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Abstract 

 

From the start of the industrial revolution, the continued need for energy has been the 

most crucial issue in human history. An energy crisis started at the beginning of the 

1970s when the number of machines, which became an essential part of our life, 

increased rapidly. Scientists made a huge effort to discover new sources of energy, 

with ‘biomass’ being one of the main focuses of researchers as a new renewable source 

of energy. In this thesis, a nonconventional method of heating, using microwave power 

in a pyrolysis process of biomass waste from palm trees (Allig’s date seeds) for the 

production of bio-syngas to use in practical and industrial applications, is the main 

focus. Microwave heating has many advantages over conventional heating methods. 

In this method, the biomass heating occurs from the inside to the outside uniformly 

instead of heating the environment, as in the case of conventional heating. In designing 

the experimental work, a full factorial approach is utilized, using three parameter 

factors: particle sizes of (1790 µm, 783 µm, and 467 µm), microwave powers of (1,000 

W, 700 W, and 300 W) and sample moisture contents of (0, 0.2, and 0.4). The yield of 

bio-syngas and temperature samples are monitored and measured throughout the tests 

using an “ETG MCA 100 Syn BIOGAS MULTIGAS ANALYZER” and an Omega 

Thermocouple respectively. In the last part of this work, a statistical analysis is 

conducted to nonlinearly model the gas yield average concentration percentages for 

CH4 and CO, as a function of all dependent parameters. The outcome of this study 

produces promising results, especially for CH4 and CO gas yields, which shows an 

average of 21% and 15% volume bases respectively. The yield of H2 gases is the lowest 

amongst all gas yields. The highest percentages of bio-syngas yield occurred at the 

highest microwave power, the smallest size of particles, and the driest samples. Allig 

date seeds as a biomass source in the microwave pyrolysis process demonstrate to be 

a promising source of renewable energy to be used in commercial and practical 

applications. 

 

Keywords: Allig date seeds, microwave pyrolysis, bio-Syngas, cold gas efficiency, 

hot gas efficiency. 
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Title and Abstract (in Arabic) 

 

في  تمورت على بذور الويفار الميكروأثينتاج الغاز باستخدام تفحوصات تجريبية لإ

 الإمارات العربية المتحدة

 صالملخ 

، كانت الحاجة المستمرة للطاقة هي القضية الأكثر أهمية في تاريخ منذ بداية الثورة الصناعية

عندما زاد عدد الآلات  الطاقة في بداية السبعينات من القرن الماضي، ةالبشرية. ظهرت أزم

بسرعة في حين أصبحت جزءا لا يتجزأ من حياتنا. بذل العلماء جهدًا كبيرًا لاكتشاف موارد جديدة 

وارد مللطاقة. تعتبر الكتلة الحيوية كمورد للطاقة المتجددة موضوعًا ساخناً من قائمة طويلة من ال

سخين وهو الانحلال الحراري الذي ، نحن نستخدم تقنية مبسطة للتالمتجددة. في هذه الأطروحة

رية ت العملية والتجايتمتع بإمكانيات هائلة لإنتاج كميات كبيرة من الغاز الحيوي للتطبيقا

 توليد الطاقة.كمحركات 

، الةوم على الاحتراق. في هذه الرسالتقليدية التي تق نحلال الحراريةاستخدام أساليب الاالدارج هو 

الميكروويف الذي له العديد من المزايا في تسخين الكتلة الحيوية قة بطاتسخين ال استخدام نقترح

ما ك المحيطة بالجسم المراد تسخينه من الداخل إلى الخارج بشكل موحد بدلاً من تسخين البيئة

، ريبيلحيوية. في تصميم العمل التجالتي تنتج التركيبات ا التقليدي نحلال الحراريحدث في الا

دراسة ثلاثة عوامل ثلاثة يتم اختبارها: حجم ال و قد غطتحي كامل. م استخدام نهج توضيت

( 1000W ،700W، 300W، والطاقة )(m 1790،m 783،m 467) الجسيمات

(. يتم رصد غاز التخليق العائد ودرجة 0، 0.2، 0.4" )MCومحتوى الرطوبة في العينة "

 ETG MCA 100 Syn BIOGAS MULTIGASالحرارة طوال الاختبارات باستخدام "

ANALYZER و "Omega thermocoupleراسة إلى الحصول على . وتهدف نتائج هذه الد

هر أكسيد الكربون والتي تظُ، خاصة بالنسبة للغازات التي تنتج غاز الميثان وأول نتائج واعدة

لأدنى بين هي ا الهايدروجينغازات  نتائجتعتبر  و. %15و  %21 إنتاج للغازات بحوالي متوسط

ة طاقالحيوية في أعلى  غازاتت أعلى النسب المئوية من ال. حدثمُنتجةيع الغازات الجم

 عينات جافة. يعُتقد أن استخدام بذور التمرباستخدام و من الجسميات ، في أصغر حجملميكروويفل

زء ج استخدام طاقة موجات المايكروويفلانحلال الحراري بكمصدر للكتلة الحيوية في عملية ا

 لموارد المتجددة الرئيسية في التطبيقات التجارية والعملية.من ثورة ا
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 Chapter 1: Introduction  

 

1.1 Overview 

Fuel, as the fundamental source of energy, is crucial in all aspects of life. 

However, in the manner the world functions presently, we experience the drawbacks 

of a lack of energy. Currently, energy is the primary concern of everyone in society 

due to the suffering people experience from the deficiency of energy resources. Prices 

for resources have been energetically raised over the last five years, because of the 

rising demand and the high efficiency of energy resources. This energy crises occurred 

due to the low reliance on renewable energy and the high dependency on non-

renewable energy resources [1]. The hydrocarbons coal gas and oil together constitute 

eighty-five percent of the world's aggregate energy supply [2]; meanwhile,  the 

renewable resources of energy such as hydro-electric, solar, wind, nuclear, geothermal, 

biogas and wave represent fifteen percent of the worldwide offer of energy supply. 

The rapid development that has been taking place in recent years majorly 

affects the use of energy. It was recognized that humanity depends mainly on coal, oil, 

and petroleum gas as primary sources. Many nations are currently focusing on 

arranging high deals of sustainable power resource such as Denmark 100%, Germany 

50% and California 33%, in the following twenty years [2]. However, a myth that 

states that efforts in renewable energy will never achieve high levels, due to the low 

efficiency of the outcome energy compared to oil or coal as a source of energy. 

International investment in renewable energy sources today, have reached up to 250 

billion dollars. This enormous investment is greater than the that of  non-renewable 

energy sources and nuclear power combined [2]. Different statistics predict that the 

need for energy will dramatically increase from 75% to 90% through the coming 20 
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years [2]. This can be easily noticed in Figure 1; that compares the energy generation 

in Germany as an example from 2003 to 2013. The main point to be discussed is that 

the dependence on renewable energy has increased from 7.5% to 23.4%, almost a three 

times increase; reflecting the industrial countries’ plans that significantly supports this 

approach. 

Figure 1: Generation of Electricity by Renewable Energy Source [2] 

As per Arab Petroleum Investments Corporation (Apicorp), the Gulf 

Cooperation Council (GCC) showed 47% or 148 GW of the current Middle East and 

North Africa (MENA) power-generating limit. Factors, such as urbanization, 

enhancements in wage levels, industrialization, and low electricity costs, have 

prompted an ascent in the GCC's interest for energy. 

 The GCC region would require US$ 85 billion for the expansion of 69 GW of 

generating capacity and another US$ 52 billion for T&D throughout the following five 

years. The GCC power capacity needs to grow at an average yearly pace of 8% 

somewhere in the range of 2016 and 2020 as represented in Table 1. Saudi Arabia 
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(KSA) drives the efforts to make the necessary capacity augmentations by 2020 as the 

kingdom should contribute US$ 71 billion to increase the power to 114 GW [3]. 

Table 1: The required GCC investment in power from 2016 to 2020 [3] 

REQUIRED GCC 

INVESTMENT 

(2016-2020) 

GENERATION 

(US$ BN) 

T&D (US$ BN) TOTAL (US$ BN) 

KSA 43 28 71 

UAE 20 14 34 

Kuwait 8 4 12 

Qatar 6 3 9 

Oman 6 2 8 

Bahrain 2 1 3 

 

New resources for energy have been the subject of interest for many 

researchers to satisfy the human needs from energy. They began to look for new 

untraditional natural resources by following the well-known hypothesis “ any organic 

object with the main carbon structure has an amount of energy” [3]. As per human 

nature, which likes to exploit all resources for its interests, scientists used new 

resources to produce energy like feedstock, waste, and biomass [3]. The renewable 

power source is acquired from frequently renewing assets, for example, the sun, wind, 

rain, tides and geothermal warmth.  

Bioenergy is the most prominent active supporter of worldwide energy 

demands, giving about 13% of the total energy supply. The current utilization of 

biomass in nations (for cooking and heating) represents an approximate of 8%. Current 

bioenergy provides around 4% of the needed heat in structures and 6% in industry. Not 

to mention, somewhere in the range of 2% in the worldwide generation of global 

electricity and 3% of transport energy needs. 
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Present day development in the utilization of bioenergy for heating has been 

generally moderate (underneath 2% every year) because of the fossil fuel prices. With 

generation from biomass expanding by 11% in 2017, the usage of biomass in the 

electric field has seen a more haste development. Table 2 shows the annual investment 

net capacity additions’ production in 2017. China as the largest producer of 

bioelectricity during the year overwhelmed even the United States. Worldwide 

increases to the hydropower capacity in 2017 was an expected 19 GW, bringing the 

total capacity to roughly 1,114 GW. While noteworthy, this is the smallest yearly 

augmentation seen in the past five years. Representing about 40% of the new 

establishments of energy in 2017, china remains the enduring leader in authorizing 

new hydropower capacity, trailed by Brazil, India, Angola, and Turkey. Solar PV was 

one of the best new sources of power production in 2017, due to the significant extent 

of development in China. Worldwide capacity expanded by about 33%, to around 402 

GW [4]. 

Renewable energy is directed in an upward direction in the UAE. Its power has 

been its primary consideration, driven by solar, waste-to-energy, and wind. 

Additionally, there are pilot extensions in thermal cooling and transport energies. In 

2008-2009 the revelation for renewable power source initiated, when Abu Dhabi set 

an objective to obtain a 7% renewable power source (around 1500 MW) by 2020. 

Dubai at that point likewise reported an objective of 5% renewable power source 

(around 1000 MW) by 2030. Notwithstanding question territoriality and universally 

about the chances for a renewable power source in hydrocarbon-trading nations, the 

UAE's organization and advancement of renewable power source had a critical impact 

for it [5]. 
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Table 2: Annual investment net capacity additions production in 2017 [4] 

 1 2 3 4 5 

Investment in renewable 

power and fuels(not 

including hydro over 50 

MW) 

China USA Japan India Germany 

Investment in renewable 

power and fuels per unit 

GDP 

Marshall 

Islands 

Rwanda Solomon 

Islands 

Guinea-

Bissau 

Serbia 

Geothermal power 

capacity 

Indonesia Turkey Chile Iceland Honduras 

Hydropower Capacity China Brazil India Angola Turkey 

Solar PV Capacity China USA India Japan Turkey 

Concentrating solar 

thermal power (CSP) 

Capacity 

South 

Africa 

- - - - 

Wind power Capacity China USA Germany UK India 

Solar water heating 

Capacity 

China Turkey India Brazil USA 

Biodiesel production USA Brazil Germany Argentina Indonesia 

Ethanol production USA Brazil China Canada Thailand 

 

1.2 Statement of the Problem  

The energy crisis of the 1970s was a significant concern that threatened all 

nations all over the world. The world began to notice that oil, coal, and natural gas 

would be depleted shortly; therefore, the persistent need for a new energy source was 

a requirement to feed the vast and rapid improvements in technology, and to meet the 

needs of our ever increasing population [3]. To cope with this problem, a worldwide 

race looking for renewable resources commenced. Among all the promising solutions, 

was the use of biomass waste as a renewable source of energy. Consequently, each 

country looked at developing the use of the biomass waste which was frequently 

produced [6]. Biomass waste can occur through different processes; for example, in 

the thermochemical conversion process, Pyrolysis is one of the methods used to 

produce renewable resources.  
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Recently, the UAE has started using renewable energy, and  It is essential to 

know that the UAE has millions of palm trees along the roads and in the farms [7]. 

