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Abstract

We introduce here a modified generalised successive over-relaxation
(mgsor) method to solve augmented linear systems. We prove that
the mgsor method converges to the unique solution of the linear sys-
tem for a loose restriction on three parameters. Finally, a numerical
example illustrates the effectiveness of the mgsor iteration method
which outperforms the modified sor-like method and the generalised
successive over-relaxation method.
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1 Introduction

Let A ∈ Rm×m be a symmetric positive definite matrix and B ∈ Rm×n be a
matrix of full column rank, when m > n . Denote by BT the transpose of
matrix B. Then the augmented linear system is of the form(

A B

BT 0

)(
x

y

)
=

(
b

q

)
, (1)

where b ∈ Rm and q ∈ Rn are two given vectors.

The system of linear equations (1) corresponds to the Kuhn–Tucker con-
ditions for linearly constrained quadratic programming problems or saddle
point problems. Such systems typically result from mixed or hybrid finite
element approximations of second order elliptic problems, elasticity problems
or the Stokes equations [4] and from Lagrange multiplier methods [5].

Since the above problem is large and sparse, iterative methods for solving
equation (1) are effective because of storage requirements and preservation
of sparsity. Recently, Golub et al. [2] proposed a sor-like method to solve
the system (1).

Method 1.1: The SOR-like method Let Q ∈ Rn×n be a nonsingular
and symmetric matrix. Give initial vectors x(0) ∈ Rm and y(0) ∈ Rn, and
a relaxation factor ω > 0 . For k = 0, 1, 2, . . . until the iteration sequence

{(x(k)
T
,y(k)

T
)T } is convergent, compute{

x(k+1) = (1−ω)x(k) +ωA−1(b− By(k)),
y(k+1) = y(k) +ωQ−1(BTx(k+1) − q).
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Here, Q is an approximate (preconditioning) matrix of the Schur complement
matrix BTA−1B.

Golub et al. [2] proved the convergence of the sor-like method and deter-
mined its optimal iteration parameters as well as the corresponding optimal
convergence factor.

To further improve the convergence speed of the sor-like method, Bai et
al. [1] presented a generalised successive over-relaxation (gsor) method for
the augmented linear system (1).

Method 1.2: The GSOR method Let Q ∈ Rn×n be a nonsingular and
symmetric matrix. Give initial vectors x(0) ∈ Rm and y(0) ∈ Rn, and two
relaxation factors ω, τ 6= 0 . For k = 0, 1, 2, . . . until the iteration sequence

{(x(k)
T
,y(k)

T
)T } is convergent, compute{

x(k+1) = (1−ω)x(k) +ωA−1(b− By(k)),
y(k+1) = y(k) + τQ−1(BTx(k+1) − q).

Here, Q is an approximate (preconditioning) matrix of the Schur complement
matrix BTA−1B.

Bai et al. [1] also proved the convergence of the gsor method, and deter-
mined its optimal iteration parameter as well as the corresponding optimal
convergence factor.

The gsor method is modified here by introducing an additional parameter.
Section 2 establishes a modified gsor (mgsor for short) method for the
augmented system (1). Section 3 discusses the convergence region for the
method. Numerical results of Section 4 show that the mgsor method is
more effective than the msor-like method and the gsor method for solving
the augmented linear system.
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2 The MGSOR method

For the sake of simplicity, we rewrite the augmented system (1) as(
A B

−BT 0

)(
x

y

)
=

(
b

−q

)
.

We make the following splitting

A ≡
(

A B

−BT 0

)
= D− L−U ,

where

D =

(
A 0

0 Q

)
, L =

(
0 0

BT αQ

)
, U =

(
0 −B
0 (1− α)Q

)
and Q ∈ Rn×n is a prescribed nonsingular and symmetric matrix. Let
ω and τ be two nonzero reals, Im ∈ Rm×m and Im ∈ Rn×n be the m ×m
and the n× n identity matrices, respectively, and

Ω =

(
ωIm 0

0 τIn

)
.

Then we consider the following mgsor method with three parameters for
solving the augmented linear system (1)

(D−ΩL)

(
x(k+1)

y(k+1)

)
= [(I−Ω)D+ΩU]

(
x(k)

y(k)

)
+Ω

(
b

−q

)
, (2)

where I is the identity matrix.

Evidently, when α = 0 the mgsor method becomes the gsor method [1],
and when ω = τ it becomes the msor-like method [3]. With a proper choice
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of the parameters, the mgsor method will converge faster than the msor-like
method and the gsor method in certain cases. Note that

(D−ΩL) =

(
A 0

−τBT (1− τα)Q

)
.

