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PHYSICAL REVIEW A 90, 053612 (2014)

Observations of λ/4 structure in a low-loss radio-frequency-dressed optical lattice

N. Lundblad,* S. Ansari, Y. Guo, and E. Moan
Department of Physics and Astronomy, Bates College, Lewiston, Maine 04240, USA

(Received 27 June 2014; revised manuscript received 26 August 2014; published 10 November 2014)

We load a Bose-Einstein condensate into a one-dimensional (1D) optical lattice altered through the use
of radio-frequency (rf) dressing. The rf resonantly couples the three levels of the 87Rb F = 1 manifold and
combines with a spin-dependent “bare” optical lattice to result in adiabatic potentials of variable shape, depth,
and spatial frequency content. We choose dressing parameters such that the altered lattice is stable over lifetimes
exceeding tens of ms at higher depths than in previous work. We observe significant differences between the
BEC momentum distributions of the dressed lattice as compared to the bare lattice, and find general agreement
with a 1D band-structure calculation informed by the dressing parameters. Previous work using such lattices was
limited by very shallow dressed lattices and strong Landau-Zener tunneling loss between adiabatic potentials,
equivalent to failure of the adiabatic criterion. In this work we operate with significantly stronger rf coupling
(increasing the avoided-crossing gap between adiabatic potentials), observing dressed lifetimes of interest for
optical lattice-based analog solid-state physics.

DOI: 10.1103/PhysRevA.90.053612 PACS number(s): 03.75.Lm, 37.10.Jk, 03.75.Mn

I. INTRODUCTION

The optical lattice is a versatile tool for trapping and
control of neutral atoms and for studying both single-particle
and many-body quantum physics. It has proven useful to
optical atomic clock development [1], to the development
of quantum-computing proposals [2–4], and to solid-state
analogs and quantum simulations [5,6], including the ability
to resolve these systems at the single-atom level [7–9]. While
early work focused on simple lattices of λ/2 periodicity (where
λ is the wavelength of the lattice laser), including square
[two-dimensional (2D)] and cubic [three-dimensional (3D)]
lattices, more complex periodic potentials were sought out in
order to enhance existing lattice-physics experiments and to
explore less well-understood many-body physics. Recently,
new lattice geometries (including the triangular, honeycomb,
kagome, double-well, and checkerboard lattice) have been
explored using various techniques, including the use of dual
commensurate lattice lasers [10] as well as through holography
[11]. Additionally, lattice substructure in one dimension has
been generated using Raman transitions [12–15].

Taking a wholly different approach, other work [16–18]
introduced a method of altering lattice geometry and topology
based on the notion of radiofrequency (rf) dressing of spin-
dependent lattice potentials [19]. The theoretical work [17,18]
aimed at the exploitation of the resulting adiabatic potentials’
faster tunneling time scales and higher interaction energies, as
well as the associated higher temperature scale. The experi-
mental work [16] showed that it was possible to generate 2D
dressed lattices which in principle had tailored subwavelength
structure, in particular pointing the way to toroidal single-site
wave functions [20]. This work was limited, however, to
dressed lattices of rather small depth, preventing the realization
of tight-binding lattice wave functions with lifetimes appro-
priate to the solid-state-analog physics goals. Attempts to push
toward deeper dressed lattices were blocked by nonadiabatic
(Landau-Zener) losses associated with insufficient rf coupling
strength and lattice-laser power. In this article we present

*nlundbla@bates.edu

observations of a 1D dressed optical lattice system in a regime
where interesting structure (finer than the usual λ/2 scale) ap-
pears such that Landau-Zener losses are limited and the dressed
lattice begins to be of useful depth. We demonstrate that the
dressing procedure alters the momentum distribution of a BEC
loaded into the lattice in a way that generally agrees with a
band-structure calculation informed by the dressing parame-
ters, and that the adiabatic potentials are stable over �30 ms
time scales (of similar order to tunneling and interaction time
scales) given sufficient dressing (rf coupling) strength.

