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Singular controls in optimal collision avoidance
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Abstract

This article studies optimal collision avoidance strategies for partic-
ipants with unequal linear speeds in a planar close proximity encounter.
It is known that bang-bang collision avoidance strategies are optimal for
encounters of participants with equal linear speeds. However, as shown
recently, bang-bang collision avoidance strategies are not necessarily
optimal when the linear speeds of the participants are not equal. We
study the structure of optimal singular controls for collision avoidance
of participants with unequal linear speeds, but equal turn capabilities.
We prove that both controls cannot be singular simultaneously, and
that the only possible singular control is a zero control. We use several
optimization techniques to compute optimal state, control and adjoint
variables. Numerical simulations suggest that a zero control strategy
only exists for a slower participant and that, at most, one switching
from a bang-bang to a singular control occurs. Different types of
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structural changes of the controls with change in the initial conditions
are identified via the numerical simulations.
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1 Introduction

Close proximity encounters (that is, when the participants are sufficiently
close in space and time to be of operational concern) occur in many situations
in aviation, navigation and robotics. The problem of optimal cooperative
collision avoidance of two participants in a planar close proximity encounter
can be formulated as an optimal control problem characterized by a three-
dimensional state vector, a two-dimensional control vector, a terminal cost
functional, and a free terminal time [4, 5, 6, 7, 8, 9, 10, 11, 12]. The perfor-
mance objective is to maximize the distance between the participants at the
terminal time T . In this problem, the controls are the non-dimensional angular
speeds of the two participants, which are bounded functions of time on a
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time interval [0, T ]. Three types of controls that appear in this problem are
bang-bang, singular and bang-singular controls. A control function is called
bang-bang on an interval I ⊂ [0, T ] when it takes values at its bounds on I.
A singular control on an interval I ⊂ [0, T ] is a control function that takes
values in the interior of the control region. A control is called bang-singular
on [0, T ] if it consists of a combination of bang-bang and singular arcs.

Merz, Tarnopolskaya et al. [4, 5, 6, 7, 8, 9, 10, 11, 12] showed that optimal
collision avoidance strategies for participants with equal linear speeds require
bang-bang control strategies that remain constant for the whole duration of
the encounter. This means that, in order to avoid a collision, each participant
should turn with maximum allowed angular speed. However, we recently
showed [11, 12] that such a strategy is not necessarily optimal for the case
when the participants have unequal linear speeds. Combinations of both the
model parameter and the initial conditions, under which bang-bang controls
are no longer optimal at the terminal time, were established [11, 12].

Bang-bang and singular controls appear in various areas of application (for
example, see recent applications in biomedical engineering [1, 2]). In this
article, we study bang-bang and singular control strategies for collision avoid-
ance of participants with unequal linear speeds in a planar close proximity
encounter. First, we establish the elementary properties of singular controls.
We prove that both controls cannot be singular simultaneously, and that the
only possible singular control is a zero control. We then study the optimal
strategies numerically. To determine the structure of optimal controls, that
is, the sequence of bang-bang and singular arcs, we apply nonlinear program-
ming methods to the discretized control problem. Then in a refinement step,
switching times of bang-singular controls were computed with high accuracy
using the arc-parametrization method of Maurer et al. [3].
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Figure 1: Schematics of a close proximity encounter.

2 Problem formulation

We make the same assumptions as in the close proximity encounter models [4,
5, 6, 7, 8, 9, 10, 11, 12]. Because of a short encounter time, a common
assumption in such models is that the linear speeds of the participants are
constant. The performance criterion is to maximize the terminal miss distance,
which is the minimal distance between the participants during the manoeuvre.
The problem of optimal collision avoidance of two participants with unequal
linear speeds but equal turn capabilities is viewed as an optimal control
problem [11, 12] with the state vector ρ∗ = (r,φ, θ), which satisfies the
differential equations

