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Sigmoidal–trapezoidal quadrature for ordinary
and Cauchy principal value integrals

David Elliott∗

(Received 6 October 2003; revised 8 June 2004)

Abstract

Consider the evaluation of If :=
∫ 1
0 f(x) dx . Among all the

quadrature rules for the approximate evaluation of this integral, the
trapezoidal rule is known for its simplicity of construction and, in gen-
eral, its slow rate of convergence to If . However, it is well known,
from the Euler–Maclaurin formula, that if f is periodic of period 1,
then the trapezoidal rule can converge very quickly to If . A sigmoidal
transformation is a mapping of [0, 1] onto itself and is such that when
applied to If gives an integrand having some degree of periodicity.
Applying the trapezoidal rule to the transformed integral gives an
increased rate of convergence. In this paper, we explore the use of
such transformations for both ordinary and Cauchy principal value
integrals. By considering the problem in a suitably weighted Sobolev
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space, a very satisfactory analysis of the rate of convergence of the
truncation error is obtained. This combination of a sigmoidal trans-
formation followed by the trapezoidal rule gives rise to the so-called
sigmoidal-trapezoidal quadrature rule of the title.
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1 Introduction

In a recent paper [4], I discussed the Euler–Maclaurin formula for the ap-

proximate evaluation of the integral
∫ 1

0
f(x) dx, after introducing a sigmoidal

transformation which maps [0, 1] onto itself. (For a discussion on sigmoidal
transformations, see [5].) In [4] I gave an error analysis based on a space of
functions introduced by Kress [7]. The purpose of this paper is to introduce a
weighted Sobolev space, which is more general than the space given by Kress
and which enables us both to extend and improve some of the truncation
error estimates previously given.

2 A weighted Sobolev space

Throughout the paper we let Ω denote the open interval (0, 1) with Ω̄ de-
noting the closed interval [0, 1]. We let N0 denote the set of all non-negative
integers, that is, N0 := {0, 1, 2, . . .} and N denotes the set of all positive
integers. We also write Z to denote the set of all integers. The notation
k = 0(1)N means that k takes all values in the set {0, 1, 2, . . . , N}. We now

introduce the weighted Sobolev space W
(N)
p,α (Ω) where 1 ≤ p ≤ ∞ , N ∈ N0

and α ∈ R , the set of all real numbers.

Definition 1 (a) For 1 ≤ p <∞ , α ∈ R and N ∈ N0 we say that f is in

the weighted Sobolev space W
(N)
p,α (Ω) if∫ 1

0

[
(t(1− t))k−α|f (k)(t)|

]p
dt <∞ ,

for k = 0(1)N , in which case the norm of f will be denoted and defined
by

‖f‖p,α,N := max
k=0(1)N

{∫ 1

0

[
(t(1− t))k−α|f (k)(t)|

]p
dt

}1/p

. (1)
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(b) For p = ∞ , α ∈ R and N ∈ N0 we say that f is in the weighted Sobolev

space W
(N)
∞,α(Ω) if

f (k) ∈ C(Ω) and max
t∈Ω̄

(t(1− t))k−α|f (k)(t)| <∞ ,

for k = 0(1)N . The norm of f is denoted and defined by

‖f‖∞,α,N := max
k=0(1)N

max
t∈Ω̄

(t(1− t))k−α|f (k)(t)| . (2)

In this definition, C(Ω) denotes the space of all functions which are con-
tinuous on Ω = (0, 1) . Again, if f ∈ C∞(Ω) and if, for some α ∈ R
and 1 ≤ p ≤ ∞ , we have f ∈ W

(N)
p,α (Ω) for every N ∈ N0 then we write

f ∈ W (∞)
p,α (Ω) .

With this definition, let us consider some immediate consequences and in
order to do this we shall make use of Hölder’s inequality. For 1 ≤ p, q ≤ ∞ ,
we say that these are conjugate numbers if

1

p
+

1

q
= 1 . (3)

Note that for 1 < p < ∞ we shall always have 1 < q < ∞ . However,
when p = 1 , we see from (3) that 1/q = 0 so that q = ∞ ; similarly q = 1
corresponds to p = ∞ . Throughout the paper whenever we introduce p
we shall always assume that q is its conjugate number satisfying (3). For
1 < p < ∞ , Hölder’s inequality states that for f ∈ Lp(Ω) and g ∈ Lq(Ω)
then∣∣∣∣∫ 1

0

f(t)g(t) dt

∣∣∣∣ ≤ ( ∫ 1

0

|f(t)|p dt
)1/p( ∫ 1

0

|g(t)|q dt
)1/q

= ‖f‖p‖g‖q . (4)

When p = 1 we again have (4) provided that we define ‖g‖∞ as

‖g‖∞ := lim
q→∞

( ∫ 1

0

|g(t)|q dt
)1/q

:= ess sup g , (5)
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where ess sup g means the essential supremum of g. That is, if |g(t)| ≤ M
almost everywhere on Ω̄, where M is the smallest possible number for which
this inequality is satisfied, then ‖g‖∞ = M . In the particular case when
g is continuous on Ω̄, then we have that ‖g‖∞ = maxt∈Ω̄ |g(t)| . Hölder’s
inequality in this case follows immediately from the generalized mean value
theorem of integral calculus.

Theorem 2 (a) For 1 ≤ p ≤ ∞ , α ∈ R and N ∈ N0 we have

W (N)
∞,α(Ω) ⊆ W (N)

p,α (Ω) ⊆ W
(N)
1,α (Ω) ,

with
‖f‖1,α,N ≤ ‖f‖p,α,N ≤ ‖f‖∞,α,N ; (6)

(b) For 1 ≤ p ≤ ∞ and α, β ∈ R with β ≤ α we have W
(N)
p,α (Ω) ⊆ W

(N)
p,β (Ω)

with
‖f‖p,β,N ≤ (1/4)(α−β)‖f‖p,α,N ; (7)

(c) If f ∈ W (N)
p,α (Ω) for 1 ≤ p ≤ ∞ , real α and N ∈ N then for j = 0(1)N

we have f (j) ∈ W (N−j)
p,α−j (Ω) with

‖f (j)‖p,α−j,N−j ≤ ‖f‖p,α,N . (8)

Proof:

(a) Suppose f ∈ W (N)
∞,α(Ω) then for any 1 ≤ p <∞ and k ∈ {0, 1, 2, . . . , N}

we have∫ 1

0

[(t(1−t))k−α|f (k)(t)|]p dt ≤
(

max
t∈Ω̄

(t(1−t))k−α|f (k)(t)|
)p

≤ ‖f‖p
∞,α,N .

(9)

Thus f ∈ W (N)
p,α (Ω) and we find

‖f‖p,α,N ≤ ‖f‖∞,α,N . (10)
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Again, if f ∈ W (N)
p,α (Ω) for 1 < p <∞ then, by Hölder’s inequality (4),

we have ∫ 1

0

(t(1− t))k−α|f (k)(t)| dt

≤
( ∫ 1

0

[
(t(1− t))k−α|f (k)(t)|

]p
dt

)1/p( ∫ 1

0

1q dt
)1/q

≤ ‖f‖p,α,N . (11)

On letting k take all values in {0, 1, 2, . . . , N} in (11), we find

‖f‖1,α,N ≤ ‖f‖p,α,N

which, together with (10), establishes (a).

(b) Suppose that 1 ≤ p <∞ . For any f ∈ W (N)
p,α (Ω) we have∫ 1

0

[
(t(1− t))k−β|f (k)(t)|

]p
dt

=

∫ 1

0

[
(t(1− t))k−α|f (k)(t)|

]p
(t(1− t))(α−β)p dt

≤ (1/4)(α−β)p‖f‖p
p,α,N ,

(12)

by the mean value theorem since α − β ≥ 0 so that [t(1 − t)](α−β)p is

continuous on Ω̄. Hence W
(N)
p,α (Ω) ⊆ W

(N)
p,β (Ω) and, on letting k take all

values in {0, 1, 2, . . . , N}, from (12) we find

‖f‖p,β,N ≤ (1/4)(α−β)‖f‖p,α,N . (13)

When p = ∞ , if we suppose that f ∈ W (N)
∞,α(Ω) we have

max
t∈Ω̄

(t(1− t))k−β|f (k)(t)|

= max
t∈Ω̄

(t(1− t))k−α|f (k)(t)|(t(1− t))α−β

≤ (1/4)(α−β)‖f‖∞,α,N .
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Thus, arguing as before, f ∈ W (N)
∞,β(Ω) with

‖f‖∞,β,N ≤ (1/4)(α−β)‖f‖∞,α,N .

This proves (b).

(c) Suppose first that 1 ≤ p <∞ . Now f ∈ W (N)
p,α (Ω) implies that∫ 1

0

[
(t(1− t))k−α|f (k)(t)|

]p
dt ≤ ‖f‖p

p,α,N . (14)

Fix j ∈ {0, 1, 2, . . . , N} and write k = l+j where l ∈ {0, 1, . . . , N− j} .
Then we rewrite (14) as∫ 1

0

[
(t(1− t))l−(α−j)|(f (j)(t))(l)|

]p
dt ≤ ‖f‖p

p,α,N .

This implies f (j) ∈ W (N−j)
p,α−j (Ω) and, further, ‖f (j)‖p,α−j,N−j ≤ ‖f‖p,α,N .

When p = ∞ we have, from

max
t∈Ω̄

(t(1− t))k−α|f (k)(t)| ≤ ‖f‖∞,α,N ,

that on writing k = j + l as above then

max
t∈Ω̄

(t(1− t))l−(α−j)|(f (j)(t))(l)| ≤ ‖f‖∞,α,N for l = 0(1)(N − j) ,

so that f (j) ∈ W
(N−j)
∞,α−j(Ω) and ‖f (j)‖∞,α−j,N−j ≤ ‖f‖∞,α,N . This com-

pletes the proof of (c).

♠

Note in passing that in [4] the analysis was done in a space which, fol-
lowing the work done by Kress [7], I denoted by Kα

N . In the notation of this

paper, Kα
N is the space W

(N)
1,α (Ω). We are now in a position to give some
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further properties of functions in the space W
(N)
p,α (Ω). In particular, we shall

say something about the continuity of these functions and their derivatives
on Ω and Ω̄. In the statement of Theorem 4, the space L1(Ω) is that of
integrable functions on Ω but first, a definition.

Definition 3 (a) f is locally integrable on Ω, we write f ∈ L1,loc(Ω) , if∫ b

a
|f(t)| dt <∞ for all a, b ∈ Ω such that 0 < a < b < 1 .

(b) If f is continuous on Ω̄ with, in addition, f(0) = f(1) = 0 we shall

write f ∈
0

C(Ω̄) .

Theorem 4 Suppose f ∈ W (N)
p,α (Ω) where 1 ≤ p ≤ ∞ , and α ∈ R .

(a) If 1 ≤ p <∞ , N ∈ N and n ∈ N0 is such that n < α+1/q ≤ n+1 ≤ N
then

f (j) ∈



0

C(Ω̄) , j = 0(1)(n− 1) ,

C(Ω) ∩ L1(Ω) , j = n ,

C(Ω) , j = (n+ 1)(1)(N − 1) ,

L1,loc(Ω) , j = N .

(b) If p = ∞ , N ∈ N0 and n ∈ N0 is such that n < α+ 1 ≤ n+ 1 then

|f (j)(t)| ≤ ‖f‖∞,α,N(t(1− t))α−j (15)

for j = 0(1)N so that

f (j) ∈



0

C(Ω̄) , j = 0(1)(n− 1) ,

C(Ω̄) , j = n and α = n ,

C(Ω) , j = n and α < n ,

C(Ω) , j = (n+ 1)(1)N .
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Proof:

(a) If 0 < a < b < 1 then, by Hölder’s inequality,

∫ b

a

|f (N)(t)| dt ≤

‖f‖p,α,N

( ∫ b

a

(t(1− t))q(α−N) dt
)1/q

, 1 < p <∞ ,

‖f‖1,α,N max
t∈[a,b]

(t(1− t))α−N , p = 1 .

Hence, by Definition 3, f (N) ∈ L1,loc(Ω) .

For j ∈ {0, 1, 2, . . . , N − 1} let us first choose any x, x+ h in Ω. Then

|f (j)(x+ h)− f (j)(x)|

=

∣∣∣∣∫ x+h

x

f (j+1)(t) dt

∣∣∣∣
=

∣∣∣∣∫ x+h

x

(t(1− t))j+1−αf (j+1)(t)(t(1− t))α−j−1 dt

∣∣∣∣
≤

‖f‖p,α,N

( ∣∣∣∫ x+h

x
(t(1− t))q(α−j−1) dt

∣∣∣ )1/q

, 1 < p <∞ ,

‖f‖1,α,N maxt∈〈x,x+h〉(t(1− t))α−j−1, p = 1 ,

(16)

on using Hölder’s inequality. Note that we write t ∈ 〈x, x+ h〉 to
mean that x ≤ t ≤ x + h if h > 0 and x + h ≤ t ≤ x if h < 0 .
For 1 ≤ p < ∞ we see that limh→0 f

(j)(x + h) = f (j)(x) and, since x
was chosen arbitrarily from Ω, we have that f (j) is continuous on Ω
for j = 0(1)(N − 1) . Suppose, however, that we limit j to the set
{0, 1, 2, . . . , n − 1} then we may now assume that x, x + h are points
out of Ω̄. Since q(α− j − 1) > −1 then, when 1 < p <∞ , the integral
exists even when we choose either x or x+ h to be an end-point of Ω̄.
Since, when p = 1 , n < α it follows that α−j−1 > 0 for j = 0(1)(n−1)
so that we shall have f (j) ∈ C(Ω̄) for j = 0(1)(n− 1) and 1 ≤ p <∞ .

