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Introduction

Gross primary production (GPP), the amount 
of atmospheric carbon fixed through the process 
of photosynthesis by living biomass, is the largest 
flux of CO

2
 between the atmosphere and the Earth 

surface (Ciais et al. 2013), and has a key role as a 
primary driver of terrestrial productivity. A clear 
understanding of the adjustment of photosynthetic 
processes to surrounding conditions is therefore 
crucial in order to understand C sequestration and 
forest growth, and its response to the environment.

For plants, the adjustment of photosystem II 
(PSII) to environmental conditions is of vital im-
portance in order to maintain an optimal photosyn-
thetic electron flow to the Calvin cycle. This may be 
achieved through the dissipation of energy excess 
as heat, so minimizing the reactive oxygen species 
generated by surplus light (Horton et al. 1996, Logan 
et al. 2014).

Some of these adjustments occur at a rapid-time 
scale and are reversible in the range from minutes to 
hours, tracking the changes of light conditions (fol-
lowing for example sunflecks or temporary shading 
by clouds or overlapping branches). Other modifi-
cations occur at longer time-scale, involving also 
changes in foliar biochemical contents within days, 

weeks or months. In response to severe meteoro-
logical events or biotic stresses, or more commonly 
to seasonal changes in light intensity, temperature 
and water or nutrient availability, slowly reversible 
changes occur in order to acclimate photosynthesis 
to on-going environmental conditions (Demmig-Ad-
ams et al. 2014). This double (short- and long-term) 
response should be accounted for in order to infer 
carbon assimilation from fluorescence parameters 
and environmental variables.

Chlorophyll fluorescence was discovered at the 
end of the XVII century (Müller 1874), as the capac-
ity to re-emit at longer wavelength part the energy 
absorbed. It has since been investigated and quan-
tified in order to understand the functioning of the 
photosystems and their regulatory mechanisms 
(Kautsky 1931). Chlorophyll molecules in plant 
leaves are organized into macromolecular complex-
es (called photosynthetic units), containing many 
chlorophyll molecules and reaction centers (RC). 
After a photon is captured by pigment molecules in 
RC, that act as antenna, the absorbed photon (‘ex-
citon’) can move among the chlorophyll molecules 
of the photosynthetic unit (Engel et al. 2007). The 
exciton can have one of following fates occurring 
at different rates: (a) it can be used by photosystem 
II (PSII) to take an electron from water, producing 
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oxygen; (b) it can undergo radiationless decay; (c) 
it can be re-emitted as a fluorescent photon, or (d) 
it can be quenched by regulated non-photochemical 
trapping centers (NPQ). When the potential flux of 
electrons exceeds the capacity to use them in pho-
tochemistry, NPQ activity increases, balancing sup-
ply with demand and resulting in diagnostic changes 
in fluorescence yield. In order to preserve the photo-
synthetic energy balance, partitioning of excitation 
energy between photochemical quenching (PQ), 
fluorescence and non-photochemical quenching 
(NPQ) processes is constantly adjusted in the leaf 
(Papageorgiou and Govindjee 2004).

Even if fluorescence is only a small part of the to-
tal changes in yield (1% - 2%), it is therefore useful to 
investigate the photosynthetic process and the fate 
of absorbed energy (for review of method and pa-
rameters see i.a. Lichtenthaler et al. 1986, Maxwell 
and Johnson 2000, Baker 2008, Pessarakli 2016).

Following several decades of laboratory and 
field studies, today passive measurements of so-
lar induced chlorophyll fluorescence (SIF) can be 
used to estimate photosynthesis and vegetation 
GPP from space (Frankenberg and Berry 2018). SIF 
can be assessed from the filling-in of the spectral-
ly wide atmospheric oxygen absorption bands at 
wavelengths around 687 nm and 760 nm (Davidson 
et al. 2003, Moya et al. 2004). Several sensors already 
have the capability to estimate SIF from space by 
means of high-spectral-resolution interferometers. 
Estimates at large spatial scale were first achieved 
by SCIAMACHY on Japanese GOSAT launched in 
2009 (30×60 km2, Frankenberg et al. 2011, Joiner 
et al. 2011, 2012) and EUMETSAT MetOp satellites 
launched in 2006 and 2012 with 0.5° resolution, lat-
er refined to 0.05° by Duveiller and Cescatti (2016) 
model. More recently, information has been obtained 
at a more detailed scale both by NASA OCO-2 (nadir 
1.3 × 2.25 km2, Frankenberg et al. 2014) and Euro-
pean Space Agency (ESA) TROPOMI sensor on the 
Sentinel 5 Precursor satellite (7 × 3.5 km2, Köhler et 
al. 2018), with the aim of quantifying photosynthetic 
activity and GPP globally (Sun et al. 2018, Zhang et 
al. 2018). Following the results of SIFLEX (Solar In-
duced Fluorescence EXperiment) campaigns, ESA 
will launch in 2022 the Fluorescence Imaging Spec-
trometer (FLORIS) sensor onboard the FLEX satel-
lite, with global coverage and a spatial resolution of 
just 300 m. Such efforts are highly relevant to get 
a better understanding of carbon and water cycles, 
in particular to reduce uncertainties in the estimate 
of GPP, to determine the cause-effect relationships 
between environmental factors and vegetation car-
bon sequestration, and to assess the anthropogenic 
influences on vegetation functioning (Magnani et al. 

