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Some useful techniques for pointwise and local
error estimates of the quantities of interest in

the finite element approximation
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Abstract

In this paper we review some existing techniques to obtain point-
wise and local a posteriori error estimates for the quantities of inter-
est in finite element approximations by using duality arguments. We
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also present a new approach to obtain computable error bounds for
the recovered pointwise quantities. The new method is extended to
include the practically important case of non-homogeneous Dirichlet
data. Existing methods require purely Neumann data, or the Dirichlet
data to be homogeneous. The new techniques are developed here to
provide computable error bounds on the genuine pointwise quantities
and allow the use of non-homogeneous Dirichlet data. The strength
and weakness of each technique will be analysed and compared. The
numerical experiments to justify our analysis will be presented.
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1 Introduction

For most engineering analysis and design, pointwise and local quantities re-
lated to stress and displacements are of primary concern. Thus, it is impor-
tant to have an effective control of these quantities, which are usually pro-
duced by the finite element method. In this paper, we will study a number
of approaches using duality arguments and newly defined auxiliary problems
to produce a posteriori error estimates for these finite element calculations.
We can categorise these approaches into two different groups.

In the first group (see [7] and [4]), an a posteriori error estimate for
pointwise finite element solutions were obtained by using a modified Green
function for the auxiliary problem. This approach is quite simple and in-
expensive in terms of computational costs, and applicable to a very wide
range of problems. It is very useful for designing a mesh adaptive algorithm.
However, due to the singularity of the Green function (particularly for the
derivative) the pointwise error estimate obtained by this approach dramati-
cally overestimates the true error. A more expensive approach to seek a high
quality error bound has been proposed by the second group (see [8] and [3]).
In this approach, the accurate recovery of pointwise quantities from finite
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element solutions using boundary integrals, and a posteriori error bounds
for the recovered quantities, have been obtained. The recovered pointwise
quantities are always more accurate than the finite element quantities, and
the upper error bounds for these recovered quantities are computable, tight
and reliable. The limitations of this approach are that the computational
cost is high, and it is only applicable for purely traction (purely Neumann)
boundary conditions. For Dirichlet boundary condition the approach has
to be modified. In this paper, we present a new approach employing the
“ball recovery” techniques introduced in [6] and the equilibration technique
proposed in [1]. Here, the equilibration techniques are extended to include
the case of non-homogeneous Dirichlet boundary data (see [2]). This new
approach can apply to any mesh and any finite element solution for non-
homogeneous Dirichlet boundary value problems. It proves to be very useful
for recovering pointwise values from finite element solutions, and at obtaining
a posteriori error bounds for these recovered quantities.

The outline of this paper is as follows. In the next section, we intro-
duce the general techniques for bounding the “quantities of interest” via an
auxiliary problem. In Section 3, we review the a posteriori error estimates
for the direct local and pointwise finite element calculations. In Section 4,
we present the equilibration techniques modified for the non-homogeneous
Dirichlet boundary problems. The modified “ball recovery” techniques for
the pointwise values at the interior points and the points close to or on the
boundary and their error bounds are introduced in Section 5. The numerical
experiments are presented in Section 6.
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2 Bounding techniques using auxiliary prob-

lems

For the presentation of the theory, we consider an abstract problem. Let Ω be
an bounded domain in IRd with boundary Γ. V is assumed to be a Hilbert
space of functions defined on Ω. The model problem consist of finding a
function u ∈ V which satisfies

B(u, v) = F (v), ∀v ∈ V, (1)

B(·, ·) is a symmetric positive definite bilinear form on V ×V and thus defines
an inner product on V . The loading F is an element of the dual space V ′.
The boundary conditions satisfied by u on Γ are implicitly included in the
definition of the space V and the loading F . Then by the Lax-Milgram
theorem, Problem (1) admits a unique solution u ∈ V . Let Vh ⊂ V be the
finite element space of piecewise polynomial functions. The mesh P, formed
by the union of all elements K, is assumed to coincide exactly with the
domain Ω. By the classical Galerkin method, there exists a finite element
solution uh ∈ Vh such that