ρ̇ =

 − cosφ+ γ cos(θ− φ)
−u1 + [sinφ+ γ sin(θ− φ)]/r

−u1 + u2

 ≡ f(ρ,u), (1)

with the control function u∗ = (u1,u2), u : [0, T ] → U and U = [−1, 1] ×
[−1, 1] ⊆ R2. Here, r specifies the non-dimensional instantaneous relative
displacement between the participants (the non-dimensional r is obtained by
dividing a relative distance by the lower bound on the turn radius of the first
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participant); φ denotes the relative bearing; and θ is the relative heading,
the instantaneous angle defining the relative direction of their motion (see
Figure 1). The controls u1 and u2 are the non-dimensional angular speeds
of the participants which are scaled so that u1,u2 ∈ [−1, 1]. The scaling is
u1 = ω1/ω

∗
1 and u2 = ω2/ω

∗
2 , where ω1 and ω2 are the angular speeds,

and ω∗1 and ω∗2 are the absolute values of physical bounds on the angular
speeds of the participants. The values uk = 1 , k = 1, 2 , correspond to right
turns of participants, while uk = −1 , k = 1, 2 , correspond to left turns. The
parameter γ = V2/V1 is a non-dimensional parameter with 0 < γ 6 1 , where
V1 and V2 are the linear speeds of the participants. Note that the faster
participant is located at the origin (Figure 1). The derivatives with respect
to the non-dimensional time t are denoted with dots. The superscript *
denotes a transpose of a vector. The domains for the variables φ and θ are
−π 6 φ < π , 0 6 θ < 2π .

The non-dimensional maneuver time T , the terminal time, is defined as the
time to closest approach between the participants. It is determined by the
conditions

ṙ(t) < 0 for t ∈ [0, T), and ṙ(T) = 0 . (2)

The objective is to maximize the terminal miss distance over all admissible
controls:

max
u∈Uad

[ J(ρ,u) = r(T) ] . (3)

Thus, the control problem is a Mayer problem with free terminal time.

For the purpose of this article, it is convenient to consider the problem in
Cartesian coordinates. Using the transformation of variables,

r =
√
x2 + y2 , r sinφ = x , r cosφ = y ,

Equation (1) is rewritten in Cartesian coordinates,

Ẋ =

 −u1y+ γ sin θ
−1+ u1x+ γ cos θ

−u1 + u2

 = f(X,u), (4)
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where X∗ = (x,y, θ). The objective function in this case is

J(X,u) =
√
x2T + y

2
T . (5)

Here and henceforth, a subscript T refers to the value at the terminal time,
whereas a subscript 0 refers to the values at the initial time.

3 Necessary optimality conditions:

maximum principle

In Cartesian coordinates, the Hamiltonian takes the form

H(X, λ,u) = λ∗ · f(X,u)

= λx[−u1y+ γ sin θ] + λy[−1+ u1x+ γ cos θ] + λθ[−u1 + u2]

= u1[−λxy+ λyx− λθ] + u2λθ + λxγ sin θ− λy + λyγ cos θ , (6)

where the adjoint variables λ∗ = (λx, λy, λθ) satisfy the equation

λ̇ = −∇XH(X, λ,u) =

 −λyu1
λxu1

−λxγ cos θ+ λyγ sin θ

 . (7)

Henceforth we assume that all trajectories are normal. In view of the objec-
tive (5) and the terminal constraint (2), the endpoint Lagrangian is

l(X,ν) =
√
x2 + y2 + ν

xẋ+ yẏ√
x2 + y2

, ν ∈ R , (8)

and the transversality condition is λ(T) = ∇Xl(X(T),ν). For bang-bang con-
trols, Tarnopolskaya et al. [12] showed that the multiplier ν = 0 . Numerical
results confirm ν = 0 also holds for bang-singular controls (a rigorous proof is
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outside the scope of this article). Hence, the transversality condition reduces
to

λ(T) =

sinφT
cosφT
0

 , xT = rT sinφT , yT = rT cosφT . (9)

Note that both controls, u1 and u2, appear linearly in the Hamiltonian. The
switching functions are defined as the partial derivatives of the Hamiltonian
with respect to the control components,

Φ1 = Φ1(X, λ) =
∂H

∂u1
= −λxy+ λyx− λθ , Φ2 = Φ2(X, λ) =

∂H

∂u2
= λθ .

