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Weighted k-word matches: a sequence
comparison tool for proteins
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Abstract

The use of k-word matches was developed as a fast alignment-
free comparison method for dna sequences in cases where long range
contiguity has been compromised, for example, by shuffling, duplication,
deletion or inversion of extended blocks of sequence. Here we extend
the algorithm to amino acid sequences. We define a new statistic, the
weighted word match, which reflects the varying degrees of similarity
between pairs of amino acids. We computed the mean and variance, and
simulated the distribution function for various forms of this statistic
for sequences of identically and independently distributed letters. We
present these results and a method for choosing an optimal word size.
The efficiency of the method is tested by using simulated evolutionary
sequences, and the results compared with blast.
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1 Introduction

A common problem faced by biologists is to find closely related dna or
protein sequences. Sequences with a high degree of similarity are believed
to be closely related in terms of evolutionary distance or to have evolved to
perform functionally similar tasks. Fast algorithms are needed to search large
databases to find close matches to given query sequences.

The most commonly used algorithms are based on alignments. Significance
scores are attached to long alignments. These algorithms generally perform
well, but fail when long range contiguity has been compromised, for example,
by shuffling, duplication, deletion or inversion of extended blocks of sequence.
An alternative alignment-free method is to use k-word matches, in which a
significance score is attached to the number of exact matches of short words
of prespecified length k [1, 2]. The algorithm for evaluating the number of
k-word matches is extremely fast, with a run time linear in the lengths of the
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sequences being interrogated, and the method has been shown to perform at
least as well as blast [3, 4] for simulated evolutionary dna sequences [5].

For amino acid sequences, because of the increased alphabet size of 20 amino
acids, exact matches are rare between shorter sequences. Typical optimal
word sizes are two or three letters for sequence lengths below 3200 letters,
and for word sizes other than optimal the accuracy decreases dramatically.
We extend the idea of k-words to cumulative sums of weighted word matches.
A weight is attached to k-word comparisons which acknowledges a higher
rate of letter substitutions between chemically similar amino acids. Weighted
word matches lead to increased optimal word sizes for shorter sequences, and
the resulting scores are more stable and less sensitive to word sizes.

We compute the distributional properties of the cumulative weighted word
match count and demonstrate a method for choosing an optimal word size
for given sequence length. The efficiency of the method is tested by using
simulated evolutionary sequences, and the results compared with blast.
Further possible tests and future directions are also discussed.

2 Mathematical definitions and formulae

2.1 Definitions

Our starting point is the D2 statistic, defined as the number of matches of
words of prespecified length k between given sequences A = (A1, . . . ,AnA

)
and B = (B1, . . . ,BnB

), where the letters Ai and Bj, 1 6 i 6 nA and
1 6 j 6 nB , belong to some alphabet A of size |A| = L . For dna sequences,
A = {A,C,G, T }, and for protein sequences A is a set of L = 20 amino
acids. D2 is conveniently stated in terms of word count vectors XAw and XBw,
specifying the number of times the word w = (w1, . . . ,wk) ∈ Ak occurs in
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sequences A and B respectively:

D2 =
∑
w∈Ak

XAwX
B
w . (1)

For application to protein sequences, theD2 statistic is too stringent a measure
of similarity and fails to capture the higher rate of letter substitutions between
chemically similar amino acids. To account for this, D2 is generalised to a
weighted word match statistic, namely,

DW
2 =

∑
w,v∈Ak

XAwβwvX
B
v . (2)

The β-matrix represents a transition probability between words w and v
and for independently evolving letters typically takes the form of a product:
βwv = β(w1,...,wk),(v1,...,vk) = βw1v1 · · ·βwkvk .

The choice of transition matrix is guided by established analyses of empirical
amino acid substitution rates which are encoded in the well known block
substitution or blosum matrices [6]. Herein we consider three ansätze for
the single letter substitution matrix, or weight matrix, βab:

β
(1)
ab = qabL , β

(2)
ab = qab/(papb) , β

(3)
ab = qab/

√
papb . (3)

Here qab is an element of the symmetric blosum matrix before taking
logarithms, estimated from the relative frequency of matching letter a with
letter b in trusted blocks of aligned protein sequences. For each a ∈ A ,
pa =

∑
b∈A qab is an estimate of the relative frequency of occurrence of

letter a within the blocks. In all calculations, qab was taken from the
background probabilities of the blosum62 matrix at the reblosum web
page [7]. Although other generalisations of the D2 statistic exist, such as
D∗2 and DS

2 proposed by Reinert et al. [8], as far as we are aware, DW
2 is

the first extension of the D2 statistic to use a weight matrix with nonzero
off-diagonal elements. Note that Reinert et al.’s D∗2 is a particular case of DW

2

with a diagonal β-matrix and word counts XA,Bw centred about their mean.
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2.2 Mean and variance

Formulae for the mean and variance of the word match statistic D2 under
the assumption that the sequences A and B are composed of identically and
independently distributed (iid) letters are were derived by Forêt et al. [9]. The
parallel derivations for E[DW

2 ] and Var(DW
2 ) are a straightforward extension,

details of which are available from us. Here we simply quote results.