These palm trees produce thousands of tons of dates, some of which are not being used 

as food sources, and some are damaged in the production process. A vast number of 

date seeds are thrown away in factories as waste. Thus, this waste can be used as a 

sustainable biomass source of energy for the UAE. The use of microwave heating on 

date palm waste (date seeds) in the pyrolysis process is an innovative approach to 

extract yield gases such as CH4, CO, CO2, and H2. 

1.3 Biomass 

Biomass energy (bioenergy) can be delivered from an extensive variety of 

feedstock of natural origins, and can be utilized through various diverse procedures to 

deliver heat, power and transport fuels (biofuels). Numerous bioenergy conversion 

pathways are entrenched and fully commercial, while others are still at the exhibit and 

commercialization stages. As shown in Figure 2, Bioenergy contributed an expected 

12.8% (46.4 exajoules (EJ) = (1018) joules) in 2016. Nowadays bioenergy contributes 

5% of the total energy consumption [8]. 
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Figure 2: Shares of bioenergy in total final energy consumption, overall and by end-

use sector, 2016 [6] 

Regarding the sustainability of production and use, bioenergy remains a hot 

subject to be discussed. Nonetheless, when produced and used sustainably, there is a 

growing agreement that, bioenergy can contribute to reductions in greenhouse gas 

emissions and give a scope of other natural, social and economic benefits [8]. 

In 2017, various activities were progressed to grow the economic bioenergy 

state, including the recent buildup of 20 nation to promote the growth of a functional 

bio-economy, and the sustainable biofuels development test, which is a part of the 

extensive mission development program and has 22 participating countries [9]. 

Biomass integrates carbon dioxide and energy into chemical energy through 

photosynthesis. Biomass contains agricultural and forestry residues, wood, byproducts 

from the processing of biological materials, and the organic parts of municipal and 

sludge wastes. The utilization of biomass as a fuel is a natural carbon process since the 

carbon dioxide caught through photosynthesis is discharged during its combustion 

[10]. Photosynthesis by plants catches around 4000 EJ/year as energy in biomass. The 
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appraisals of the potential worldwide biomass energy have changed widely. The 

changeability emerges from the diverse styles of biomass and the unique strategies for 

deciding assessments for those biomasses. Parikka  assessed the aggregate overall 

energy potential from biomass on an economic scale to be 104 EJ/year, of which 

woody biomass, energy products, and straw constituted 40.1%, 36%, and 16.6%, 

respectively [11]. Just around 40% of potential biomass energy used currently. In Asia, 

the present biomass used slightly exceeds the reasonable biomass potential. Right now, 

the aggregate worldwide energy request is about 470 EJ/year. Fischer and 

Schrattenholzer assessed the global biomass potential to be 91 to 675 EJ/year for the 

years 1990 to 2060 [12].  Their biomass contains crop and forestry residues, energy 

crops, and animal and municipal wastes. Hoogwijk evaluated these to be 33 to 1135 

EJ/year [13]. Perlack assessed that, in the USA, 1.3 billion tons of biomass could be 

collected every year for biofuel generation [14]. 1.3 billion tons of biomass equates to 

almost 3.8 billion barrels of oil in energy content. The US’s energy consumption is 

around 7 billion barrels every year [15]. Nonetheless, harvesting, gathering, and the 

capacity of biomass include another measurement of specific difficulties for the 

utilization of biomass for the production of bio power, chemicals, and fuels [14]. 

Biomass created reasonably the modern biomass avoids traditional 

employments of biomass as fuelwood as it incorporates electricity and heat generation 

in addition to transportation energizes, from forest residues, solid and agricultural 

waste. On the other hand, ''traditional biomass'' is created in an unsustainable way and 

it is utilized as a non-business source— usually with low efficiencies for cooking in 

numerous nations [16]. 
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1.4 Biomass Pyrolysis: Principles and Technologies 

1.4.1 Methods of Converting Biomass to Biofuel and Bioenergy 

The two primary methods used to change biomass energy into biofuels and 

biopower are biochemical conversion and thermochemical conversion process. 

Biochemical conversion changes the biomass into a fluid or a gas by fermentation or 

anaerobic digestion. Anaerobic digestion prompts the generation of gas fuels 

fundamentally containing methane. Fermentation of the biomass (starch and cellulose) 

creates ethanol. Thermochemical conversion technology contains combustion, 

gasification, and pyrolysis. 

Thermochemical conversion technology has certain advantages and of course, 

disadvantages. The primary advantages are that the feedstock for thermochemical 

transformation can be any biomass such as agricultural residues, forestry residues, 

byproducts of any bioprocessing facility and even organic municipal wastes. 

Additionally, the gases can be changed to different types of fuels (H2, Fischer-Tropsch 

(FT) diesel, manufactured gas) and chemicals (methanol, urea) as alternatives for oil 

based chemicals. The main disadvantages are the high costs related with cleaning the 

produced gas from tar and unwanted contaminants like alkali compounds, inefficiency 

because of the high temperatures required, and the doubtful utilization of products 

(syngas and bio-oil) as transportation fuels [17]. 

 The combustion of biomass is the most straight forward and uncomplicated 

process. The general efficiency of creating heat from biomass energy is low. The 

biomass gasification process consists of the transformation of a solid/fluid natural 

compound in a gas/ vapor phase and a solid phase. The gas phase namely called 

"syngas", has a high heating power and can be utilized in biofuel generation. The solid 



10 

 

 

 

 

phase, called "char", contains the unconverted natural division and the inactive 

material present in the processed biomass [18]. 

1.4.2 Pyrolysis Process 

Pyrolysis, a promising method, can be considered as one of the big revolutions 

in producing energy. As one of the thermochemical conversion process, pyrolysis 

occurs at a range of temperature starting from 400°C – 500°C in the absence of oxygen 

as shown in Figure 3. It produces fuel gas, bio-oil in liquid form and charcoal in solid 

form. Fuel gas and bio-oil have many common applications such as the turbines and 

the boilers. However, the difference in the applications is that fuel gas is used in 

engines and synthesis, while the bio-oil is used in the upgrading and extraction 

applications. On the other hand, boilers can also use charcoal as a source of energy 

[19]. Large particles in biomass disintegrate or depolymerize at high temperature to 

gas phase abandoning some solid charcoal [20].  

 

Figure 3: Pyrolysis process’s products and its applications [19] 

The gaseous phase contains condensable and incondensable compounds. The 

condensable compounds can be cooled to produce chemicals and bio-oils [15, 21]. 

Pyrolysis can occur through different methods such as conventional pyrolysis, where 
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a high amount of hydrogen-rich gas is produced that can work at high temperatures 

and for a long time [19, 22, 23]. Heat converted to the material by convection, 

conduction and radiation were it was noticeable that the heating manner of the material 

started from the surface to the inner parts [24, 25]. Conventional pyrolysis would be 

done by different methods in different systems such as fluidized bed, fixed bed, 

rotating cone, and transported bed [26]. Another conceivable pyrolysis alternative, 

called flash or fast pyrolysis, has been used to increase the yield of gas. In this case, a 

high heating rate, and temperatures of around 500°C are utilized [21]. 

Fast pyrolysis is a high-temperature process in which biomass is quickly heated 

without oxygen. Accordingly, it decomposes to produce vapors and vaporizers and 

some charcoal [27]. 

The primary highlights of a fast pyrolysis process are summarized by [21]: fast 

cooling of the pyrolysis vapors to give the bio-oil item. Cautiously controlled 

temperature. Moreover, by high heating and heat transfer rates that require a finely 

ground biomass feed [25]. 

The Kinetics of biomass pyrolysis is a hard topic as many of the researchers 

agree, they investigate the mechanism of biomass pyrolysis through the study of the 

decomposition mechanisms of its constituents; cellulose, hemicellulose, and lignin 

[28-31]. They examined the disintegration temperature of the three constituents 

utilizing Thermogravimetric Analysis (TGA). The researchers discovered that 

hemicellulose decomposition happens first at around 220– 315°C while cellulose 

deteriorates in the range 315– 400°C. Lignin was found to break down gradually over 

a wide temperature extend beginning from 150°C and proceeds up to 900°C [29]. The 
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pyrolysis of biomass constituents is a superposition of three primary mechanisms 

concerning product quality [30]. 

The primary mechanisms are shown in Figure 4 and described below:  

 Char formation: This mechanism takes place at low reaction temperatures, beneath 

500°C, and low heating rates. It is described as adjustment reactions prompting the 

development of a thermally steady solid product called char, which has a 

polycyclic aromatic structure. Water and incondensable gases are produced as a 

result of these reactions [30]. 

 Depolymerization: This pathway includes the breakage of the bonds between the 

monomer units prompting the arrangement of shorter chains. Depolymerization 

proceeds until the point when the delivered molecules wind up volatile at the 

working conditions. As a primary product with concentration to about 60%, 

"Cellulose Depolymerization" prompts the development of levoglucosan [32, 33]. 

Hemicellulose depolarization products rely upon the type of 27 monosaccharides 

included. Hexoses-rich hemicellulose depolymerizes into products wealthy in six-

carbon compounds, for example, Hydroxymethylfurfural, while Xylose-rich 

hemicellulose depolymerizes into basically  five-carbon compounds, for example, 

furfural [34]. The development of phenolic compounds, which could be 

monophenols or oligomers, leads  by lignin depolymerization [35].  

 Fragmentation: This includes the breakage of covalent bonds, including those 

inside the monomer units, prompting the development of atoms and incondensable 

gases. This mechanism is favored at the high temperatures of 600oC and more [30]. 



 

 

 

 

 

1
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Figure 4: Primary mechanisms of biomass pyrolysis [1] 
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1.5 Microwave Heating 

Microwave pyrolysis which is the main issue to be discussed in this thesis 

mainly depends on the microwave radiation as a source of heat to reach a suiTable 

temperature. Microwave heating is an alluring technique as it gives a volumetric 

heating process at improved heating efficiencies as contrasted with a conventional one. 

Uniform heating inside the material can be observed if the conditions controlled 

accurately. Therefore, materials vary in their reaction to microwave heating. Materials 

have distinctive ideal frequencies that can be estimated while not all materials absorb 

microwaves. Few materials reflect or seem transparent to microwaves and are 

consequently less receptive to heating. Materials that absorb microwaves are known 

as dielectrics and have two main properties [36]: they do not have that much of free 

charge carriers, a small amount of charge carried through the material matrix when an 

external electric field applied, and the atoms or molecules including the dielectric 

display a dipole development. 

The microwave frequency is between 300 MHz and 300 GHz, and most 

microwave applications are made in the range of 3 and 30 GHz. 

In industry, microwave heating is performed at either a frequency near 900 

MHz or 2450 MHz [37].  The material’s ability to absorb microwave energy is 

measured by its loss factor. Reflecting materials do not store microwave energy as heat 

since the waves go through the material. 

Metal, as an example of the reflecting material, has a property in which waves 

reflect off the material surface. Materials with microwave absorbing properties can be 

adequately heated at room temperature. Nonetheless, due to the heating mechanism in 

microwave, insulators that are materials with low microwave conductivities, for 
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example, start to absorb microwave radiation effectively at the point when heating 

exceeds a critical temperature [38]. At the point when a dielectric is in an electric field 

(i.e., a microwave cavity), the dipoles inside the material start to organize themselves 

as indicated by the connected field. The dipoles in the material, exposed to an 

electromagnetic field, reorganize themselves around 2.5 billion times each second (for 

a microwave frequency of 2.45 GHz). This produces internal friction, causing the 

microwave responsive material to heat up [39]. 