2009, Mohammed et al. 2014, ESA 2015).
As part of a research program started in 2013 

on the diurnal and seasonal acclimation of photo-
system II (PRIN project «Effects of Global Change 
on Productivity and Radiative Forcing of Ital-
ian Forests»), the chlorophyll fluorescence of two 
evergreen Mediterranean forest species (Arbutus 
unedo L. and Quercus ilex L.) has been monitored 
throughout the year. Two short-term (one month) 
trials were also carried out to evaluate the effects 
on photosynthetic parameters and spectral reflec-
tance of water stress and nutrient supply. The eval-
uation of the response of coexisting Mediterranean 
species, such as Q. ilex and A. unedo – two species 
evolved under the Mediterranean climate (Quézel 
1985, Blondel and Aronson 1999) - to the variability 
in meteorological conditions has important implica-
tions for climate-driven range dynamics and vegeta-
tion shifts (Liu et al. 2018).

The main aim of this study has been to describe 
the different strategies of evergreen Mediterranean 
tree species to face temperature variability during 
the year and their response to extreme events. This 
is particularly relevant in order to assess the accli-
mation and resilience capacity of these species in a 
climate change scenario, with a predicted increase 
in frequency and intensity of extreme climatic con-
ditions (IPCC 2014). The Mediterranean area is ac-
tually considered a primary climate change hotspot 
(Giorgi 2006), because of the above average warm-
ing (Guiot and Cramer 2016). This could drive other 
ecologically important variables in complex or even 
counterintuitive ways with episodic or nonlinear re-
sponses (Jackson et al. 2009, Connor et al. 2018). In-
tra-annual chlorophyll fluorescence variability has 
been investigated together with some key aspects 
related to the response to severe winter conditions 
(low winter temperatures and frost days).

Materials and methods

Plant material and instrumentation
Well-irrigated five-year-old plants of Arbutus un-

edo L. (strawberry tree) and Quercus ilex L. (holm 
oak) about 1-2 m in height were grown outdoor in full 
sun in large (40 L) pots (70% peat, 30% pumice and 
fertilized by 120 g pot-1 slow release fertilizer Osmo-
cote Exact Standard 12-14 months) by a commercial 
nursery of the Pistoia nursery district. Plants were 
then acclimated for two months to the experimental 
conditions in the Florence University nursery (Flor-
ence, 43.79 N, 11.17 E; 60 m a.s.l.). Chlorophyll a flu-
orescence and reflectance were measured in each 
species for more than a year, starting in September 
2014 for strawberry trees (measurement period: 365 
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days) and in September 2015 for holm oak (meas-
urement period: 631 days). Measurements were car-
ried out on healthy, fully expanded leaves from the 
last growth flush in the upper third of the crown. In 
order to minimize shadows, leaves were randomly 
chosen among those of the horizontal, South-facing 
and in full-light subset. Pulse-amplitude modulated 
fluorescence was monitored every 10 minutes by 
a multi-channel MONITORING-PAM fluorometer 
system (Heinz Walz GmbH, Effeltrich, Germany) 
with six MONI-head/485 fluorometers connected 
to a single data acquisition system (MONI-DA). The 
MONI-head delivers measuring light and saturating 
pulses to the sample through a window that trans-
mits radiation in the range of 400–750 nm, situat-
ed at one end of the probe cylinder. Both the dim 
measuring light and the saturating light pulse (last-
ing 0.8 s with an intensity of more than 4000 μmol 
m−2 s−1) were emitted by a blue LED source. The 
MONI-head employs PIN photodiodes to measure 
pulse-amplitude modulated (PAM) chlorophyll fluo-
rescence at wavelengths longer than 625 nm. Using 
a photodiode protected by near-infrared filters, the 
MONI-head simultaneously measures the radiation 
(400-700 nm range)  reflected by a 1.3 x 0.7 cm area 
of an optically diffuse Teflon sheet, 1 mm thick, 
mounted at the edge of the leaf clip, providing an es-
timate of incoming PAR (Photosynthetically Active 
Radiation). Air temperature is also measured inside 
the instrument head. 

Leaf reflectance was also measured on the same 
leaves through a couple of optical fibers (P200-UV-
VIS, Ocean Optics Inc. FL, USA) per sample, with 
one fiber pointing nadir to the same leaf area sam-
pled by the fluorescence probe with a 28° field-of-

view, while the other was equipped with a cosine 
corrector (CC3, Ocean Optics Inc. , FL, USA) so as 
to acquire a hemispherical reference signal. The lat-
ter was placed vertically on the same plane of the 
MONI-head leaf holder (as shown in Figure 1), in 
order to sense a comparable light environment to 
the leaf sample. Both fibers were connected through 
a fiber optical switch (FOS-2-Inline, Avantes, Eer-
beck, The Netherlands) to a VIS/NIR spectrometer 
(AvanSpec-2048-2, Avantes), operated through a 
dedicated software for the acquisition of reflectance 
spectra (both leaf and reference) every 2 minutes.