As in previous work [10, 9], for mathematical convenience we impose on
both sequences periodic boundary conditions, that is, we define Ai = Ai−nA

,
i = nA + 1, . . . ,nA + k − 1 , and similarly for sequence B. The periodic
boundary conditions are a minor technicality, easily implemented in practical
applications. We further assume that the probability of the letter a ∈ A

occurring at any given site in either sequence is fa, where
∑

a∈A fa = 1 .

We begin with the following definitions. For a,b ∈ A , set

ηa =
√
fa , Mab = ηaβabηb , πt = η

′Mt−1η , t = 1, 2, . . . ,

where the column vector η = (η1, . . . ,ηL), and M is the L× L matrix with
elements Mab. We also define

φ =
∑
a,b∈A

fafbβ
2
ab . (4)

For the mean one obtains by analogy with Forêt et al. [9, Eq. (4)] the result

E[DW
2 ] = nAnBπ

k
2 . (5)

The derivation of Var(DW
2 ) is nontrivial. Writing the variance as a sum of

cross covariances, gives a sum of five contributions:

Var(DW
2 ) = V1 + V2 + V3 + V4 + V5 .

Analogous to work by Forêt et al. [9, Eqs. (10), (14), (17), (20) and (26)], we
find

V1 = nAnB
(
φk − π2k2

)
,
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V2 = nAnB(nA + nB − 4k+ 2)

×
[
π3
k + 2π2

2π3
π3
k−1 − π2

2(k−1)

π3 − π22
− (2k− 1)π2

2k

]
,

V3 = 2nAnB

[
φπ22

φk−1 − π2k−22

φ− π22
− (k− 1)π2k2

]
,

V4 = 4nAnB

k−1∑
t=1

t−1∑
s=0

(
π2
2sπ2ν+3

ρπ2ν+1
t−s−ρ − π2

2k
)

,

V5 = 2nAnB

k−1∑
r,t=1

[(
t∏
i=1

πli

)(
r∏
j=1

πmj

)
− π2

2k

]
.

In the contributions V4 and V5, the following definitions are used:

ν =

⌊
k− s

t− s

⌋
, ρ = (k− s) mod (t− s),

li = 1+ 2η+

{
1 if i 6 ζ
0 otherwise

}
+

{
1 if i 6 ζ− r
0 otherwise

}
,

mj = 1+ 2η+

{
1 if j 6 ζ
0 otherwise

}
+

{
1 if j 6 ζ− t
0 otherwise

}
,

where η = bk/(r+ t)c, ζ = k mod (r+ t), and b c indicates the integer part.

3 Simulations

3.1 Distribution simulation and fitting

For each of the weight matrices in equation (3), DW
2 was simulated from a

sample of 100, 000 pairs of random sequences for word lengths k = 4, . . . , 10 ,
sequence lengths nA and nB in the range 100 to 600, and letter frequencies
fa = pa calculated from the blosum62 matrices for a 20 letter amino acid
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Figure 1: Simulations ofDW
2 with weight matrix β

(1)
ab = qabL from samples of

100, 000 pairs of random iid sequences for a range of word lengths k, sequence
lengths nA = nB = 100 , and letter frequencies fa = pa calculated from the
blosum62 matrices. Superimposed are density functions for a Normal (solid
curve) and Gamma (dashed curve) distribution with parameters matching
the theoretical mean and variance. Also shown are details of the tail of the
distribution for k = 6 .

alphabet. The range of sequence lengths covers most single and multi-domain
proteins. Examples of histograms of DW

2 are shown in Figures 1–4.

TheD2 statistic is known to be asymptotically Normal in the regime k� logn
and asymptotically Compound Poisson in the regime k � logn as the
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Figure 2: Simulations ofDW
2 with weight matrix β

(1)
ab = qabL from samples of

100, 000 pairs of random iid sequences for a range of word lengths k, sequence
lengths nA = nB = 600 , and letter frequencies fa = pa calculated from the
blosum62 matrices. Superimposed are density functions for a Normal (solid
curve) and Gamma (dashed curve) distribution with parameters matching
the theoretical mean and variance. Also shown are details of the tail of the
distribution for k = 6 .
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Figure 3: Simulations ofDW
2 with weight matrix β

(1)
ab = qabL from samples of

100, 000 pairs of random iid sequences for a range of word lengths k, sequence
lengths nA = nB = 400 and letter frequencies fa = pa calculated from the
blosum62 matrices. Superimposed density functions are as in Figure 1–2.
Also shown are details of the tail of the distribution for k = 9 .
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Figure 4: Simulations of DW
2 with weight matrix β

(3)
ab = qab/

√
papb, from

samples of 100, 000 pairs of random iid sequences for a range of word lengths k,
sequence lengths nA = nB = 400 and letter frequencies fa = pa calculated
from the blosum62 matrices. Superimposed density functions are as in
Figures 1–2. Also shown are details of the tail of the distribution for k = 9 .
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sequence lengths nA = nB = n become large [1, 11]. It is also known to be
well approximated by a Gamma [9] distribution in the intervening regime
relevant to many biological applications. To test the appropriateness of
these approximations to DW

2 we superimposed on the histograms density
functions of Normal and Gamma distributions with parameter values chosen
to match the above theoretical means and variances. In general, the Gamma
distribution is a more accurate fit than the Normal distribution, although
both distributions fail to capture the shape of the distribution at sufficiently
high values of the word length k.