But we can say more. Since f ∈ W (N)
p,α (Ω) for 1 ≤ p <∞ we have∫ 1

0

[
(t(1− t))p(j−α)|f (j)(t)|

]p
dt <∞
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for j = 0(1)(n − 1) . We have that f (j) is continuous on Ω̄ but since
n < α + 1/q , we have that p(j − α) ≤ p(n − 1 − α) < −1 . The only
way that this integral can exist is if

f (j)(0) = f (j)(1) = 0 for j = 0(1)(n− 1) . (17)

That is, f (j) ∈
0

C(Ω̄) for j = 0(1)(n − 1) . If α + 1/q ≤ n + 1 then we
must have ∫ 1

0

|f (n)(t)|p

(t(1− t))p(α−n)
dt <∞

and although p(α − n) ≤ 1 , given that f (n) ∈ C(Ω) we can make no
further conclusion about the values of f (n) at 0 and 1. However, we
shall have f (n) ∈ L1(Ω) since∫ 1

0

|f (n)(t)| dt =

∫ 1

0

(t(1− t))n−α|f (n)(t)|(t(1− t))α−n dt

≤

‖f‖p,α,N

( ∫ 1

0
(t(1− t))q(α−n) dt

)1/q

, 1 < p <∞ ,

‖f‖1,α,N maxt∈Ω̄(t(1− t))α−n, p = 1 .

(18)
Since n < α + 1/q , the right hand side of (18) is finite for 1 ≤ p <∞
which concludes the proof of (a).

(b) Consider now the case where p = ∞ . From (2) it follows that

(t(1− t))j−α|f (j)(t)| ≤ ‖f‖∞,α,N (19)

for j = 0(1)N and t ∈ Ω̄ . Inequality (15) follows at once for every t ∈ Ω
and j = 0(1)N . Again, Definition 1(b) assumes that f (j) ∈ C(Ω) for all
j = 0(1)N . Since we have assumed that n < α + 1 ≤ n + 1 it follows

that α − j > 0 for j = 0(1)(n − 1) . Consequently f (j) ∈
0

C(Ω̄) for
j = 0(1)(n − 1) . In the particular case when j = n = α , (15) implies
that limt→0 |f (n)(t)| is finite, not necessarily zero. With a similar result
at the end point 1, it follows that f (n) ∈ C(Ω̄) when n = α .
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This completes the proof. ♠

This theorem has established the qualitative nature of the functions and their
derivatives given that they are in a weighted Sobolev space. In the special
case when p = ∞ , (15) gives a bound on the function and its derivatives
on Ω. This raises the question as to whether similar results may be obtained
in the general case when 1 ≤ p <∞ . This is the topic of the next theorem.

Theorem 5 Suppose f ∈ W
(N)
p,α (Ω) where 1 ≤ p ≤ ∞ , n ∈ N0 and N ∈ N

such that
n < α+ 1/q ≤ n+ 1 ≤ N . (20)

Then for all t ∈ Ω and j = 0(1)(N − 1)

|f (j)(t)| ≤ c‖f‖p,α,N(t(1− t))α−1/p−j , (21)

except when α+ 1/q = n+ 1 , 1 < p <∞ and j = n , in which case

|f (n)(t)| ≤ c‖f‖p,α,N ln1/q[1/(t(1− t))] . (22)

The constant c is independent of f and t.

Proof: Note that when p = ∞ , (21) follows at once from (15) with c = 1
and indeed in this case, the result is also true when j = N . We now restrict
ourselves to the case when 1 ≤ p <∞ .

From Theorem 4(a) since f (j)(0) = 0 for j = 0(1)(n− 1) then

f (j)(t) =

∫ t

0

f (j+1)(s) ds =

∫ t

0

(s(1− s))j+1−αf (j+1)(s)(s(1− s))α−j−1 ds .

(23)
By Hölder’s inequality we have

|f (j)(t)| ≤ ‖f‖p,α,NGj(t) (24)
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say, where the function

Gj(t) :=


( ∫ t

0
(s(1− s))q(α−j−1) ds

)1/q

, 1 < p <∞ ,

maxs∈[0,t](s(1− s))α−j−1, p = 1 .
(25)

If 1 < p <∞ then, on writing s = tu , we have

Gj(t) = tα−j−1+1/q
( ∫ 1

0

(u(1− tu))q(α−j−1) du
)1/q

. (26)

Assume first that 0 ≤ t ≤ 1/2 . Since 1/2 ≤ 1− tu ≤ 1 for all 0 ≤ u ≤ 1 and
since q(α− j − 1) > −1 for j = 0(1)(n− 1) we have from (26) that

Gj(t) ≤ c · tα−j−1−1/q (27)

where c 6= c(t) . (Note that throughout we shall take c to denote a generic
constant whose value may change from line to line. The notation c 6= c(t)
means that c is independent of t.) From (3), (24), (25) and (27), we have

|f (j)(t)| ≤ c‖f‖p,α,N t
α−j−1/p (28)

for 0 ≤ t ≤ 1/2 and j = 0(1)(n − 1) . We argue similarly when t ∈ [1/2, 1] .
Since f (j)(1) = 0 for j = 0(1)(n− 1) , from

f (j)(t) =

∫ t

1

f (j+1)(s) ds

we find that
|f (j)(t)| ≤ c‖f‖p,α,N(1− t)α−j−1/p (29)

for 1/2 ≤ t ≤ 1 . Since for j = 0(1)(n− 1) we have α− j − 1/p > 0 we may
combine (28) and (29) to give

|f (j)(t)| ≤ c‖f‖p,α,N(t(1− t))α−j−1/p (30)
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for all t ∈ Ω̄ . When p = 1 , we have at once from (25) that

Gj(t) ≤ c · (t(1− t))α−j−1, t ∈ Ω̄ , (31)

since α− j − 1 > 0 for j = 0(1)(n− 1) and 1/q = 0 in this case. Again (24),
(25) and (31) combine to give (21) for j = 0(1)(n− 1) when p = 1 .

Suppose now that j ∈ {n, n + 1, . . . , N − 1}. From Theorem 4(a) we
know that f (j) is continuous on Ω. In particular, choose any point a ∈ Ω and
suppose t is such that 0 < a ≤ t < 1 . Then

f (j)(t)−f (j)(a) =

∫ t

a

f (j+1)(s) ds =

∫ t

a

(s(1−s)j+1−αf (j+1)(s)(s(1−s))α−j−1 ds.

By Hölder’s inequality we have

|f (j)(t)− f (j)(a)| ≤ ‖f‖p.α,NHj(t) (32)

say, where the function

Hj(t) :=


( ∫ t

a
(s(1− s))(α−j−1)q ds

)1/q

, 1 < p <∞ ,

maxa≤s≤t(s(1− s))α−j−1, p = 1 .
(33)

Suppose that 1 < p < ∞ . Since (α − j − 1)q ≤ −1 for j = n(1)(N − 1) we
have, by Hölder’s inequality for sums, that

(s(1− s))(α−j−1)q =

(
1

s
+

1

1− s

)(j+1−α)q

≤ c

(
1

s(j+1−α)q
+

1

(1− s)(j+1−α)q

)
,

for some c independent of s, so that

Hj(t) ≤ c
( ∫ t

a

1

s(j+1−α)q
+

1

(1− s)(j+1−α)q
ds

)1/q

. (34)
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On assuming that (j + 1− α)q > 1 we find from (34) that

Hq
j (t) ≤ c

(j + 1− α)q − 1

(
1

(1− t)(j+1−α)q−1
− 1

(1− a)(j+1−α)q−1

− 1

t(j+1−α)q−1
+

1

a(j+1−α)q−1

)
.

Since 0 < a ≤ t < 1 we find that

Hq
j (t) ≤ c

(j + 1− α)q − 1

( 1

(1− t)(j+1−α)q−1
+

1

a(j+1−α)q−1

)
≤ c

(a(1− t))(j+1−α)q−1
. (35)

From (32) and (35) we have

|f (j)(t)| ≤ |f (j)(a)|+ c‖f‖p,α,N

(a(1− t))j+1−α−1/q
(36)

for 0 < a ≤ t < 1 . We may proceed analogously when 0 < t ≤ a < 1 to give
in this case that

|f (j)(t)| ≤ |f (j)(a)|+ c‖f‖p,α,N

(t(1− a))j+1−α−1/q
. (37)

Combining (36) and (37) gives

|f (j)(t)| ≤ |f (j)(a)|+ c‖f‖p,α,N

(t(1− t))j+1−α−1/q(a(1− a))j+1−α−1/q
, (38)

for any a ∈ Ω and t ∈ Ω . The constant c is independent of a, t and the
function f . We shall now fix t in (38) and consider a as a variable over Ω.

Recall from Theorem 2(b) that if f ∈ W
(N)
p,α (Ω) then also f ∈ W

(N)
p,β (Ω) for

any β < α with ‖f‖p,β,N ≤ c‖f‖p,α,N . In (38), by Hölder’s inequality for
sums, we have

|f (j)(t)|p ≤ c·
(
|f (j)(a)|p+

‖f‖p
p,α,N

(t(1− t))p(j+1−α−1/q)(a(1− a))p(j+1−α−1/q)

)
. (39)
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On multiplying each side of (39) by (a(1−a))p(j−β) and integrating over (0, 1)
with respect to a we find

|f (j)(t)|p ·
∫ 1

0

(a(1− a))p(j−β) da

≤ c
(
‖f‖p

p,β,N +
‖f‖p

p,α,N

(t(1− t))p(j+1−α−1/q)

∫ 1

0

(a(1− a))p(α−β)−1 da
)
.

(40)

The integral on the left hand side of (40) exists since for j = n(1)(N − 1) we
have p(j − β) > −1 . Again the integral on the right hand side of (40) exists
since α > β . Consequently from (40) we have

|f (j)(t)|p ≤ c
(
‖f‖p

p,β,N +
‖f‖p

p,α,N

(t(1− t))p(j+1−α−1/q)

)
(41)

for some c independent of t and f . Finally, since ‖f‖p,β,N ≤ c‖f‖p,α,N we
find from (41) that

|f (j)(t)| ≤ c‖f‖p,α,N

(t(1− t))j−α+1/p
, (42)

as required.

In the particular case when n+ 1 = α + 1/q so that q(α− n− 1) = −1 ,
we have from (33) with 1 < p <∞ that

Hq
n(t) =

∫ t

a

(1

s
+

1

1− s

)
ds = ln

(t(1− a)

a(1− t)

)
. (43)

Since 0 < a ≤ t < 1 we have

Hn(t) ≤ ln1/q
( 1

a(1− t)

)
. (44)

Similarly, for 0 < t ≤ a < 1 , we find

Hn(t) ≤ ln1/q
( 1

t(1− a)

)
. (45)
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We may combine (44) and (45) so that for 0 < a < 1 and 0 < t < 1 we have

Hn(t) ≤ ln1/q
( 1

t(1− t)a(1− a)

)
. (46)

Since for a, t ∈ Ω , we have both 1/(t(1 − t)) and 1/(a(1 − a)) are ≥ 4 it
follows that

ln
( 1

t(1− t)a(1− a)

)
≤ 1

ln 2
ln

( 1

t(1− t)

)
ln

( 1

a(1− a)

)
. (47)

From (32), (46) and (47) we have

|f (n)(t)| ≤ |f (n)(a)|+ c‖f‖p,α,N ln1/q
( 1

t(1− t)

)
ln1/q

( 1

a(1− a)

)
, (48)

so that

|f (n)(t)|p ≤ c
[
|f (n)(a)|p + c‖f‖p

p,α,N lnp/q(
1

t(1− t)
) lnp/q

( 1

a(1− a)

)]
, (49)

for some positive constant c independent of f , a and t. Arguing as before, if
we multiply each side of (49) by (a(1− a))p(n−β) where β < α and integrate
with respect to a over (0, 1) we find

|f (n)(t)|p ·
∫ 1

0

(a(1− a))p(n−β) da

≤ c
{
‖f‖p

p,β,N + ‖f‖p
p,α,N lnp/q

( 1

t(1− t)

)
×

×
∫ 1

0

(a(1− a))p(n−β) lnp/q(
1

a(1− a)
) da

}
.

(50)

Since both integrals exist and since ‖f‖p,β,N ≤ c‖f‖p,α,N it follows from (50)
that

|f (n)(t)| ≤ c‖f‖p,α,N ln1/q
( 1

t(1− t)

)
(51)



2 A weighted Sobolev space E17

for all t ∈ Ω , which is (22).

It finally remains to consider the case when p = 1 . For j = 0(1)(n − 1)
we have that α − j − 1 > 0 since, from(20), when p = 1 we have 1/q = 0 so
that n < α . Consequently recalling (25) gives Gj(t) = (t(1 − t))α−j−1 and
from (24) we see that

|f (j)(t)| ≤ ‖f‖1,α,N(t(1− t))α−j−1 (52)

which is (21) with p = 1 , 1/q = 0 and c = 1 .

For j = n(1)(N−1) and n < α ≤ n+1 from (33) we have, since j+1 ≥ α ,
that

Hj(t) ≤ max
{ 1

(a(1− a))j+1−α
,

1

(t(1− t))j+1−α

}
. (53)

Consequently (32) gives in this case that

|f (j)(t)| ≤ |f (j)(a)|+ ‖f‖1,α,N max
{ 1

(a(1− a))j+1−α
,

1

(t(1− t))j+1−α

}
.

(54)

We shall argue as before by choosing β < α then, since f ∈ W
(N)
1,α (Ω) , we

know that f ∈ W (N)
1,β (Ω) also, with ‖f‖1,β,N ≤ ‖f‖1,α,N . On multiplying (54)

by (a(1− a))j−β and integrating with respect to a over (0, 1) we find

|f (j)(t)| ·
∫ 1

0

(a(1− a))j−β da

≤ ‖f‖1,β,N + ‖f‖1,α,N max
{∫ 1

0

(a(1− a))α−β−1 da ,

1

(t(1− t))j+1−α

∫ 1

0

(a(1− a))j−β da
}
.