Computation of environmental and fluo-
rescence parameters

Among the environmental variables, daily mean 
temperature (T

day
 in °C), daily minimum and max-

imum temperature (T
min

 and T
max

, resp., in°C), and 
daily mean and maximum value for photosyntheti-
cally active radiation (PAR

day
 and PAR

max
, µmol m-2 

s-1, resp.) were computed from long-term measure-
ments. The number of frost days (T

min
 < 0°C) in each 

month and in the entire year (from 1 September to 
31 August) was also calculated. Chilling and freez-
ing periods were defined as days with T

min
 ≤ 15°C 

and ≤ 0°C, respectively (Yadav 2010).
The temporal changes in photosynthetic pro-

cesses were assessed from the following chloro-
phyll a fluorescence parameters computed after 
Porcar-Castell (2011).

- The operating quantum yield of photochemistry 
in photosystem II, φ

P,
 was estimated as: (F

m
′ - F

t
)/F

m
′ 

(Genty et al. 1989), where F
m
′ and F

t
 are the maxi-

mum and instantaneous fluorescence in light condi-
tion, respectively.

- The daily maximum quantum yield of PSII, 
F

v
/F

m
, defined as (F

m
 - F

o
)/F

m 
(Kitajima and Butler 

1975), where F
m 

and F
o
 are the maximum and min-

imum fluorescence of a dark-adapted leaf, respec-
tively. A value of F

v
/F

m
 ≥ 0.75 was deemed optimal 

and indicative of no sustained photoprotection/pho-
toinhibition; for each month, the fraction of days 
above this threshold was also computed (ND

opt
).

- Heat dissipation by PSII was estimated by the 
Stern-Volmer non-photochemical quenching (NPQ) 
parameter, computed as NPQ = (F

m
/F

m
′) – 1 (Bilger 

and Björkman 1990). Sustained NPQ (NPQ
S
) result-

ing from the overnight maintenance of photoprotec-
tion under stress conditions, was estimated as (F

mR 

/F
m
′) – 1 (Porcar-Castell 2011), where F

mR 
is the ref-

erence maximum value of F
m
 measured in the year 

during the night. In this long-term approach, the re-
quirement of maintaining the same leaf area portion 
under observation during the season is essential for 
NPQ

S
 determination (Logan et al. 2007).

Figure 1 - 	 Schematic representation for foliar fluorescence and 
reflectance measurement system. Fluorescence by 
Monitoring-PAM (Walz, Effeltrich, Germany) equipped 
with a MONI-DA acquisition system and MONI-HEAD/485 
fluorometers. Reflectance VIS/NIR specrometers (Avan-
Spec-2048-2) with optical fibers connected to (FOS-2-
Inline, Avantes Eerbeck, The Netherlands). Further details 
in text. 
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- The sustained photochemical quenching, qL
S
, 

is the fraction of functional reaction centers (Por-
car-Castell 2011) and it was computed as:

qL
S
 = (1/F

o
’ – 1/F

m
’)/(1/F

oR
 - 1/F

mR
) 

- The electron transport rate ETR (µmol m-2 s-1) 
at the leaf level is estimated as:

ETR = α · β · PAR · φ
P
 

where α, β, and PAR are leaf absorbance (set to 
α = 0. 83), energy partitioning to PSII (set to β = 0. 
5), and photosynthetic photon flux density (in µmol 
photon m2 s-1) and φ

P
 is the quantum yield of pho-

tochemistry in PSII (electron/photon; Baker 2008). 
ETR

max
 is the maximum electron transport rate un-

der saturating light and was estimated by fitting a 
non-quadratic hyperbolic model to the diurnal re-
sponse of ETR to PAR.

Foliar reflectance
Leaf reflectance at each wavelength (R

wl
) was 

calculated as the ratio between spectral radiance re-
flected by the leaf surface and the radiance received 
by the surface itself (R

wl
 = Sample

wl
 / Reference

wl
).

The photochemical reflectance index (PRI) was 
originally developed by Gamon et al. (1992) to es-
timate the de-epoxidation of violaxanthin to zeax-
anthin in the xanthophyll cycle, and as such was 
proposed to estimate photosynthetic light use effi-
ciency at different scales, from leaf to canopy (for 
review see Garbulsky et al. 2011). The xanthophyll 
(VAZ) cycle is responsible for the development of 
NPQ, and acts as a photoprotective mechanism, pre-
venting the oxidative damage of the photosynthetic 
apparatus when exposed to high light. Violaxanthin 
(V), prevailing in the dark, is converted upon illumi-
nation to antheraxanthin (A) and then to zeaxanthin 
(Z). The reaction begins when an excess of light in-
duces a lowering of chloroplast lumen pH; Z binds 
to PSII proteins causing a conformational change 
that quenches the excess of energy as heat (Havaux 
and Niyogi 1999, Krause and Jahns 2004, Dall’Osto 
et al. 2010). In the dark, Z reverts back to V. Since 
A and Z show a higher absorption at 531 nm than V, 
reflectance decreases and a lower PRI is observed 
in high light (relative to low light) conditions (Mid-
dleton et al. 2012). Following Gamon et al. (1997), 
PRI was estimated as (R

531
 - R

570
)/(R

531
 + R

570
), where 

R
531

 indicates reflectance at 531 nm (the waveband 
of the xanthophyll signal), and R

570
 indicates reflec-

tance at 570 nm (the reference waveband).