A transition away from a Normal distribution as the word length increases
from k < const. × logn to k > const. × logn , similar to that observed
for D2, is observed for DW

2 . As a rule of thumb, the distribution with weight

matrix β
(1)
ab is well represented by a Gamma distribution for k . 2 log10 n (see

Figures 1–4). Figures 3–4 show the Gamma distribution gives an improved

fit for the weight matrix choice β
(3)
ab , but a poorer fit for the choice β

(2)
ab (data

not shown).

The failure of the fit at large k and smaller sequence lengths is due to the
extremely long tail of the DW

2 distribution: In the final plots of Figures 1–2
an extended tail is evident for sequences of length 100, but not for sequences
of length 600 when k = 6 and for weight matrix β

(1)
ab . A close fit can be

obtained even at larger k if a Gamma distribution is fitted to the empirical
distribution of logDW

2 . However, this fit is of little practical use as analytic
formulae of the mean and variance of logDW

2 remain intractable.

3.2 Optimal word sizes

For the DW
2 statistic to be useful as a measure of the similarity of protein

sequences, it is important to establish an optimal word length corresponding
to realistic biological applications. To this end, a method introduced by Wu
et al. [12] using the Spearman’s rank statistic to test the ability of similarity
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Figure 5: loge of the Spearman’s rank statistic averaged over 5, 000 families
of evolved sequences for a range of sequences lengths n and word sizes k,
using DW

2 with a weight matrix β
(3)
ab .

measures to estimate the relatedness of evolving sequences has previously
been applied to the D2 statistic [5].

We adapted the method to the weighted statistic DW
2 as follows: For a

given sequence length nA = nB = n , we first generate a random mother
sequence, then 100 generations of daughter sequences with increasing degrees
of mutation using an evolution model based on amino acid substitution [13].
More specifically, each letter in the mother sequence undergoes a mutation
with probability determined by a transition matrix eQt, where the matrix Q
is adopted from work by Le and Gascuel [13], and the 100 daughter sequences
correspond to t = 0.01, 0.02, . . . , 1 respectively. The DW

2 statistic between
the mother and each daughter is computed. Two rankings of the daughters
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are then produced, one based on generation number γ, and a ranking r(γ)
based on decreasing DW

2 . We then compute the discrepancy between these
two rankings using the Spearman’s rank statistic

S =

100∑
γ=1

(r(γ) − γ)2. (6)

Smaller S means better accuracy, and the optimal word size is defined as that
for which S is minimal.

Figure 5 shows the Spearman’s rank statistic averaged over 5,000 families of
evolved sequences for a range of sequences lengths and word sizes using the
weight matrix β

(3)
ab . The optimal word size increases with sequence length,

but remains within the range for which the Gamma distribution provides an
accurate approximation to the distribution of DW

2 under an iid null hypothesis.

Figure 6 compares the effectiveness of the three weight matrices defined in
equation (3) and clearly indicates that β

(3)
ab outperforms β

(1)
ab and β

(2)
ab . Also

shown for comparison is the value of the averaged Spearman’s rank statistic
obtained by using a ranking r(γ) based on the blast P-value. There is still a
gap between the performance of DW

2 and blast for this test. This is expected
as the sequences are evolved using an amino acid substitution model which
does not break sequence contiguity, and long range alignments are expected
to perform best in such a situation.

4 Discussion and future work

We propose an alignment-free sequence comparison tool: the weighted k-word
match DW

2 . It is designed as a measure of sequence similarity when alignments
are not appropriate, and particularly when long range sequence contiguity is
broken. Exact analytical formulae are given for the mean and variance of DW

2

under the iid assumption, for arbitrary alphabet, letter frequencies, sequence
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lengths, weight matrix, and word size. In future work, assumptions other
than iid will be considered, such as Markovian dependence or more general
models using time series methods.

A number of potential weight matrices are considered, and based on amino
acid evolutionary substitution rates and simulation performance, a suitable
matrix chosen. For proteins in the length range 100 to 600 amino acids, which
includes most proteins, the optimal word size is determined to be four to five
letters using a test based on Spearman’s rank statistic applied to artificially
evolved sequences. For these word sizes, the distribution of the DW

2 statistics
is well approximated by a Gamma distribution with parameters chosen to
match the calculated mean and variance.

The true test of the DW
2 statistic is its ability to reconstruct phylogenetic trees

for proteins with large numbers of shuffled or duplicated domains. Future
work will apply the method to the known phylogenies of Notch receptors [14]
which are part of the signal transduction pathways orchestrating cell-cell
interactions and Beta-catenin [15] which plays a role in the development of
embryos. These tests will benchmark further calibrating parameters to enable
development of a database query tool to complement existing alignment based
methods.
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