1.6 Dielectric Material 

Dielectric properties characterize the collaboration of materials with the 

electromagnetic field. Biomass materials are viewed as nonmagnetic materials and, in 

this manner, their connection is restricted to the electric field [40]. From the 

polarization loss, the numerical portrayal of the dielectric properties is generally 

clarified. A slight amount of energy is stored because of charges polarization, at the 

point when an electric field is applied to a dielectric material. The utilized value to 

quantitatively depict the stored energy is called the dielectric permittivity (𝜀). If the 

electric field is exchanging, as on account of microwave field where part of the energy 

is lost into heat, the dielectric permittivity is, at that point, shown as an aggregate 

amount [41, 42]: 

𝜀 = 𝜀′ − 𝑗𝜀′′  

   

The real part of the complex permittivity, the dielectric constant is (𝜀′), decides 

measures of the stored energy, meanwhile, the dielectric loss factor is called the 

imaginary part (𝜀′′), and it shows the measure of power loss into heat. 
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The real part has generally been called the dielectric constant. The loss tangent 

or the dissipation factor (tan δ) is the ratio between the dielectric constant to the loss 

factor. The dissipation factor tan δ is ordinarily used to estimate the general capacity 

of a material to heat in an electric field [43]. When two materials have a similar loss 

factor, at that point, the material with the lower dielectric constant would heat better, 

because it has higher loss tangent. 

As recorded in Table 3, the moisture content influenced the dielectric 

properties of biomass materials, fundamentally, at room temperature. Robinson et al. 

examined the loss factor of dried and undried (6.3% water content) pine pellets at 2.45 

GHz [35]. 

For the dried and undried samples, they discovered that the loss factor is 0.05 

and 0.81 respectively at room temperature. This study demonstrated the massive 

commitment of the water content in the dielectric properties of biomass materials, as 

just 6.3% of the moisture raises the loss factor with an order of magnitude. Other 

factors influence the dielectric properties of biomass materials including the packing 

density temperature and the frequency. 

These varieties in the values from the Table are related to numerous reasons; 

the most important of which are the measurement conditions and the type of the 

biomass materials utilized, i.e., the frequency utilized, the material’s moisture content, 

and density. It is, hence, critical to display the dielectric properties of biomass with 

their frequency, temperature, density, and the moisture content since these components 

fundamentally influence the dielectric properties. 
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Table 3: Dielectric properties of different biomass materials together with water at 

room temperature (25°C) [44] 

Material Moisture 

(%, d.b) 

Density 

(g.cm3) 

Frequency 

(MHz) 

𝜀′ 𝜀" tan δ Reference 

Pine pellets 6.3 ±0 - 2450 - 0.81 - [45] 

dry - 2450 - 0.05 - 

Palm kernl 

Shell 

8.5 - 2450 2.76 0.35 0.13 [46] 

Palm Fibre 10 - 2450 1.99 0.16 0.08 

Switchgrass 

Pelletes 

2.23 0.94 915 2.63 0.17 0.06 [47] 

2.23 0.94 2450 2.55 0.16 0.06 

Municipal 

solid waste 

2.9 0.166 2450 2 <0.05 <0.03 [48] 

Distilled 

Water 

- 1 2450 77 13 0.17 [49] 

 

The power dissipation (𝑃) at the point when an electromagnetic field is applied 

on a dielectric nonmagnetic material, could be evaluated from [49]: 

𝑝 = 2𝜋𝑓𝜀0 𝜀" 𝐸𝑖2  

Where 𝑝 is the power dissipation density (𝑝 = 𝑃/𝑉); 𝑓 is the frequency of the 

applied field (Hz); 𝐸𝑖 is the voltage stretch or the internal electric field intensity (V m-

3); 𝜀0 is the free space permittivity (𝜀0 = 8.854 × 10−12 𝐹.𝑚−1); 𝜀" is the dielectric 

material loss factor substituting the constant qualities, the equation could be composed 

as: 

𝑝 = 55.63 × 10−12 𝑓 𝐸𝑖 2 𝜀" (𝑊 · 𝑚−3) 

The previous equation demonstrates that the frequency, the material's loss 

factor, and the field intensity are the variables of the power dissipation. Also, that the 

loss factor changes with the frequency which makes the relationship between the 

density, frequency, and the power dissipation not linear. 
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Even though the dielectric constant does not show up in the previous equation, 

through the electric field power, it influences the power dissipation [50]. The electric 

field intensity spread through the material could be shown graphically as in Figure 5. 

 

Figure 5: Electromagnetic field propagation in a dielectric medium [44] 

 

Also, scientifically as pursues [50, 51]: 

(𝑧) = 𝐸0𝑒− 𝛾 𝑧 𝑒−(𝜔𝑡−𝛽𝑧) 

Where 𝛼 is known as the attenuation factor and 𝛽 is the phase factor, both of them are 

elements of the loss factor and dielectric constant of the medium [50, 51]. 

The most extreme electric-field stress ought to be less than the critical value 

at which voltage breakdown (or electric breakdown) happens. This high electric field 

stress can ionize gases forming a conducting method at which large power 

dissipation happens (arcing).  

This high nearby power dissipation density can harm a few sections of the 

microwave heating system and the workload also. The electric breakdown voltage of 

gas is relative to its density which can be reduced with raising in the temperature at 
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constant pressure [48]. The electric breakdown voltage of air at the standard conditions 

is around 30 kV·cm-1 [48]. Working at "the biomass pyrolysis reaction temperature of 

around 500oC" expands the chances of electric breakdown by decreasing the 

breakdown voltage to around 11 kV·cm-1.  

The penetration depth, which is a proportion of how deep the electric field can 

enter into a material, is another critical parameter in electromagnetic energy with the 

material interaction. The separation from the surface at which the power flux drops to 

1/e (≈ 0.368) of its surface value is known as the infiltration profundity [49]. 

From the fact that as the wave advances inside a dielectric material, the power 

intensity and its related electric field intensity decrease exponentially with the distance 

from the surface as clarified from the previous figure this definition originates. The 

penetration depth can be assessed from the accompanying equation [51]: 

Dp =
λ0

2π√2ε
+

2π√2ε′

√[(1 + ε"
ε′ )

2
)

0.5

− 1]

 

It was noticeable that the previous definition does not propose that there will 

be no heating at a distance surpassing 𝐷𝑝 as around 37% of the power is dissipated in 

the material at depth more noteworthy than 𝐷𝑝. From the previous equation, obviously 

the, penetration depth is a function of the free-space wavelength, 𝜆0, the dielectric 

constant and the loss factor.  

Water, for instance, (as loose materials that have a short penetration depth) has 

a penetration depth of 1.3 cm at room temperature and 2.45 GHz. Materials with a 

complex permittivity of 2 - 0.1 j, or in other words, a value for a biomass material at 

room temperature, would have a penetration depth of 27.5 cm. In any case, the 
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dielectric properties of biomass materials change with temperature, and it progresses 

towards becoming loose when char begins to shape at high temperature prompting a 

decrease in the penetration depth. 

1.7 Microwave Pyrolysis 

Using the microwave as a source of energy for the pyrolysis was a sign offer a 

new trend generation in energy production, the most important factors in microwave 

pyrolysis reaction are recorded underneath [52]:  

 Reaction time (residence time) 

 Microwave output power 

 Type and size of input biomass/materials 

 Reactor design/type 

 Moisture and water content of input biomass/materials 

 Microwave type (multimode or single-mode) 

 Microwave receptor type, size, and amount/concentration 

 Catalyst type and concentration 

 Reaction temperature 

 Type and flow rate of carrier gas 

 

Contrasted with conventional pyrolysis, which is carried out by an electric 

heater, microwave pyrolysis creates more H2 and CO content [53, 54], which is the 

syngas. Huang examines the productivity of H2 rich fuel gas from rice straw utilizing 

the microwave-induced pyrolysis [55].  

The arrangement constituents of gas production and the instrument of its 

generation were likewise discussed. The essential segments of the gas product were 
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H2, CO2, CO, and CH4, with average rates of 50.67, 22.56, 16.09, and 7.42 vol.%, 

respectively. 

 As indicated by the TA-MS investigation, it was proposed that focused 

heating, by microwaves, made the microwave-incited pyrolysis unique. A substance 

condition could almost be adjusted to outline the gas structure created from rice straw. 

From the perspective of energy consumption, near 60% of the input energy could be 

determined and used as bioenergy [55].  

1.7.1 Microwave pyrolysis Advantages and Disadvantages 

Like any new technology, microwave pyrolysis has several advantages and 

some disadvantages [54, 56-60]. The advantages can be summarized by the following: 

 It is an active uniform rapid heating method to convert the biomass into solid, liquid 

and gaseous products 

 Beats a few specific disadvantages of conventional pyrolysis techniques such as 

slow warming and need of feedstock ripping 

 Expanded product production 

 Low process time 

 Saving energy 

 Low necessities for space 

 Creates microplasmas and hot spots which advance, the heterogeneous reaction that 

creates more concentrations of bio-syngas and hydrogen in the gas products 

 Creates less polycyclic aromatic hydrocarbons (PAHs), and is resulting in the less 

risky compound 
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The fundamental disadvantage of microwave power is the innate issues of 

temperature estimation. The most customarily utilized sensors for high-temperature 

estimation amid pyrolysis forms are infrared pyrometers and thermocouples. 

Temperature estimation with infrared optical pyrometers requires a window in the 

response framework that permits, just the infrared, but not microwaves to go through; 

which, as a rule, prompts heat loss and accordingly the underestimation of the reaction 

temperature [61]. 

Conversely, thermocouples frequently overestimate the temperature 

concerning the fact that the thermocouple tip can act as an antenna, which makes a 

concentrated electric field, and creates a hot spot of a higher temperature. 

Thermocouple probes with a mix of infrared optical pyrometers may enhance the 

reliability of temperature estimation [62]. 

1.8 Relevant Literature 

This section includes relevant literature reviews to the work in this thesis; 

covering the main areas of relevance to the topic. A sub-section of the background will 

note the basic knowledge about microwave pyrolysis covered and the list of the 

objectives, scope of the work, hypothesis and a summary of the thesis structure. 

1.8.1 Microwave Pyrolysis 

Zhoe [63] found that the main gas products from microwave pyrolysis of wheat 

and straw bale were CO, CO2, H2, CH2, C2H6 with 35 vol.% of pure H2, while Huang 

[55] examined that it is 50.67vol.% of the rice straw. A few pyrolysis studies have 

been led utilizing microwaves as a heating source, with a feedstock that included coal 

[64], espresso structures [65], rice straw [66], squander tea [67], and corn Stover [58]. 
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From these researches, different products were created by microwave pyrolysis 

including gas, fluid, and solids. The essential elements influencing the productivities 

included reaction time, microwave power, reaction temperature, and molecule size. 

Hong et al. studied three distinctive marine biomasses: microalgae-spirulina, 

chlorella, and macroalgaeporphyra, that were pyrolyzed in a research center scale 

multimode-microwave cavity at 400, 550 and 700°C. Ovalbumin and cellulose were, 

likewise, picked as model mixes to simulate algae. The impact of the heating rate on 

pyrolysis and the bi curves of various samples under various temperatures were 

examined. The Porphyra was observed to be the most responsive and delivered the 

most significant gaseous fraction (87.1 wt.%) over the three algae, which contained 

73.3 vol.% of syngas. It was discovered that carbohydrate prompted the development 

of PAHs while nitrogenized mixes in bio-oil were obtained from protein in algae. For 

the generation of bio-oil, protein-rich microalgae are good contrasted with Porphyra 

because of their lower measure of PAHs, while Porphyra is more appropriate for the 

generation of H2 + CO-rich gas, which is practically identical with that of conventional 

gasification processes. 

Huang et al. [68] discussed the impacts of catalysis of aluminum oxide (Al2O3), 

molecule size, and pretreatment (acid pretreatment and steam explosion), on gaseous 

product composition. Additionally, heating efficiency and product distribution of corn 

stover pyrolysis utilizing microwave heating were examined. Both most extreme 

temperature and heating rate expanded with the decreasing molecule size of corn 

Stover. The heating efficiency was, additionally, improved over Al2O3 and by applying 

both pretreatment techniques. Including 10 mesh, Al2O3 enlarged the gaseous yield, 

however decreased the fluid yield. This might be inferable from that little catalysts 
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particles that are embodied by another catalyst and biomass particles to decrease their 

catalytic activity. Applying acid pretreatment considerably reduced the gas yield yet 

expanded the fluid yield, while the impact of the steam explosion was not significant. 

