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Abstract

The virtual element method is an extension of the finite element
method on polygonal meshes. The virtual element basis functions
are generally unknown inside an element and suitable projections of
the basis functions onto polynomial spaces are used to construct the
elemental stiffness and mass matrices. We present a gradient recovery
method based on an oblique projection, where the gradient of the L2-
polynomial projection of a solution is projected onto a virtual element
space. This results in a computationally efficient numerical method.
We present numerical results computing the gradients on different
polygonal meshes to demonstrate the flexibility of the method.
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1 Introduction

Gradient recovery methods are popular numerical techniques for approximat-
ing the gradient of a solution. They have the super convergence property and
are used in adaptive refinement [9]. A gradient recovery method based on
oblique projection was discussed by Lamichhane [3]. The method involves in-
verting a diagonal matrix which results in a computationally efficient method.
The virtual element method [7, 8, 4] is an extension of the finite element
method on polygonal meshes and offers numerous flexibilities in approximat-
ing the geometry of the domain and in adaptive algorithms. In this article, we
extend the gradient recovery method for virtual element solutions obtained
on polygonal meshes.

Section 2 provides a brief background on the virtual element method which is
used to construct the gradient recovery operator. The procedure for computing
the projection is standard and was described in detail by Beirão da Veiga
et al. [8]. Section 3 defines the gradient recovery operator Qh and discuses
the construction of an appropriate linear system which is solved to obtain
the gradient recovery. Finally, Section 4 presents some numerical results for
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the gradient recovery method on various polygonal meshes. Throughout this
article we consider the modified virtual element method discussed by Ahmad
et al. [1].

2 Formulation

2.1 Virtual element discretization

Let Th be a sequence of non-overlapping decompositions of a polygonal domain
Ω ⊂ R2 into general polygonal elements K. For all elements K ∈ Th we define
the local space

ṼK =
{
v ∈ H1(K) ∩ C0(∂K) : ∆v ∈ P1(K) , v|e ∈ P1(e) ∀e ∈ EK

}
, (1)

where P1 denotes the space of polynomials of degree at most one and EK
denotes the set of edges of the polygon K. The function v ∈ ṼK is uniquely
determined on the polygon edges by knowing the values of the function v on
the vertices of the polygon K. We denote by D the set of degrees of freedom
of the functions in ṼK where the degrees of freedom are defined as the values
of the function v on the vertices of K.

We define the projection operator Π∇
K : ṼK → P1(K) by(

∇Π∇
K v ,∇p

)
K
= (∇v ,∇p)K and P0(Π

∇
K v) = P0(v) , (2)

for all p ∈ P1(K) and

P0(v) =
1

Nv

Nv∑
m=1

v(Vi) ,

where Vi denotes the ith vertex of the polygon and Nv is the number of
vertices in the polygon. The operator Π∇

K is well defined on the local virtual
element space ṼK and is computed using the degrees of freedom D.
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The standard L2-projection operator Π0K :WK → P1(K) is defined as(
Π0Kv ,p

)
K
= (v,p)K for all p ∈ P1(K) , (3)

where the local virtual element space is defined as

WK =
{
v ∈ ṼK : (v,p)K =

(
Π∇
K v,p

)
K
∀p ∈ P1(K)

}
, (4)

for all K ∈ Th . The existence of the local virtual element space WK was
discussed by Ahmad et al. [1]. Since v|e ∈ P1(e) , we callWK the linear virtual
element space. However, the function v may not be linear inside the polygon.
Since the function v ∈ WK is unknown in the interior of the polygon, the
inner-product is computed using the extra condition

(v ,p)K =
(
Π∇
K v ,p

)
K
. (5)

Moreover, from (3) and (5) we observe that for the linear case considered
here, the projection Π0Kv = Π∇

K v [8, p.1561]. Thus, the global discrete virtual
element space is obtained by assembling the local spaces and is defined as

Vh =
{
v ∈ H1(Ω) : v|K ∈WK ∀K ∈ Th

}
. (6)

Let Vh = span {ϕ1,ϕ2, · · · ,ϕN} be the set of basis functions for the virtual
element space Vh. Then any function uh ∈ Vh can be expressed as

uh(x) =

N∑
i=1

uh(xi)ϕi(x) ,

where N denotes the global degrees of freedom and the basis functions ϕi
satisfy the Kronecker delta property,