(55)

Obviously all the integrals exist so that we find

|f (j)(t)| ≤ c‖f‖1,α,N(t(1− t))α−j−1 (56)
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for j = n(1)(N − 1) given that n < α ≤ n + 1 and p = 1 . This is (21) and
completes the proof. ♠

From Theorem 4(a) we see that given f ∈ W
(N)
p,α (Ω) for 1 ≤ p < ∞ and

with N ≥ n + 1 then, for j = 0(1)(N − 1) , f (j) will be continuous on Ω.
From Theorem 5 we have the behaviour of f (j) near the end points of Ω for
j = 0(1)(N−1) . These results come together in the following theorem which
will be of some importance in the subsequent analysis.

Theorem 6 (a) Suppose, for 1 < p <∞ , that n < α + 1/q < n + 1 ≤ N
or, for p = 1 , that n < α ≤ n + 1 ≤ N where α ∈ R , n ∈ N0 and
N ∈ N . Then if f ∈ W (N)

p,α (Ω) we also have that f ∈ W (N−1)
∞,α−1/p(Ω) with

‖f‖∞,α−1/p,N−1 ≤ c‖f‖p,α,N (57)

for some constant c independent of f .

(b) Suppose, for α ∈ R , f ∈ W
(N)
∞,α(Ω) with n < α + 1 ≤ n + 1 where

n,N ∈ N0 . Then for any 1 ≤ p < ∞ we have f ∈ W
(N)
p,γ (Ω) where

γ < α + 1/p . Furthermore,

‖f‖p,γ,N ≤ c‖f‖∞,α,N (58)

for some constant c independent of f .

Proof:

(a) In each case we need to consider, for j = 0(1)(N − 1) ,

Ij := max
t∈Ω̄

(t(1− t))j−(α−1/p)|f (j)(t)| . (59)

From (21) we have for 1 ≤ p <∞ that

|f (j)(t)| ≤ c‖f‖p,α,N(t(1− t))α−1/p−j , (60)
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for j = 0(1)(N − 1) . Combining (59) and (60) gives

Ij ≤ c‖f‖p,α,N <∞ (61)

for j = 0(1)(N −1) , so that f ∈ W (N−1)
∞,α−1/p(Ω) and (57) follows at once.

(b) Since f ∈ W (N)
∞,α(Ω) we have, from Definition 1(b) that

|f (j)(t)| ≤ ‖f‖∞,α,N(t(1− t))α−j (62)

for j = 0(1)N . Consider Ij, for j = 0(1)N , where we now define

Ij :=

∫ 1

0

[
(t(1− t))(j−α)|f (j)(t)|

]p
dt . (63)

From (62) and (63) we have

Ij ≤ ‖f‖∞,α,N

∫ 1

0

(t(1− t))p(α−γ) dt ≤ c‖f‖∞,α,N (64)

provided γ is chosen so that p(α− γ) > −1 , which is so. Since Ij <∞
for j = 0(1)N it follows that f ∈ W (N)

p,γ (Ω) and (58) follows at once.

♠

There is a further consequence of Theorem 5 which will be useful when,
in Section 4, we come to consider estimates of the truncation error in the
Euler–Maclaurin formula. We shall define the function ρ by

ρ(t) := t(1− t) . (65)

Theorem 7 Suppose f ∈ W
(N)
p,α (Ω) where 1 ≤ p ≤ ∞ , n ∈ N0 is such that

n < α+ 1/q ≤ n+ 1 and N ∈ N with N ≥ n+ 1 . Then

(a) ρf (n) ∈
0

C(Ω̄) , and

(b) ρf (n+1) ∈ L1(Ω) .
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Proof:

(a) By the preceding theorem we have that for all 1 ≤ p ≤ ∞ , the function

f ∈ W (N−1)
∞,α−1/p(Ω) so that

(t(1− t))n−(α−1/p)|f (n)(t)| ≤ ‖f‖∞,α−1/p,N−1 .

Thus
ρ(t)|f (n)(t)| ≤ c‖f‖p,α,N(t(1− t))α+1/q−n

and the right-hand side tends to zero as parameter t→ 0 and 1. That

is, ρf (n) ∈
0

C(Ω̄) as required.

(b) Consider∫ 1

0

(t(1− t))|f (n+1)(t)| dt =

∫ 1

0

(t(1− t))n+1−α|f (n+1)(t)|(t(1− t))α−n dt .

By Hölder’s inequality we have∫ 1

0

t(1− t)|f (n+1)(t)| dt

≤

‖f‖p,α,N

( ∫ 1

0
(t(1− t))q(α−n) dt

)1/q

, 1 < p <∞ ,

‖f‖1,α,N maxt∈Ω̄(t(1− t))α−n, p = 1 .

(66)

Since n < α + 1/q we have q(α − n) ≥ −1 so that the integral on
the right of (66) exists. Again, when p = 1 , α − n > 0 so that
maxt∈Ω̄(t(1− t))α−n = (1/4)α−n . This establishes (b) and the theorem
is proved.

♠

As a final result in this section we need to determine the weighted Sobolev
space in which the product of two functions is to be found. But first, it is an
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easy matter to show that if p and q are conjugate numbers, recall (3), and if
r is such that q ≤ r ≤ ∞ then s, defined by

1

s
:=

1

p
+

1

r
, (67)

is such that 1 ≤ s ≤ ∞ .

Theorem 8 Suppose p and q are conjugate numbers with 1 ≤ p , q ≤ ∞ and
r is such that q ≤ r ≤ ∞ . If f ∈ W

(N1)
p,α (Ω) and g ∈ W

(N2)
r,β (Ω) for some

α, β ∈ R and N1, N2 ∈ N0 then fg ∈ W
(N)
s,α+β(Ω) where 1/s = 1/p + 1/r and

N = min{N1, N2} . Furthermore,

‖fg‖s,α+β,N ≤ c‖f‖p,α,N1‖g‖r,β,N2 (68)

where c is a positive constant such that c 6= c(f, g) .

Proof: Since N = min{N1, N2} it follows at once from Definition 1 that

f ∈ W (N)
p,α (Ω) and g ∈ W (N)

r,β (Ω) with

‖f‖p,α,N ≤ ‖f‖p,α,N1 and ‖g‖r,β,N ≤ ‖g‖r,β,N2 . (69)

Suppose first that s = ∞ . This can only occur if p = r = ∞ . For
j = 0(1)N , consider

Ij(∞) := max
t∈Ω̄

(t(1− t))j−(α+β)|(fg)(j)(t)| . (70)

By Leibnitz’s theorem we have

(fg)(j)(t) =

j∑
k=0

(
j

k

)
f (k)(t)g(j−k)(t) . (71)
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From (70) and (71) we have

Ij(∞) ≤
j∑

k=0

(
j

k

)[
max
t∈Ω̄

(t(1− t))k−α|f (k)(t)|
][

max
t∈Ω̄

(t(1− t))j−k−β|g(j−k)(t)|
]
.

It follows at once that for j = 0(1)N

Ij(∞) ≤ 2j‖f‖∞,α,N1‖g‖∞,α,N2 (72)

since
∑j

k=0

(
j
k

)
= 2j . Consequently fg ∈ W

(N)
∞,α+β(Ω) and (68) is satisfied

with c = 2N .

Suppose now that 1 ≤ s <∞ and consider

Ij(s) :=

∫ 1

0

[
(t(1− t))j−(α+β)|(fg)(j)(t)|

]s
dt , (73)

for j = 0(1)N . Again by Leibnitz’s theorem, see(71), we have

Ij(s) =

∫ 1

0

∣∣∣ j∑
k=0

(
j

k

)
(t(1− t))k−αf (k)(t) · (t(1− t))j−k−βg(j−k)(t)

∣∣∣s dt . (74)

From the triangle inequality when s = 1 and Hölder’s inequality for sums
when 1 < s <∞ we have∣∣∣ j∑

k=0

ak

∣∣∣s ≤ (j + 1)s−1

j∑
k=0

|ak|s , 1 ≤ s ≤ ∞ . (75)

From (74) and (75) we have

Ij(s) ≤ (j + 1)s−1

j∑
k=0

(
j

k

)s ∫ 1

0

(
(t(1− t))k−α|f (k)(t)|

)s

×

×
(
(t(1− t))j−k−β|g(j−k)(t)|

)s

dt ,

(76)
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for j = 0(1)N . If p = ∞ then s = r and since in this case

‖f‖∞,α,N1 = max
k=0(1)N1

max
t∈Ω̄

(t(1− t))k−α|f (k)(t)|

we see from (76) that for j = 0(1)N

Ij(s) ≤ (j + 1)s−1‖f‖s
∞,α,N1

‖g‖s
r,β,N2

j∑
k=0

(
j

k

)s

. (77)

Consequently in this case fg ∈ W (N)
s,α+β(Ω) with

‖fg‖s,α+β,N ≤ c‖f‖∞,α,N1‖g‖r,β,N2 (78)

where c := (j + 1)1−1/s
[∑j

k=0

(
j
k

)s]1/s
is independent of both f and g.

Arguing similarly if r = ∞ so that s = p we would find

‖fg‖s,α+β,N ≤ c‖f‖p,α,N1‖g‖∞,β,N2 .

Thus it remains to consider Ij(s), see inequality (76), when 1 < s <∞ and
1 ≤ p , r <∞ . Under these circumstances we see from (67) that p/s > 1 so
that applying Hölder’s inequality to the integral on the right of (76) we find

Ij(s) ≤ (j + 1)s−1

j∑
k=0

(
j

k

)s[ ∫ 1

0

[
(t(1− t))k−α|f (k)(t)|

]p
dt

]s/p

×

×
[ ∫ 1

0

[
(t(1− t))j−k−β|g(k−j)(t)|

]r
]s/r

.

(79)

Consequently

Ij(s) ≤ (j + 1)s−1‖f‖s
p,α,N1

‖g‖s
r,β,N2

j∑
k=0

(
j

k

)s

(80)

for j = 0(1)N . Again we find that fg ∈ W (N)
s,α+β(Ω) and that (68) is satisfied

with c = (j+1)1−1/s[
∑j

k=0

(
j
k

)s
]1/s . This completes the proof of the theorem.

♠
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3 Sigmoidal transformations

Sigmoidal transformations are useful when the Euler–Maclaurin formula is
used to find approximate values of the integral

∫ 1

0
f(x) dx . Essentially we

make a change of variable x = γr(t) say, where r > 1 , and use the Euler–

Maclaurin sum on
∫ 1

0
gr(t) dt where the function

gr(t) := f(γr(t))γ
′
r(t) , t ∈ Ω , r > 1 . (81)

The function γr maps Ω̄ onto itself and is chosen so that γr(t) = O(tr) as
t → 0 , whereas near t = 1 , γr(t) = 1 + O((1 − t)r) . There are many such
transformations to be found in the literature; a survey has been given by the
author in [5]. An archetypal transformation is

γr(t) =
tr

tr + (1− t)r
. (82)

Since the graph of this function is in the shape of an elongated “S”, these
transformations are called sigmoidal. This leads us to the following definition
of a generic sigmoidal transformation of order r.

Definition 9 A sigmoidal transformation γr of order r > 1 possesses the
following properties:

(a) γr ∈ C1(Ω̄) ∩ C∞(Ω) with γr(0) = 0 ,

(b) γr(t) + γr(1− t) = 1 for all t ∈ Ω̄ ,

(c) γr is strictly increasing on Ω̄,

(d) γ′r is strictly increasing on [0, 1/2] with γ′r(0) = 0 ,

(e) γ
(j)
r (t) = O(tr−j) near t = 0 , for all j ∈ N0 when r /∈ N and for
j = 0(1)r if N 3 r ≥ 2 .
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As an immediate consequence of Definition 9, note, from the discussions
of Section 2, that γr ∈ W

(N)
p,α (Ω) for any N ∈ N0 where α + 1/q < 1 if

1 ≤ p <∞ and α ≤ 0 if p = ∞ . Again, for the function γ′r it can be verified

that γ′r ∈ W
(N)
p,γ (Ω) for any N ∈ N0 where γ + 1/q < r if 1 ≤ p < ∞ and

γ + 1 ≤ r if p = ∞ .

Before considering the Euler–Maclaurin formula, the fundamental ques-
tion we shall now address is that given f ∈ W

(N)
p,α (Ω) for 1 ≤ p ≤ ∞ and

N “sufficiently large”, in what space is the function gr, as defined in (81), to
be found? The answer is in the following theorem.

Theorem 10 Suppose f ∈ W
(N)
p,α (Ω) where 1 ≤ p ≤ ∞ and N ∈ N0 is

sufficiently large. If gr := (f ◦ γr)γ
′
r then gr ∈ W (N)

p,αr+(r−1)/q(Ω) and

‖gr‖p,αr+(r−1)/q,N ≤ c‖f‖p,α,N (83)

where c is a positive constant independent of f .

Proof: Choose j ∈ {0, 1, . . . , N}. From (81), by Leibnitz’ theorem, we
have

g(j)
r (t) =

j∑
k=0

(
j

k

)
(γ′r(t))

(j−k)
(
f(γr(t))

)(k)
. (84)

Let us rewrite this as

g(j)
r (t) =

j∑
k=0

uk,j(t)f
(k)(γr(t)) , (85)

say. On differentiating (85) once we find that the functions uk,j satisfy
u0,j+1(t) = u′0,j(t) ,

us,j+1(t) = us−1,j(t)γ
′
r(t) + u′s,j(t) , s = 1(1)j ,

uj+1,j+1(t) = uj,j(t)γ
′
r(t) .