B(uh, vh) = F (vh), ∀vh ∈ Vh. (2)

Let J(·) be an arbitrary linear functional defined on V and let e = u−uh be
the error between the exact solution u and the finite element solution uh. We
are interested in bounding the quantity J(e) = J(u)− J(uh). Our bounding
technique is as below.
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We consider the auxiliary problem: find g ∈ V such that

B(g, v) = J(v), ∀v ∈ V. (3)

The corresponding finite element problem is: find gh ∈ Vh such that

B(gh, vh) = J(vh), ∀vh ∈ Vh. (4)

Using orthogonality we have

J(u) − J(uh) = B(u− uh, g − gh) =
∑

K∈P
BK(u− uh, g − gh)

≤ ∑
K∈P

‖u− uh‖BK
‖g − gh‖BK

≤ ∑
K∈P

γKηK , (5)

where BK is the restriction of B on element K, ‖ · ‖BK
= BK(·, ·)1/2, and

γK , ηK are a posteriori local error estimates for ‖u − uh‖BK
, ‖g − gh‖BK

respectively (see [1] and [4]). These local a posteriori error estimates are
crucial for the design of reliable adaptive methods to improve the efficiency
of modelling and simulation.

3 Error bounds for pointwise derivatives us-

ing a modified Green function

This approach was proposed in [4] and [7]. We consider the following problem

− ∆u = f in Ω ⊂ IR2, (6)

u = 0 on Γ, (7)
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where Ω is a bounded domain and Γ is its boundary, and f ∈ L2(Ω). The
weak solution is u ∈ H1

0 (Ω) such that

B(u, v) = 〈f, v〉, ∀v ∈ H1
0 (Ω), (8)

where B(u, v) =
∫
Ω ∇u∇v dx and 〈f, v〉 =

∫
Ω fv dx and x = (x, y) ∈ Ω.

The technique for bounding a pointwise derivative value is as below (a
similar and simpler technique was used for bounding a pointwise displacement
value).

Let x0 = (x0, y0) ∈ Ω be point of interest and J(u) = ∂u
∂x

be the quantity
of interest, we consider the auxiliary problem:

Find the dual solution g such that

B(g, v) = 〈−∂δx0

∂x
, v〉 =

∂v

∂x
(x0) = J(v), (9)

where δx0 is the Dirac Delta Function with point loaded at x0. However
g = O(|x − x0|−1) (see [5]) which does not belong to H1

0 (Ω). The problem
encountered can be overcome by modifying the dual solution g in a number
of different approaches, as proposed in [4] and [7].

In order to obtain the error estimate for the pointwise quantity J(u) =
∂u
∂x

(x0), it was suggested in [4] to regularise the functional J(u) by defining
Jε(u) = 1

|Bε(x0)|
∫
Bε(x0)

∂u
∂x
dx, where Bε(x0) is a ball centered at x0 with radius

ε. Therefore
|J(u) − Jε(u)| = O(ε),
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and the corresponding dual solution gε(x) ≈ x−x0

(|x−x0|+ε)2
is well defined in

H1
0 (Ω). The meshes used in [4] and in our numerical experiment are con-

structed such that x0 does not lie on the element boundaries and therefore
J(uh) is well defined. Hence J(e) can be approximately bounded by:

|J(u) − J(uh)| ≈ |Jε(u) − Jε(uh)| ≤ Ci

∑
K∈P

ωε
KρK , (10)

where Ci = C1C2 and C1, C2 are interpolation constants arising from u and
g respectively, and

ωε
K =

h2
K

(rK + ε)3
and ρK = hK‖f + ∆uh‖K +

1

2
h

1/2
K ‖n.[∇uh]‖∂K ,

where hK = Diam(K), rK = max{dist(K,x0), hK}, n is the normal vector
on ∂K, and [∇uh] = ∂uh

