 = AT DcAd1 + AT Dcf

= AT DfAd1 + AT Df f + (p− 2)AT DfAd1 +O(‖d1‖2)

= (p− 1)AT DfAd1 + AT Df f +O(‖d1‖2) .

Now

d2 = − 1

p− 1
(AT DfA)−1AT Df f = d1 +O(‖d1‖2) ,

and so the result follows. ♠

For all p there is therefore a finite calculation which gives either the Gauss-
Newton step or a step which is the Gauss-Newton step asymptotically. Note
that properties of the Jacobian will be the same as in the l2 case, so similar
conclusions can be drawn about performance.

The results for some examples, in particular the fitting of paraboloids
and spheres in 3 dimensions and circles in 2 and 3 dimensions, are given in
Table 2. In each case we fit to 100 points using (1), (2) and (7). The number
of iterations to satisfy ‖d‖∞ < 10−4 is shown, starting from common starting
points. In all cases, it was possible to take full steps. Similar results hold
for other examples. Generally, there are advantages in treating the problems
as ones in IRm; however, for planar data in 3 dimensions, this problem is
ill-conditioned (see [1] for a treatment of this in the l2 case).

The results suggest that these lp problems can often be solved in a small
multiple of the cost of solving l2 problems. Note that this is not necessarily
true for linear problems.
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Table 2: Iteration counts for some examples
paraboloid sphere circle in 2-D circle in 3-D

p (1) (7) (2) (1) (7) (2) (1) (7) (2) (1) (7) (2)
1.1 28 29 25 17 19 24 23 21 34 23 40 19
1.2 13 32 29 14 14 9 24 10 20 25 167 22
1.5 10 13 19 11 7 30 7 7 20 38 18 16
1.8 10 10 16 7 7 6 7 7 17 16 18 7
2.0 7 8 18 5 5 10 5 5 16 15 15 6
2.2 9 10 21 6 6 9 7 7 9 15 15 7
2.7 10 10 11 8 8 8 9 9 21 20 55 8
3.6 12 13 28 11 11 12 12 12 14 67 19 13

Now consider the lp distance regression problem (3). For the case p = 2
the structure of the Jacobian matrix in (9) can be exploited as in odrpack
or funke [5, 6, 10]. But in this more general case, this structure can also be
exploited in the least squares subproblem which, as shown, gives the Gauss-
Newton step asymptotically. We will not go into further details here.

4 Concluding Remarks

We have been concerned with the use of lp norms in the fitting of curves
and surfaces to discrete data. Three fitting criteria have been considered,
along with formulations and methods which are natural generalizations of
those for the l2 case. The main aim has been to show how variants of the
Gauss-Newton method can be used for all of these in an efficient way. Lack of
space has meant that it is not possible to consider in any detail the important
limiting values p = 1 and p = ∞ , although all the forms (1), (2) and (3) are
also relevant for both these values.



4 Concluding Remarks C198

For the case p = 1 , as already indicated, the analysis of [13] shows that
difficulties are not caused in solving (1) by the Gauss-Newton method if
any ui is zero at a limit point of the iteration, and the convergence property
of the iteration is normally just as in the usual (smooth) case. However, for
some geometric fitting problems, there can be a distinct difference between
the use of (1) and the use of (2). The reason for this is that second order
convergence requires n zero components at a solution, and this can be more
easily achieved for the problem (2). For example the problem of fitting a
line in 3 dimensions to data gives difficulties for (1) because here n = 4
but there are generally at most 2 interpolation points. Therefore second
order convergence is not possible. However, (2) does not have the same
disadvantage.

For the l1 distance regression problem (the problem (3) with p = 1), the
Gauss-Newton subproblem is again highly structured. For the case s = 2 ,
it is possible to incorporate bounds on the variables (making a trust region
variant), and efficiently solve the resulting subproblem by a version of the
simplex method for linear programming. This can be formulated in such a
way that it corresponds to a bounded variable linear programming problem
with m equality constraints and 4m+n variables. The idea uses the analogue
of a method for a class of data fitting problems developed in [14].

For p = ∞ , zero distances are not normally an issue, so there are no dif-
ficulties using (1). The performance of the methods for (1) and (2) depends
primarily on the number of components where the vectors r or s attain the
norm at a limit point of the iteration: a second order rate of convergence is
possible if that is n + 1 . For the problem (3), the Gauss-Newton subprob-
lem (8) is usually solved by going to the dual formulation of this problem
posed as a linear programming problem. Again the structure present in the
matrix J3, given by (9), should be exploited.
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[9] I. Söderkvist, On algorithms for generalized least squares problems
with ill-conditioned covariance matrices, Comp. Stat. 11, pp. 303–313
(1996). C194

[10] R. Strebel, D. Sourlier and W. Gander, A comparison of orthogonal
least squares fitting in coordinate metrology, in Recent Advances in
Total Least Squares and Errors-in-Variables Techniques, ed. S. Van
Huffel, SIAM, Philadelphia, pp. 249–258 (1997). C189, C197

[11] D. A. Turner, The Approximation of Cartesian Co-ordinate Data by
Parametric Orthogonal Distance Regression, PhD Thesis, University of
Huddersfield (1999). C189

[12] D. A. Turner, I. J. Anderson, J. C. Mason, M. G. Cox and
A. B. Forbes, An efficient separation-of-variables approach to
parametric orthogonal distance regression, in Advanced Mathematical
and Computational Tools in Metrology IV, eds P. Ciarlini,
A. B. Forbes, F. Pavese and D. Richter, Series on Advances in
Mathematics for Applied Sciences, Volume 53, World Scientific,
Singapore, pp. 246–255 (2000). C189

[13] G. A. Watson, On the Gauss-Newton method for l1 orthogonal distance
regression, IMA J. of Num. Anal. 22, pp. 345–357 (2002). C191, C197

[14] G. A. Watson and K. F. C. Yiu, On the solution of the errors in
variables problem using the l1 norm, BIT 31, pp. 697–710 (1991).
C198

[15] D. S. Zwick, Applications of orthogonal distance regression in
metrology, in Recent Advances in Total Least Squares and
Errors-in-Variables Techniques, ed S. Van Huffel (SIAM,
Philadelphia), pp. 265–272 (1997). C189


	Introduction
	Jacobians and Gauss-Newton subproblems
	The cases 1 < p < 
	Concluding Remarks
	References