ϕi(xj) = δij ,

where {xj}
N

j=1 is the set of vertices on Th. Finally, we define dofi (uh) = uh(Vi)
as the local degree of freedom of uh at the ith vertex of a polygon.
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2.2 Scaled monomials on the polygon

Let hK be the diameter and pK = (xK,yK) be the centroid of the polygon K.
We define the scaled monomials of order one as the set

M1(K) :=

{
m1 := 1 ,m2 :=

x− xK
hK

,m3 :=
y− yK
hK

}
. (7)

The scaled monomials in (7) serve as a basis for the polynomial space P1(K).
Since Π∇

K uh ∈ P1(K) for some uh ∈ Vh , we write

Π∇
K uh =

Nv∑
i=1

dofi(uh) Π∇
K ϕi =

Nv∑
i=1

dofi(uh)
3∑

α=1

si,αmα , (8)

where the coefficients si,α are obtained from the definition of Π∇
K in (2). For

our case, the same expression in equation (8) holds for Π0Kuh. Since the
projection Π∇

K is defined locally inside the element, the basis functions ϕi
are considered in the local sense in (8). Here ϕi|e ∈ P1(e) and it satisfies the
Kronecker delta property on the vertices of the polygon [8] and hence the
projection Π∇

K ϕi can be computed inside the polygon.

3 Gradient recovery

To compute the gradient recovery, the gradient of the virtual element so-
lution ∇uh needs to be projected onto the virtual element space Vh. An
oblique projection using a bi-orthogonal basis yields a diagonal matrix which
is inverted to obtain the gradient recovery.

The gradient recovery operatorQh projects∇uh by finding gkh = Qh (∂uh/∂xk)
∈ Vh for k = 1, 2 such that∑

K

(
Π0Kg

k
h ,Π

0
Kµj
)
K
=
∑
K

(
∂(Π0Kuh)

∂xk
,Π0Kµj

)
K

, (9)
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with (x1, x2) = (x,y) and where the functions µj ∈Mh := span{µ1,µ2, · · · ,µN}
satisfy the bi-orthogonal relation(

Π0Kϕi ,Π
0
Kµj
)
K
= cjδij for all K ∈ Th , (10)

where the scaling factors cj are obtained using mass lumping. Let DK denote
the local diagonal matrix defined by the bi-orthogonality relation (10) and
D denote the global matrix arising from the finite element assembling of the
local matrices DK. From the definition of Qh in (9), the gradient recovery is
performed using (10) without explicitly computing the bi-orthogonal basis
µj and Π0Kµj. Since the L2-projection Π0Kuh is close to the virtual element
solution uh on the polygon K, ∇uh is approximated by ∇Π0Kuh. Expanding
in terms of the basis,

gkh =

N∑
i=1

gkh(xi)ϕi and uh =

N∑
i=1

uh(xi)ϕi . (11)

Let gki = dofi(gkh) and (uh)i = dofi(uh) . Equations (9), (10) and (11) yield

∑
K

Nv∑
i=1

gki
(
Π0Kϕi ,Π

0
Kµj
)
K
=
∑
K

Nv∑
i=1

(uh)i

(
∂(Π0Kϕi)

∂xk
,Π0Kµj

)
K

, (12)

which in matrix form is equivalent to the system of linear equations D~gk = ~fk .
The basis functions in equation (12) are equivalent to local basis functions
on the virtual element K and finite element assembly must be performed to
obtain the global system. The right hand side of equation (12) is constructed
as follows.

On each element K ∈ Th , since M1(K) ⊂ P1(K) ⊂ Vh|K , we use the ansatz

p(x) =

Nv∑
i=1

dofi(p)ϕi(x) for p ∈ P1(K) , (13)
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where the degrees of freedom and the basis functions are considered in the
local sense. Using (8), the right-hand side in equation (12) becomes,(

∂(Π0Kϕi)

∂xk
,Π0Kµj

)
K

=

3∑
α=1

si,α

(
∂mα

∂xk
,Π0Kµj

)
K

=

3∑
α=1

si,α

Nv∑
p=1

dofp
(
∂mα

∂xk

)(
ϕp ,Π0Kµj

)
K

=

3∑
α=1

si,α

Nv∑
p=1

dofp
(
∂mα

∂xk

)(
Π0Kϕp ,Π

0
Kµj
)
K

=

3∑
α=1

si,α

Nv∑
p=1

dofp
(
∂mα

∂xk

)
DK
pj .