Results

Environmental conditions
Environmental conditions were typical for the 

site, with an average annual temperature of 16.5°C 
and more than 50% of the days with high irradiance 
(PAR

max
 > 1000 µmol m-2 s-1) distributed from March 

to October (Figure 2). Over the measurement peri-
od, absolute minimum temperatures were -4°C, -6°C 
and -7°C for the three winter seasons, respective-
ly (Figure 3); colder minimum temperatures were 
therefore experienced by Q. ilex than A. unedo over 
the monitoring period, which could partly explain 
observed differences among species in fluorescence 
parameters. Frost days occurred over a period of 
four-five months from November to February with 
33, 16, 39 frost days in the three years. January was 
the coldest month, accounting for 36%, 63% and 
46% of frost days in each year. Several consecutive 
frost days were observed on A. unedo in 2014/15 in 
two periods (at the end of December and of Janu-
ary), and on Q. ilex in 2015/16 at mid-January and 
2016/17 during a prolonged intermittent period from 
early December to the end of January, with freezing 
temperature in about 50% of the days. Leaves emit-
ted on lateral shoots at mid-November in Q. ilex (in 
both years) were successively killed by these frost 
events. Low chilling temperatures (0°C < T

min
 ≤ 8°C) 

were also observed from September to May, well af-
ter leaf unfolding in early April for Q. ilex and end of 
January for A. unedo. The highest annual tempera-
tures occurred in July, with the hottest two weeks 
in the second half of the month, when high T

max
 and 

low air relative humidity (RH < 25%) induced strong 
vapor pressure deficits (vpd > 4 kPa).

Figure 2 - 	 Above. Daily temperature (T, °C): Tmin and Tmax 
(gray),Tday (black). Horizontal line, Tday = 0 °C. Below. 
Photosynthetic active radiation (PAR, µmol m-2 s-1): PAR-
max (gray), PARday (black). Measurements on Arbutus 
unedo L. until 6-Sep 2015, then on Quercus ilex L. 
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Relationship between environmental and 
physiological parameters

Pooling the whole experimental period for the 
two species, significant relationships were detected 
between mean daily temperature (T

day
) and fluores-

cence parameters (F
v
/F

m
: R = 0.63, R2

adj
 = 0.40; NPQ

S
: 

R = -0.56, R2
adj

 = 0.31; ETR
max

: R = -0.58, R2 = 0.34; 
qL

S
: R = -0.30, R2

adj
 = 0.10; all P < 0.001; n

obs
 = 996). 

A quadratic function increased model prediction for 
F

v
/F

m
, NPQ

S
 and ETR

max 
(but not qL

S
) to R2

adj
 values 

of 0.61, 0.42 and 0.40, respectively (P < 0.001, n
obs

 = 
996). The relationship between fluorescence param-
eters and radiation (PAR

max
) showed significant (P 

< 0.001, n
obs

 = 996) but lower R values than report-
ed for temperature, with the best linear prediction 
found with ETR

max
 (R = 0.53, R2

adj
 = 0.28), followed 

by F
v
/F

m
 (R = 0.40, R2

adj
 = 0.17), NPQ

S
 (R = -0.40, R2

adj
 

= 0.16) and qL
S
 (not significant).

Species differed within each season for fluores-
cence parameters (F

v
/F

m
, ETR

max
,
 
NPQ

S
 and

 
qL

S
) ex-

cept for F
v
/F

m
 and ETR

max 
in summer (Wilcoxon sum 

rank test P > 0.05). In each season, NPQ
S
 was higher 

and qL
S
 lower in Q. ilex than in A. unedo. ETR

max
 

was also higher in Q. ilex in all of the seasons ex-
cept summer, while F

v
/F

m
 was higher in A. unedo 

in autumn and winter, but lower in spring (Table 1).

Temperature response dynamics
The time-course of temperature and F

v
/F

m
 for 

both species is presented in Figure 3. In each sea-
son, F

v
/F

m 
appears to rapidly acclimate to tempera-

ture changes, mainly decreasing in response to chill-
ing spells and recovering when temperatures rose 
again. F

v
/F

m
 acclimated to temperature more rapidly 

(in just a few days) in A. unedo than Q. ilex (often 
more than a week).