(86)
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In particular we see that since, from (81), u0,0(t) = γ′r(t) then

u0,j(t) = γ(j+1)
r (t) and uj,j(t) =

(
γ′r(t)

)j+1
. (87)

In order to identify the space in which gr is to be found let us consider its
behaviour near the end points of Ω. In particular, near t = 0 , we have
from (87) and Definition 9 that

u0,j(t) = O(tr−j−1) and uj,j(t) = O(t(r−1)(j+1)) . (88)

What about the behaviour of us,j(t) near t = 0 for s = 1(1)(j−1)? From (86)
if we conjecture that near t = 0

us,j(t) = O(tr−1+rs−j) , for s = 0(1)j , (89)

then it is readily verified that (86) and (88) are satisfied. Similarly, near
t = 1 we shall have

us,j(t) = O
(
(1− t)r−1+rs−j

)
, s = 0(1)j . (90)

Consequently we may write

us,j(t) = (t(1− t))r−1+rs−jUs,j(t) (91)

say, for s = 0(1)j and j = 0(1)N where the functions Us,j are continuous
on Ω̄ and non-vanishing at the end-points. In the same spirit and bearing in
mind Definition 9 we may write

γr(t)(1− γr(t)) = (t(1− t))rΓr,0(t) , (92)

γ′r(t) = (t(1− t))r−1Γr,1(t) (93)

say, where Γr,0 and Γr,1 are continuous and strictly positive on Ω̄.

Suppose now that 1 ≤ p < ∞ and, for a given j ∈ {0, 1, 2, . . . , N},
consider

Ij(p) :=

∫ 1

0

[
(t(1− t))j−αr−(r−1)/q|g(j)

r (t)|
]p

dt . (94)
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From (57) and (85) we have

|g(j)
r (t)|p ≤ c

j∑
k=0

|uk,j(t)|p |f (k)(γr(t))|p (95)

for some constant c depending only on j and p. Consequently,

Ij(p) ≤ c

j∑
k=0

∫ 1

0

[
(t(1−t))j−αr−r+1|uk,j(t)||f (k)(γr(t))|

]p
[t(1−t)]r−1 dt . (96)

From (91) and (93) we have

Ij(p) ≤ c

j∑
k=0

∫ 1

0

[
(t(1− t))r(k−α)|Uk,j(t)||f (k)(γr(t))|

]p γ′r(t)

Γr,1(t)
dt . (97)

From (92) and since Uk,j, 1/Γr,0 and 1/Γr,1 are continuous on Ω̄ we find

Ij(p) ≤ c

j∑
k=0

∫ 1

0

[
(γr(t)(1− γr(t)))

k−α|f (k)(γr(t))|
]p

γ′r(t) dt (98)

where again c is independent of f . On writing x = γr(t) we find that

Ij(p) ≤ c

j∑
k=0

∫ 1

0

[
(x(1− x))k−α|f (k)(x)|

]p
dx ≤ c‖f‖p

p,α,N (99)

by (1). As this is true for j = 0(1)N we have at once that gr ∈ WN
p,αr+(r−1)/q(Ω)

for 1 ≤ p <∞ and (83) is satisfied.

It remains to consider the case when p = ∞ . For a given j ∈ {0, 1, 2, . . . , N}
consider

Ij(∞) := max
t∈Ω̄

(t(1− t))j−αr−r+1|g(j)
r (t)| . (100)
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From (85) and (91) we find

Ij(∞) ≤
j∑

k=0

max
t∈Ω̄

(t(1− t))r(k−α)|Uk,j(t)||f (k)(γr(t)| . (101)

Since Uk,j ∈ C(Ω̄) and recalling (92) we have

Ij(∞) ≤ c

j∑
k=0

max
t∈Ω̄

(
γr(t)(1− γr(t))

)k−α|f (k)(γr(t))|/Γr,0(t) . (102)

But again we have that Γr,0 ∈ C(Ω̄) and furthermore does not vanish on Ω̄.
On putting x = γr(t) we find from (102) that

Ij(∞) ≤ c

j∑
k=0

max
x∈Ω̄

(x(1− x))k−α|f (k)(x)| , (103)

where c 6= c(f) . Recalling (2) we have that for j = 0(1)N

Ij(∞) ≤ c‖f‖∞,α,N (104)

so that gr ∈ W
(N)
∞,αr+r−1(Ω) with ‖gr‖∞,αr+r−1,N ≤ c‖f‖∞,α,N which estab-

lishes the theorem when p = ∞ and completes the proof. ♠

Let us comment on the phrase “N ∈ N is sufficiently large” which appears
in the statement of Theorem 10. From (84) we see that the functions gr and f
need to have the same number of derivatives. Suppose nr ∈ N0 is such that

nr < r(α+ 1/q) ≤ nr + 1 . (105)

Recalling the results that have gone before let us then assume that N ∈ N
is such that

N ≥ nr + 1 , (106)

and this is the value of N that is deemed to be “sufficiently large” in Theo-
rem 10. From Theorem 4(b) we have that if (106) is satisfied then

g(j)
r (0) = g(j)

r (1) = 0 for j = 0(1)(nr − 1) . (107)
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On the other hand, if n < α+ 1/q ≤ n+ 1 then f is such that

f (j)(0) = f (j)(1) = 0 for j = 0(1)(n− 1) . (108)

Since with our sigmoidal transformations we choose r > 1 then, in general,
we shall have nr bigger than n so that the function gr will in general have
more derivatives vanishing at the end points of Ω than the function f has.
This observation will have important consequences when we consider the
Euler–Maclaurin quadrature rule for both ordinary and Cauchy principal
value integrals in Sections 4 and 5 respectively.

4 The Euler–Maclaurin formula

This has been discussed at some length by the author in [4] and we shall
both quote results from that paper and use its notation. We let

If :=

∫ 1

0

f(x) dx , (109)

and if we define

tν := (ν + 1)/2 for − 1 < ν ≤ 1 , (110)

then for m ∈ N a quadrature rule Q
[ν]
m f is defined by

Q[ν]
m f :=


1
m

m−1∑
j=0

f((j + tν)/m) , −1 < ν < 1 ,

1
m

m∑
j=0

′′f(j/m) , ν = 1 ,
(111)

where
m∑

j=0

′′ denotes a sum whose first and last terms are halved.
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For j ∈ N0 , we let Bj denote the Bernoulli polynomial of degree j; see, for
example, Abramowitz and Stegun [1, Chapter 23]. Furthermore, B̄j denotes
the periodic extension to R of Bj defined on [0, 1). That is,

B̄j(x+ k) = Bj(x) for all k ∈ Z and 0 ≤ x < 1 . (112)

We note that the functions B̄j are continuous on R except when j = 1 when
it has a finite jump discontinuity at each integer. As a consequence of this
and Abramowitz and Stegun [1, §23.1.5] we have that

B̄′
n+1(x) = (n+ 1)B̄n(x) (113)

for n ∈ N and x ∈ R .

Our starting point is the following theorem.

Theorem 11 Suppose f is such that for some s ∈ N0 , f (s) ∈ C(Ω̄) and
f (s+1) ∈ L1(Ω). Then, for any m ∈ N ,

E[ν]
m f := If −Q[ν]

m f = −
s+1∑

j=j0(ν)

Bj(tν)

j!
· f

(j−1)(1)− f (j−1)(0)

mj

+
1

ms+1

∫ 1

0

f (s+1)(x)
B̄s+1(tν −mx)

(s+ 1)!
dx ,

(114)

where

j0(ν) :=

{
1 , |ν| < 1 ,

2 , ν = 1 .
(115)

Proof: See, for example, Elliott [4, theorem 2.1]. Note that with (114)
and (115) we have now corrected the lower limit on the sum to allow for the

fact that Q
[1]
m f incorporates the first term of that sum. ♠
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Note that under the conditions of this theorem we may rewrite (114) as

E[ν]
m f := −

s∑
j=j0(ν)

Bj(tν)

j!
· f

(j−1)(1)− f (j−1)(0)

mj

+
1

ms+1

∫ 1

0

f (s+1)(x)
B̄s+1(tν −mx)−Bs+1(tν)

(s+ 1)!
dx .

(116)

Equations (114) and (116) give the classical forms of the Euler–Maclaurin

formula. We shall now consider an upper bound for |E[ν]
m f | under the as-

sumption that f is in some weighted Sobolev space. But first, a lemma.

Lemma 12 For all x ∈ Ω̄ and m,n ∈ N we have

|B̄n+1(tν −mx)−Bn+1(tν)| ≤ c ·mx(1− x) (117)

where c is a positive constant depending only on n.

Proof: From (113) we have

|B̄n+1(tν −mx)−Bn+1(tν)| = |B̄n+1(tν)− B̄n+1(tν −mx)|

=

∣∣∣∣∫ tν

tν−mx

B̄′
n+1(ξ) dξ

∣∣∣∣ (118)

= (n+ 1)

∣∣∣∣∫ tν

tν−mx

B̄n+1(ξ) dξ

∣∣∣∣ .
But, from Abramowitz and Stegun [1, §23.1.16 and §23.2.18], we have that

max
x∈Ω̄

|Bn(ξ)| ≤

{
1/2 , n = 1 ,

2ζ(n)n!/(2π)n , n ≥ 2 .
(119)

Consequently from (118) and (119) we have that

|B̄n+1(tν −mx)−Bn+1(tν)| ≤ c ·mx (120)
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where c = c(n) . Again we have

|B̄n+1(tν −mx)−Bn+1(tν)| = |B̄n+1(tν −mx)−Bn+1(tν −m)|

=

∣∣∣∣∫ tν−mx

tν−m

B̄′
n+1(ξ) dξ

∣∣∣∣ ≤ c ·m(1− x) ,
(121)

on using (113) again, where c = c(n) . Combining (120) and (121) we ob-
tain (117) and the lemma is proved. ♠

We now come to the starting point of the analysis of an upper bound for
|E[ν]

m f | given that f is in some weighted Sobolev space.

Theorem 13 Suppose f ∈ W (N)
p,α (Ω) where 1 ≤ p ≤ ∞ , α ∈ R , n ∈ N0 and

N ∈ N are such that

n < α+ 1/q ≤ n+ 1 ≤ N . (122)

Then, for all m such that N 3 m ≥ 2 ,

E[ν]
m f =

1

mn+1(n+ 1)!

∫ 1

0

f (n+1)(x)
(
B̄n+1(tν −mx)−Bn+1(tν)

)
dx . (123)

Proof: That the integral in (123) exists under the given conditions follows
from (117) together with Theorem 7(b). From Theorem 4 we have that
f (j)(0) = f (j)(1) = 0 for j = 0(1)(n − 1) . If in (116), we put s = n we
recover (123) and the theorem is proved. ♠

We shall now derive a better rate of convergence of |E[ν]
m f | to zero than

that implied by (117) and (123) which together give that E
[ν]
m f tends to zero

as m→∞ like O(1/mn) .
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Theorem 14 Suppose f ∈ W (N)
p,α (Ω) and N 3 m ≥ 2 .

(a) If 1 ≤ p ≤ ∞ with n ∈ N0 and N ∈ N such that n < α+1/q < n+1 ≤ N
then

|E[ν]
m f | ≤ c‖f‖p,α,N

mα+1/q
. (124)

(b) For 1 ≤ p ≤ ∞ and α+ 1/q = n+ 1 ≤ N then

|E[ν]
m f | ≤


c‖f‖1,α,N

mn+1
, p = 1 ,

c‖f‖p,α,N ln1/q(m)

mn+1
, 1 < p ≤ ∞ .

(125)

Here c denotes a positive constant which is independent of both m and f .

Proof: From (123) we have

E[ν]
m f =

1

mn+1(n+ 1)!

∫ 1

0

(x(1− x))n+1−αf (n+1)(x)×

× (B̄n+1(tν −mx)−Bn+1(tν))

(x(1− x))n+1−α
dx .

From Definition 1(b) (when p = ∞), the mean value theorem (when p = 1)
and Hölder’s inequality for 1 < p <∞ we find

|E[ν]
m f | ≤ ‖f‖p,α,N

mn+1(n+ 1)!
· J(p) (126)

say, where the function

J(p) :=



∫ 1

0

|B̄n+1(tν −mx)−Bn+1(tν)|
(x(1− x))n+1−α

dx , p = ∞ ,

max
x∈Ω̄

|B̄n+1(tν −mx)−Bn+1(tν)|
(x(1− x))n+1−α

, p = 1 ,( ∫ 1

0

|B̄n+1(tν −mx)−Bn+1(tν)|q

(x(1− x))q(n+1−α)
dx

)1/q

, 1 < p <∞ .

(127)
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First consider the case when p = 1 so that 1/q = 0 with n < α ≤ n+1 ≤ N .
From this we see that n+ 1− α ≥ 0 . For N 3 m ≥ 2 let us write

Ω̄ = [0, 1/m] ∪ [1/m, 1/2] ∪ [1/2, 1− 1/m] ∪ [1− 1/m, 1] ,

and we shall consider the maximum of the quotient on each of these intervals.
From (117) we have that on [0, 1/m]

|B̄n+1(tν −mx)−Bn+1(tν)| ≤ c ·mx ,

where c = c(n) . Consequently

max
x∈[0,1/m]

|B̄n+1(tν −mx)−Bn+1(tν)|
(x(1− x))n+1−α

≤ c ·m max
x∈[0,1/m]

xα−n = c ·mn−α+1 ,

(128)
since α − n > 0 . We may argue similarly to give the same upper bound for
x ∈ [1− 1/m, 1] . Consider now the interval [1/m, 1/2] . From (119)

max
x∈[1/m,1/2]

|B̄n+1(tν −mx)−Bn+1(tν)|
(x(1− x))n+1−α

≤ c · max
x∈[1/m,1/2]

1

xn+1−α
= c ·mn−α+1

(129)
where, again, c = c(n) . A similar result is to be found over the interval
[1/2, 1− 1/m] so that from (128) and (129) we find

J(1) = max
x∈Ω̄

|B̄n+1(tν −mx)−Bn+1(tν)|
(x(1− x))n+1−α

≤ c ·mn+1−α . (130)

Consequently from (126) and (130) we see that both (124) and (125) are
valid for p = 1 and n < α ≤ n+ 1 ≤ N .

Suppose now that p = ∞ so 1/q = 1 and we have n < α+1 ≤ n+1 ≤ N .
From (126) let us write

J(∞) =
( ∫ 1/m

0

+

∫ 1/2

1/m

+

∫ 1−1/m

1/2

+

∫ 1

1−1/m

) |B̄n+1(tν −mx)−Bn+1(tν)|
(x(1− x))n+1−α

dx .