Radio-frequency dressing (and the notion of adiabatic
potentials), as illustrated in Fig. 1, is familiar in the context
of magnetic traps, where “rf-knife” evaporative cooling can
be viewed as the atomic traversal of the lower adiabatic
potential of a dressed spin system [21]. Similarly, bubble- or
shell-like potential surfaces can be created using the upper
adiabatic potential [22–24] with possible additional time
averaging [25,26]. Coherent splitting of an atom-chip BEC for
interferometry can also be achieved using rf dressing [27,28].
We consider a BEC held in a 1D optical potential of the form

U (x,mF ) = −mF U0 cos2(kx), (1)

where mF ∈ {0,±1} is the total angular momentum projection,
�U0 is the lattice depth, and k = 2π/λ is the wave vector
of the lattice laser at wavelength λ. A bias magnetic field
B0 is applied along x, resulting in linear Zeeman splitting
given by �ω−1,0 and �ω0,+1. In order to create the desired
adiabatic potentials we couple the three mF levels with near-
resonant rf radiation. An rf magnetic field of amplitude Brf and
frequency ω is applied perpendicular to B0. If we make a Born-
Oppenheimer-type approximation (ignoring residual kinetic
energy) and take the usual rotating-wave approximation, the
rotating-frame Hamiltonian H for the system is

H(r) =
⎛
⎝

U (x,−1) − δ �/2 0
�/2 U (x,0) �/2

0 �/2 U (x, + 1) + δ + δ′

⎞
⎠ ,

(2)

where δ = ω − ω−1,0 is the rf detuning, �� = μBBrf/2 is
the standard coupling-strength matrix element, and �δ′ is a
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FIG. 1. (Color online) (a) General scheme for radio-frequency
(rf) dressing of a symmetric three-level system, in the case of a
quadratic magnetic-trap potential (at left) and a periodic (lattice)
potential (at right), both at rf detunings near resonance. In both
cases the bare spin-dependent potentials U (x,m) become (in the
dressed picture, with rf frequency ω and rf coupling strength �)
the adiabatic potentials U ∗(x,m). In the case of the dressed lattice
note the appearance of λ/4 structure in the adiabatic potentials.
(b) Left-to-right: calculated lattice adiabatic potentials for � =
U0/16, U0/2.5, and 2.5U0, where U0 is the bare lattice depth. The
maximum depth of a dressed lattice (for � → 0) is U0/2, i.e., depth
decreases with increased �. The gap between adiabatic potentials,
relevant for nonadiabatic transitions, increases with coupling strength
as �∗ � �/

√
2. (c) The dependence of the uppermost adiabatic

potential on the rf detuning δ for the same three values of � as in
(b): the bare potential (dashed), the slightly altered lattice δ � +U0/8
(blue), and a λ/4 lattice δ � +U0/2 (red).

small deviation from the linear Zeeman regime (much smaller
than � in our experiments). Diagonalizing this Hamiltonian
yields the so-called adiabatic eigenstates: a spatially varying
superposition of the bare spin eigenstates. Figure 1 depicts
several illustrative cases of the resulting adiabatic potentials
for different δ and �. Notably, we see that for δ � δ0 = +U0/2
the periodicity of the lattice is halved. In order to observe
atoms in such a lattice, we proceed as follows: generate
a spin-polarized BEC, load it into the bare lattice, apply
the lattice dressing procedure (discussed below), and image
the momentum distribution of the system through ballistic
expansion.

