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Spatial and temporal rainfall approximation
using additive models
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Abstract

We investigate the approximation of Rainfall data using additive
models. In our model, space and elevation are treated as the predictor
variables. The multi-dimensional approximation problem is demon-
strated using rainfall data collected by actew Corporation.
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1 Introduction

Rainfall is a fundamental component of any water resource assessment strat-
egy. Many catchment authorities have implemented expensive and elaborate
rainfall monitoring networks to capture the spatial and temporal variability
in the rainfall. Due to financial constraints, rainfall monitoring networks are
generally sparsely distributed within a catchment. To obtain information at
a specific location in a catchment, either interpolation or extrapolation of
the existing data is required.

Unfortunately, elementary techniques are often used to estimate the spa-
tial and temporal distribution of precipitation from point measurements of
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rainfall. Many of these approaches only provide a spatial distribution of rain-
fall from a set of fixed rainfall gauges. The temporal distribution is ignored
by averaging the rainfall over a predetermined period at each rainfall gauge.
The crudest method in common use for estimating the precipitation over a
region, is to plot contours of equal precipitation manually or with the as-
sistance of a structured grids, called isohyets [2]. The average precipitation
is computed between successive isohyets. This is simply linear interpolation
and does not utilise all the available data. It is also difficult to produce iso-
hyets with sparse data, although with the advent of Geographic Information
Systems, the task of plotting isohyets has been automated. Consider the
average annual rainfall recorded at the 55 rainfall gauges shown in Figure 1
surrounding and within the Australian Capital Territory.

A common interpolation approach is to use Theissen polygons or Voroni
polygons [10], see Figure 2(a). In this approach, areas closest to a rainfall
gauge adopt the rainfall recorded at that gauge. This results in constant
rainfall regions with discontinuities between regions. In addition, there is no
justification in assuming that point rainfall measurements provide reliable
estimates of precipitation in the surrounding region [4], [9]. The inverse dis-
tance weighted method is an alternative approach. The rainfall at any desired
location is interpolated from the given data using weights that are based on
the distance from each rainfall gauge and the desired location. This approach
produces a smooth rainfall distribution along with the undesirable troughs
and peaks located at the rainfall gauges shown in Figure 2(b). Kriging [1]
and thin plate splines [3], which have similar desirable statistical properties,
are other examples of interpolation techniques. Kriging requires prior esti-
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Figure 1: The location of the rainfall stations operated by actew Corpo-
ration over the period 1870–2000.
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Figure 2: Various methods for interpolation rainfall data: (a) Thiessen
polygons; (b) inverse distance weighted; (c) Kriging; and (d) finite element
thin plate splines (continued next page)
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Figure 2: (continued) Various methods for interpolation rainfall data: (c)
Kriging; and (d) finite element thin plate splines.



2 Additive Models C1605

mation of the auto-covariance structure, which can be difficult to estimate.
Naive implementation of thin plate splines and Kriging do not scale linearly
with the number of data points. This has been recently addressed for thin
plate splines for one, two and three-dimensional data sets with the develop-
ment of the finite element thin plate spline [7, 6]. However, for moderately
higher dimensional data sets (4–5 dimensions) interpolation is difficult. Ad-
ditive models [5] provide a class of models that can be used to approximate
multi-dimensional data sets.

2 Additive Models

The additive model assumes that the data has the form (yi, xi
1, x

i
2, . . . , xi

d)
where i = 1, 2, . . . , N are the N data points, y is the response variable and
x = (x1,x2, . . . , xd) is the d-dimensional vector space of predictor variables.
The form of the additive model with second-order interaction terms is given
by

f(x) = y +

d∑

j=1

fj(xj) +
∑

1≤j≤k≤d

fj,k(xj , xk) (1)

in which y is the mean response. Interpreting fj(xj) = fj,j(xj , xj) then

f(x) = y +
∑

1≤j<k≤d

fj,k(xj , xk).
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This model assumes that the high dimensional data is well approximated by
a sum of low dimensional contributions. The additive model requires the
estimation of d one-dimensional functions fj and d(d−1)/2 two-dimensional
functions fj,k. The original high-dimensional problem has been reduced to a
set of coupled one and two-dimensional problems.

The estimation of fj and fj,k becomes a smoothing problem because the
projection of the multi-dimensional data onto lower dimensional space can
produce data with large gradients and perhaps discontinuities. The fitting
of an interpolant through this data would be difficult. Therefore, a smooth-
ing problem is solved. Since the additive model does not pass through the
data points it is not an interpolant, it does however, approximate the multi-
dimensional data set by a smoothing function.

Suppose all the functions fl,m except one are known, then the unknown
fl,m is a two-dimensional smoothing function of xj , xk which fits the data

y − y −
∑

l,m6=j,k

fj,k.

Any suitable smoother can be used, such as thin plate or finite element thin
plate splines.
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3 Application to ACT Rainfall Data

The additive model is used to approximate rainfall data collected by actew
Corporation. The location of the 55 rainfall gauges are shown in Figure 1.
The rainfall gauges are distributed throughout the Cotter River catchment,
to the south west of Canberra and Queanbeyan River catchment, which lies
to the south east of Canberra. Reservoirs in these two catchments provide
the potable water for the residents of Canberra, with a population of 300,000
and Queanbeyan, to the west of Canberra, which has a population of 26,000.

For the rainfall data, the two spatial dimensions and time are obvious
predictor variables. Hutchinson [8] found that when interpolating annual
mean rainfall, an appropriately scaled elevation makes a dominant contribu-
tion to the accuracy of the fitted surface. Wind direction, which is controlled
by topography, can significantly influence the variability in rainfall [4]. All
these parameters can be treated as predictor variables when approximating
the response variable, rainfall. To avoid the generation of negative rainfall,
the logarithm of the response variable could also be used. This would re-
sult in a generalised additive model [5]. However, taking logarithms of zero
rainfall is problematic.

Rainfall recorded during a storm that occurred on the 10th of February
1996 was approximated. All fifty-five rainfall gauges were operating during
the storm. For each rainfall gauge, a one-dimensional interpolating function
yi = f i(t) in which yi is the rainfall recorded at the i−th rainfall gauge and
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t is the time, is fitted to the rainfall data. Interpolation will ensure that
rainfall is conserved. This data is interpolated at a particular time t = T
and an additive model is fitted through the values yi(T ) using the location
and elevation of the rainfall stations as the predictor variables.

The additive model is used to interpolate the rainfall data on a 32 ×
32 rectangular mesh covering the catchment. Contour plots, illustrated in
Figure 3 were produced from the interpolated rainfall for the February storm.
The plots represent the interpolated rainfall over an eight minute interval
commencing at 2:00pm on the 10th of February, 1996. In each plot the
contour interval is 5mm/hr with the minimum contour level arbitrarily set
to 5mm/hr. For this event, with the exception of an intense rainfall burst in
the southern ACT catchment, most of the rain fell within Canberra. These
results demonstrate that the additive model is capable of providing detailed
information on the spatial and temporal variability in the rainfall.

4 Conclusions

In this work, the application of an additive model is presented. Its main
advantage is that it is relatively simple to include any number of predictor
variables that are thought to influence the response variable in the additive
model. With an efficient additive model, it is possible to obtain real time
simulations of rainfall distributions. These could be used in a rainfall-runoff
model to provide more timely and accurate predictions of major flood events.
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Figure 3: Contours of interpolated rainfall using an additive model for the
10th February 1996 storm.
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The ability to produce real time simulations have obvious applications in
flood forecasting.
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