In mild winters, such as 2015 and 2016, the two 
species showed similar F

v
/F

m
 minimum values (A. 

unedo, 0.48; Q. ilex, 0.45). In A. unedo minimum 
values occurred both after 7 consecutive frost days 
at the end of December 2014 and 2 days after the 
year absolute T

min
 = -4°C in January. Q. ilex showed 

the minimum value in F
v
/F

m
 after 10 consecutive 

frost days at the end of January 2016 (F
v
/F

m
 = 0.48) 

and again at the beginning of January 2017 (F
v
/F

m
 

= 0.28). The severe frosts of winter 2017 had a par-
ticularly severe effect and were followed by a long 
period of photo-inhibition lasting more than two 
months until spring (Figure 3). This could be the 
result of the accumulation of cold days with chill-
ing and freezing temperatures: even if T

min
 values of 

the 10 days before the F
v
/F

m
 minimum were similar 

in 2016 and 2017 (P > 0.8), temperatures averaged 
over a longer period (20-40 days) showed colder (P 
< 0.05) conditions in 2017.

The dynamics of the recovery to optimal F
v
/F

m
 

values (F
v
/F

m
 ≥ 0.75) are also worth considering. In 

autumn (both species) or in winter (only Q. ilex), 
F

v
/F

m
 recovered to its optimal value following warm 

days (T
day

 > 8°C), while later in the season (April-
May) a higher temperature was required (T

day
 of 

Table 1 - 	 Average ± standard deviation of fluorescence parameters over the course of the study. Fv/Fm = maximum fluorescence yield. ETRmax 
= maximum electron transport rate (µmol m-2 s-1), NPQS = sustained non photochemical quenching, qLS = fraction of functional 
reaction centers. Different letters indicate significant differences within species (p < 0.05). Italic bold, seasons without significant 
differences (p ≥ 0.05) between species (Wilcoxon (1945) rank sum test with continuity correction).

Season Fv/Fm ETRmax NPQS qLS

Arbutus unedo L.

spring (AMJ) 0.728 ± 0.038 b 47 ± 10 b 0.87 ± 0.56 b 0.58 ± 0.12 b

summer (JAS) 0.744 ± 0.029 a 57 ±   8 a 0.46 ± 0.25 c 0.51 ± 0.08 c

autumn (OND) 0.742 ± 0.048 a 36 ± 14 c 0.78 ± 0.61 b 0.57 ± 0.07 b

winter (JFM) 0.650 ± 0.049 c 31 ±   9 d 2.64 ± 0.89 a 0.76 ± 0.09 a

Quercus ilex L.

spring (AMJ) 0.742 ± 0.041 a 63 ± 18 a 1.24 ± 0.45 c 0.43 ± 0.05 b

summer (JAS) 0.743 ± 0.032 a 59 ± 13 a 0.51 ± 0.21 d 0.33 ± 0.04 c

autumn (OND) 0.690 ± 0.064 b 50 ± 16 b 1.84 ± 1.33 b 0.39 ± 0.05 d

winter (JFM) 0.636 ± 0.120 c 39 ± 16 c 4.56 ± 4.28 a 0.49 ± 0.11 a

Figure 3 - 	 Daily measurements of Fv/Fm (black) from Sep 2014 to 
May 2017. Seasons are identified by the capital letter of 
the months (OND, October November December; JFM, 
January February March; AMJ, April May June; JAS, July 
August September). Concurrent changes in air tempe-
rature (T, °C; daily maximum, in red, and minimum, in 
blue) are presented as a reference. In the upper part of 
the graph the measurement period for A. unedo and Q. 
ilex is indicated.
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about 14°C). In late spring and early summer (June 
until mid-July) both species became sensitive to 
high temperatures, which induced a drop of F

v
/F

m
 

below 0.7 in association with the first T
max

 peaks 
(and drops of RH below 30%). From the end of the 
summer (mid-September) both species responded 
again to drops in temperature, resulting in a reduc-
tion in F

v
/F

m
 (Figure 3). Overall, in both species F

v
/

F
m
 followed T

day
 changes according to a quadratic 

function (Q. ilex, R2 = 0.65; A. unedo, R2 = 0.53, P < 
0.001). While similar values of F

v
/F

m
 were observed 

above T
day

 = 10°C, chilling (or freezing) tempera-
tures (T

day
 < 10°C) induced a higher depression in 

F
v
/F

m
 in Q. ilex than in A. unedo, with F

v
/F

m
 values 

below 0.5 and 0.6 at T
day

 = 0°C, respectively (Figure 
4).