(131)
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From (117) we find, since 0 ≤ n− α < 1 , that∫ 1/m

0

|B̄n+1(tν −mx)−Bn+1(tν)|
(x(1− x))n+1−α

dx ≤ c ·m
∫ 1/m

0

dx

xn−α
= c ·mn−α , (132)

c being independent of m. A similar result holds for the integral over the
interval (1 − 1/m, 1). For the integral over (1/m, 1/2) we have from (119)
that ∫ 1/2

1/m

|B̄n+1(tν −mx)−Bn+1(tν)|
(x(1− x))n+1−α

dx ≤ c ·
∫ 1/2

1/m

dx

xn+1−α

≤

{
c ·mn−α , n− α > 0 ,

c · ln(m) , n = α .
(133)

Again c is a positive constant independent of m. A similar bound is found
for the integral over (1/2, 1− 1/m). To sum up, we have

J(∞) ≤

{
c ·mn−α , if n− α > 0 ,

c · ln(m) , if n = α .
(134)

From (126), (127) and (134) we recover both (124) and (125) in the case
when p = ∞ .

Finally, let us consider the remaining case for which 1 < p < ∞ and
n < α + 1/q ≤ n + 1 ≤ N . We can argue as we have done in the case
when p = ∞ by splitting the integral for J(p) in (127) over the four intervals
(0, 1/m), (1/m, 1/2), (1/2, 1 − 1/m), (1 − 1/m, 1). For the integral over
(0, 1/m) we find, from (117) and (127), that∫ 1/m

0

|B̄n+1(tν −mx)−Bn+1(tν)|q

(x(1− x))q(n+1−α)
dx ≤ c·mq

∫ 1/m

0

dx

x(n−α)q
= c·m(n+1−α)q−1 ,

(135)
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since (n − α)q < 1 . Again, for the integral over (1/m, 1/2) we have on
recalling (119) that ∫ 1/2

1/m

|B̄n+1(tν −mx)−Bn+1(tν)|q

(x(1− x))q(n+1−α)
dx

≤ c ·
∫ 1/2

1/m

dx

x(n+1−α)q

=

{
c ·m(n+1−α)q−1 , if α+ 1/q < n+ 1 ,

c · ln(m) , if α+ 1/q = n+ 1 .
(136)

Similar bounds to those given by (135) and (136) are found for the integrals
over (1− 1/m, 1) and (1/2, 1− 1/m) respectively. In all cases c is a positive
constant independent of m. From (127), (135) and (136), for 1 < p <∞ we
find that

J(p) ≤

{
c ·mn+1−α−1/q , if α+ 1/q < n+ 1 ,

c · ln1/q(m) , if α+ 1/q = n+ 1 .
(137)

From (126) and (137) we see that (124) and (125) follow so that the theorem
is proved. ♠

It is appropriate to compare the results of Theorem 14 when p = 1 with
that given in Elliott [5, Theorem 3.3]. There, since Kα

N = W
(N)
1,α (Ω) , for

n < α < n+ 1 we obtained |E[ν]
m f | ≤ c ‖f‖1,α,N/m

n . For n < α ≤ n+ 1 and

p = 1 , Theorem 14 gives |E[ν]
m f | ≤ c ‖f‖1,α,N/m

α . The improvement in the

rate of convergence of E
[ν]
m f to zero is apparent.

Let us now consider the effect of making a sigmoidal transformation to
the integral If before using the Euler–Maclaurin formula. That is, we have
on writing x = γr(t) in (109) that

If =

∫ 1

0

f(x) dx =

∫ 1

0

f(γr(t))γ
′
r(t) dt =

∫ 1

0

gr(t) dt , (138)
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on recalling (81). From Theorem 10 we have that if f ∈ W
(N)
p,α (Ω) with

1 ≤ p ≤ ∞ then gr ∈ W
(N)
p,αr+(r−1)/q(Ω) and it is to the function gr that we

apply the Euler–Maclaurin theorem to give a quadrature rule

If = Igr = Q[ν]
m gr + E[ν]

m gr =: Q[ν,r]
m f + E[ν,r]

m f , (139)

say. An estimate for E
[ν]
m gr = E

[ν,r]
m f is given in the following theorem.

Theorem 15 Let γr be a sigmoidal transformation of order r ≥ 1 and sup-
pose that f ∈ W (N)

p,α (Ω) with 1 ≤ p ≤ ∞ . Suppose also that N 3 m ≥ 2 .

(a) If 1 ≤ p ≤ ∞ with nr, N ∈ N such that nr < r(α + 1/q) < nr + 1 ≤ N
then

|E[ν,r]
m f | = |E[ν]

m gr| ≤
c ‖f‖p,α,N

mr(α+1/q)
. (140)

(b) For 1 ≤ p ≤ ∞ and r(α+ 1/q) = nr + 1 ≤ N we have

|E[ν,r]
m f | = |E[ν]

m gr| ≤


c ‖f‖1,α,N

mnr+1
, p = 1 ,

c ‖f‖p,α,N ln1/q(m)

mnr+1
, 1 < p ≤ ∞ .

(141)

In both (140) and (141), c is a positive constant which is independent
of both m and f .

Proof: This follows at once by applying Theorem 14 to the function gr

which is in the weighted Sobolev space W
(N)
p,αr+(r−1)/q(Ω) . ♠

Thus we see that, on comparing (124) with (140), a sigmoidal transformation
of order r speeds up the rate of convergence of the quadrature rule to the
integral by a factor of r. On choosing r to be 4, 5 or 6 say, this can lead to
a very substantial increase in the rate of convergence.
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5 Cauchy Principal Value Integrals

5.1 Introduction

Suppose the function f is defined on Ω̄× Ω as follows

f(x;λ) :=


φ(x)

x− λ
, x 6= λ ,

0 , x = λ ,
(142)

where φ is “well behaved” on Ω̄. (We shall be more explicit about the prop-
erties of φ later.) In order to assign a meaning to If(· ;λ) we shall define the
integral as a Cauchy principal value integral; that is we shall write

If(· ;λ) =

∫ 1

0

− φ(x) dx

x− λ
:= lim

ε→0+

( ∫ λ−ε

0

+

∫ 1

λ+ε

)
φ(x) dx

x− λ
, (143)

provided that the limit exists. As before, see (111), we shall define Q
[ν]
m f(· ;λ)

by

Q[ν]
m f(· ;λ) =


1
m

m−1∑
j=0

f((j + tν)/m;λ) , −1 < ν < 1 ,

1
m

m∑
j=0

′′f(j/m;λ) , ν = 1 .
(144)

We note that since, in(142), we have defined f(λ, λ) to be zero, Q
[ν]
m f(· ;λ)

is always defined even if, for some integer l ∈ {0, 1, 2, . . . ,m − 1}, we have
(l + tν)/m = λ .

In order to obtain a result comparable to Theorem 14, we will intro-
duce an appropriate “subtraction function” Sn(· ;λ), see equation (164), with
the properties that Sn(· ;λ) has the same singularity at λ as does the func-
tion f(· ;λ) and, furthermore, has the same zeros as φ at the end-points of Ω̄.
Then we shall apply Theorem 14 to the function f(· ;λ)−Sn(· ;λ) and obtain
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both a quadrature rule for the Cauchy principal value integral If(·;λ) and

an estimate of the truncation error E
[ν]
m f(·;λ) . So much for an outline of

the strategy for this section; let us now get down to details. First we require
a theorem which will give us an explicit expression for I − Q

[ν]
m of certain

functions which will play a key role in the development of this theory.

5.2 The subtraction function

We shall only prove the next theorem for the case when −1 < ν < 1 , but
the modification required when ν = 1 is straightforward. In the context of
this theorem we define Q

[ν]
m g(· ;λ) by

Q[ν]
m g(· ;λ) =


1
m

m−1∑
j=0

g((j + tν)/m ;λ) , mλ− tν /∈ Z ,

1
m

m−1∑
j=0

j 6=l

g((j + tν)/m ;λ) , mλ− tν = l ∈ Z .
(145)

Theorem 16 Suppose a function g(· ;λ) is defined on the strip S, where
S := {z = x + iy : 0 ≤ x ≤ 1,−∞ < y < ∞} and satisfies the following
conditions:

(a) g(· ;λ) is real on Ω̄ and analytic in S except for a simple pole at the
point λ ∈ Ω ;

(b) g(· ;λ) is 1-periodic;

(c) for z = x+ ia , 0 ≤ x ≤ 1 , m ∈ N is such that

lim
a→∞

e−2πma|g(x+ ia ;λ)| = 0 .

Then
Ig(· ;λ)−Q[ν]

m g(· ;λ) = π res
z=λ

{cot(π(mz − tν))g(z;λ)} , (146)
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where res
z=λ

{h(z)} denotes the residue of the function h at the point λ.

Proof: Suppose −1 < ν < 1 . Choose a > 0 and let Ca denote the closed
contour described positively (that is, anti-clockwise) comprising the straight
line segments joining the points A(0,−a), B(1,−a), C(1, a), D(0, a) and
A again. Consider the integral

Ia :=
1

2πi

∫
Ca

g(z ;λ) cot(π(mz − tν)) dz . (147)

If λ 6= (l + tν)/m for some integer l, the integrand will have simple poles at
the points zj := (j + tν)/m , for j = 0(1)(m − 1) , and at the point λ. For
j = 0(1)(m− 1) we have

res
z=zj

{g(z;λ) cot(π(mz − tν))} =
1

πm
g((j + tν)/m;λ) . (148)

Applying the residue theorem to Ia and recalling (145) we have

Ia =
1

π
Q[ν]

m g(· ;λ) + res
z=λ

{g(z ;λ) cot(π(mz − tν))} . (149)

Let us now consider the contour integral Ia in more detail. We have∫
Ca

=

∫
AB

+

∫
BC

+

∫
CD

+

∫
DA

. (150)

Since, by condition (b), g(· ;λ) is 1-periodic then so is g(z ;λ) cot(π(mz−tν))
so that

∫
BC

+
∫

DA
is zero. Along AB we have z = x− ia with x going from

0 to 1. Along CD , z = x+ ia with x from 1 to 0. Since the integrand is real
when z is real we find

Ia = − 1

π

∫ 1

0

=[g(x+ ia;λ) cot(π(m(x+ ia)− tν))] dx . (151)
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As =(z) = −<(iz) we find, on writing x+ ia = z in (151), that

Ia =
1

π
<

{ ∫ ia+1

ia

ig(z ;λ) cot(π(mz − tν)) dz

}
. (152)

From (149) we obtain

Q[ν]
m g(· ;λ) = −π res

z=λ
{g(z ;λ) cot(π(mz − tν))}

+ <
{ ∫ ia+1

ia

ig(z ;λ) cot(π(mz − tν)) dz

}
. (153)

Let us now obtain a comparable expression for Ig(· ;λ). Let C+
a be a

contour in the upper half plane (=z > 0) from A1(0, 0) to B1(1, 0), but
indented at λ by a semi-circle γε say of radius ε > 0 described negatively,
the straight line segments B1C1 from B1(1, 0) to C1(1, a), C1D1 from C1

to D1(0, a) and D1A1 from D1 back to A1. Within this closed contour the
function g(· ;λ) is analytic so that by Cauchy’s theorem we have∫

C+
a

g(z ;λ) dz = 0 . (154)

Splitting this integral into its component parts we have, since g(· ;λ) is 1-
periodic, that

∫
B1C1

+
∫

D1A1
= 0 . From the integrals over A1B1 and C1D1

we have∫ λ−ε

0

g(x ;λ) dx+

∫
γε

g(z ;λ) dz +

∫ 1

λ+ε

g(x ;λ) dx+

∫ ia

1+ia

g(z ;λ) dz = 0 .

(155)
On letting ε → 0 and recalling that γε is a semi-circle described negatively
we have ∫ 1

0

− g(x ;λ) dx = πi res
z=λ

{ g(z ;λ)}+

∫ 1+ia

ia

g(z ;λ) dz . (156)
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On taking complex conjugates and recalling from (a) that g(· ;λ) is real on Ω̄
we have simply that

Ig(· ;λ) =

∫ 1

0

− g(x ;λ) dx = <
{∫ ia+1

ia

g(z ;λ) dz

}
. (157)

From (153) and (157) we find

Ig(· ;λ)−Q[ν]
m g(· ;λ) = π res

z=λ
{g(z ;λ) cot(π(mz − tν))} (158)

+ <
{∫ ia+1

ia

[1− i cot(π(mz − tν))]g(z ;λ) dz

}
.

Consider now the integral over (ia, ia+1) where a > 0 . On writing z = x+ia ,
0 ≤ x ≤ 1 , we find

|1− i cot(π(mz − tν))| ≤
2e−2πma

1− e−2πma
. (159)

Hence

<
{ ∫ ia+1

ia

[1− i cot(π(mz − tν))]g(z ;λ) dz

}
≤ 2

1− e−2πma

∫ 1

0

e−2πma|g(x+ ia ;λ)| dx . (160)

But, from (c), we have that the integral tends to zero in the limit as a→∞
so that from (158) we recover (146).

It remains to consider the case when mλ − tν = l for some integer l. In
this case we have cot(π(mz−tν)) = cot(πm(z−λ)) . Consider now, see (147),
the integral Ia. The integrand has simple poles at the points zj = (j+ tν)/m
for j = 0(1)(m − 1) with j 6= l and a pole of order two at λ. Thus we find,
recall (145),

Ia = (1/π)Q[ν]
m g(· ;λ) + res

z=λ
{g(z ;λ) cot(πm(z − λ))} . (161)
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Arguing as before we find (cf.(153))

Q[ν]
m g(· ;λ) = −π res

z=λ
{g(z ;λ) cot(πm(z − λ))}

+ <
{ ∫ ia+1

ia

ig(z ;λ) cot(πm(z − λ)) dz

}
. (162)

We find from (157) and (162) that

Ig(· ;λ)−Q[ν]
m g(· ;λ) = π res

z=λ
{g(z ;λ) cot(πm(z − λ))} (163)

+ <
{∫ ia+1

ia

[1− i cot(πm(z − λ))]g(z ;λ) dz

}
.