II. APPARATUS

Our BEC apparatus is a hybrid machine combining a
magnetic trap and a single-beam optical dipole trap, largely
following the design of Ref. [29]. A Zeeman slower delivers

87Rb atoms to a conventional six-beam magneto-optical trap
(MOT); the trapped sample (in the weak-field-seeking 5 2S1/2

|F = 1,mF = −1〉 state) is then transferred into a colocated
magnetic quadrupole trap and subject to rf evaporation. The
magnetic field zero of the quadrupole trap results in spin-flip
“Majorana” loss as the sample becomes colder, a problem that
in this case is solved via transfer to a single-beam optical dipole
trap aligned slightly below the field zero. The transfer process
notably provides an increase in phase-space density due to
the drastic change in trap geometry, the statistical mechanics
of which is detailed elsewhere [29]. Further evaporation
occurs through forced reduction of the dipole potential; in
our apparatus BEC typically appears at a critical temperature
Tc � 200 nK, and condensates of >90% purity with ∼105

atoms are regularly produced with an overall experimental
cycle time of 30 s.

We load the BEC into the ground band of a 1D optical lattice
with laser power (lattice depth) increasing exponentially over
300 μs. This time scale was chosen to be adiabatic with respect
to vibrational excitation in the lattice [30]. The circularly
polarized lattice beam is generated by a Ti:sapphire laser
held near 790.06 nm, the tune-out wavelength between the
D1 and D2 lines of 87Rb where the light shifts for mF = ±1
are opposite in sign and equal in magnitude, and the light
shift for mF = 0 is absent, as presented in the lattice potential
of Eq. (1). The bare lattice is held for a few ms to allow
for stabilization of the bias field and, in the case of deep
bare lattices, dephasing of the individual lattice sites. The
dressing process is initiated by switching on the rf coupling
� (provided by a resonant loop antenna fed by a 150 W
broadband amplifier) at a fixed frequency ω, with a large
detuning δ set by the magnetic field B0. At this point the
adiabatic potentials are indistinguishable in shape from the
bare potentials. The adiabatic potentials are then altered via a
ramp (of variable duration, usually a few ms) of the bias field
B0 to a chosen value, with the ramp duration chosen to prevent
vibrational excitation in the dressed lattice. The detuning
δ and the coupling � are calibrated through observations
of three-level Rabi oscillation of the dipole-trapped BEC;
under the Hamiltonian of Eq. (2), full transfer from mF = −1
to mF = +1 occurs at a time given by T = π

√
2/�, with

typical values of T = 1.8(1) μs for � = 2π × 400(20) kHz
near a resonance of 3.85 MHz (corresponding to a magnetic
field of 5.48 G). At the termination of the magnetic-field
sweep we either terminate the experiment or hold the field
to study the lifetime of the dressed lattice; we then acquire
data reflecting the trapped sample’s momentum distribution
through rapid (sub-μs) switch-off of the lattice beams, rf field,
and background dipole trap, followed by 10–20 ms of ballistic
expansion and a typical resonant absorption imaging process,
with optional accompanying Stern-Gerlach gradients during
time of flight to provide spin-projection information.

III. OBSERVATIONS

Figure 2 summarizes our observations of the dressed
lattice as the final value of B0 is varied, corresponding to
alteration of the bare λ/2-periodic potentials to a regime
where significant λ/4 periodicity is expected (namely, cor-
respondingly increased weight in momentum space at ±4�k),
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FIG. 2. (Color online) (a) Observations of the width (Gaussian
1/e radius) of the lattice-trapped atomic momentum distribution as
a function of the dressing field detuning δ for a bare lattice of depth
U0 = 44Er and coupling strength �/2π = 400 kHz. Shaded area
represents the predicted equivalent widths from a 1D band-structure
calculation accounting for 1σ uncertainties in U0, �, and δ. Error
bars represent a combination of fit uncertainty and uncertainty in the
finite-size correction. Inset: typical observed momentum distributions
for the bare lattice and the maximally altered lattice. (b) Typical
examples of the lattice momentum distribution near δ0. The visual
character of a given iteration of the experiment at δ0 depends on
fluctuations of U0, �, and δ; the dephased examples (top and bottom)
were the most repeatable. (c) For the data in (a) at δ/2π = −300 kHz
(left) and δ/2π = +80 kHz, near δ0 (right). Top, blue: calculated
dressed lattice (uppermost adiabatic potential); dashed: bare lattice.
Middle: the bare spin distribution of the adiabatic eigenstate;
mF = −1 (red), mF = 0 (black), and mF = +1 (blue). The dashed
lines indicate the lattice sites of the adiabatic potential. Bottom:
momentum-component weights of the associated lattice shape, as
determined by a 1D band-structure calculation. (d) Stern-Gerlach
separation of the dressed lattice; all images near δ0, except at lower
right, taken at δ/2π = −300 kHz. All images in (d) progress from
top to bottom as mF : −1, 0, and +1.