Around half of the CO was delivered at the first five minutes of the test, yet the yields 

of H2, CH4, and CO2, created from microwave pyrolysis of corn Stover pretreated by 

acid, were generally small. The first-and-second-order reaction models is utilized to 

analyze the reaction kinetics for microwave pyrolysis of corn stover. 

Li et al. [69] studied the impacts of moisture content, pyrolysis temperature, 

added substance, and the microwave power on H2 yield. The feedstock is rice straw, 

which is the most common crop straw. What is more, a four-factor four-level 

symmetrical test is intended to reveal the position of these factors and the ideal 

pyrolysis conditions. The outcome demonstrates that: H2 yield (vol.%) first expanded 

and afterward decreased when pyrolysis temperature and microwave power expanded, 

H2 yield reduced; without added substance when moisture content expanded, H2 yield 

was 36.14% which is the maximum value recorded. The rank of the four studied factors 

is moisture content, additives, pyrolysis temperature, and finally microwave power. At 

the point when the microwave power was 2.5 kW, the pyrolysis temperature was 

700°C, ZnCl2 was utilized as the added substance in the microwave-helped pyrolysis 

of the rice straw, and the moisture content was 61.84%, a high H2 yield of 44.94% was 

accomplished. 

Jimenez et al. [70] studied the pyrolysis of pecan nutshells and considered 

utilizing microwave at various input power and presentation time. The carbonaceous 

items were characterized utilizing potentiometric titration, elemental analysis, N2 

adsorption isotherms at −196°C, FT-IR spectroscopy, and thermogravimetric analysis. 
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The qualities of microwave carbonaceous items were contrasted by carbons arranged 

by conventional heating and commercial carbons. The outcomes show that it is 

conceivable to acquire carbonaceous materials with similar textural parameters in 

conventional and microwave systems, yet for microwave heating, the handling times 

are shorter, which reaches 3 min. Likewise, the exposure time of 2 min of the 

microwave is insufficient for the total depolymerization of the lignocellulosic matrix 

of the pecan nutshell, and a massive measure of cellulose and hemicelluloses stay in 

char after the microwave treatment. 

Hossain [71] studied pyrolysis of oil palm fiber (OPF) for the generation of 

hydrogen-rich gas using various response parameters. Five distinctive OPF test sizes 

were tried: microwave power running from 400 W to 900 W, lengths less than 1 mm, 

1–3 mm, 4–6 mm, 7–9 mm and 10–12 mm, N2 flow rates running 200– 1200 cm3/min, 

and reaction temperatures extending from 450°C to 700°C. The microwave pyrolysis 

was completed by utilizing a microwave reactor which has an ability of giving 2450 ± 

25 MHz microwave frequency. It has been discovered that the use of small OPF 

molecule sizes, a higher microwave power, a higher reaction temperature, and a higher 

N2 flow rate fundamentally yields more H2 rich gas.  

Al-Rubaye et al. [72] manages syngas creation from date palm seeds by 

utilizing microwave plasma technology. Three forms of date palm seeds were utilized: 

crushed, powdered and full with a variable flow rate of argon to expand the 

centralization of plasma. The outcomes demonstrate that there is no compelling reason 

to pre-treat (process) the date palm seeds to enhance biogas generation. 
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1.9 Study Objectives 

The main objectives of this study can be summarized in the following: 

 To explore microwave heating as an efficient method for the pyrolysis process. 

 To examine the potential of using biomass waste material (Allig’s date seed) as a 

source of renewable energy. 

 To perform a parametric study to investigate the effect of the particle size, 

microwave power, and moisture content on the performance of the pyrolysis 

process, and to explore the limitations behind this process. 

 To develop a theoretical model using Minitab, which can predict the main 

components of the bio-syngas yields such as CH4 and CO as a function of the 

particle size, microwave power, and moisture content. 

1.10 Scope of the Work 

The scope of this work can be outlined as follows: 

 To focus on studying the non-conventional technique of pyrolysis utilizing the 

microwave effect. 

 To determine the benefit from the direct heating of the sample using microwave 

power compared to the conventional heating method, which requires heating the 

environment in order to heat the sample. 

 The application of the pyrolysis process, using a microwave oven with various 

particle sizes, microwave powers, and moisture contents, to study their effects on the 

yield bio-syngas produced through the process. 

 To develop a theoretical model to describe the gas yield percentages as a function of 

the three parameters for future industrial utilization. 
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 To explore the limitations of the parameters and their impact on the overall 

performance of the process. 

1.11 Hypothesis  

An altered microwave is to be utilized in an experimental study as a source of 

heat. The microwave will be modified to accommodate a specially designed double 

wall quartz reactor that will be integrated at the center of the microwave space. A 

biomass waste material (Allig Date seeds) is to be utilized in a pyrolysis process to 

produce bio-syngas. A syngas analyzer is to be implanted to measure the produced 

bio-syngas, and a thermocouple is also introduced into the samples to measure the 

temperature throughout the experiments. The data collected will be processed, through 

the reduction analysis, to calculate the output yield bio-syngas average concentration 

volume percentages, the gas produced energy, and the gas efficiency. 

1.12 Summary of Thesis Structure 

The structure of this thesis is divided into seven chapters. The first chapter is 

an introduction which is divided to: An Overview, a Statement of the problem, a Thesis 

Objectives, a Scope of the work and limitations, a Hypothesis, a Summary of the 

Thesis structure, a background about the Biomass, and a Biomass Pyrolysis: Principles 

and Technologies that contains two subsections: Methods of converting biomass to 

biofuel and bioenergy, and Pyrolysis. It also focused on Microwave Heating, Dielectric 

Material, Microwave Pyrolysis, Microwave pyrolysis Advantages and disadvantages, 

and Relevant Literature which contains Microwave Pyrolysis. 

 Chapter two “Experimental Methodologies” concentrates on Biomass 

Material, Material Characterization that describes: Sample Preparation, 

Thermogravimetric Analysis of Allig Date Seed and Particle size distribution. It also 
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discusses the Experimental Setup in details through Microwave, Reactor, and Sensors 

that describe: Gas analyzer, and Thermocouple and Digital flow meter. After that, it 

shows the Testing procedures, Parameters study, and Data Reduction. 

 The subsequent third chapter is mainly about the Results and Discussion which 

will discuss Physical and Chemical properties of Date Seed (Allig), the Effects of 

Microwave Power on bio-syngas yield, the Effect of Date Seed Size effect on bio-

syngas production, the Effects of Moisture content on bio-syngas production, and the 

Statistical Analysis for CH4 and CO cases. Moreover, in chapter four, it focused on the 

Conclusion that discussed briefly: Research Conclusions and Implications, the Effects 

of Microwave Power on bio-syngas production, the Effects of Date seeds size on bio-

syngas production, the Effects of Moisture content on bio-syngas production, the 

General Remarks, and the Recommendations. Furthermore, chapter five shows the 

References used through the thesis in IEEE style. Chapter six shows the Appendices 

that contains Tables and figures. Finally, chapter seven includes List of Publications. 
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2 Chapter 2: Experimental Methodologies  

 

  In this chapter, the Characterization of Allig Date seed, a Thermogravimetric 

Analysis, proximate analysis for DSP and the experimental setup for the microwave 

pyrolysis process is to be described. Also, a detailed size measurement is explained 

with all of the equations regarding “Rosine Rammler Bennett distribution”. The 

experimental procedures are discussed starting with the preparation of date seeds 

biomass to the last step which is analyzing the output bio-syngas yield data and 

temperature measurements throughout all the tests, using the gas analyzer and 

OMEGA thermocouple and controller. 

2.1 Biomass Material (Allig Date Seed)  

Date seeds are utilized as a feedstock for energy production. It stands out 

amongst the most widely recognized organic products in the Middle East and UAE 

specifically. The UAE is among the ten world leading date makers. Moreover, the 

number of date trees in the UAE is approximately 40 million, 8.5 of which is located 

in Al-Ain [73]. UAE has from 50,000 to 80,000 metric tons developed in 

overabundance in 2011. Allig is one of the main date types that is frequently produced 

in UAE for it is large benefits and for it is importance as a traditional food. Liwa dates 

factory is the leader in producing all types of dates, and were the source of the Allig 

date seeds used for this thesis [74]. 
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2.2 Material Characterization 

2.2.1 Sample Preparation 

Allig date seeds -the biomass material- used in the experiment are washed by 

water, dried under the sun for two days, and then crushed into powders of different 

sizes using “GSMachine Crusher”. 

The second step was to measure the average sizes of the different particles 

produced from the crushing process based on the sieves accumulated weights. The 

statistical average sizing is explained in details in section 2.2.3.  

“MATEST an Auto Sieve Shaker” in Figure 6 is used with several sieves with 

the following sizes: (2360 µm, 1180 µm, 1000 µm, 500 µm, 200 µm, 100 µm, 50 µm) 

as shown in Figure 10. After examining the three sizes of biomass that will be used in 

the tests (1790 µm, 783 µm, 467 µm), as shown in Figure 7, the last step before 

performing the pyrolysis test is drying the sample and getting rid of the moisture 

content. The drying process is carried out by placing the DSP sample in the Furnace’s 

Chamber “Controlab” under 100°C for about 48 hours [75]. The sample is confirmed 

to be dry by monitoring the weight of the sample frequently until the weight of the 

sample is constant. The specific moisture content is controlled in different samples by 

adding a calculated mass of water to the dry sample based on the equation below. The 

sample is stirred to guarantee uniform distribution of moisture to the whole sample. In 

the end, each sample for each case is stored in a separate sealed plastic container to 

keep it isolated from the environmental effects. It is worth mentioning, that the total 

weight of each test sample is kept constant to 8 gm. Table 4 shows the mass of added 

water and the mass of dry date seeds used to prepare all the cases with the different 

moisture contents. 
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𝑴𝑪 =
𝒎𝒘𝒂𝒕𝒆𝒓

𝒎𝑩𝒊𝒐𝒎𝒂𝒔𝒔
𝟏𝟎𝟎% 

Table 4: The amount of water and dry biomass for different moisture content% 

MC 

(% ) 

water weight 

(gm) 

Dry DS weight 

(gm) 

Total Sample 

weight 

(gm) 

0 0 8 8 

20 1.6 6.4 8 

40 3.2 4.8 8 

 

 

Figure 6: Auto Sieve Shaker by MATEST 

 

 

 

Figure 7: Picture of the three different DSP sample sizes 
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Table 5: The weight loss for the three samples before and after the drying process 

Sample Average size Before Drying After Drying Weight loss 

1790 µm 100 g 93.707 g 6.293 g 

783 µm 100 g 92.928 g 7.072 g 

467 µm 100 g 89.98 g 10.02 g 

 

From Table 5, it’s clear that whenever the size of the particles increase, the 

weight loss decreases; this can be explained from the fact that the small particles have 

the ability to get rid of more amounts of moisture, since it appears less solid  and more 

powder-like than the large size samples. The smaller size  will help the heat reach all 

of the sample particles resulting in a greater reduction in weight as evaporated 

moisture.  

2.2.2 Thermogravimetric Analysis of Allig Date Seed 

The thermogravimetric analysis (TGA) is accomplished using type TGA Q600 

Thermal analyzer to determine the proximate analysis of the date seed powder. The 

reason behind this test is to figure out the percentages of: protein, carbohydrate, 

dehydration moisture, solid decomposition present and devolatilization lipid in the 

sample, by the degradation of the sample mass by combustion under inert conditions. 

The thermal behavior of any sample can be demonstrated by TGA, which is a critical 

parameter for the pyrolysis of date seeds in any designed reactor. The TGA test process 

can be described by the following. Initially, the temperature of the test chamber is 

stabilized at 25°C for 5 min; it is then heated at a steady heating rate of 20°C/min until 

it reaches 110°C.  Then the sample is kept at 110°C for 5 min. Finally, the sample 

temperature is raised to 900°C under a similar heating rate, which is held steady for 15 

min. A constant purging of nitrogen gas is connected with a flow rate of 100 ml/min 

during the whole process. 
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The percentage of weight reduction and its related thermogravimetric 

derivative analysis (DTG) as a function of temperature for “Allig DPS” is 

demonstrated in Figure 8. The pyrolysis stage of the Allig DSP, it is partitioned into 

three phases: Lack of hydration, Devolatilization, and Solid decomposition. Figure 8 

demonstrates that the weight of the date seed sample suddenly decreases sharply after 

220°C. Also where weight reduction stage the release of the volatile matter has begun. 