On letting a → ∞ , we can show, as before, that the integral on the right
of (163) tends to zero which establishes (146) in this case and the theorem
is proved. ♠

Having established this theorem we can now introduce an appropriate sub-
traction function and apply Theorem 16 to it. We are going to assume
that f(· ;λ) is defined by (142) and that the function φ is in the space

W
(N)
p,α (Ω) where 1 ≤ p ≤ ∞ and n < α + 1/q < n + 1 ≤ N where n ∈ N0

and N ∈ N . We know, from Theorem 4, that φ(j)(0) = φ(j)(1) = 0 for all
j = 0(1)(n− 1) . Since λ ∈ Ω , from (142) we have f (j)(0 ;λ) = f (j)(1 ;λ) = 0
for j = 0(1)(n− 1) . Again, as f(· ;λ) has a pole at λ, we need to choose the
subtraction function Sn(· ;λ) so that it both cancels out this singularity and

is such that S(j)
n (0 ;λ) = S(j)

n (1 ;λ) = 0 for j = 0(1)(n− 1) . Bearing in mind
the conditions of Theorem 16 we require also that Sn(· ;λ) be 1-periodic.

Definition 17 For given λ ∈ Ω and n ∈ N0 , the subtraction function Sn(· ;λ)
is defined on Ω̄× Ω by

Sn(x ;λ) :=
sinn(πx)

sinn(πλ)


π cot(π(x− λ)) , x 6= λ , n even,

π csc(π(x− λ)) , x 6= λ , n odd,

0 , x = λ .

(164)



5 Cauchy Principal Value Integrals E44

Note in passing that when n = 0 , S0(· ;λ) corresponds to the subtraction
function ψ introduced by Lyness [8].

Theorem 18 For a given n ∈ N0 and for all m ∈ N such that m ≥ [n/2]+1
we have

ISn(· ;λ)−Q[ν]
m Sn(· ;λ) =

{
π cot(π(mλ− tν)) , mλ− tν /∈ Z ,
(πn/m) cot(πλ) , mλ− tν ∈ Z .

(165)

Proof: We may, from (164), continue the definition of Sn(x ;λ) into the
strip S by replacing x by z but ignoring the condition in (164) that Sn(λ;λ) =
0 . Instead we observe that for n both even and odd the function Sn(z ;λ)
has a simple pole at z = λ with residue 1. With this Sn(z ;λ) , it is readily
verified that it satisfies conditions (a) and (b) of Theorem 16. Let us now
consider condition (c).

When n is even we need to determine

lim
a→∞

e−2πma

∣∣∣∣π sinn(π(x+ ia))

sinn(πλ)
cot(π(x+ ia− λ))

∣∣∣∣ , (166)

where 0 ≤ x ≤ 1 . From Abramowitz and Stegun [1, §4.3.83]

| sinn(π(x+ ia))| ≤ coshn(πa) . (167)

Since

cot(π(x+ ia− λ)) = −i 1 + e−2πae2iπ(x−λ)

1− e−2πae2iπ(x−λ)
, (168)

it follows that
lim
a→∞

| cot(π(x+ ia− λ))| = 1 . (169)

From (166), (167) and (169) we see that condition (c) of Theorem 16 will be
satisfied if m is such that m ≥ n/2 + 1 .
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Suppose now that n is odd. From [1, §4.3.85] we have

| csc(π(x+ ia− λ))| ≤ 1/ sinh(πa) . (170)

Then, from (164), (167) and (170) we have that

lim
a→∞

e−2πma|Sn(x+ ia ;λ)| = 0 , (171)

provided that −2m + n − 1 < 0 . Since n is odd this will be true when
m ≥ [n/2] + 1 .

Thus, under the given conditions, we can apply Theorem 16 to the func-
tion Sn(· ;λ) to give

ISn(· ;λ)−Q[ν]
m Sn(· ;λ) = π res

z=λ
{cot(π(mz − tν))Sn(z ;λ)} (172)

We need to consider the residue at λ in the two cases when mλ− tν /∈ Z and
mλ− tν = l where l ∈ {0, 1, . . . ,m− 1} .

Let us recall from [1, §4.3.68 and §4.3.70] that

π

{
cot
csc

}
(π(z − λ)) =

1

z − λ
+O(z − λ) . (173)

When mλ − tν /∈ Z the function cot(π(mz − tν))Sn(z ;λ) has a simple pole
at z = λ and we have, for n both odd and even, that

πres
z=λ

{cot(π(mz − tν))Sn(z ;λ)} = π cot(π(mλ− tν)) . (174)

This establishes the first of (165).

Suppose now that mλ− tν = l , an integer such that l ∈ {0, 1, . . . ,m−1}.
For z 6= λ it follows that cot(π(mz− tν)) = cot(πm(z− λ)) . In this case the
function cot(πm(z − λ))Sn(z ;λ) has a pole of order two at z = λ for n both
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even and odd. Since, near z = 0 , both cot z and csc z behave like 1/z+O(z)
we find near z = λ , for n either even or odd that

Sn(z ;λ) =
1

z − λ
+ nπ cot(πλ) +O(z − λ) . (175)

It then follows that near z = λ

cot(πm(z − λ))Sn(z ;λ) =
1

πm(z − λ)2
+
n

m
cot(πλ)

1

z − λ
+O(1) , (176)

and we find

πres
z=λ

{cot(πm(z − λ))Sn(z ;λ)} = (πn/m) cot(πλ) . (177)

This is the second of (165) and the theorem is proved. ♠

We comment in passing that (165) is a very neat result giving the difference,
between the Cauchy principal value integral ISn(· ;λ) and the quadrature

sum Q
[ν]
m Sn(· ;λ) , as a single term. This generalises beautifully a result given

by Lyness [8]. We also note that the right-hand side of (165) does not depend
on whether n is even or odd although of course, the definition of Sn(· ;λ) does.

5.3 The function fn

In order to use the results of Section 4 to obtain the appropriate quadrature
rule for Cauchy principal value integrals we shall now introduce a function
fn say, which satisfies the conditions of Theorem 14. We define, on Ω̄× Ω ,

fn(x ;λ) :=


φ(x)

x− λ
− φ(λ)Sn(x ;λ) , x 6= λ ,

φ′(λ)− nπφ(λ) cot(πλ) , x = λ .
(178)

Note that fn(λ ;λ) is defined as limx→λfn(x ;λ) and the definition in (178)
follows from (164), (175) and the application of l’Hôpital’s rule.
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From (164), for x 6= λ we may write Sn as

Sn(x ;λ) =
sinn(πx)

sinn(πλ)

[
1

x− λ
+ hn(x ;λ)

]
, (179)

say where, from Abramowitz and Stegun [1, §4.3.91 and §4.3.93], the function

hn(x ;λ) :=
∞∑

k=1

2ak,n(x− λ)

(x− λ)2 − k2
, (180)

for |x− λ| < 1 , the coefficients ak,n being defined by

ak,n :=

{
1 , n even,

(−1)k , n odd.
(181)

From (178) to (180) we shall write fn as

fn(x ;λ) = fn,1(x ;λ)− fn,2(x ;λ) , (182)

where fn,1 and fn,2 are defined on Ω̄× Ω by

fn,1(x ;λ) :=

sinn(πx)

(
φ(x) cscn(πx)− φ(λ) cscn(πλ)

x− λ

)
, x 6= λ ,

φ′(λ)− nπφ(λ) cot(πλ) , x = λ ;
(183)

and
fn,2(x ;λ) := φ(λ) cscn(πλ) sinn(πx)hn(x ;λ) . (184)

Given that φ is in some appropriate weighted Sobolev space we now need to
find the corresponding space for fn before applying Theorem 14. First, the
function fn,1(· ;λ).

Theorem 19 For n ∈ N0 , N 3 N ≥ 2 and 1 ≤ p ≤ ∞ , suppose that
φ ∈ W (N)

p,α (Ω) where

n < α+ 1/q < n+ 1 ≤ N . (185)



5 Cauchy Principal Value Integrals E48

(a) If p = ∞ , then fn,1(· ;λ) ∈ W (N−1)
∞,α (Ω) with

‖fn,1(· ;λ)‖∞,α,N−1 ≤
c ‖φ‖∞,α,N

λ(1− λ)
, (186)

where c is independent of λ and φ.

(b) If 1 ≤ p < ∞ , then fn,1(· ;λ) ∈ W
(N−2)
p,α−ε (Ω) for any positive ε (no

matter how small) with

‖fn,1(· ;λ)‖p,α−ε,N−2 ≤
c ‖φ‖p,α,N

λ(1− λ)
, (187)

where c is independent of λ and φ.

Proof: For x ∈ Ω and n ∈ N0 let us write

ψn(x) := φ(x) cscn(πx) . (188)

Now the function cscn(πx) is defined on Ω and is infinitely differentiable
there. Since, for x ∈ Ω̄ ,

πx(1− x) ≤ sin(πx) ≤ 4x(1− x) , (189)

we conclude, by considering the behaviour of cscn(πx) near its end-points,

that it is in the space W
(N)
∞,−n(Ω) for any N ∈ N0 and its norm will depend

only on n and N . By Theorem 8 we will have that ψn ∈ W
(N)
p,α−n(Ω) for

1 ≤ p ≤ ∞ and furthermore

‖ψn‖p,α−n,N ≤ c ‖φ‖p,α,N . (190)

(a) Suppose p = ∞ . If we write

Ψn(x ;λ) :=
ψn(x ;λ)− ψn(λ;λ)

x− λ
, (191)
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then, by Theorem 26, Ψn(· ;λ) ∈ W (N−1)
∞,α−n(Ω) and

‖Ψn(· ;λ)‖∞,α−n,N−1 ≤
c ‖ψn‖∞,α−n,N−1

λ(1− λ)
, (192)

where c is independent of λ and ψn. Since sinn(πx) ∈ W
(N−1)
∞,n (Ω) it

follows from (183) and Theorem 8 again that fn,1(· ;λ) ∈ W
(N−1)
∞,α (Ω)

and furthermore, from (190), that (186) is satisfied.

(b) Suppose 1 ≤ p <∞ . From Theorem 27 applied to the function ψn we

have , for any ε > 0 , that Ψn(· ;λ) ∈ W (N−2)
p,α−n−ε(Ω) with

‖Ψn(· ;λ)‖p,α−n−ε,N−2 ≤
c ‖ψn‖p,α−n,N

λ(1− λ)
≤ c ‖φ‖p,α,N

λ(1− λ)
, (193)

on using (190) where c is independent of both λ and φ. Again, since

sinn(πx) ∈ W
(N−2)
∞,n (Ω) we have from Theorem 8 applied to (183) that

fn,1(· ;λ) ∈ W (N−2)
p,α−ε (Ω) with its norm satisfying (187).

♠

Consider now the functionfn,2(· ;λ), see (184). Before stating the re-
sult, we first need the following property of the function hn(· ;λ), see (180)
and (181).

Theorem 20 For all n ∈ N0 , λ ∈ Ω and N ∈ N we have that

hn(· ;λ) ∈ W (N−1)
∞,0 (Ω) ,

with
‖hn(· ;λ)‖∞,0,N−1 ≤

c

λ(1− λ)
, (194)

where c is a positive constant independent of λ.



5 Cauchy Principal Value Integrals E50

Proof: For j = {0, 1, . . . , N − 1} and given λ ∈ Ω we need to consider

Hj(λ) := max
0≤x≤1

(x(1− x))j|h(j)
n (x ;λ)| . (195)

We first observe from (180) that

hn(1− x ;λ) = −hn(x ; 1− λ) , (196)

so that for j = 0(1)(N − 1)

h(j)
n (1− x ;λ) = (−1)j+1h(j)

n (x ; 1− λ) . (197)

As a consequence we see from (195) that we may write

Hj(λ) = max{Hj,1(λ), Hj,1(1− λ)} (198)

say, where we define

Hj,1(λ) := max
0≤x≤λ

(x(1− x))j|h(j)
n (x ;λ)| . (199)

Suppose that j = 0 ; from (180)

|hn(x ;λ)| ≤ 2
∞∑

k=1

1

k2 − (x− λ)2
. (200)

Since for 0 ≤ x ≤ λ we have k2 − λ2 ≤ k2 − (x− λ)2 it follows that

H0,1(λ) ≤ 2

{
1

1− λ2
+

∞∑
k=2

1

k2 − λ2

}
. (201)

Since, for k ≥ 2 , (k − 1)2 ≤ k2 − λ2 we have, from the definition of the
Riemann zeta function (see Abramowitz and Stegun [1, §23.2.1]), that

H0,1(λ) ≤ 2

{
1

1− λ2
+ ζ(2)

}
≤ c

1− λ
, (202)
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where c is independent of λ. From (198) we have that

H0(λ) ≤ c max

{
1

1− λ
,

1

λ

}
≤ c

λ(1− λ)
. (203)

We may proceed similarly for Hj(λ) when j = 1(1)(N − 1) . From (180),
on splitting each term of the sum into partial fractions and differentiating
j times we find that

Hj,1(λ) ≤ j ! max
0≤x≤λ

{ ∞∑
k=1

(x(1− x))j

(k − λ+ x)j+1
+

∞∑
k=1

(x(1− x))j

(k + λ− x)j+1

}
. (204)

For 0 ≤ x ≤ λ we have that

k − 1 ≤ k − λ+ x and k ≤ k + λ− x ,

so that

Hj,1(λ) ≤ j !

{
max
0≤x≤λ

(x(1− x))j

(1− λ+ x)j+1
+ 2ζ(j + 1)

}
, (205)

on recalling the definition of the Riemann zeta function. It readily follows
that

max
0≤x≤λ

(x(1− x))j

(1− λ+ x)j+1
≤ max

0≤x≤λ

1

1− λ+ x
× max

0≤x≤λ

(
x(1− x))

1− λ+ x

)j

≤ 1

1− λ
.