Since matrix A is symmetric positive definite and matrix Q is nonsingular,
therefore

det(D−ΩL) = (1− τα)n det(A) det(Q) 6= 0

if and only if
1− τα 6= 0 or τα 6= 1. (3)

From now on we assume that the parameters τ and α satisfy equation (3).
The iterative matrix H(ω,τ,α) of the mgsor method is shown as

H(ω,τ,α) ≡ (D−ΩL)−1[(I−Ω)D+ΩU]

=

(
(1−ω)Im −ωA−1B

(1−ω)τ
1−τα

Q−1BT In −
ωτ
1−τα

Q−1BTA−1B

)
. (4)

Let λ be an eigenvalue of H(ω,τ,α) and (uT , vT)T be the corresponding eigen-
vector, we have

H(ω,τ,α)

(
u

v

)
= λ

(
u

v

)
or

[(I−Ω)D+ΩU]

(
u

v

)
= λ(D−ΩL)

(
u

v

)
. (5)

Equation (5) is equivalent to

(1−ω− λ)u = ωA−1Bv and (λ− 1)(1− τα)v = λτQ−1BTu . (6)

Lemma 1 If λ is an eigenvalue of H(ω,τ,α), then λ 6= 1 .
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Proof: If λ = 1 and the associated eigenvector is (uT , vT)T , then it follows
from system (6) and ω 6= 0 that

− u = A−1Bv and Q−1BTu = 0 , (7)

resulting in Q−1BTA−1Bv = 0 . Since Q−1BTA−1B is nonsingular, then we
have v = 0 and u = 0 . This contradicts the condition that (uT , vT)T is an
eigenvector of the iteration matrix H(ω,τ,α). Hence λ 6= 1 , concluding the
proof. ♠

Lemma 2 If m > n , then λ = 1 − ω is an eigenvalue of H(ω,τ,α) with a
multiplicity of at least m−n ; if m = n , then λ = 1−ω is not an eigenvalue
of H(ω,τ,α) when ω 6= 1 , and is an eigenvalue of H(ω,τ,α) with a multiplicity
of at least m when ω = 1 .

Proof: First, we assume ω 6= 1 . If λ = 1−ω is an eigenvalue of H(ω,τ,α),
then there exists a non-zero vector (uT , vT)T which satisfies equation (5) with
λ = 1−ω . Therefore, by system (6) and ω 6= 0 we have

A−1Bv = 0 , and −ω(1− τα)v = (1−ω)τQ−1BTu .

Since matrix B has a full column rank and τ 6= 0 , the above system is
equivalent to

v = 0 and Q−1BTu = 0 .

BT is an n×mmatrix of rank(BT) = n . Therefore ifm > n ,Q−1BTu = 0 has
m−n(> 0) independent non-zero solutions, whereas if m = n , Q−1BTu = 0
has no non-zero solutions. Thus λ = 1−ω is not only an eigenvalue ofH(ω,τ,α)

but is also an eigenvalue with multiplicity of m − n if m > n . However, if
m = n , λ = 1 −ω is not an eigenvalue of H(ω,τ,α). Thus the lemma is true
when ω 6= 1 .

Next we assume that ω = 1 and we have

H(ω,τ,α) = H(1,τ,α) =

(
0 −ωA−1B

0 In −
ωτ
1−τα

Q−1BTA−1B

)
.
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Note that the zero matrix (0) in the main diagonal position is m×m . Hence
λ = 1−ω = 0 is an eigenvalue of the iteration matrix H(ω,τ,α) with at least
multiplicity of m, which shows the lemma holds for ω = 1 . Thus Lemma 2
is proved. ♠

Note from system (6) that if λ and (uT , vT)T are the eigenvalue and eigenvec-
tor of H(ω,τ,α), and if λ 6= 1 −ω , then v 6= 0 . Now we prove the following
theorem.

Theorem 3 Let H(ω,τ,α) be the iteration matrix of the mgsor method. Then
(i) λ = 1−ω is an eigenvalue of H(ω,τ,α) if m > n . (ii) For any eigenvalue
λ 6= 1 −ω of H(ω,τ,α), there is an eigenvalue µ of Q−1BTA−1B such that λ,
µ, ω, τ and α satisfy the functional equation

(1−ω− λ)(λ− 1)(1− τα) = λωτµ . (8)

(iii) For any eigenvalue µ of Q−1BTA−1B, if λ 6= 1−ω and λ, µ, ω, τ and α
satisfy the above functional equation, then λ is an eigenvalue of H(ω,τ,α).

Proof: Conclusion (i) comes from Lemma 2.

For conclusion (ii), we let λ 6= 1 − ω be the eigenvalue of the H(ω,τ,α) and
(uT , vT)T be the corresponding eigenvector. Then they satisfy system (6).
Thus we have

(1−ω− λ)(λ− 1)(1− τα)v = λωτQ−1BTA−1Bv . (9)

Since λ 6= 1−ω , λ 6= 1 by Lemma 1, and v 6= 0 by the note after Lemma 2,
1− τα 6= 0 (equation (3)). Therefore λωτ 6= 0 . Thus there is an eigenvalue,
say µ, of Q−1BTA−1B such that λ, µ, ω, τ and α satisfy equation (8),
concluding the proof of conclusion (ii).