Besides, there are two different peaks relating to the decay of hemicellulose and 

cellulose, and it is observed that the thermal decomposition for date seeds is pyrolyzed 

at 450°C. There is a moderate drop in the weight reduction rate, after this temperature. 

This outcome could be explained by the decomposition procedure of the char or solid 

residues, which expands until 900°C. The unburned char is 20 wt.% of DP material 

Table 6 summarizes the proximate analysis results obtained from the TGA test. 

Table 6 shows the proximate analysis results for the Allig date seeds. While 

Table 7 shows the Ultimate Analysis of DSP where it demonstrates the presence of 

approximately 6.84% (by weight) of hydrogen, and about 49.74 (% of weight). [56]. 

Table 6: Allig Date Seed Powder Proximate Analysis Results 

Allig DSP Mass Fraction 

Dehydration stage (Moisture) 4.0% 

Devolatilization Stage 

Protein and Carbohydrate 

Lipid 

75.0% 

60.0% 

10.0% 

Solid Decomposition Stage 21.0% 
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Figure 8: TGA and DTG curves for Allig DSP 

 

Table 7: Elemental analysis of DSP [56] 

Element Analysis 

Element % of weight 

Carbon (C) 49.74 

Hydrogen (H) 6.84 

Nitrogen (N) 1.37 

Sulfur (S) 0.89 

Oxygen (O) 41.16 

 

2.2.3 Particle Size Distribution 

Sieve analysis is an analytical procedure used to decide the particle size 

distribution of granular material with plainly visible granular sizes. The technique 

includes the layering of sieves with various values of sieves opening sizes. The best-

measured sieve occurred at the base of the stack with each layered sieve stacked above 

one another arranged by expanding sieve size. At the point when a granular material 

is added to the top and winnowed, the particles of the material are separated at the last 

layer which the molecule couldn't pass. Sieve analysis (MATEST an Auto Sieve 

Shaker), determined the solid particles size distribution utilizing distinctive sifters 
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mesh sizes ranging from 50 – 3000 m, with samples of 50-100 gram for 120 min 

sieving time.  

Rosine Rammler Bennett distribution was considered for the evaluation of 

sieve analysis. The analysis is shown below, in which the biomass held on the sieves 

Retained percentage (R%) were utilized to decide the distribution after normalization 

concerning the total biomass weight. Data collection is accepted to pursue a Rosin-

Rammler distribution. The Rosin Rammler parameters are decided by regression as 

the data index given from a sifter investigation. Table 4 demonstrates the screen sizes 

data and attained cumulative residue [73]. 

The general form of the Rosin-Rammler equation is given by: 

R =  e
−(

d
do

)
n

 

The Linearized equation is given as the following: 

ln(R) = − (
d

do
)

n

  

  ln (ln (
1

R
)) = n  ln (

d

do
)  

  ln (ln (
1

R
)) = n  ln(d) − n ln(do) 

Y = n X −c 

Where: Y=  ln (ln (
1

R
)), X=ln(do), n=slope of X vs Y, c= Intercept of X vs. 

Y. Further details are given in Appendix A: Particle size distribution. 
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2.3 Experimental Setup 

2.3.1 Microwave Oven 

Figure 11 shows the experimental setup used to carry out the tests for the 

different cases studied. A conventional off the shelf microwave type “DAEWOO KOR-

1N3A” which support up to 1000 W at 2.4 GHz and another microwave type 

“SAMSUNG MS23K3513AW” that supports up to 800 W at 2.4 GHz are used in this 

study. Both of the used microwave ovens are modified to accommodate the designed 

reactor. The microwave casing is drilled from the top at the center of the top with a 3.6 

cm diameter hole. 

2.3.2 Reactor 

A custom made annular reactor is used (see Figure 9). The reactor has a double-

walled quartz tube with 1.5 cm inner diameter, a 3.5 cm outer diameter, and a height 

of 45 cm. The inner tube has a perforated plate from the bottom which serves as an 

inlet for the inert gases. Aquartz wool (which can handle up to 900⁰C without burning) 

is placed above the perforated plate and under the biomass sample. Figure 9 which 

represents in details: the reactor design, dimensions, and the thermocouple inserted in 

it. More details about the reactor design are given in section 2.3.3.2. 

2.3.3 Instruments 

The tests were measured by different types of sensors as shown in Table 8. 

Various quantities have been measured during the experiments, such as N2 flow rates, 

biomass temperatures, and gaseous species concentrations. A list of the 

instrumentations used to carry out these measurements with their percentage errors is 

given in Table 8. 
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Figure 9: Schematic of the custom made double-walled quartz reactor 

2.3.3.1 Gas Analyzer 

The gas analyzer is shown in Figure 10, is used to measure the bio-syngas 

volume percentage concentrations of the gases produced through the pyrolysis process. 

These gases include CH4, CO2, CO, O2, and H2.  

The produced gases from the pyrolysis process, pass through a multi filtration 

process in the sampling unit before they enter the gas analyzer unit. The new ETG 

Versatile syngas pre-treatment unit is used for residue/tar/moisture expulsion from the 

sample gas, with one fine filter with replaceable 0.3 µm filter component for tar 

expulsion, three refillable water scrubbers, and one refillable charcoal filter [74]. Tar 

vaporizers and stores lead to increased maintenance and fix of particularly gas cleaning 

parts and resultantly bring down plant limit factors. In gas analysis it is required to 

have a clean gas to bolster the analyzer, therefore, the system flow firstly removes 

most of the tar and residue through a washing gadget; then by a two-degree filter, the 
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gas chiller gives to evacuate the moisture and dust, as to acquire a sort of clean and 

dry air. In the end, the sample gas, through the assurance filter, goes into the analytical 

instruments. 

This system is appropriate for the estimation of the bio-syngas in a point, and 

performs continuous measurement of the volume percentage concentrations of bio-

syngas CO2, CO, O2, CH4, and H2. The analyzer is placed in safety case, outfitted with 

contact screen 5.7 inches, capable of recording up to 1000 data analysis, the system 

can work efficiently for 8 hours [74]. 

The system contains the following sensors and filters that are listed below, 

details on sensor types and uncertainties are given in Table 8:  

 Sensor principle thermally conductive (TCD) for the estimation of H2 real-

time investigation. 

 NDIR board for the estimation of CH4, CO2, CO.  

 Electrochemical sensor (ECD) for the estimation of O2. 

 Display the most recent 30 minutes of the acquired data (plot). 

 Heated line 3 m + with 30 cm process tube (up to 250°C process). 

 Probe filter sintered steel. 

 Analyzer filter. 
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Figure 10: The gas analyzer sampling unit (left) and the gas analyzer unit (right) [74] 
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 Figure 11: Schematic diagram of entire microwave pyrolysis experimental apparatus 
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Table 8: Instrumentation and measurement uncertainty 

Measurement type Sensor Uncertainty 

N2 volumetric flow rate LOW-PRESSURE DROP GAS 

MASS Flow Meters FMA-LP1600A 

± 1.5% 

Biomass Temperature N-Type thermocouples ± 2.5°C 

H2 percentage in the sample TCD H2 measurement ± 2% 

N2 percentage in the sample TCD N2 measurement ± 2% 

CO2 percentage in the sample NDIR board CO2 measurement ± 2% 

O2 percentage in the sample Electrochemical sensor (ECD ) O2 

measurement 

± 2% 

CH4 percentage in the sample NDIR board CH4 measurement ± 2% 

CO percentage in the sample NDIR board CO measurement ± 2% 

The gas volumetric flow rate flowmeter with a needle valve ± 2% 

 

2.3.3.2 Thermocouple 

An Omega N type thermocouple with sheet length of 60 cm and sheet diameter 

of 0.5 mm type “OMEGA NQXL-116U-12” in Figure 12 is used to measure the 

temperature throughout the experiment. The thermocouple can measure maximum 

temperatures measurement temperature up to 1335°C with a very low drift. 

Additionally Omega data acquisition type “OM-DAQPRO-5300” is connected to the 

thermocouple, this data acquisition can take the measurements for eight thermocouples 

in the same time, and it saves the data in the built-in memory at a sampling rate of 1 

Hz. In order to overcome the microwave effect on the thermocouple, the body of the 

thermocouple is grounded by connecting it’s the body to the ground of the microwave.  

The thermocouple is inserted through the top of the reactor to be located at the center 

of the biomass sample. 
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Figure 12: “OMEGA NQXL-116U-12” (left) and “OM-DAQPRO-5300” (right) [75] 

 

2.3.3.3 Digital Flow Meter 

The digital flowmeter is used to measure the N2 flow rate that is used to purge 

and create an inert environment of the type “LOW-PRESSURE DROP GAS MASS 

Flow Meters FMA-LP1600A” and is given in Figure 13. The digital flowmeter’s full 

measuring scale is up to 1500 ml/min with response times of less than ten milliseconds. 

 

Figure 13: Digital Flow meter [76] 
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2.3.4 Testing Procedures 

Before starting any test while the microwave is turned off, a steady flow rate 

of a N2 gas is supplied from N2 gas cylinder at a volume flow rate of 950 ml/min -

measured by using a digital flowmeter- for 10 minutes, to ensure inert environment. A 

thermocouple of the type “OMEGA NQXL-116U-12” grounded to the body of the 

microwave is used to measure the temperature of the sample throughout the test 

operating time. The thermocouple data is collected at a sampling rate of 1 Hz by using 

Omega data acquisition type “OM-DAQPRO-5300”. A “DaqLab-Omega Engineering 

Inc. software” is used to download the temperature measurements data to an Excel file 

for further processing. Before turning the microwave ON, the N2 volume flow rate is 

reduced to 100 ml/min, and the power is adjusted to the required power, and the test is 

carried out for each sample for roughly 15 min. Each reported result is resolved by the 

average of at least two repetitions, performed at different times. 

To ensure accurate measurements, the gas analyzer is cleaned before each test, 

filtering water is replaced if needed, and a micro sampling filter is cleaned. The gas 

analyzer starts collecting measurements from the moment the N2 purging flow is 

started until the end of the experiment, which roughly lasts around 25 min. The gas 

analyzer type “Syngas Analyzer PORTABLE MCA100 SYN P” is used to measure and 

record the volume percentage concentrations of “CH4, CO2, CO, O2, H2” at a sample 

rate of 1 Hz. The gas analyzer sampler draws the yield gases at a flow rate of 60 liters/ 

hour. The gas analyzer has a special feature which is the pretreatment of the sample. 

All the data is stored on the gas analyzer internal memory, which will later on be used 

for data processing. 
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2.4 Parametric Study  

A full factorial analysis which is employed in designing the experimental work 

in this study namely, a combination: of three microwave powers (MWP) ( 1000 W, 

700 W, 300 W), three particle sizes (DSP) ( 1790 m, 783 m, 467 m), and three 

moisture content in the samples (MC) ( 0%, 20%, 40%). All the parameters studied in 

this experiment are summarized in Table 9. 