The fraction of days with sub-optimal F
v
/F

m
 val-

ues (< 0.75) within each month and season is shown 
in Figure 5. The frequency of days with sub-optimal 
F

v
/F

m
 progressively increased in Q. ilex from spring 

(48%) to winter (91%), while A. unedo progressively 
decreased this frequency from winter (100%) to au-
tumn (48%). Q. ilex (but not A. unedo) still showed 
optimal F

v
/F

m
 values in favorable winter days (JFM), 

but never in December. In early summer (July) both 
species showed an increase in the frequency of days 
with sub-optimal F

v
/F

m
 values, extended also to 

June in A. unedo (Figure 5).
Considering other fluorescence parameters, low 

temperatures resulted in an increase in sustained 

non-photochemical quenching (NPQ
S
), which 

reached the maximum values in winter (NPQ
s
 > 4), 

while in summer never exceeded 1.2. PRI peaked 
at 0.03 at temperatures between 14 and 21°C, de-
creasing at both higher and lower temperatures to 
values of -0.10 and -0.15, respectively. Only a weak 
quadratic relationship with T

day
 was observed, how-

ever (R2
adj

 = 0.28). As expected (Porcar-Castell et al. 
2012), a strong negative linear relationship was ob-
served at seasonal scale between NPQ

S
 and PRI (R 

= -0.78, R2
adj

 = 0.621, P < 0.001). An overall linear and 
positive relationship between T

day
 and ETR

max
 was 

also observed in both species, which was stronger 
in A. unedo than in Q. ilex (A. unedo: R = 0.800, R2 = 
0. 632; Q. ilex: R = 0.571, R2

adj
 = 0.325; P < 0.001, n

obs.
 

= 365; 631, resp.), with no difference in slope (P > 
0.05), but a 70% higher intercept in Q. ilex.

Response to solar radiation
Both fluorescence parameters and PRI showed a 

lower correlation with radiation than with tempera-
ture, except for ETR

max
 (overall, R2

adj
 = 0.57; A. une-

do: R²
adj

 = 0.59; Q. ilex: R²
adj

 = 0.29, P < 0.001; Figure 
4). It should be noted, however, that PAR

max
 and T

day
 

were linearly correlated (R = 0.755, R2
adj

 = 0.569, P < 
0.000), making the interpretation of results more dif-

Figure 4 -  Above. Relationship between Tday (°C) and Fv/Fm: Arbu-
tus unedo, y = -0.00045·x2 + 0.0198x + 0.538 (R² = 0.53, 
p < 0.000, nobs. = 365); Quercus ilex L., y = -0.00071x2 
+ 0.0304x + 0.4348 (R² = 0.65, P < 0.000, nobs. = 630). 
Below. Relationship between PARmax (µmol m-2 s-1) and 
ETRmax (µmol m-2 s-1): Arbutus unedo L., y = 0.025 x 
+ 15.96 (R² = 0.59, P < 0.000, nobs. = 365); Quercus 
ilex L. , y = 0.023 x + 31.77 (R² = 0.29, p < 0.000, nobs. 
= 630). Black circles (winter), green triangles (spring), 
orange squares (summer), blue down-pointing triangles 
(autumn).

Figure 5 -  Fraction of days in each month (above) or season (below) 
showing photoprotection (Fv/Fm < 0.75) (A. unedo in 
black; Q. ilex  in gray). Complement to 1 (colored bars) is 
NDopt, the fraction of days with optimal Fv/Fm (≥ 0.75).
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ficult. As already reported for temperature, regres-
sion lines of ETR

max
 as a function of PAR

max
 for the 

two species were parallel (no significant slope differ-
ence) and had a higher intercept (almost double) in 
oak. High irradiance did not appear to have a lasting 
photo-inhibitory effect. In A. unedo, measurements 
of F

v
/F

m
, NPQ

S
 and qL

S
 taken after days with saturat-

ing light conditions (PAR > 1000 µmol m-2 s-1 in spring 
and summer; PAR > 500 µmol m-2 s-1 in autumn and 
winter) did not differ from the overall seasonal aver-
age. Q. ilex showed a higher sensitivity to high solar 
radiation, as saturating light conditions resulted in 
higher F

v
/F

m
 (and lower NPQ

S
) values in autumn and 

winter but no significant deviation from the overall 
average was observed in spring and summer.

Discussion

Long-term observations of chlorophyll fluores-
cence and reflectance has allowed the investigation 
at daily scale of the annual dynamics of leaf pho-
tochemistry several fluorescence parameters and 
reflectance indices in response to temperature and 
light environment in two co-existing Mediterranean 
evergreen species (Gasparini and Tabacchi 2011). 
Although our experimental setup did not allow a tru-
ly paired comparison between species, it provided 
useful information on their response to temperature 
stresses differing in severity and frequency. In com-
parison with previous studies which periodically 
measured leaf photochemistry  on a monthly basis 
(e.g. Aranda et al. 2005), our approach could track 
its daily response, making it possible to determine 
seasonal changes in stress sensitivity, the outcome 
of the first stressful events (i.e. first autumn frosts or 
first summer high temperatures), and the cumulative 
effect of cycles of stressful conditions. On the other 
hand, had the research focus been on the evaluation 
of variability of physiological traits at population lev-
el, this time-intensive monitoring approach would 
not have been be the best choice.