∂n
|K − ∂uh

∂n
|J with J being an adjacent element of

K. The error estimate (10) depends on the unknown interpolation constant
Ci and the behaviour of g − gh. The effectivity index (Index = Estimated
Error/True Error) is significantly increased when the meshsize h is reduced
as shown by the numerical results in [4] and in our numerical experiments.
Therefore this error estimate can only be recommended for guiding adaptive
mesh refinement.
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4 Reliable and efficient a posteriori estimates

for error in energy for non-homogeneous

Dirichlet boundary value problems

We consider the following problem

− ∆u = f in Ω, (11)

u = u0 on Γ, (12)

where u0 ∈ C(Γ) and f ∈ L2(Ω) are given data, with Ω a planar, polygonal
domain, and Γ is its boundary. Suppose we approximate this problem by
using a piecewise bilinear finite element scheme on quadrilateral elements in
the usual way. The non-homogeneous Dirichlet data is approximated by the
linear interpolant uh

0 such that uh
0(x) = u0(x) whenever x is a node of the

element edge lying in the boundary Γ. The finite element approximation is
then:

Find uh ∈ Vh such that

B(uh, vh) = 〈f, vh〉 ∀vh ∈ V 0
h , (13)

uh = uh
0 on Γ, (14)

where Vh is the bilinear finite element space and V 0
h = H1

0 (Ω)∩Vh. The error
e = u− uh will not vanish on the boundary unless uh

0 = u0 on Γ. Therefore,
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in order to obtain an a posteriori error bound, we decompose the error into
two parts as follows:

e = e0 + e, (15)

where e0 ∈ H1
0 (Ω) satisfies

B(e0, v) = B(e, v) ∀v ∈ H1
0 (Ω), (16)

and e ∈ H1(Ω) satisfies

B(e, v) = B(e, v) − B(e0, v) = 0 ∀v ∈ H1
0 (Ω), (17)

e = u0 − uh
0 on Γ. (18)

Each component of the error is estimated separately.

Let K be any element with at least one face in Γ. That is, ∂K ∩ Γ is
non-empty. Define ΨK ∈ H1(K) by

ΨK =

{
e on ∂K ∩ Γ
0 on ∂K \ Γ,

(19)

with
BK(ΨK , v) = 0 ∀v ∈ H1

0 (K), (20)

where BK(ΨK , v) =
∫
K ∇ΨK∇v dx. ΨK are defined to be zero in the inner

elements. Observe that e = u0−uh
0 on Γ, vanishes at the nodes of element K

which are on the boundary Γ, so that (19) means ΨK is continuous on ∂K.
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Introducing ϕK ∈ H1
E(K) with K being any element in P:

BK(ϕK , v) = (f, v)K − BK(uh, v) +
∫

∂K
tKv ds ∀v ∈ H1

E(K) (21)

where (f, v)K =
∫
K fv dx and tK is the equilibrated element boundary fluxes

constructed in [1] for homogeneous Dirichlet boundary data, and

H1
E(K) =

{
v ∈ H1(K) : v = 0 on ∂K ∩ Γ

}
.

The equilibrated boundary element fluxes tK are constructed such that

(f, 1)K − BK(uh, 1) +
∫

∂K
tK ds = 0,

and therefore problem (21) is solvable. Hence ϕK are not unique for inner
elements but ‖ϕK‖BK

are well defined.

The error components e and e0 on the element K are then estimated by
ΨK and ϕK , respectively. The error estimate for ‖e‖E (‖ · ‖E = B(·, ·)1/2

denotes energy norm) is then given by the following theorem.