Table 9: Summary list of the experimental test cases 

Case Number Size MW power MC% 

Case 1 0.467 mm 1000 0 

Case 2 0.783 mm 1000 0 

Case 3 1.790 mm 1000 0 

Case 4 0.467 mm 1000 20 

Case 5 0.783 mm 1000 20 

Case 6 1.790 mm 1000 20 

Case 7 0.467 mm 1000 40 

Case 8 0.783 mm 1000 40 

Case 9 1.790 mm 1000 40 

Case 10 0.467 mm 700 0 

Case 11 0.783 mm 700 0 

Case 12 1.790 mm 700 0 

Case 13 0.467 mm 700 20 

Case 14 0.783 mm 700 20 

Case 15 1.790 mm 700 20 

Case 16 0.467 mm 700 40 

Case 17 0.783 mm 700 40 

Case 18 1.790 mm 700 40 

Case 19 0.467 mm 300 0 

Case 20 0.783 mm 300 0 

Case 21 1.790 mm 300 0 

Case 22 0.467 mm 300 20 

Case 23 0.783 mm 300 20 

Case 24 1.790 mm 300 20 

Case 25 0.467 mm 300 40 

Case 26 0.783 mm 300 40 

Case 27 1.790 mm 300 40 
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2.5 Results Processing and Data Reduction 

In this section, a detailed results analysis and data reduction process is 

explained. The collected data from the gas analyzer is reported as a gas concentration 

volume percentage (xi), at a sampling rate of 1 Hz. The gas analyzer is set fixed at a 

volume flow rate (V’sample) of 60 liters/hr, and the temperature measurements are 

sampled at a rate of 1 Hz. The dry biomass mass used in the analysis is listed as a 

function of the moister content as shown in Table 4. The biomass chemical formula, 

per one mole of carbon used in the analysis, is calculated based on the biomass element 

analysis from reference [61], and it is reported in Table 10. The individual gas 

concentration volume percentage yield is indicated as: xi, (i: 1= CH4, 2= CO, 3= H2, 

4= CO2, 5= O2 and 6= N2). 

 The data reduction analysis standard value from reference is used for the 

molecular weight, Calorific value, density and specific heat for all listed species. The 

data is listed in Table 10 [77]. 

Table 10: Gases properties used in data reduction 

Item   

(gm/l) 

MW 

(gm/mole) 

CV 

(MJ/kmole) 

Cp  

(kJ/kmole K) 

CH4 0.72 16.04 890.22 35.288 

CO 1.25 28.01 282.901 29.4105 

H2 0.09 2.02 286.84 2.908 

CO2 1.326 44.01 - 47.96 

O2 0.9622 32 - - 

N2 0.845 28.02 - - 

Ash - 35.5 - - 

 

The reported results analysis is described in the following section: 

The individual gas concentration volume percentage is given by (xi): 

xi =
Vi

Vtotal
100% ,          (li ltotal⁄ ) 
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The volume rate of the sample species in liter/hr is given by (Vi
.): 

Vi
. =

xi

100
VSample

.  ,          (li hr⁄ ) 

The mass rate of the sample species in gm/hr is given by (mi
. ): 

mi
. = Vi

. ρi ,          (gmi hr⁄ ) 

The total mass rate of all sample species in gm/hr is given by (mtotal
. ): 

mtotal
. = ∑ mi

.

6

i=1

 ,          (gmtotal hr⁄ ) 

The mole rate of the sample species in mole/hr is given by (ni
. ): 

ni
. =

mi
.

MWi
 ,          (molei hr⁄ ) 

The total mole rate of all sample species in mole/hr is given by (ntotal
. ): 

ntotal
. = ∑ ni

.

6

i=1

 ,          (moletotal hr⁄ ) 

The heating value of the Biomass-based on Channiwala  formula is given by 

(HVBM) [78]: 

HVBM = 0.3491 ∗ C + 1.1783 ∗ H + 0.1005 ∗ S − 0.1034 ∗ O − 0.051 ∗ N

− 0.0211 ∗ ASH  , (MJ kg⁄ ) 

The empirical formula for biomass per one mole of Carbon based on the ultimate 

analysis is given by: 

M = C%/MWC 

y = (H%/MWC)/M 

z = (O%/MWC)/M 

p = (N%/MWC)/M 

Biomass Chemical empirical formula: CH1.6291O0.7631N0.015. 

The Biomass molecular weight is given by (𝑀𝑊𝐵𝑀): 

𝑀𝑊𝐵𝑀 = 𝑀𝑊𝐶 + 𝑀𝑊𝐶 + 𝑧 𝑀𝑊𝐶 + 𝑝 𝑀𝑊𝐶   , (𝑘𝑔 𝑘𝑚𝑜𝑙𝑒⁄ ) 

Biomass Energy Input is calculated as (𝑄𝐵𝑀−𝑖𝑛): 
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𝑄𝐵𝑀−𝑖𝑛 = 𝑚𝐵𝑀 𝐻𝑉𝐵𝑀  , (𝑀𝐽) 

The Cold Energy Output is determined by the following equation based on room 

temperature analysis (𝑄𝐶𝑜𝑙𝑑−𝑂𝑢𝑡): 

𝑄𝐶𝑜𝑙𝑑−𝑂𝑢𝑡 = 𝑛𝐶𝐻4 𝐶𝑉𝐶𝐻4 + 𝑛𝐶𝑂 𝐶𝑉𝐶𝑂 + 𝑛𝐻2 𝐶𝑉𝐻2 , (𝑀𝐽) 

The Hot Energy Output is determined by the following equation based on high-

temperature analysis (𝑄𝐻𝑜𝑡−𝑂𝑢𝑡): 

𝑄𝐻𝑜𝑡−𝑂𝑢𝑡 = 𝑛𝐶𝐻4 (𝐶𝑉𝐶𝐻4 + 𝐶𝑝𝐶𝐻4(𝑇 − 𝑇𝑜)) + 𝑛𝐶𝑂 (𝐶𝑉𝐶𝑂 + 𝐶𝑝𝐶𝑂(𝑇 − 𝑇𝑜))

+ 𝑛𝐻2 (𝐶𝑉𝐻2 + 𝐶𝑝𝐻2(𝑇 − 𝑇𝑜)) , (𝑀𝐽) 

Cold Gas Efficiency is determined by (𝜂𝐶𝑜𝑙𝑑): 

𝜂𝐶𝑜𝑙𝑑 =
𝑄𝐶𝑜𝑙𝑑−𝑜𝑢𝑡

𝑄𝐵𝑀−𝑖𝑛
 

Hot Gas Efficiency is determined by (𝜂𝐻𝑜𝑡): 

𝜂𝐻𝑜𝑡 =
𝑄𝐻𝑜𝑡−𝑜𝑢𝑡

𝑄𝐵𝑀−𝑖𝑛
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Chapter 3: Results and Discussion 

3.1 Introduction 

In this chapter, the results obtained from the gas analyzer and temperature 

measurements throughout all tests, are reported and discussed. Section 3.2 covers the 

instant measurement of the gases yield of CH4, CO, CO2, H2, N2, and the sample 

temperature for three representative cases: case 2, case 10 and case 22 respectively 

(see Table 9). The repeatability tests are demonstrated by comparing two results for 

each case for the same test, which is performed at different times. Additionally, the 

calculated biomass input energy, the “cold gas produced energy”, the “hot gas 

produced energy”, and the cold and hot gas efficiency for the corresponding cases are 

displayed and discussed. In section 3.3, a parametric study effect, of all parameters 

investigated on the “average gas concentration volume percentage” of the bio-syngas 

yield, is stated and discussed. Finally, the statistical analysis, using Minitab to model 

the “average gas concentration volume percentage yield” as function of all dependent 

parameters, is determined for the main yield gases (CH4 and CO).   

 

3.2. Instantaneous Gas Yield Concentration Cases 

3.2.1 Case 2: Microwave Power=1000 W, MC=0, DSP= 783 µm 

In what follows, the results of case 2 (listed in Table 9) are presented and 

discussed. Figure 14 represents the instant gas concentration volume percentages for 

CH4, CO, CO2, H2, N2, and the temperature measurements respectively. It is 

noticeable, that the onset of the pyrolysis process takes place after about 60 seconds 

from the start of the heating process by the microwave action, where all bio-syngas 

components start showing a clear increase in their concentrations. This precisely 
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matches the time needed to start visually seeing the smoke released from the reactor, 

as well as the time for the tested biomass sample to reach a temperature of about 350°C. 

As time progresses, the sample temperature starts increasing further, resulting in a 

clearer increase in the concentrations of the bio-syngas produced. It can be observed 

that the peak yield concentration is achieved after about 160 seconds from the start of 

the heating process, which is concurrent with the maximum temperature of the sample. 

The figure displays clear concentration peaks with maximum gas concentration 

volume percentages (GCVP) of 48.46%, 26.01%, 11.04%, and 8.45% for CH4, CO, 

CO2, and H2 respectively. Meanwhile, N2 concentration reaches the lowest reading of 

7.89%. The attained peak temperature of the sample was measured to be about 680°C, 

which corresponds with the point where the peak concentrations of the produced 

syngas are attained. Subsequently, the produced gas concentration starts decreasing; at 

the same time the N2 concentration starts increasing until it goes back to its original 

concentration values after 650 seconds from the start of the heating process, where the 

yield gas concentration gradually hits zero. Also, the temperature maintains a plateau 

at a peak value for 150 seconds; then it slowly decreases to maintain a constant value 

at 590°C until the end of the experiment, which could be explained by the fact that 

most of the biomass was burnt. Overall, the time needed to complete the whole process 

is about 500 seconds from the moment the heating starts until the release of all yield 

gases obtained. 
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Figure 14: Instantaneous gas concentrations volume percentages and temperature 

measurements for case 2: MW power= 1000 W- DSP= 783 m- MC= 0 

Figure 15 displays the repeatability of the measurements of all gas 

concentration volume percentages for two separate tests of case 2. The results reveal 

an excellent repeatability for the two tests. As shown, the percentage difference in the 

two tests, at the peak value, is 3%, 5% for CH4% and N2% respectively. The 

repeatability graph exhibits how each experiment was performed so carefully with the 

exact steps under the same conditions correctly. 
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Figure 15: Repeatability check for the gas concentrations volume percentages of case 

2: MW power= 1000 W- DSP= 783 m- MC= 0 

Figure 16 shows the biomass energy input (Qin) in (MJ), the accumulated hot 

gas produced energy (Qout-Hot) in (MJ), the accumulated cold gas produced energy 

(Qout-Cold) in (MJ), the accumulated hot gas efficiency (𝜂𝐻𝑜𝑡%)and accumulated cold 

gas efficiency (𝜂𝐶𝑜𝑙𝑑%) as functions of time. The gas efficiency represents the 

performance of the pyrolysis process, which is defined by the ratio between the yield 

gases produced energy and the energy contained within the biomass sample used in 

the test. From the figure, it can be noticed that the cold and hot gas produced energy, 

and the efficiency have the same trend, where from the onset of the yield gases the 

curve starts growing at the same rate as that of yield gas until it reaches the peak value. 

After that, stays almost constant with a minimal increase rate. The highest reported 

values for 𝜂𝐻𝑜𝑡 (%) and 𝜂𝐶𝑜𝑙𝑑 (%) are 63.21% and 61.82% respectively, corresponding 

to maximum values of Qout-Hot and Qout-Cold of 0.0971 MJ and 0.0952 MJ respectively. 
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Figure 16: Energy added, hot and cold gas produced energy in (MJ), hot and cold gas 

efficiency percentages for case 2: MW power= 1000 W- DSP= 783m- MC= 0  

3.2.2 Case 10: Power=700 W, MC=0, DSP= 467 µm 

Figure 17 shows the instant gas concentration volume percentages for CH4, 

CO, CO2, H2, N2, and temperature measurements respectively for Case 10. It is clear, 

that the beginning of the pyrolysis process where all bio-syngas begin produced after 

roughly 60 seconds of the beginning of the heating process, which is accurately the 

time expected to begin seeing the smoke created from the reactor and the sample 

temperature achieved 291°C. As time progresses and the sample temperature begins 

increasing, in the same time, the GCVP of all yield gases begin increasing. It is 

noTable that the peak yield concentration is accomplished after 101 seconds from the 

beginning of the heating process, which stays constant with the highest temperature 

of the sample. The figure shows clear peaks with the highest GCVP of 61.36%, 

17.4%, 9.5%, and 2.19% respectively for CH4, CO, CO2, and H2. 
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On the other hand, N2 achieves the minimum reading of 9.41%, and the peak 

temperature relating to the peak gas yield concentration is 675°C. It has been seen that 

as produced gas concentration begins decreasing the N2 concentration increments until 

it retrains back to it is the original value. Likewise, the temperature stays at the 

maximum level for about 144 seconds, and afterwards, it starts to gradually decrease 

to stay constant at 630°C until the end of the experiment, which could be clarified by 

the fact that the majority of the biomass is consumed. It took around 310 seconds to 

release all the yield gases. 