Under cool and cold Mediterranean climate, hot 
summer periods (associated with drought and high 
radiation), but also cold winter days, might be chal-
lenging for evergreen species (Larcher 2000, 2003). 
Generally, summer drought is considered the most 
important growth-limitating factor under Mediter-
ranean-climate, but the effect of low temperatures 
should also considered (Specht 1981, Öquist and Hun-
er 2003). A variety of structural, anatomical and func-
tional traits help plants to face stressful conditions 
(Cherubini et al. 2003, Bussotti et al. 2015, Niinemets 
and Keenan 2014, Gratani et al. 2018), and the role of 
photoprotection should not be overlooked.

Photosynthesis requires fine regulation mecha-
nisms to effectively cope with environmental vari-
ability in radiation, temperature, water and nutrient 
availability. The balance between growth and pro-
tection is essential for assuring survival in perennial 
life-form. Thus, a competitive strategy should as-
sure a high rate of electron transport to the Calvin 
cycle under favorable conditions and avoid damag-
es by hazardous reactive oxygen species formation 
by dissipating any excess energy as heat through 
NPQ. The non-photochemical quenching of exci-
tation energy relies on physiological processes reg-
ulated at different timescales from pico-seconds to 
weeks (Garcia-Plazaola et al. 2017, Porcar-Castell et 
al. 2014). The decrease (or down-regulation) in F

v
/

F
m
, sometimes referred to as ‘photoinhibition’, is of-

ten the result of the maintenance overnight of a sus-
tained photo-protective state, in response to light 
levels in excess of the Calvin cycle capacity. In re-
ality, down-regulation of F

v
/F

m
 may be caused both 

by an increase in sustained NPQ and by damaged 
(photo-inactivated) reaction centers (Porcar-Castell 
et al. 2014).

The F
v
/F

m
 reduction associated with a tempera-

ture decrease and the ensuing recovery indicate the 
high modulation capacity of this parameter in order 
to ensure an adequate photoprotection and flexible 
acclimation of photosynthesis processes through-
out the year. Only under the first hot days in late 
spring/early summer did F

v
/F

m
 reverse its response 

to temperature, showing an enhanced photo-protec-
tion/photo-inhibition state in response to a tempera-
ture (and vpd) increase (Lange et al. 1985, Ripullone 
et al. 2009, Martínez-Vilalta et al. 2003). Under such 
conditions, high non-stomatal limitations to pho-
tosynthesis (Grassi et al. 2009) and growth inhibi-
tion (Campelo et al. 2018) are not always linked to 
a reduction in carbon assimilation (Crescente et al. 
2002). In the present study, under conditions of full 
water availability both species had rather constant 
values of F

v
/F

m
 and ETR

max
 over the summer. This 

is consistent with previous studies, which for many 
Mediterranean evergreens under field conditions re-
ported a maximum carbon assimilation over an air 
temperature range of 10-20°C, with the higher limit 
determined by the onset of summer drought (Flexas 
et al. 2014, Gratani et al. 2018). In both species ex-
amined in the present study, a high thermostability 
at short-term time scale has also been observed for 
F

v
/F

m
 over a wide range of leaf temperatures, from 

5°C to 48°C (Méthy et al. 1997, Bilger et al. 1987). 
In response to stress evergreen species change both 
their foliar biochemical contents (increasing antiox-
idants and xanthophyll pigments; Verhoeven 2014) 
and the composition of PS II antenna but also in-
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crease energy dissipation through cyclic electron 
transport (Öquist and Huner 2003), in particular 
during the chilly/frosty winter period. In our study, 
the strong reduction of F

v
/F

m
 was mainly related 

to the increase in sustained non-photochemical 
quenching during the winter (NPQ

S
, R = -0.85). This 

latter was strongly associated to PRI, suggesting 
that also seasonal changes in xanthophyll (VAZ) 
pools or xanthophyll de-epoxidation state occurred 
in both species (Baraldi et al. 2008, Ripullone et al. 
2011, Corcuera et al. 2005; Camarero et al. 2012). In 
their de-epoxidated state (Z+A) xanthophylls pre-
vent damages to the thylakoid membranes, quench-
ing excess energy through heat (NPQ

s
 increase) and 

thus reducing electron flow in parallel with Calvin 
cycle limitations (ETR

max
 reduction). García-Pla-

zaola and colleagues (2017) observed in Q. ilex an 
emergency mechanism associated with the lutein 
cycle (LxL), which supplements the VAZ cycle in 
response to prolonged environmental stresses, both 
in winter and in summer. Although A. unedo had a 
lower content of lutein than holm oak (García-Pla-
zaola et al. 2004), in the former species the LxL 
cycle was involved in photo-protection from salin-
ity-induced water stress over the summer (Fusaro 
et al. 2014). Regulatory mechanisms via non-pho-
tochemical quenching could allow photosynthesis 
(and eventually growth) in seasons when water is 
abundant but temperatures are sub-optimal (Miller 
1982), and thus reward the construction and main-
tenance costs. In evergreens, greater resistance to 
frost and freezing-induced cavitation may be ob-
tained by thicker leaves (Lo Gullo & Salleo 1993), 
but higher allocation of structural carbohydrates 
and nitrogen to cell wall than to photosynthetic ap-
paratus (González-Zurdo et al. 2016) adds construc-
tion costs at the expenses of carbon gain (van Om-
men Kloeke et al. 2012). In both species, ETR