Written in matrix-form, we have si,α = (S)αi and dofp (∂mα/∂xk) = (Mk)pα .
Thus we have (

∂(Π0Kϕi)

∂xk
,Π0Kµj

)
K

= [DKMk S]ji := [QK
k ]ji .

Thus the recovered gradient is a solution to the system of linear equations

D~gk = Qk~uh = ~fk ,

where ~uh is the solution obtained from the virtual element method and
Qk is the global matrix obtained by the finite element assembly of the local
matrices QK

k .

4 Results

We provide numerical examples to solve the standard Poisson equation

− ∆u = f in Ω, (14)
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subject to appropriate boundary conditions. The finite dimensional virtual
element weak formulation for the problem is to find uh ∈ Vh such that

ah(uh, vh) = lh(vh) for all vh ∈ Vh , (15)

where the construction of the approximate bilinear form ah and the linear
form lh were discussed by Beirão da Veiga et al. [7] and for the special case
of p = 1 by Sutton [4, p.6]. Vacca and Beirão da Veiga [6, p.15] defined a
bilinear form mh for approximating the standard L2 inner-product. Utilizing
the stability properties of the approximate bilinear forms, it is useful to define
the norms

|uh|1,h =
√
ah(uh,uh) and ‖uh‖0,h =

√
mh(uh,uh) ,

equivalent to the standard H1-seminorm and the L2-norm, respectively. The
equivalent norms are explicitly computed using the local L2-projection Π0K
and the rates of convergence for the various solutions are studied with respect
to these norms.

The first example we consider is solving the Poisson equation with a smooth
exact solution u = sin(πx) sin(πy) . We then solve the problem using the vir-
tual element method with homogeneous Dirichlet boundary condition on two
different types of polygonal meshes, shown in Figures 1 and 2. All the meshes
were generated using PolyMesher [5]. The error from the standard oblique
projection on the whole and interior domain are Eu = ‖∇u−Qh∇uh‖0,h and
EIu = ‖∇u−Qh∇uh‖0,h,I , respectively. The standard H1-seminorm error on
the entire domain is EEu = |u−uh|1,h . Convergence analysis was performed
on a uniform-square mesh and on a quasi-uniform Voronoi mesh. Figure 3
shows the convergence plots for the two different types of meshes.

For the uniform-square meshes, the rate of convergence of the recovered
gradient error Eu is close to 1.5, which is higher than the rate observed
for EEu. For the error EIu we observe that the convergence rate is close
to two, indicating that the solution deteriorates near the boundary of the
domain for the uniform case. For the quasi-uniform Voronoi mesh, similar
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Figure 1: Solution of the Poisson equation and the recovered gradients on
a virtual element mesh containing non-convex shaped elements. The error
values are |u − uh|1,h = 0.17631 , ‖∂u/∂x −Qh(∂uh/∂x)‖0,h = 0.10382 and
‖∂u/∂y−Qh(∂uh/∂y)‖0,h = 0.10333 .
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Figure 2: Same as Figure 1 but on a smooth, quasi-uniform Voronoi mesh. The
error values are |u− uh|1,h = 0.10095 , ‖∂u/∂x−Qh(∂uh/∂x)‖0,h = 0.10175
and ‖∂u/∂y−Qh(∂uh/∂y)‖0,h = 0.10222 .
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(a) uniform-square meshes.
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(b) Quasi-uniform Voronoi meshes.

Figure 3: Rate of convergence plots for gradient recovery where Eu = ‖∇u−
Qh∇uh‖0,h , EIu = ‖∇u−Qh∇uh‖0,h,I and EEu = |u− uh|1,h .
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trends are observed for the recovered gradient in Eu. However, the error in
the interior norm EIu converges with the same rate as Eu. This is because the
refinement is not perfectly uniform, unlike in the square meshes. In the finite
element setting, Ilyas et al. [2] used an appropriate boundary modification
technique to improve the rate of convergence on the boundary of the domain
for uniform meshes. In both cases, as the mesh becomes finer, the error Eu
becomes less than EEu, indicating that Qh∇uh is a better approximation
to ∇u than ∇uh.

5 Conclusion

We have shown how to construct a gradient recovery operator based on an
oblique projection for the virtual element method onto polygonal meshes. The
basis functions are assumed to be linear on the edges of the polygons. We have
established that the gradient recovery can be done without the computation
of the bi-orthogonal basis. We have computed the rate of convergence of the
gradient-recovery method and compared the same with the convergence of
the standard gradient.
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