Theorem 1 Let ΨK and ϕK be defined as in (19)–(20) and (21) respectively,
then

‖e‖2
E ≤ ∑

K∈P

(
‖ΨK‖2

BK
+ ‖ϕK‖2

BK

)
. (22)

where ‖ · ‖BK
= BK(·, ·)1/2. Moreover, there exists a constant C independent

of h such that∑
K∈P

(
‖ΨK‖2

BK
+ ‖ϕK‖2

BK

)
≤ C

(
‖e‖2

E +
∑

K∈P
h2

K‖f − fK‖2
L2(K)

)
, (23)
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where fK is the average value of f on element K.

Proof: See [2]. ♠
The computation of the solutions ϕK of the the local residual problems

is performed in the usual fashion as for homogeneous Dirichlet data, which
usually used the higher degree polynomial than the one used to construct
uh. The computation cost for ϕK is low because we only have to solve (21)
locally. However, in addition, one is concerned with obtaining the solution
ΨK of the non-homogeneous Dirichlet problem. This is achieved in the usual
way and can actually be computed at no additional cost beyond the cost of
solving the problems for ϕK , since the same stiffness matrix used to calculate
ϕK may be reused in the calculation.

5 Error bounds for pointwise “ball recovery”

derivative values

The “ball recovery” technique was introduced in [6] for homogeneous Dirich-
let bvp. It applies to any mesh and any finite element solution. In particular,
it is very useful for recovering the values at interior points for a very wide
range of problems with known fundamental solutions. For points close to or
on the boundary, we have to modify the technique for problems with a non-
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homogeneous Dirichlet boundary condition. The modified and the original
approaches can only apply to a convex polygonal domain. The original ball
recovery technique can be described briefly as follows.

Let x0 = (x0, y0) ∈ Ω be a fixed interior point, B ⊆ Ω be a ball centred at
x0 with fixed radius R (R is independent of mesh size h). The fundamental
solution of the Laplace equation is

Φ0(x,x0) = −1

π
log r, x = (x, y) ∈ Ω,

where r =
√

(x− x0)2 + (y − y0)2, and the derivatives with respect to x0 are
denoted by:

Φα(x,x0) = Dα
x0

Φ0(x,x0),

where α is any multi-index. We now define the kernels

ωα(x,x0) = Φα(x,x0) + ψα(x,x0), (24)

where ψα ∈ C∞(Ω) are chosen such that

ωα =
∂ωα

∂n
= 0 on ∂B, (25)

where n = (n1, n2) is the normal vector on ∂B. Using Green’s second formula
and (25) we have

∫
B
(u∆ωα − ωα∆u) dx =

∫
∂B

(
u
∂ωα

∂n
− ωα

∂u

∂n

)
dx = 0. (26)
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Since −∆Φα(x,x0) = Dα
x0
δx0(x), we have

Dαu(x0) =
∫

B
fωα dx +

∫
B
u∆ψα dx. (27)

Replacing u by the finite element solution uh in (27) gives

ũα
h(x0) =

∫
B
fωα dx +

∫
B
uh∆ψα dx. (28)

The error term is

|Dαu(x0) − ũα
h(x0)| = |

∫
B
(u− uh)∆ψα dx| (29)

Since ψα ∈ C∞(Ω), the order of convergence for ũα
h will depend on finite ele-

ment solution uh. For example, if we choose uh to be piecewise bilinear finite
element solution, then the order of convergence of the first order derivatives
will be O(h2).

In [6], it was proposed to choose ψ0 by

ψ0(x,x0) = − 1

8πR4
(r4 − 4R2r2 + (3 − 4 logR)R4), (30)

then

∆ψ0(x,x0) = − 2

πR4
(r2 −R2), (31)

and ψ(1,0) by

ψ(1,0)(x,x0) = − 1

2πR6
(x− x0)(r

4 − 3R2r2 + 3R4), (32)
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then

∆ψ(1,0)(x,x0) = − 12

πR6
(x− x0)(r

2 −R2), (33)

and ψ(0,1) can be chosen analogously as ψ(1,0) with (x−x0) replaced by (y−y0).