max
 and 

F
v
/F

m
 values were still high during the autumn (even 

if lower than in spring and summer), consistent with 
the high carbon assimilation capacity found in this 
season (Gratani and Varone 2004, Beyschlag et al. 
1987, Ogaya and Peñuelas 2003). In autumn (and 
winter, if temperatures are not too low) a dynamic 
response to temperature and light allows evergreen 
species to effectively exploit these seasons for car-
bon assimilation (Oliveira and Peñuelas 2004, Rip-
ullone et al. 2009). This is particularly relevant, since 
in autumn under natural conditions photosynthesis 
could still drive growth, in terms of new shoots 
flushing and elongation, stem enlargement (Susmel 
et al. 1976, Gratani et al. 1992, Martin 2012), or mo-
bilizing processes to storage reserves (Canadell et 
al. 1999, Zavala et al. 2011). In both species, a mi-
nor annual peak in stem growth is sometimes ob-

served during the autumn (Martin 2012, Campelo 
et al. 2018, Castell et al. 1994), and brachyblasts 
can be emitted (Orsham 1989, Pereira et al. 1987); 
although a strong variability among years and sites 
exists, related to environmental conditions (Milla et 
al. 2010). Winter ETR

max
, even if reduced in compari-

son with other seasons, still responded dynamically 
to radiation and temperature, taking advantage of 
warm sunny days, adjusting dynamically togeth-
er with the other physiological parameters (F

v
/F

m
, 

NPQ
S
 and PRI), similarly to what observed by Zhang 

(2017). Oliveira and Peñuelas (2004) reported a pos-
itive relationship between F

v
/F

m
 and light-saturated 

carbon assimilation capacity (A
sat

) in winter, main-
tained as long as leaves are not subjected again to 
favourable conditions that enhanced F

v
/F

m
 more 

rapidly than photosynthetic capacity. In the pres-
ent study, the positive correlation between F

v
/F

m
 

and ETR
max

 was maintained also in the response to 
the lowest T

min
 (-7°C), but after this frost event F

v
/

F
m
 recovered more rapidly in response to the tem-

perature increase than ETR
max

, which showed a lag 
of 10 days until also daily maximum temperature 
increased. The positive electron transport capacity 
(ETR

max
) observed at sub-freezing temperatures in 

both species, if not quenched through photochemis-
try or cyclic electron transport, might induce dam-
aging side reactions, exposing leaves to the risk of 
oxidation by reactive oxygen species (Murchie and 
Harbinson 2014, Verhoeven et al. 2018). Low winter 
temperatures and frost events in particular (Aranda 
et al 2005, Sperlich et al. 2014) can thus limit the sur-
vival of evergreen species not only at high latitudes 
or altitudes (Nichol et al. 2019, Williams et al. 2003), 
but also under Mediterranean climate (Alessi et al. 
2018). For surviving and at the same time maintain-
ing growth (and thus a high competitive capacity) 
in harsh environments, evergreen species have de-
veloped acclimation mechanisms to cope with cold 
spells, so limiting the damages induced by low tem-
peratures in combination with high irradiance (and 
eventually low water availability by frozen soil, Su-
tinen et al. 2001). This allows the plant to maintain 
a positive carbon assimilation both in the summer, 
also in presence of high leaf temperatures (Gratani 
et al. 2000, Grassi et al. 2009), and in warm autumn 
days, so prolonging the period of active photosyn-
thesis. In association with other traits (e.g. capaci-
ty to recover from drought- or frost-induced xylem 
cavitation; Salleo et al. 1997, Cherubini et al. 2003), 
this could result in a selective advantage over de-
ciduous species (Blondel et al. 2010, Barbeta et al. 
2019), if temperatures are not too extreme (Gen-
tilesca et al. 2017, Pollastrini et al. 2018). 
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Conclusions

From an ecological point of view, the two ev-
ergreen species displayed slightly different strate-
gies; under the sub-humid Mediterranean climate 
at the study site, both species showed the highest 
photoinhibition in winter, with a high temperature 
dependence (Fernández et al. 2008) but with dif-
ferent strategies and acclimation capacity. On aver-
age, A. unedo was more photoinhibited than Q. ilex 
throughout the winter, despite the less negative tem-
peratures experienced, and to a lesser extent also in 
spring and autumn, maintaining a chronic photoin-
hibition for at least 3 months. Q. ilex has a more dy-
namic response, with a high plasticity (range/max) 
in all fluorescence parameters, and appears to have 
a higher non-photochemical quenching capacity in 
all seasons, complemented by a lower fraction of 
open reaction centers. These characteristics effec-
tively maintain a high electron transport capacity in 
Q. ilex, and protect the photosystems by dissipating 
the excess energy as heat and rapidly reducing the 
fraction of functional reaction centers. In the sum-
mer, under optimal water conditions, the differenc-
es between Q. ilex and the more thermophilous A. 
unedo become not significant.
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