For conclusion (iii), we let µ and v( 6= 0) be the eigenvalue and eigenvector
of the matrix Q−1BTA−1B. Therefore we have Q−1BTA−1Bv = µv . By the
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conditions of the theorem, equation (9) holds. If we let

u =
ω

1−ω− λ
A−1Bv ,

system (6) holds, which is equivalent to system (8). Thus λ is an eigenvalue
of H(ω,τ,α), since (uT , vT)T is non-zero, resulting in the last part of the theo-
rem. Thus the theorem is proved. ♠

From Theorem 3 we have the following corollary.

Corollary 4 Let ρ(H(ω,τ,α)) be the spectral radius of the mgsor iteration
matrix H(ω,τ,α) and m > n , then

ρ(H(ω,τ,α)) > |1−ω|.

By Corollary 1, the necessary condition for the convergence of the mgsor
method when m > n is

0 < ω < 2 . (10)

3 Convergence region of MGSOR method

Next we study the convergence region for parameters ω, τ and α in the
mgsor method for solving the augmented system (1). For this, we first
quote the following lemma which will be used later.

Lemma 5 (Young [7]) Consider the quadratic equation x2 − bx + c = 0 ,
when b and c are real numbers. Both roots of the equation are less than one
in modulus if and only if |c| < 1 and |b| < 1+ c .

Theorem 6 We assume that the parameters τ and α satisfy equation (3).
Let A ∈ Rm×m and Q ∈ Rn×n be symmetric positive definite, and B ∈ Rm×n

be of full column rank. Denote the smallest and the largest eigenvalues of the
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matrix Q−1BTA−1B by µmin and µmax, respectively. Then the mgsor method
is convergent if ω satisfies 0 < ω < 2 and if τ and α satisfy

0 <
τ

1− τα
<
2(2−ω)

ωµmax

.

Proof: Evidently, we see that all eigenvalues µ of the matrix Q−1BTA−1B

are real and positive.

From Theorem 3, we have

λ2 +

(
ω− 2+

ωτµ

1− τα

)
λ+ (1−ω) = 0 .

By Lemma 5, |λ| < 1 if and only if{
|1−ω| < 1 ,
|ω− 2+ ωτµ

1−τα
| < 2−ω ,

which is equivalent to {
0 < ω < 2 ,
0 < ωτµ

1−τα
< 2(2−ω).

Then {
0 < ω < 2 ,

0 < τ
1−τα

<
2(2−ω)
ωµmax

.

This completes the proof of Theorem 6. ♠

Remark When α = 0 this theorem becomes Theorem 2.1 by Bai et al. [1].
The convergence domain for the parameter τ of the mgsor method is greater
than the convergence domain of the gsor method when α is properly chosen.
When ω = τ , this theorem becomes Theorem 2 by Shao [3].
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Table 1: Choices of matrix Q.
Case no. Matrix Q Description

1 BT Â−1B Â = diag(A)

2 BT Â−1B Â = tridiag(A)

3 tridiag(BT Â−1B) Â = tridiag(A)

4 Numerical example

The mgsor method, the gsor method and the msor-like method were used
to solve the following augmented linear system, respectively.

Example (Darvishi and Hessari [6]). Consider the augmented linear sys-
tem (1), in which

A =

(
I⊗ T + T ⊗ I 0

0 I⊗ T + T ⊗ I

)
∈ R2p2×2p2 ,

B =

(
I⊗ F
F⊗ I

)
∈ R2p2×p2

T =
1

h2
· tridiag(−1, 2,−1) ∈ Rp×p,

F =
1

h
· tridiag(−1, 1, 0) ∈ Rp×p,

with ⊗ being the Kronecker product symbol, h = 1/(p+1) the discretization
meshsize, and S = tridiag(a,b, c) is tridiagonal matrix with Si,i = b, Si+1,i =
a and Si,i+1 = c for appropriate i.

For this example, we set m = 2p2 and n = p2. Hence, the total number of
variable is m+n = 3p2. We chose the matrix Q as an approximation to the
matrix BTA−1B, according to the cases listed in Table 1.

In our computations, all runs with respect to the msor-like method, the
gsor method and the mgsor method were started from the initial vec-
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tor (x(0)
T
,y(0)

T
)T = 0 , and terminated when the current iteration satisfied

‖rk‖ < 10−6, where rk is the kth residual of the iterations. We chose the right

hand side vector (bT ,qT)
T ∈ Rm+n such that the exact solution of the aug-

mented system (1) is ((x∗)T , (y∗)T)T = (1, 1, . . . , 1) ∈ Rm+n. The optimum
parameters for the gsor method were determined according to the results
of Bai et al. [1]. We chose the parameters for the msor-like method and
the mgsor method by trial and error. We report the results in Table 2, for
different values of m and n, where it denotes the number of iterations and
ρ represents the spectral radius.

All results show our method is better than the results obtained by the msor-
like method and the gsor method with their corresponding optimal param-
eters. The parameters of the mgsor method are not optimal and only lie in
the convergence region of the method. The determination of the optimum
parameters for the mgsor method needs further study.
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