 

Figure 17: Instantaneous gas concentrations volume percentages and temperature 

measurements for case 10: MW power= 700 W- DSP= 467 m- MC= 0  

Figure 18 shows the repeatability of the results of case 10 for two tests 

conducted at different times under the same conditions. The results uncover very good 

repeatability everywhere throughout the two conducted tests. As demonstrated, the 

percentage difference in the peak concentrations of CH4%, N2% and H2% in the two 
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conducted tests are 4%, 1%, and 0.5% respectively. The graph demonstrates good 

repeatability for the two reported cases. 

 

Figure 18: Repeatability check for the gas concentrations volume percentages of 

Case 10: MW power= 700 W- DSP= 467 m- MC= 0 

Figure 19 displays the instant biomass energy input (Qin) in (MJ), the 

accumulated hot gas produced energy (Qout-Hot) in (MJ), the accumulated cold gas 

produced energy (Qout-Cold) in (MJ), the accumulated hot gas efficiency (𝜂𝐻𝑜𝑡%) and 

accumulated cold gas efficiency (𝜂𝐶𝑜𝑙𝑑%).  From the figure it may be seen that the 

cold and hot yield energy and the efficiency have a similar pattern, the rate of increase 

in the reported quantities, with time, starts increasing clearly after reaching an effective 

pyrolysis temperature. After a while, the rate of pyrolysis becomes slow leading only 

to incremental changes in the reported values. The highest revealed values for 𝜂𝐻𝑜𝑡  

and 𝜂𝐶𝑜𝑙𝑑  are 56.98% and 55.24% corresponding to Qout-Hot and Qout-Cold of 0.0844 MJ 

and 0.0819 MJ, respectively. 
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Figure 19: Energy added, hot and cold gas produced energy in (MJ), hot and cold gas 

efficiency percentages for case 10: MW power= 700 W- DSP= 467 m- MC= 0  

3.2.3 Case 22: Power=300 W, MC=0.2, DSP= 467 µm 

Figure 20 presents the instant gas concentrations volume percentages for CH4, 

CO, CO2, H2, N2, and the temperature measurements for case 22. It might be seen, that 

the start of the pyrolysis process, where all bio-syngas start appearing, is after 69 

seconds from the onset of the heating process. This is the time where the release of 

visible fumes, emerging from the exit port of the reactor, start to become noticeable. 

At that time, the temperature of the biomass sample measures to be about 212°C. As 

time progresses, and the sample temperature starts increasing, the GCVP of all yield 

gases start increasing. It will, in general, be seen that the peak yield concentration 

appeared after 192 seconds from the earliest starting point of the heating process, 

where the maximum temperature of the sample occurred. The figure indicates clear 

peaks with the most significant gas concentrations of 32.39%, 3.38%, 3.12%, and 

3.08% for CH4, CO, CO2, and H2 respectively. Where N2 shows the most decreased 
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reading of 43.43%; the peak temperature occurred with the peak gas yield 

concentration is about 472°C. As the test progresses, the yield gases and N2 behave 

similar to the previous cases. Similarly, the temperature stays at the peak for 67 

seconds, subsequently, it gradually reduces to keep up steady at 370°C until the end of 

the experiment. It took around 610 seconds to discharge all the yield gases. 

 

Figure 20: Instantaneous gas concentrations volume percentages and temperature 

measurements for case 22: MW power= 300 W- DSP= 467 m- MC= 0.2 

Figure 21 demonstrates the repeatability of the measurements of all gas volume 

percentages concentrations for two separate tests of case 22. The results reveal 

significant repeatability. As can be seen, the difference in the peak concentrations in 

the two repeated tests are 0.2%, 0.5% exclusively for CH4% and N2%.  
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Figure 21: Repeatability check for the gas concentrations volume percentages of 

Case 22: MW power= 300 W- DSP= 467 m- MC= 0.2 

Figure 22 demonstrates the instant biomass heat input (Qin) in (MJ), the 

accumulated hot gas produced energy (Qout-Hot) in (MJ), the accumulated cold gas 

produced energy (Qout-Cold) in (MJ), the accumulated hot gas efficiency (𝜂𝐻𝑜𝑡%) and 

accumulated cold gas efficiency (𝜂𝐶𝑜𝑙𝑑%). The highest reported value for 𝜂𝐻𝑜𝑡 (%) 

and 𝜂𝐶𝑜𝑙𝑑 (%) are 56.55% and 54.99% respectively, identifying with most high 

estimations of Qout-Hot and Qout-Cold of 0.0668 MJ and 0.0641 MJ respectively. It can be 

noticed that some of the biomass material is not totally converted which leads to lower 

the yield gases and consequently, lower the gas produced energy compared to the 

previous cases. 

It is observed from all studied cases that CH4 concentration yield percentage is 

dominating the bio-syngas production. Meanwhile H2 concentration yield percentage 

has the lowest value among all produce gases. This is may be due to the methanation 

process [79] that occurs during the heating process knowing that from previous 
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elementally study for the used DSP that it contains some metals such as P, Ca, Al, Mg, 

Cu, and Zn, which may act as a catalyst which promotes the process of methanation in 

temperature range of 250°C to 450°C [80].  

It is worth mentioning in all previous cases that the pyrolysis process occurred 

under almost inert gas, and due to some leak of O2 gas from the system a posible partial 

combustion process is taking place, which results in the generation of small quattity of 

CO2 as shown in the results. 

 

Figure 22: Energy added, hot and cold gas produced energy in (MJ), Hot and Cold 

Gas Efficiency percentages for Case 22: 300 W- DSP=467 m- MC=0.2 
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3.2 Processed Data Analysis 

3.2.1 Effects of Microwave Power on Bio-syngas Yield 

Figure 23 shows the effect of microwave power on the average CH4 

concentration volume percentages yield for all particle sizes and moisture content 

percentages. The figure contains three groups with each group representing nine cases. 

In this section, it is worth mentioning that in all figures, the solid colored bars represent 

the dry solid mass cases where (MC=0); the diagonal pattern represents the case with 

a moisture content of (MC=0.2), and finally, the horizontal pattern refers to the case 

with a moisture content of (MC=0.4). The black color refers to the case of (DSP=467 

mm), the red color represents the case of (DSP=783 mm) and the blue color is used to 

represent the case of (DSP=1790 mm). 

A common observation for all three power cases, is that as the moisture content 

increases the average gas concentration volume percentage (Avg-GCVP) yield 

decreases at different rates. For the case of microwave powers of 1000 W and 300 W, 

it is noticed that the smaller the size of date particles in the sample, the higher the Avg-

GCVP yield; except for the case of a microwave power of 700 W, where the larget 

sample particle size reveals opposite results. It should be noted that this conclusion has 

been confirmed by repeating the test different times reaching the same outcomes. 

In the case of a microwave power of 1000 W, the dry sample, and the smallest 

particle size, the maximum CH4 average concentration volume percentage yield is 

about 17.91%. Meanwhile, the lowest is 8.8% for the same microwave power paired 

with the small particle size and a moisture content of 0.4. For the case of a microwave 

power of 700 W, the maximum CH4 Avg-GCVP yield is 21% when coupled with the 

dry sample and the largest particle size;  the lowest, on the other hand, is 9% for the 
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case of small particle size and moisture content of 0.4. Finally, when using a 

microwave power of 300 Wand a dry sample of the smallest size, the maximum CH4 

Avg-GCVP yield is 17.2%. However, the lowest is 8.4% for the case of small size and 

moisture content of 0.4 under the same microwave power of 300 W. 

 

Figure 23: The effect of microwave power on CH4 volume percentages for all of 

particle sizes and MC percentages cases 

Figure 24 represents the effect of Microwave power on the average CO 

concentration volume percentages at all particle sizes and MC percentages. 

Qualitatively the behavior here is almost the same as the one observed in the case of 

the CH4. However, quantitatively, the levels of CO concentrations are much lower than 

the CH4 levels. The cases of 1000 W and 700 W led to more CO production than the 

case with 300 W, wherein the later case, the CO production level was almost platue 

for all tests conducted in this group. 
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 For the case of a microwave power of 1000 W, the maximum CO average 

concentration yield is 8.67% when applied to a sample of dry and medium particle 

size; while the lowest is 2.32% if the power were to be applied on a sample of medium 

particle size and a moisture content of 0.2. When a microwave power of 700 W is used, 

the maximum CO Avg-GCVP yield is 6.83% for the case of dry and largest particle 

size, while the lowest is 2.3% for the case of small particle size and moisture content 

of 0.4. In the end, in the case of a microwave power of 300 W and a dry sample of the 

largest particle size the maximum CO Avg-GCVP yield is 2.44%. Meanwhile, the 

lowest is 1.3% for the case of smallest particle size and moisture content of 0.2 under 

the same microwave power. 

Figure 24: The effect of microwave power on CO volume percentages for all of 

particle sizes and MC percentages cases 

Figure 25 represents the effect of microwave power on the average CO2 

concentration volume percentages at all of the particle sizes and MC percentages.  
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The trend is not clear here because of the low concentrations of the CO2 

produced, in contrast to the cases of CH4 and CO. The case of 700 W showed more 

CO2 gas than the cases of 1000 W and 300 W. For the case of microwave power of 

1000 W the maximum CO2 Avg-GCVP yield is 3.41% when paired with a dry sample 

and medium particle size, while the lowest is 0.65% for the case of medium particle 

size and moisture content of 0.2. When using a microwave power of 700 W the 

maximum CO2 Avg-GCVP yield is 3.38% for the case of dry and largest size, while 

the lowest is 1.58% for the case of medium size and a moisture content of 0.4. Finally, 

for the case of a microwave power of 300 W, the maximum CO2 Avg-GCVP yield is 

3.01% when used on a sample dry and medium sized particle; while the lowest is 

1.43% for the case of medium size and moisture content of 0.4. As mentioned earlier 

the low Avg-GCVP of CO2 is expected to be supplemented due to the partial 

combustion process in the system, because of some O2 gas leak form the system. 

Figure 25: The effect of microwave power on CO2 volume percentages for all of 

particle sizes and MC percentages cases 
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Figure 26 represents the effect of microwave power on the average H2 

concentration volume percentages at all of the particle sizes and MC percentages. It 

can be observed in all cases that the only measurable H2 value is for 1000 W case. 

Meanwhile, the 300 W case has very low values, and it is hard to see any H2 released 

from the pyrolysis process. For the case of 700 W, we can see that the percentages 

vary between 0.86% and 0.18%. For 1000 W microwave power case, the highest Avg-

GCVP yield is 2.71% if applied on a sample of dry and medium particle size, while 

the lowest Avg-GCVP yield is 0.27% if it were to be applied on a sample of medium 

particle size and a moisture content of 0.4. We believe that the low concentrations of 

H2 in the yield gas is possibly attribuTable to the depletion of H2 due to methanation 

process, which is supported by the presence of catalytic metals and operating under 

the appropriate temperature range. 

Figure 26: The effect of microwave power on H2 volume percentages for all of 

particle sizes and MC percentages cases 
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Figure 27 gives the effect of Microwave power on the average Cold Gas 

Efficiency (𝜂𝐶𝑜𝑙𝑑−𝐴𝑣𝑔) at all of the particle sizes and MC percentages. Figure 28 

presents the effect of Microwave power on the average Hot Gas Efficiency (𝜂𝐻𝑜𝑡−𝐴𝑣𝑔) 

at all of the particle sizes and MC percentages. The values of (𝜂𝐻𝑜𝑡−𝐴𝑣𝑔) and 

(𝜂𝐶𝑜𝑙𝑑−𝐴𝑣𝑔) have small differences, so both of them almost have almost the same 

values. The efficiency values for the different tests for the three microwave power 

groups tested do not show much variations nor a trend that may allow the drawinging 

of a conclusive conclusion. At 1000 W the highest values of (𝜂𝐶𝑜𝑙𝑑−𝐴𝑣𝑔) and 

(𝜂𝐻𝑜𝑡−𝐴𝑣𝑔) are 54.39% and 56.11% respectively for the case of largest particle size 

and the moisture content of 0.4. Meanwhile, the lowest (𝜂𝐶𝑜𝑙𝑑−𝐴𝑣𝑔) and 

(𝜂𝐻𝑜𝑡−𝐴𝑣𝑔) equal to 33.07% and 34.04% respectively for the case of smallest particle 

size and moisture content of 0.4. 