(10)
As customary, we use the notation Φk(t) = Φk(X(t), λ(t)), k = 1, 2 , along
trajectories. Due to the transversality condition (9), the switching functions
have zero value at the terminal time, Φ1(T) = Φ2(T) = 0 . Moreover, since
the terminal time T is free, the Hamiltonian vanishes along the trajectory,

H(X, λ,u) = u1Φ1 + u2Φ2 + λxγ sin θ− λy + λyγ cos θ = 0 on [0, T ]. (11)

It follows from the Pontryagin Maximum Principle that optimal controls u1
and u2 maximize the Hamiltonian on the control set. This implies that the
switching functions determine the control functions according to, for k = 1, 2 ,

uk(t) =


1, if Φk(t) > 0 ,

−1, if Φk(t) < 0 ,

undetermined, if Φk(t) = 0 .

(12)

The control uk is called bang-bang on an interval I ⊂ [0, T ] if the switching
function Φk(t) has only isolated zeros on I, whereas the control uk is called
singular on I if Φk(t) = 0 holds for all t ∈ I . This suggests four possible
bang-bang control strategies:

1. u1 = u2 = 1 , the right-right (RR) strategy;

2. u1 = u2 = −1 , the left-left (LL) strategy;
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3. u1 = −u2 = 1 , the right-left (RL) strategy; and

4. u1 = −u2 = −1 , the left-right (LR) strategy.

In all cases the participants are turning with maximum possible angular
speeds. The first letter in the strategy notation, R or L, indicates the strategy
of the faster participant (located at the origin of Figure 1). As was shown
by Merz, Tarnopolskaya et al. [4, 6, 7, 8], for given initial conditions, one
of these strategies is optimal for the whole duration of the encounter if the
linear speeds of the participants are equal.

4 Singular controls

When the linear speeds of the participants are not equal, values of the model
parameter γ and the initial relative heading angle θ0 exist such that bang-
bang strategies are no longer optimal at the terminal time [12]. We repeat
this result here for convenience.

Proposition 1. For the participants with unequal linear speeds (γ 6= 1),
bang-bang RR and LL strategies are not optimal at the terminal time if

γ < cos θ0 for (0 < θ0 < π/2) ∪ (3π/2 < θ0 < 2π). (13)

We now study the structure of singular controls. First, we show that both
controls cannot be singular simultaneously.

Proposition 2. There does not exist an interval I ⊂ [0, T ] such that Φ1(t) =
Φ2(t) = 0 on I; that is, the controls u1 and u2 can not be singular simultane-
ously.

Proof: Assume that

Φ1 = −λxy+ λyx− λθ = 0 , Φ2 = λθ = 0 on I.
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Using the adjoint equations (7) the derivatives of the switching functions are
computed as

Φ̇1 = λx , Φ̇2 = γ(−λx cos θ+ λy sin θ) . (14)

The equationsΦ1 = Φ2 = 0 and Φ̇1 = Φ̇2 = 0 together with the transversality
condition (11) then imply that λx = λy = λθ = 0 holds on the interval I. By
uniqueness of solutions to the adjoint equation, we then would have λ = 0
on the whole interval [0, T ]. This contradicts the transversality condition (9)
and proves Proposition 2. ♠

We now assume that one control is singular and show that the only possible
value for this control is zero. First we investigate the case that the control u1
is singular while the control u2 = ±1 is bang-bang.

Proposition 3. Let the control u1 be singular on an interval I ⊂ [0, T ] and
u2 = ±1 be bang-bang on I. Then the singular control u1 = 0 .