(206)
From (205) and (206) we have

Hj,1(λ) ≤ c

1− λ
(207)

for some c which is independent of λ. From (198) we have that

Hj(λ) ≤ c max

{
1

λ
,

1

1− λ

}
, (208)

so that (194) follows at once and the theorem is proved. ♠

We are now in a position to determine the weighted Sobolev space in
which the function fn,2(· ;λ) may be found.
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Theorem 21 Suppose φ ∈ W (N)
p,α (Ω) for 1 ≤ p ≤ ∞ with n ∈ N0 and N ∈ N

such that
n < α+ 1/q < n+ 1 ≤ N . (209)

Then fn,2(· ;λ) ∈ W (N−1)
∞,n (Ω) with

‖fn,2(· ;λ)‖∞,n,N−1 ≤
c ‖φ‖p,α,N

(λ(1− λ))n+2−(α+1/q)
, (210)

where c is independent of λ and φ.

Proof: Consider the function

sn(x) := sinn(πx) . (211)

This is infinitely differentiable on Ω and, from considering its behaviour near
the end-points of Ω, we have that sn ∈ W

(N−1)
∞,n (Ω) with ‖sn‖∞,n,N−1 ≤ c ,

with c depending only on n and N . By Theorems 8 and 20 it follows that
snhn(· ;λ) ∈ W (N−1)

∞,n (Ω) with

‖snhn(· ;λ)‖∞,n,N−1 ≤
c

λ(1− λ)
, (212)

where c is independent of λ. From (184) it follows that fn,2(· ;λ) ∈ W (N−1)
∞,n (Ω) .

Since φ ∈ W (N)
p,α (Ω) it follows from (21) that

|φ(λ)| ≤ c ‖φ‖p,α,N(λ(1− λ))α−1/p , (213)

where c is independent of λ. Again from (189) we have that for some c
independent of λ

cscn(πλ) ≤ c (λ(1− λ)−n . (214)

From (3), (184), (213) and (214) it follows that (210) follows immediately
and the theorem is proved. ♠
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Comment: as a consequence of (209), inequality (210) may be replaced
by the weaker result that

‖fn,2(· ;λ)‖∞,n,N−1 ≤
c ‖φ‖p,α,N

(λ(1− λ))2
, (215)

and this will be useful later when we consider sigmoidal transformations.

By combining the results of Theorem 19 and 21 we now identify a suitable
weighted Sobolev space for the function fn(· ;λ), see (182), and also its norm
in that space.

Theorem 22 Suppose φ ∈ W
(N)
p,α (Ω) for 1 ≤ p ≤ ∞ , with n ∈ N0 and

N 3 N ≥ 2 such that

n < α+ 1/q < n+ 1 ≤ N . (216)

(a) If p = ∞ , then fn(· ;λ) ∈ W (N−1)
∞,α (Ω) with

‖fn(· ;λ)‖∞,α,N−1 ≤
c ‖φ‖∞,α,N

(λ(1− λ))n+1−α
, (217)

where c is independent of φ and λ.

(b) If 1 ≤ p <∞ , then fn(· ;λ) ∈ W (N−2)
p,α−ε (Ω) for any ε > 0 with

‖fn(· ;λ)‖p,α−ε,N−2 ≤
c ‖φ‖p,α,N

(λ(1− λ))n+2−(α+1/q)
, (218)

c being independent of φ and λ.
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Proof:

(a) Suppose p = ∞ . Theorem 19(a) implies that fn,1(· ;λ) ∈ W
(N−1)
∞,α (Ω)

and from Theorem 21 we have that fn,2(· ;λ) ∈ W
(N−1)
∞,n (Ω) . Since

from (216) when p = ∞ we have 1/q = 1 it follows that α < n so that

by Theorem 2(b) we have fn,2(· ;λ) ∈ W (N−1)
∞,α (Ω) and furthermore

‖fn,2(· ;λ)‖∞,α,N−1 ≤ c ‖fn,2(· ;λ)‖∞,n,N−1 . (219)

On recalling (182) we have that fn(· ;λ) ∈ W (N−1)
∞,α (Ω) and from (186),

(210) and (219), (217) follows since n+ 1− α > 1 .

(b) Suppose now that 1 ≤ p < ∞ . For any positive ε we have from

Theorem 19(b) that fn,1(· ;λ) ∈ W (N−2)
p,α−ε (Ω) with norm given by (187).

Again, from Theorem 21 we have fn,2(· ;λ) ∈ W
(N−1)
∞,n (Ω) with norm

given by (210). However, Theorem 6 implies that fn,2(· ;λ) ∈ W (N−1)
p,α−ε (Ω)

with
‖fn,2(· ;λ)‖p,α−ε,N−1 ≤ c ‖fn,2(· ;λ)‖∞,n,N−1 , (220)

for some c independent of fn,2. From (182) we shall certainly have

fn(· ;λ) ∈ W (N−2)
p,α−ε (Ω) and from (182), (187), (210), (216) and (220) we

see that (218) follows and the theorem is proved.

♠

We are now in a position to apply Theorem 14(a) to the function fn(· ;λ)
which will give the required quadrature rule with error term for the Cauchy
principal value integral If(· ;λ). This we shall do in the next section.

5.4 The denouement

Let us recall that the function f(· ;λ) is defined in (142), the Cauchy prin-

cipal value integral If(· ;λ) in (143) and the sum Q
[ν]
m f(· ;λ) in (144). It
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is appropriate at this stage, following Lyness [8, eq(1.12)] , to define the
function

S[ν]
m f(· ;λ) :=

{
πφ(λ) cot(π(tν −mλ)) , mλ− tν /∈ Z ,
−φ′(λ)/m , mλ− tν ∈ Z .

(221)

We now have the following theorem.

Theorem 23 Suppose φ ∈ W (N)
p,α (Ω) where 1 ≤ p ≤ ∞ , N 3 N ≥ 2 and α is

such that
n < α+ 1/q < n+ 1 ≤ N , (222)

for some n ∈ N0 . For m ∈ N such that m ≥ [n/2] + 1 and λ ∈ Ω we have

If(· ;λ) =

∫ 1

0

− φ(x) dx

x− λ
= Q[ν]

m f(· ;λ)− S[ν]
m f(· ;λ) + E[ν]

m f(· ;λ) (223)

where the truncation error E
[ν]
m f(· ;λ) is such that

|E[ν]
m f(· ;λ)| ≤ c ‖φ‖p,α,N

(λ(1− λ))n+2−(α+1/q)mα+1/q−ε(p)
, (224)

c being independent of λ, φ and m and ε(p) being such that ε(∞) = 0 and
ε(p) > 0 for 1 ≤ p <∞ .

Proof: Suppose first that mλ − tν /∈ Z . Applying Theorem 14 to the
function fn(· ;λ) we have from

Ifn(· ;λ) = Q[ν]
m fn(· ;λ) + E[ν]

m fn(· ;λ) (225)

that

If(· ;λ) = Q[ν]
m f(· ;λ) + φ(λ)(ISn(· ;λ)−Q[ν]

m Sn(· ;λ)) + E[ν]
m fn(· ;λ) . (226)

From Theorem 18 we immediately recover (223) with S
[ν]
m f(· ;λ) being defined

by (221).
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Suppose now that mλ− tν = l for some l ∈ {0, 1, . . . ,m−1} and |ν| < 1 .
We now have

Ifn(· ;λ) =
1

m

m−1∑
j=0

j 6=l

fn(
j + tν
m

;λ) +
1

m
fn(λ ;λ) + E[ν]

m fn(· ;λ) . (227)

From (178) we obtain

If(· ;λ) =
1

m

m−1∑
j=0

j 6=l

fn(
j + tν
m

;λ)− φ(λ)

m

m−1∑
j=0

j 6=l

Sn(
j + tν
m

;λ) + φ(λ)ISn(· ;λ)

+
1

m
{φ′(λ)− nπφ(λ) cot(πλ)}+ E[ν]

m fn(· ;λ) . (228)

Recall, from (142), that f((l+ tν)/m ;λ) = f(λ ;λ) = 0 and, from (164), that
Sn((l + tν)/m ;λ) = Sn(λ ;λ) = 0 . Restoring these zero terms to the sums
gives

If(· ;λ) = Q[ν]
m f(· ;λ) + φ(λ){ISn(· ;λ)−Q[ν]

m Sn(· ;λ)}

+
1

m
{φ′(λ)− nπφ(λ) cot(πλ)}+ E[ν]

m fn(· ;λ) . (229)

But, from (165) and (221), since mλ− tν ∈ Z we recover (223) again.

It remains to put an upper bound on |E[ν]
m fn(· ;λ)|. If, when 1 ≤ p < ∞

we apply Theorem 14(a) to the function fn(· ;λ) which, from Theorem 22(b),

we know to be in W
(N−2)
p,α−ε (Ω) we have from (124) and (218) that

|E[ν]
m fn(· ;λ)| ≤ c ‖φ‖p,α,N

(λ(1− λ))n+2−(α+1/q)mα+1/q−ε
. (230)

Alternatively when p = ∞ we know that fn(· ;λ) ∈ W
(N−1)
∞,α (Ω), from Theo-

rem 22(a), with norm given by (217). This and (124) together give

|E[ν]
m fn(· ;λ)| ≤ c ‖φ‖∞,α,N

(λ(1− λ))n+1−αmα+1
. (231)
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In both (230) and (231) the constant c is independent of λ, φ and m. These
two results may be combined as in (224), and the theorem is proved. ♠

Note: in spite of the complexity of the subtraction function for arbitrary
n ∈ N0 we have obtained the same quadrature rule as did Lyness [8] for
the particular case where n = 0 . We also comment from (224) that for
1 ≤ p <∞ the rate of convergence is O(1/mα+1/q−ε), where we may choose ε
to be arbitrarily small. We have been unable to derive a similar result with
ε = 0 . Finally we comment on the dependence of the error on λ. When λ is
close to either end-point the term 1/(λ(1− λ))n+2−(α+1/q) will become large
but we note that the exponent of λ(1−λ)) is always less than 2, independent
of the value of n. This will be of some importance when, in the next section,
we consider sigmoidal transformations.

5.5 Sigmoidal transformations

We now consider the effect of applying a sigmoidal transformation of order r
(see Section 3) to the integral If(· ;λ), see (143). On writing

x = γr(t) , λ = γr(s) , (232)

where 0 < s < 1 , we may, on using the usual rules for the change of variable
of integration, rewrite If(· ;λ) as

If(· ;λ) = IFr(· ; s) =

∫ 1

0

− Gr(t, s) dt

t− s
. (233)

The function Fr is defined on Ω̄× Ω by

Fr(t ; s) :=


Gr(t, s)

t− s
, t 6= s ,

0 , t = s ,
(234)
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say, compare with (142), where the function Gr is defined on Ω̄× Ω by

Gr(t ; s) :=


t− s

γr(t)− γr(s)
φ(γr(t))γ

′
r(t) , t 6= s ,

φ(λ) , t = s .
(235)

We must first determine a weighted Sobolev space for the function Gr(· ; s).

Theorem 24 Consider the case φ ∈ W
(N)
p,α (Ω) for 1 ≤ p ≤ ∞ , α real

and N ∈ N0 . If γr is a sigmoidal transformation of order r ≥ 1 then
Gr(· ; s) ∈ W (N)

p,αr+(r−1)/q−ε(Ω) for any ε > 0 with

‖Gr(· ; s)‖p,αr+(r−1)/q−ε,N ≤ c ‖φ‖p,α,N

λ(1− λ)
, (236)

where c is independent of λ and φ.

Proof: On Ω̄× Ω let us define a function

Φr(x ;λ) :=


γ−1

r (x)− γ−1
r (λ)

x− λ
φ(x) , x 6= λ ,

(γ−1
r )′(λ)φ(λ) , x = λ .

(237)

Since (γ−1
r )′(λ) = 1/γ′r(γ

−1
r (λ)) it is readily shown that

Gr(t ; s) = Φr(γr(t) ;λ)γ′r(t) . (238)

In order to use Theorem 10 to determine an appropriate space for Gr, we
must first determine a space for Φr. First, let us define

Γr(x ;λ) :=


γ−1

r (x)− γ−1
r (λ)

x− λ
, x 6= λ ,

(γ−1
r )′(λ) , x = λ .

(239)

The function γ−1
r is infinitely differentiable on Ω and γ−1

r (x) = O(x1/r) near
x = 0 and γ−1

r (x) = 1 + O((1 − x)1/r) near x = 1 . It follows that, for any



5 Cauchy Principal Value Integrals E59

ε > 0 and N1 ∈ N0 , we will have γ−1
r ∈ W

(N1)
∞,−ε(Ω) . By Theorem 26, for

0 < ε < 1 we have that Γr(· ;λ) ∈ W (N1−1)
∞,−ε (Ω) with

‖Γr(· ;λ)‖∞,−ε,N1−1 ≤
c ‖γ−1

r ‖∞,−ε,N1

λ(1− λ)
, (240)

where c is independent of λ. Since Φr(· ;λ) = φΓr(· ;λ) it follows from Theo-

rem 8 that if we choose N1 = N + 1 then, since φ ∈ W (N)
p,α (Ω) , we shall have

Φr(· ;λ) ∈ W (N)
p,α−ε(Ω) with

‖Φr(· ;λ)‖p,α−ε,N ≤ c ‖φ‖p,α,N

λ(1− λ)
(241)

where c is now independent of λ and φ. From (238) and Theorem 10 it follows

that Gr(· ; s) ∈ W (N)
p,αr+(r−1)/q−ε(Ω) , for any ε > 0 , and (236) follows at once.