concomitant with significant reduction in overall lattice depth
and associated reduction in width of the momentum-space
envelope. The data in Fig. 2 were taken at a bare lattice depth of
44Er , where Er is the single-photon recoil energy �

2k2/2m =
h × 3678 Hz. We fit the observed momentum distributions to
Gaussian profiles, which yield increasingly poorer fits as the
dressing sweep approaches the critical detuning δ0 � U0/2
but nevertheless provide some information about the system.
We use a 1D band-structure calculation informed by the
dressing parameters to calculate the expected widths; the small
deviation of data from our noninteracting theory is likely
driven by number fluctuation, associated uncertainty in the
time-of-flight–finite-size correction, and by inaccuracies in
the simple fitting function. As the dressing rf approaches

resonance the potential becomes increasingly distorted, and
near δ0 we see a minimum in the fit width of the momentum
profile, but more importantly a significant deviation from a
Gaussian profile. We see a strong central peak with either
(i) a faint background at ±4�k [Fig. 2(b), top], (ii) clearly
resolved momentum orders with magnitudes suggestive of a
highly distorted lattice [Fig. 2(b), middle], or (iii) a dephased
envelope [Fig. 2(b), bottom] very different in character from
the typical Gaussian momentum profile of a λ/2 lattice, as
suggested by the 1D band-structure calculation of momentum
orders shown in Fig. 2(c) at bottom. The particular appearance
of the dressed λ/4 cloud in a given iteration of the experiment
likely depends on fluctuations of U0 and number, as well
as a possible dependence on hold time and loading time.
The dephased example was the most repeatable. For a λ/4
dressed lattice of calculated 3–4 Er depth we expect to see
faint components at ±4�k if the system has maintained some
phase coherence, otherwise an envelope including greater
weight at higher momenta than would be expected for such a
lattice. Stern-Gerlach separation (with an ∼10 G/cm gradient)
can shed some light on the nature of the dressed lattice by
projecting the adiabatic eigenstate onto the bare spin states
as the lattice is shut off. The spin superpositions of Fig. 2(c)
suggest that at δ0 the lattice atoms should have equal weight
of mF = ±1 and 50% weight of mF = 0. The images in
Fig. 2(d) confirm this, and also reveal the clear signature of
significant weight at ±4�k. A dressed-state Bloch-band model
(not shown) confirms the spin weights of the dressed lattice at
a variety of bare depths, coupling strengths, and detunings.

Several issues regarding adiabaticity are present in this
system. Spin following during the period of the sweep δ(t)
where the adiabatic potentials are roughly identical to the
bare potentials is easily maintained with a typical rate of
δ̇ = 250 kHz/ms, satisfying δ̇ 
 ω2