Proof: Since u1 is singular on I, the switching function Φ2 vanishes on I.
Differentiating the identity Φ1(t) = 0 twice using the adjoint equations (7),
we obtain the following relations:

Φ1 = −λxy+ λyx− λθ = 0 , Φ̇1 = λx = 0 , Φ̈1 = −λyu1 = 0 . (15)

The third equation in (15) yields the singular control u1 = 0 , since otherwise
λy = 0 would imply λθ = 0 and, therefore, λx = λy = λθ = 0 on I. Again, this
would imply λx = λy = λθ = 0 on the whole interval [0, T ], which contradicts
the transversality condition (9). ♠

Proposition 4. Let the control u2 be singular on an interval I ⊂ [0, T ] and
u1 = ±1 be bang-bang on I. Then the singular control u2 = 0 .
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Proof: By definition of a singular control u2 we have Φ2(t) = 0 on I.
Differentiating this relation twice, the adjoint equations (7) imply

Φ̇2/γ = −λx cos θ+ λy sin θ = 0 , Φ̈2 = γ(λx sin θ+ λy cos θ)u2 = 0 . (16)

It follows from the second equation in (16) that the singular control u2 = 0 .
Otherwise, equations −λx cos θ+λy sin θ = 0 and λx sin θ+λy cos θ = 0 would
hold, which have only the trivial solution λx = λy = 0 , a contradiction. This
completes the proof of Proposition 4. ♠

If the control u1 does not become singular, then Propositions 1 and 2 assert
that the control u2 must be singular on a terminal interval [ts, T ]. The
control u2 is discontinuous at ts and thus ts is called a switching time. A
more detailed analysis reveals that there does not exist another singular arc
in [0, T ]; however, such analysis is outside the scope of this article. Hence,
the singular control

u2(t) =

{
±1 for 0 6 t < ts ,

0 for ts 6 t 6 T .
(17)

In this notation, the case ts = 0 represents a totally singular control u2 = 0
on [0, T ], whereas ts = T gives a bang-bang control u2 = ±1 on [0, T ].

5 Case studies for singular controls

This section uses several optimization techniques to calculate optimal state,
control and adjoint variables. First, we discretize the control problem using a
sufficiently fine grid. Then the resulting large scale nonlinear programming
problem is solved by Interior Point methods or Sequential Quadratic Pro-
gramming methods. In a second step, the switching times of bang-singular
controls are determined with high accuracy using the arc parametrization
method presented by Maurer et al. [3]. All computations indicate that only
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the control u2 of the slower participant can have a singular arc on a termi-
nal interval [ts, T ] (compare with (17)), while u1 = ±1 is bang-bang with
no switch. The optimal structure of both controls depends on the initial
state (x0,y0, θ0) and the parameter γ. To get an insight into the structural
changes of the controls, we fix the model parameter values

γ = 0.2 , y0 = 6 , θ0 = π/5 ,

and then compute optimal solutions for initial values of the x-coordinate in the
range −10 6 x0 6 10 . The values of γ and θ0 comply with the conditions in
Proposition 1 for the non-existence of optimal RR or LL bang-bang controls.

We denote a control strategy by LL–L0, when u1(t) = u2(t) = −1 holds on the
interval [0, ts] and u1(t) = −1 and u2(t) = 0 on the terminal interval [ts, T ].
Control strategies LR–L0 or RL–R0 are defined in a similar way. We did
not observe RR–R0 strategies in our computations. In case 0 < ts < T , the
control u2 is called a bang-singular control. The computations were carried out
using the arc parametrization method [3], where the arc lengths of bang-bang
or singular arcs are optimized. We obtained several types of strategies and
transitions between bang-bang and singular strategies, as described below.

LR strategy For 8.72 6 x0 we find pure bang-bang controls u1 = −1
and u2 = 1 . The limiting point x0 = 8.72 is characterized by Φ̇2(T) = 0

holds. Together with the condition Φ2(T) = 0 this indicates that we expect a
singular arc of u2 for x0 < 8.72 .

LR–L0 strategy In the range 3.75 < x0 < 8.72 we obtain LR–L0 strategies
with a singular control structure (17). The solution for the initial value x0 = 6
is depicted in Figure 2. The following numerical results were obtained:

r0 = 8.4853 , rT = 8.3431 , ts = 0.21162 , T = 0.52950 ,

λx(0) = 0.7447 , λy(0) = 0.6674 , λθ(0) = 0.004436 .
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Figure 2: LR–L0 strategy for x0 = 6 and y0 = 6 . Top row: control u1 and
switching function Φ1 (left); control u2 and switching function Φ2 (right).
Control functions are shown with red lines, while switching functions are
shown with blue lines. Bottom row: phase portrait (x,y) (left) and plot of
adjoint variables λx (red), λy (blue) and λθ (green).
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The numerical results for x0 = 4 ,