When x0 is close to or on the boundary Γ, part of the ballB will lie outside
the domain Ω. In [6] a technique was proposed to extend continuously the
solutions outside the domain when x0 is close to or on the homogeneous
Dirichlet boundary. We will modify that technique to extend the solutions
continuously outside the domain for a non-homogeneous Dirichlet boundary.

For simplicity, we define the domain as in Figure 1, it is possible to extend
our results to convex polygonal domains. We then define U as a continuously
extension of u into Ω∗ by

U(x) =

{
u(x) : x ∈ Ω
2u0(0, y) − u(−x) : x ∈ Ω∗ (34)

By obvious modification in the proof of (27) we have the following represen-
tation of Dαu(x0) for each point x0 ∈ Ω which is close to or on the boundary.

Dαu(x0) = DαU(x0) =
∫

B
−∆U(x)ωα(x,x0) dx +

∫
B
U(x)∆ψα(x,x0) dx

=
∫

B+

f(x)ωα(x,x0) dx +
∫

B−
−2

∂2u0

∂y2
(0, y)ωα(x,x0) dx

+
∫

B−
∆u(−x, y)ωα(x,x0) dx +

∫
B+

u(x)∆ψα(x,x0) dx
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Figure 1: Ω = (0, 1) × (0, 1), Ω∗ = reflection of Ω over the line x = 0,
B+ = Ω ∩ B, B− = Ω ∩ B, B = B+ ∪ B−, B̃− = reflection of B− over the
line x = 0.
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+
∫

B−
2u0(0, y)∆ψα(x,x0) dx +

∫
B−

−u(−x, y)∆ψα(x,x0) dx

= I1 + I2 + I3 + I4 + I5 + I6, (35)

where I1, I2, . . . , I6 denote the previous integrands in order. It is easy to
compute I1, I4. To compute I3, I5, I6, we change the variables from (x, y) to
(−x, y). To compute I2, we use integration by parts

I2 =
∫

B−
−2u0(0, y)

∂2ωα(x,x0)

∂y2
dx.

The computation of I2 will therefore depend on the smoothness of boundary
condition u0 in the neighbourhood of x0 and the definition of ωα. Naturally,
the recovered values ũα

h for Dαu at x0 ∈ Ω, are define by

ũα
h(x0) = I1 + I2 + I3 + Ih

4 + I5 + Ih
6 , (36)

where

Ih
4 =

∫
B+

uh(x, y)∆ψα(x,x0) dx, Ih
6 =

∫
B̃−
uh(x, y)∆ψα(−x, y;x0) dx.

(37)
The details on the computations of I1, I2, I3, I

h
4 , I5 and Ih

6 are given and
analysed in [2].

The error term in this case is

|Dαu(x0) − ũα
h(x0)| = |

∫
Ω
(u− uh)fα dx| = |

∫
B+

(u− uh)fα dx|, (38)
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where

fα(x) =


∆ψα(x,x0) + ∆ψα(−x, y;x0) : x ∈ B̃−
∆ψα(x,x0) : x ∈ B+ \ B̃−
0 : elsewhere

(39)

Since fα ∈ L2(Ω), if we choose uh to be a piecewise bilinear finite element so-
lution, then the order of convergence will be O(h2). The bounding procedure
is as below.

Find z ∈ H1
0 (Ω) such that

B(z, v) = 〈fα, v〉 for v ∈ H1
0 (Ω) (40)

The finite element solution zh ∈ V 0
h ⊂ H1

0 (Ω) ∩ Vh is found by

B(zh, vh) = 〈fα, vh〉 for vh ∈ V 0
h . (41)

Since fα ∈ L2(Ω), by the Lax-Milgram Theorem, there always exist solutions
for Equations (40) and (41). The a posteriori pointwise error bound at x0 is
determined by

|Dαu(x0) − ũα
h(x0)| = |

∫
Ω
(u− uh)fα dx|

= |〈fα, u− uh〉|
= |B(z, u− uh)| = |B(z − zh, u− uh)|
≤ ‖z − zh‖E‖u− uh‖E ≤ γη (42)

where γ and η are a posteriori error bounds for ‖z − zh‖E and ‖u − uh‖E

obtained by the equilibration procedure proposed in the last section.
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6 Numerical Experiment

With the notation defined in the previous sections, we now present some
numerical results to verify our theoretical results.