−1,0. More dangerous is
the potential for too-rapid distortion of the dressed lattice
leading to vibrational excitation. While the usual criterion [31]
suggests that sub-ms ramps are safe, since the lattice is initially
dephased (and thus filling the first Brillouin zone) we use a
conservative ramp duration (2–4 ms). Most importantly, the
degree to which the atoms respect the adiabatic eigenstates
determines the lifetime of the dressed lattices; in the case of
weak coupling, the adiabatic potentials are not an accurate
predictor of the atomic dynamics. Nonadiabatic transitions
should show up as loss under our experimental protocol
through the transition to high-lying momentum states of the
lower adiabatic potentials; intuitively this can be viewed as
a Landau-Zener problem at an avoided crossing. To measure
this we simply load the lattice under a given set of dressing
parameters and hold it for a variable duration. These data are
summarized in Fig. 3, where we compare the number of atoms
remaining in the uppermost adiabatic potential over a variable
hold time, while varying the dressing configuration. Crucially,
for dressing parameters �∗/ω∗ � 10 we observe an upper
limit on nonadiabatic loss, implying stability on time scales
�30+ ms. This approaches the expected photon-scattering
lifetime of ∼100 ms. The nature of the loss is most clear in
Figs. 3(c) and 3(e) where a loading sequence was performed
with very weak dressing field; nonadiabatic transitions are
dominant, and result in high-lying momentum states of the
lower two adiabatic potentials.
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FIG. 3. (Color online) (a) Schematic of the loss mechanism from
the uppermost adiabatic potential. The gap �∗ (proportional to �)
exponentially suppresses nonadiabatic transitions at the avoided
crossing; increasing this gap comes at a cost of reducing dressed
lattice depth. Use of the lower adiabatic potential, while stable
against loss, is unproductive (see text). (b) Loss data as a function
of the dimensionless dressing parameter �∗/ω∗, where ω∗ is the
oscillation frequency around the adiabatic-potential minima. Note
logarithmic scale; the rightmost two points represent loss below a
given upper limit resulting from noise and finite hold time. The
shaded area represents the scaling of Eq. (3) for calculated values
of the coupling parameter, with the uncertainty stemming from the
model’s range of α and uncertainty in δ. The dashed line represents
the expected photon-scattering rate from the lattice laser. (c) The
loss process is most easily visualized using Stern-Gerlach separation
immediately following a dressing attempt; here we applied a very
weak (�/2π � 30 kHz) dressing field. The clear difference between
successful and lossy dressing can also be seen in the combined
momentum distributions following a dressing attempt: (d) a typical
near-δ0 iteration of the long-lived strongly dressed lattice, in contrast
to (e) the short-lived high-momentum spread of a weakly dressed
lattice.

The details of this loss mechanism have been treated
theoretically in Ref. [17], predicting a loss rate behaving

exponentially in the avoided-crossing gap �∗ as well as in
the dressed-lattice trap frequency ω∗:

	 = 	0 exp(−α�∗/ω∗), (3)

where 	0 is roughly the Landau-Zener attempt frequency
ω∗/2π (which depends weakly on �), with α = 1.1(1). The
observed strong increase in lifetime over the typical data of
Ref. [16] stems from a tripling of the gap �∗ which permits
a new regime of dressed lattice structure. One possible route
to avoid these losses altogether would be to use the lowest
adiabatic potentials [18], and sweep the detuning downward
rather than upward in order to distort the lattice; in this case the
degree to which the system was adiabatic would be difficult
to observe, as the atoms transitioning to the bare lattice would
not be lost, but rather occupy the same space while obeying a
different band structure. In the limit of strong enough dressing
such that the experimenter was sure that losses were minimal
this would perhaps be an attractive technique.

While the dressed lattices we observe are still relatively
weak, they are a clear improvement over the typical dressed
depths in Ref. [16] which were of the order of a single
recoil. To push the depths of the dressed lattice to tens of
recoils will require the deepening of the bare lattice, which
will initially increase losses; however, the scaling of Eq. (3)
is promising in that losses can be suppressed simply by
increasing � and U0. Of course, regardless of strong dressing,
lifetimes beyond 100 ms will be prevented in this system by
photon scattering from the lattice beams. We seek to extend
the band-structure-alteration capabilities of this technique,
anticipate using this new regime of strong � in two- and
three-dimensional lattices to explore Bose-Hubbard physics on
a reduced-periodicity lattice, create toroidal single-site wave
functions, and study the possibility of using multiple dressing
frequencies [17,32] to generate even finer subdivision of the
lattice.
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