r0 = 7.2111 , rT = 6.9679 , ts = 0.040793 , T = 0.70046 ,

λx(0) = 0.6203 , λy(0) = 0.7844 , λθ(0) = 0.0001653 ,

exhibit a switching time ts near zero. Indeed, we observed that ts → 0 for
x0 → 3.75+. Hence, for x0 ≈ 3.75 the control u2 = 0 is totally singular with
Φ2(t) = 0 on [0, T ]. This allows for a change in the structure of the control
at x0 = 3.75 , namely, the structure LR–L0 changes to LL–L0.

LL–L0 strategy This type of strategy was obtained in the range −0.05 <
x0 < 3.75 of initial values. For x0 = 3.4 we obtained the numerical results

r0 = 6.8964 , rT = 6.6107 , ts = 0.022436 , T = 0.76393 ,

λx(0) = 0.5695 , λy(0) = 0.8220 , λθ(0) = −0.00005105 .

The next structural change of strategies occurs at x0 ≈ −0.05 . Here, we
encountered the phenomenon that the two different strategies LL–L0 and
RL–R0 produce the same functional value rT = 5.345 . We also observed
such transitional points for pure bang-bang controls and called them dispersal
points [6, 7, 8, 9, 10, 11, 12, cf.]. In the economic literature, such a point is
called a Skiba-point. This type of transition is depicted in Figure 3, where
the different control strategies are shown for x0 = 0 and x0 = −0.1 .

RL–R0 strategy This strategy was obtained in the range −1.61 < x0 <
−0.05 . For x0 = −0.1 we obtained the numerical results

r0 = 6.0008 , rT = 5.3462 , ts = 0.76749 , T = 1.2299 ,

λx(0) = −0.1391 , λy(0) = 0.9903 , λθ(0) = −0.05606 .

Another structural change occurs at x0 ≈ −1.61 , when the RL–R0 strategy
gives way to the pure bang-bang strategy RL for x0 < −1.61 . The singular
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Figure 3: Top row: LL-L0 strategy for x0 = 0 and y0 = 6 : control u1 and
switching function Φ1 (left), control u2 and switching function Φ2 (right);
Bottom row: RL-R0 strategy for x0 = −0 and y0 = 6 : controls u1 and u2
and switching functions Φ1 and Φ2.
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arc disappears, since we have ts → T for x0 → −1.61+. This is illustrated by
the numerical results for x0 = −1.6 where the switching time ts is close to
the final time T :

r0 = 6.2097 , rT = 5.7228 , ts = 0.98335 , T = 1.0045 ,

λx(0) = −0.3566 , λy(0) = 0.9342 , λθ(0) = −0.09071 .

6 Conclusions

This article establishes, for the first time, several features of the structure of a
singular control in the optimal collision avoidance for a planar close proximity
encounter of participants with unequal linear speeds but equal turn capabilities.
We showed that both controls cannot be singular simultaneously, and that
the only possible singular control is a zero control. Several combinations of
initial conditions and model parameters that result in conditions for which no
optimal RR or LL bang-bang control exists at the terminal time (Proposition 1
[11, 12]) have been studied via the optimization methods developed by Maurer
et al. [3].

The results of the study suggest that no more than one switching point is
possible, and that switching to a zero control occurs only for the slower
participant. Thus, the only possible structure of optimal singular control is
bang-bang control switching to bang-singular control. Several types of such
controls were observed. Optimization methods allow us to detect changes
in the structure of optimal controls. Two types of structural change were
observed. The first type is characterized by a totally singular arc with u2 ≡ 0
separating two bang-singular controls u2, one with initial value u2(0) = 1

and the other with u2(0) = −1 . In the second type of structural transition,
two different bang-singular strategies produce the same value of the objective
functional.

A complete synthesis of optimal singular control, for feasible initial condi-
tions x0 and y0 and given values of the model parameter γ and θ0, awaits
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further study.
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