♠

We are now in a position to consider the quadrature rule and its trunca-
tion error after a sigmoidal transformation has been applied. Let us recapit-
ulate on the quadrature rule we have obtained so far. Applying (223) to the
function Fr, see (234), we have

If(· ;λ) = IFr(· ; s) = Q[ν]
m Fr(· ; s)− S[ν]

m Fr(· ; s) + E[ν]
m Fr(· ; s) (242)

=: Q[ν,r]
m f(· ;λ)− S[ν,r]

m f(· ;λ) + E[ν,r]
m f(· ;λ) ,

say. Thus we have

Q[ν,r]
m f(· ;λ) = Q[ν]

m Fr(· ; s) =


1
m

m−1∑
j=0

Fr((j + tν)/m; s) , −1 < ν < 1 ,

1
m

m∑
j=0

′′Fr(j/m; s) , ν = 1 .

(243)
Again, we note that these sums are always defined since, from (234), we have
defined Fr to be zero when t = s .
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From (235) and the use of l’Hôpital’s rule it is straightforward to show
that

G′
r(s ; s) =

2(γ′r(s))
2φ′(λ) + γ′′r (s)φ(λ)

2γ′r(s)
. (244)

From (221), (235) and (242) we have

S[ν,r]
m f(· ;λ) = S[ν]

m Fr(· ; s) =

{
πφ(λ) cot(π(tν −ms)) , ms− tν /∈ Z ,
−G′

r(s ; s)/m , ms− tν ∈ Z ,
(245)

where G′
r(s ; s) is defined in (244).

We are now in a position to state the principal result of this section.

Theorem 25 Let γr be a sigmoidal transformation of order r > 1 . Suppose
φ ∈ W (N)

p,α (Ω) where 1 ≤ p ≤ ∞ and nr, N ∈ N are such that

nr < r(α+ 1/q)− ε < nr + 1 ≤ N . (246)

For m ∈ N such that m ≥ [nr/2] + 1 and λ ∈ Ω we have

If(· ;λ) =

∫ 1

0

− φ(x) dx

x− λ
= Q[ν,r]

m f(· ;λ)− S[ν,r]
m f(· ;λ) + E[ν,r]

m f(· ;λ) (247)

where Q
[ν,r]
m and S

[ν,r]
m are defined in (243)–(245). The truncation error E

[ν,r]
m

is such that

|E[ν,r]
m f(· ;λ)| ≤ c ‖φ‖p,α,N

(λ(1− λ))1+2/rmr(α+1/q)−ε
, (248)

where ε is an arbitrarily small positive number and c is independent of λ,
m and φ.
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Proof: This follows by Theorem 23 where we replace f(· ;λ) by Fr(· ; s)
and φ by Gr(· ; s). If, in (224) applied to Gr(· ; s), we replace the exponent
“n+ 2− (α+ 1/q)” by 2 we have

|E[ν,r]
m f(· ;λ)| ≤

c ‖Gr(· ; s)‖p,αr+(r−1)/q−ε,N

(s(1− s))2mr(α+1/q)−ε
, (249)

where ε is arbitrarily small and positive. On recalling (92) and (232) we
have, since γ−1

r (t) = O(t1/r) near t = 0 and 1 − γ−1
r (t) = O((1 − t)1/r) near

t = 1 , that there exist constants c1 and c2 say, such that

c1(λ(1− λ))1/r ≤ s(1− s) = γ−1
r (λ)(1− γ−1

r (λ)) ≤ c2(λ(1− λ))1/r . (250)

From (236), (249) and (250) we recover (248) and the theorem is proved. ♠

Interestingly, in (248), note the dependence of the truncation error on λ
and we see that for all r > 1 , we have 1+2/r < 3 . The rate of convergence of
the truncation error is O(1/mr(α+1/q)−ε) which is almost that for the ordinary
integral as given in (140). The author has been unable to put ε equal to zero,
although it can be assumed to be arbitrarily small and positive.

6 Conclusion

In this paper we have introduced the sigmoidal–trapezoidal quadrature rule
for the approximate evaluation of both ordinary and Cauchy principal value
integrals. The paper is then concerned with establishing the rates of conver-
gence of these quadrature rules given that the integrand is in a particular
weighted Sobolev space. We have found comparable rates of convergence for
both ordinary (see Theorem 15) and Cauchy principal value (see Theorem 25)
integrals. The ultimate aim of this analysis is its application to the approxi-
mate solution of various integral equations. Some results have already been
made in this direction; see Kress [7], Elliott [3] and Elliott and Prössdorf [6].
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An unpublished report by Duduchava, Elliott and Wendland [2] also makes
considerable progress in this direction.

What we have not done in this paper is to give any numerical results for
the quadrature of explicit functions. This will have to await another occasion;
this paper is long enough as it is. In this regard the paper by Weideman [9]
should be of considerable relevance.

Acknowledgment: The author is extremely grateful to an unknown ref-
eree who made some excellent constructive comments on the first draft of
this paper. In particular, the referee suggested Theorem 16 which simplified
much of the earlier analysis. This, in turn, inspired the author to review
Section 5 thoroughly. Theorems 23 and 25 are now much improved versions
of the corresponding theorems which appeared in the first draft.

A Appendix

In this appendix we state and prove two theorems which are useful in Sec-
tion 5 where we consider Cauchy principal value integrals. It is convenient to
put these into an appendix and quote them as required rather than interrupt
the arguments in Section 5, which is long enough anyway. In these theorems
the function Ψ is defined on Ω̄× Ω by

Ψ(x;λ) :=


ψ(x)− ψ(λ)

x− λ
, x 6= λ ,

ψ′(λ) , x = λ .
(251)

Theorem 26 Suppose ψ ∈ W (N)
∞,β(Ω) where N ∈ N and 0 < β+1 < 1 . Then
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Ψ(· ;λ) ∈ W (N−1)
∞,β (Ω) with

‖Ψ(· ;λ)‖∞,β,N−1 ≤
c‖ψ‖∞,β,N

λ(1− λ)
, (252)

where c is a positive constant independent of λ and ψ.

Proof: For j = 0(1)(N − 1) and given λ ∈ Ω , define Ij(λ) by

Ij(λ) := max
0≤x≤1

(x(1− x))j−β|Ψ(j)(x;λ)| . (253)

We need to show that Ij(λ) is finite for j = 0(1)(N − 1) .

Suppose first that 0 ≤ x ≤ λ . From (251) we have

Ψ(x;λ) =

∫ 1

0

ψ′(x+ (λ− x)u) du , (254)

so that for j = 0(1)(N − 1) we have

Ψ(j)(x;λ) =

∫ 1

0

(1− u)jψ(j+1)(x+ (λ− x)u) du . (255)

From (15),

|ψ(j)(x+ (λ− x)u)| ≤ ‖ψ‖∞,β,N

(
1

x+ (λ− x)u
+

1

1− x− (λ− x)u

)j+1−β

(256)
so that from (255)

|Ψ(j)(x;λ)| ≤ ‖ψ‖∞,β,N

∫ 1

0

(1−u)j

(
1

x+ (λ− x)u
+

1

1− x− (λ− x)u

)j+1−β

du .

(257)
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From Hölder’s inequality for sums we obtain

|Ψ(j)(x;λ)| ≤ c ‖ψ‖∞,β,N(Φj(x;λ) + Φj(1− x; 1− λ)) , (258)

say, c being independent of x, λ and ψ, and where we define

Φj(x;λ) :=

∫ 1

0

(1− u)j du

(x+ (λ− x)u)j+1−β
. (259)

In order to obtain an upper bound for Φj(· ;λ) on [0, λ] we first identify it
as a hypergeometric function. From Abramowitz and Stegun [1, §15.3.1] we
find, on replacing u by 1− u in the integrand of (259), that

Φj(x;λ) =
1

λj+1−β(j + 1)
× F (j + 1− β, j + 1; j + 2; (λ− x)/λ) . (260)

On applying the linear transformation [1, §15.3.3], we obtain

Φj(x;λ) =
xβ−j

λ(j + 1)
× F (1 + β, 1; j + 2; (λ− x)/λ) . (261)

For 0 ≤ x ≤ λ , the argument of this hypergeometric function lies in the
interval [0, 1]. Again, from [1, §15.1.1], since j − β > 0 for j = 0(1)(N − 1) ,
it follows that the series expansion for this hypergeometric function is abso-
lutely convergent on the unit circle. Hence, for 0 < x ≤ λ , we have that

Φj(x;λ) ≤ c xβ−j

λ
, (262)

for some c independent of x and λ.

Consider now Φj(1− x; 1− λ) which, from (260), may be written as

Φj(1−x; 1−λ) =
1

(1− λ)j+1−β(j + 1)
F (j+1−β, j+1; j+2;−(λ−x)/(1−λ)) .

(263)
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On applying the linear transformation [1, §15.3.5] we have

Φj(1−x; 1−λ) =
(1− x)−j−1

(1− λ)−β(j + 1)
F (j+1, 1+β; j+2; (λ−x)/(1−x)) . (264)

For 0 ≤ x ≤ λ we see that 0 ≤ (λ− x)/(1− x) ≤ λ < 1 and, since −β > 0 ,
it follows from [1, §15.1.1] that the series expansion for this hypergeomet-
ric function converges absolutely on the unit circle. Hence there exists a
constant c, independent of λ and x, such that

Φj(1− x; 1− λ) ≤ c (1− x)−j−1

(1− λ)−β
. (265)

From (258), (262) and (265) it follows that for 0 < x ≤ λ

|Ψ(j)(x;λ)| ≤ c ‖ψ‖∞,β,N

(
xβ−j

λ
+

(1− x)−1−j

(1− λ)−β

)
. (266)

We may now proceed similarly for the interval λ ≤ x ≤ 1 . Again we have
an upper bound on |Ψ(j)(x;λ)| given by (258) and (260). If, to the hyperge-
ometric function in (260), we apply the linear transformation [1, §15.3.5] we
find

Φj(x;λ) =
x−j−1

λ−β(j + 1)
F (j + 1, 1 + β; j + 2; 1− λ/x) . (267)

For λ ≤ x ≤ 1 we see that the argument of this hypergeometric function lies
in the interval [0, 1−λ] and, since −β > 0 , we have that its series expansion
converges absolutely on the unit circle. Consequently, for λ ≤ x ≤ 1 we have

Φj(x;λ) ≤ c x−j−1

λ−β
, (268)

where c is independent of λ and x. Finally we consider Φj(1 − x; 1 − λ) for
λ ≤ x ≤ 1 . If to the hypergeometric function in (263) we apply the linear
transformation [1, §15.3.3] we find

Φj(1−x; 1−λ) =
(1− x)β−j

(1− λ)(j + 1)
F (1 +β, 1; j+ 2;−(λ−x)/(1−x)) . (269)
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Again, for λ ≤ x ≤ 1 , the argument of this hypergeometric function lies
in [0, 1] and, since −β < 0 , its series expansion converges absolutely on the
unit circle. Hence there exists a constant c, independent of λ and x, such
that

Φj(1− x; 1− λ) ≤ c (1− x)β−j

(1− λ)
, (270)

for λ ≤ x ≤ 1 . From (258), (265) and (270) we have, for λ ≤ x ≤ 1 , that

|Ψ(j)(x;λ)| ≤ c ‖ψ‖∞,β,N

(
x−j−1

λ−β
+

(1− x)β−j

(1− λ)

)
. (271)

Returning to (253), we put an upper bound on Ij(λ) for j = 0(1)(N − 1) .
We have

Ij(λ) = max
{

max
0≤x≤λ

((x(1− x))j−β|Ψ(j)(x;λ)|) ,

max
λ≤x≤1

((x(1− x))j−β|Ψ(j)(x;λ)|)
}
. (272)

From (266) and (271) we find

Ij(λ) ≤ c ‖ψ‖∞,β,N max
{

max
0≤x≤λ

((1− x)j−β

λ
+
xj−β(1− x)−1−β

(1− λ)−β

)
,

max
λ≤x≤1

(x−1−β(1− x)j−β

λ−β
+

xj−β

(1− λ)

) }
.(273)

Since j − β > 0 for j = 0(1)(N − 1) and since 1 + β > 0 we see from (273)
that

Ij(λ) ≤ c ‖ψ‖∞,β,N

λ(1− λ)
<∞ . (274)

Consequently Ψ(· ;λ) ∈ W (N−1)
∞,β (Ω) with the norm of Ψ satisfying (252). ♠
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Comment: We could have allowed β = 0 in Theorem 26 but some modi-
fication would have been needed to the statement of the theorem. We have
decided not to pursue this case here.

We now come to the second of our theorems.

Theorem 27 Suppose ψ ∈ W
(N)
p,β (Ω) where 1 ≤ p < ∞ , 0 < β + 1/q < 1

and N 3 N ≥ 2 . Then, for any ε > 0 , Ψ(· ;λ) ∈ W (N−2)
p,β−ε (Ω) with

‖Ψ(· ;λ)‖p,β−ε,N−2 ≤
c ‖ψ‖p,β,N

λ(1− λ)
, (275)

c being independent of ψ and λ.

Proof: By Theorem 6(a), since ψ ∈ W
(N−1)
p,β (Ω) then we shall also have

ψ ∈ W (N−1)
∞,β−1/p(Ω) with

‖ψ‖∞,β−1/p,N−1 ≤ c ‖ψ‖p,β,N , (276)

c being independent of ψ. By Theorem 26, since β − 1/p+ 1 < 1 , it follows

that Ψ(· ;λ) ∈ W (N−2)
p,β−1/p(Ω) with

‖Ψ(· ;λ)‖∞,β−1/p,N−2 ≤
c ‖ψ‖∞,β−1/p,N−1

λ(1− λ)
≤ c ‖ψ‖p,β,N

λ(1− λ)
(277)

by (276), where c is independent of both ψ and λ. By Theorem 6(b), since

Ψ(· ;λ) ∈ W
(N−2)
∞,β−1/p(Ω) it follows that Ψ(· ;λ) ∈ W

(N−2)
p,β−ε (Ω) for any ε > 0

and furthermore from (277) and (58) it follows that (275) is satisfied and the
theorem is proved. ♠
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