The test problem is

− ∆u = f in Ω = (0, 1) × (0, 1)

u = u0 on Γ, (43)

with the exact solution

u = u0 = 10 sin(2x+ y + 2).

This problem was used in [4]. The finite element approximation is obtained
by using piecewise bilinear functions on a uniform mesh of squares of size
h. The numerical results based on Scheme (10) proposed in [4] calculated
at an interior point x0 = (0.5, 0.5) are given in Table 1 to compare with
our results which are also calculated at x0 = (0.5, 0.5) and given in Table 2.
The reliability of the error estimate can be measured by the effectivity index
(Index = Error Estimate/True Error) which we would like to be close to 1.
It is shown in Table 1 and Table 2 that the effectivity index of Scheme (42)
is much more stable and close to 1 than the effectivity index of Scheme (10).

For a point x0 close to or on the boundary, we use Formula (36) to
obtain the recovered values. The error bounds can be obtained by using the
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N ∂uh

∂x
(x0) |∂u

∂x
− ∂uh

∂x
|(x0) Error Estimate Index

9 -18.316 4.13E-1 1.54E+0 3.72
81 -18.683 4.61E-2 4.78E-1 10.37
729 -18.724 5.13E-3 1.56E-1 30.41

Table 1: N = number of degrees of freedom, ε = 10−4, interpolation con-
stant Ci = 0.1, x0 = (0.5, 0.5) and ∂u

∂x
(x0) = −18.729. Error estimate ob-

tained by using Scheme (10).

N ũ
(1,0)
h (x0) |∂u

∂x
− ũ

(1,0)
h |(x0) Error Bound Index

9 -18.134 3.88E-1 9.65E-1 2.49
81 -18.694 3.56E-2 6.33E-2 1.78
729 -18.725 4.23E-3 8.58E-3 2.03

Table 2: N = number of degrees of freedom, ball radius R = 0.3, x0 =
(0.5, 0.5) and ∂u

∂x
(x0) = −18.729. Error bound obtained by using Scheme (42).

Schemes (42). The numerical experiments for a point close to the boundary
x0 = (0.05, 0.5) are shown in Table 3, and for a point on the boundary
x0 = (0.0, 0.5) are shown in Table 4 . The observed convergence rates shown
in Tables 2–4 are O(h2) as predicted by our theoretical results. It is also
observed that the upper error bounds are realistically tight.
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N ũ
(1,0)
h (x0) |∂u

∂x
− ũ

(1,0)
h |(x0) Error Bound Index

9 -17.034 1.04E-1 6.05E-1 5.82
81 -17.112 2.61E-2 7.91E-2 3.03
729 -17.135 3.16E-3 8.58E-3 2.72

Table 3: N = number of degrees of freedom, ball radius R = 0.3,
x0 = (0.05, 0.5) and ∂u

∂x
(x0) = −17.1378. Error bound obtained by using

Scheme (42).

N ũ
(1,0)
h (x0) |∂u

∂x
− ũ

(1,0)
h |(x0) Error Bound Index

9 -15.948 7.49E-2 4.02E-1 5.37
81 -16.015 7.64E-3 3.65E-2 4.78
729 -16.022 9.76E-4 3.29E-3 3.37

Table 4: N = number of degrees of freedom, ball radius R = 0.3,
x0 = (0.0, 0.5) and ∂u

∂x
(x0) = −16.0229. Error bound obtained by using

Scheme (42).
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