For the 700 W group of samples, the highest reported values are 54.04% for 

(𝜂𝐶𝑜𝑙𝑑−𝐴𝑣𝑔) and 55.71% for (𝜂𝐻𝑜𝑡−𝐴𝑣𝑔) for the largest size and dry sample, while the 

lowest (𝜂𝐶𝑜𝑙𝑑−𝐴𝑣𝑔) and (𝜂𝐻𝑜𝑡−𝐴𝑣𝑔) are 29.88% and 30.79% respectively for the 

medium size and a moisture content of 0.2. The highest value of (𝜂𝐶𝑜𝑙𝑑−𝐴𝑣𝑔) and 

(𝜂𝐻𝑜𝑡−𝐴𝑣𝑔) for the 300 W group of samples occurred with 38.42% and 39.54% 

respectively for the case of the largest particle size and a moisture content of 0.2. On 

the other hand, the lowest values of (𝜂𝐶𝑜𝑙𝑑−𝐴𝑣𝑔) and (𝜂𝐻𝑜𝑡−𝐴𝑣𝑔) are 20.45% and 

21.06%, respectively and are attained in the case of the smallest particle size and a 

moisture content of 0.4.  

We conclude from this case that the higher the microwave power, the more the 

heat that will be applied on the biomass sample which will enhance the internal heating 
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process in the biomass sample, this will, in turn, will help to increase the amount of 

the yield produced gases. 

Figure 27: The effect of microwave power on the cold gas efficiency for all of 

particle sizes and MC percentages cases 

 

Figure 28: The effect of microwave power on the hot gas efficiency for all of particle 

sizes and MC percentages cases 

0

10

20

30

40

50

60

70

80

90

100

1000 700 300

𝜂
_
𝐶
𝑜
𝑙𝑑

_
A

v
g
(%

)

MW Power(W)

S=0.467 mm-MC=0 S=0.467 mm-MC=0.2
S=0.467 mm-MC=0.4 S=0.783 mm-MC=0
S=0.783 mm-MC=0.2 S=0.783 mm-MC=0.4
S=1.79 mm-MC=0 S=1.79 mm-MC=0.2
S=1.79 mm-MC=0.4 Linear (S=0.467 mm-MC=0)

0

10

20

30

40

50

60

70

80

90

100

1000 700 300

𝜂
_
𝐻
𝑜
𝑡_

A
v

g
(%

)

MW Power(W)

S=0.467 mm-MC=0 S=0.467 mm-MC=0.2

S=0.467 mm-MC=0.4 S=0.783 mm-MC=0

S=0.783 mm-MC=0.2 S=0.783 mm-MC=0.4

S=1.79 mm-MC=0 S=1.79 mm-MC=0.2

S=1.79 mm-MC=0.4 Linear (S=0.467 mm-MC=0)



66 

 

 

 

 

3.2.2 Effect of Date Seed Particle Size Effect on Bio-syngas Production 

Figure 29 represents the effect of the particle size on average CH4 

concentration volume percentages at all of the microwave powers and MC 

percentages. The cases were distributed into three groups; each group represents nine 

cases. In this section, in all figures: the solid colored bars represent the dry cases where 

(MC=0), the diagonal pattern represents the case with a moisture content of (MC=0.2), 

and finally, the horizontal pattern refers to the case with a moisture content of 

(MC=0.4). The black color refers to the case of 1000 W, the red color represents the 

case of 700 W, and the blue color used to represent the case of 300 W. It worth 

mentioning that all these cases have been discussed previously, but the primary 

purpose is to try to study the effect of the particle size sample on the Avg-GCVP yield. 

For the case of 467 µm particle size: the maximum CH4 Avg-GCVP yield is 

17.91% when paired with the conditions of a dry sample and a microwave power 1000 

W; the lowest is 8.66% with a microwave power 300 W and moisture content of 0.4. 

When using a dry sample size of 783 µm, with a microwave power of 1000 W the 

maximum CH4 Avg-GCVP yield is 17.03%. Meanwhile, the lowest concentration is 

8.37% for of a microwave power 300 W and moisture content of 0.4 in a sample of the 

same size. Finally, the maximum CH4 Avg-GCVP yield is 21% is attainted with a dry 

sample with a particle size of 1790 µm under a microwave power of 700 W, on the 

other hand, the lowest concentration of 9.05% is achieved with a sample of the same 

size but with a moisture content of 0.4 and a microwave power of 700 W. We can 

conclude from the figure that the best performance is attained for the largest particle 

size. 



67 

 

 

 

 

 

Figure 29: The effect of the particle size on CH4 volume percentages for all of 

microwave powers and MC percentages cases 

Figure 30 shows the effect of the particle size on the average CO concentration 

volume percentages at all of the microwave powers and MC percentages.  The trend 

here is not clear for all of the cases. For the case of 467 µm, it’s noticed that the 

maximum CO Avg-GCVP yield is 7.43% when using a dry sample and a microwave 

power of 1000 W, and the minimum is 1.3% when using a microwave power of 1000 

W and a sample of moisture content 0.2. As for a sample size of 783 µm, it’s noticed 

that the maximum CO Avg-GCVP yield is 8.67% for the case of dry and Microwave 

power 1000 W, and the minimum is 1.6% in the case of microwave power 1000 W 

and moisture content 0.4. Lastly, In the case of 1790 µm, it is observed that the 

maximum CO Avg-GCVP yield is 6.83% and the minimum is 1.82% for the cases of 

dry and microwave power 700 W and the case of microwave power 300 W and 

moisture content 0.4 respectively. We can conclude that different sizes, in average, 

produce comparable results under different MW and MC. 
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Figure 30: The effect of the particle size on CO volume percentages for all of 

microwave powers and MC percentages cases 

Figure 31 express the effect of the particle size on average CO2 concentration 

volume percentages at all of the microwave powers and MC percentages. For all cases 

with moisture content above zero, the figure shows slightly more CO2 production, the 

larger the particle size. For the cases with zero moisture content, the CO2 production 

is, more or less, not affected by the particle size, especially for the intermediate to high 

particle size range studied in this research.  For the cases with the same moisture 

content, the CO2 production does not seem to be notably effected by the level of 

microwave power used. 

For example, in the case of a dry sample with a particle size of 467 µm the 

maximum CO2 Avg-GCVP yield was found to be about 2.94% when the microwave 

power is 1000 W. Meanwhile the lowest concentration is 1.02% when associated with 

the case when the moisture content, of a sample of the same particle size, is 0.4 and 

microwave power is 1000 W. In a sample particle size of 783 µm the maximum CO2 
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Avg-GCVP yield is about 3.41% and this is attained when the sample is dry and the 

microwave power is 1000 whoever, the minimum CO2 Avg-GCVP was found to be 

about 1.16% and this happens when the microwave power is 1000 W, and the moisture 

content is 0.2. Finally, for the test group with maximum particles size of 1790 µm the 

highest CO2 Avg-GCVP yield is about 3.38% and this is associated with the case of a 

dry sample and a microwave power of 700 W. The lowest CO2 Avg-GCVP for this 

same group is about is 1.85% and this corresponds to the case of microwave power of 

300 W and moisture content of 0.4.  

In general, the test group with the smallest particle sizes resulted in lowest CO2 

concentrations. This may mean that the particle sizes (although they have larger 

surface area than the bigger particles) are very compact and have low porosity in the 

inner body of the sample. In comparison with the bigger particles in the other two 

groups, containing more voids between them, which may allow for an easier access 

for the O2 to pass within these bigger pores in the core of the sample. This will possibly 

give more chances for carbon oxidation within the sample, since, effectively, the 

surface area of the sample, that is exposed to the oxygen environment, becomes greater 

as the particles increase in size. Compare this with the case of the smaller particle size 

sample, where the inner core of this sample would effectively be hidden and not have 

easy access to the surrounding oxygen that came with the circulated gas in the reactor. 
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Figure 31: The effect of the particle size on CO2 volume percentages for all of 

microwave powers and MC percentages cases 

Figure 32 shows the effect of the particle size on average H2 concentration 

volume percentages in the yield gas at all of the microwave powers and MC 

percentages. The results show that it is hard to see any significant amounts of H2 

released from the pyrolysis process, except in some certain cases in each sample size. 

For the case of particles with size of 467 µm, we can see that the maximum H2 Avg-

GCVP yield is 2.07% for the dry sample and microwave power of 1000 W. 

As for the case of particles with size of 783 µm the highest H2 Avg-GCVP 

yield is 2.71% when paired with a dry sample and microwave power of 1000 W. For 

the case of particles with a 1790 µm size in a sample with a moisture content of 0.4 

the maximum H2 Avg-GCVP yield is about 0.75% under a microwave power of 700 

W. 
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Finally, to explain the trends seen in Figure 32, we might recall the methanation 

process described earlier. Through that process the produced hydrogen might have 

gone through methane production steps that may explain the higher methane 

production rates, as compared to low H2 production. Hence, it might be reasonable to 

explore, in a future study, this point in further details. It is clear from Figure 32 that 

such a possible scenario is more pronounced when the test sample contains moisture 

and when the size of the particles in the sample is relatively large. 

Figure 32: The effect of the particle size on H2 volume percentages for all of 

microwave powers and MC percentages cases 

Figures 33 and 34 express the effect of the particle size on the cold and hot gas 

efficiency for all of the microwave powers and MC percentages. The difference in 

values of 𝜂𝐻𝑜𝑡−𝐴𝑣𝑔 and 𝜂𝐶𝑜𝑙𝑑−𝐴𝑣𝑔 is insignificant. For the case of 467 µm particles the 

highest values for  𝜂𝐶𝑜𝑙𝑑−𝐴𝑣𝑔 and 𝜂𝐻𝑜𝑡−𝐴𝑣𝑔 are 47.67% and 49.1% respectively and 

this happens when the microwave power is 700 W and the moisture content is 0.2. The 

lowest efficiency values for this small particle sized test group is 20.45% and 21.06% 
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respectively and this corresponds to the case of microwave power 300 W and moisture 

content of 0.4. In the situation of 783 µm particle size, the maximum is 47.27% for 

𝜂𝐶𝑜𝑙𝑑−𝐴𝑣𝑔 and 48.72% for 𝜂𝐻𝑜𝑡−𝐴𝑣𝑔 under a microwave power of 700 W and a 

moisture content of 0.2; while, on the other hand, the minimum 𝜂𝐶𝑜𝑙𝑑−𝐴𝑣𝑔 and 

𝜂𝐻𝑜𝑡−𝐴𝑣𝑔 values are 26.25% and 27.03%  respectively for a microwave power 300 W 

and a moisture content of 0.4 . The highest 𝜂𝐶𝑜𝑙𝑑−𝐴𝑣𝑔 and 𝜂𝐻𝑜𝑡−𝐴𝑣𝑔 values of 54.39% 

and 55.71% respectively, are attained in the case of 1790 µm particle size, a microwave 

power of 1000 W, and a moisture content of 0.4. The lowest values of 29.43% and 

30.30% respectively, in contrast, are achieved when a dry particle sample of the same 

size and a microwave power of 300 W is used. 

Figure 33: The effect of the particle size on the cold gas efficiency for all of 

microwave powers and MC percentages cases 
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Figure 34: The effect of the particle size on the hot gas efficiency for all of 

microwave powers and MC percentages cases 

3.2.3 Effects of Moisture Content on Bio-syngas Production 

Figure 35 represents the effect of moisture content on the average CH4 

concentration volume percentages at all of the microwave powers and particle sizes.  

In this section, in all figures, the solid colored bars represent the case with smallest 

size 0.467 µm, the diagonal patterns represent the case with the medium size 0.783 

µm, and finally, the horizontal patterns refer to the case with the largest size 1790 µm. 

The black color used refers to the case of 1000 W, the red color represents the case of 

700 W and the blue color is used to represent the case of 300 W. All cases presented 

in this section were discussed previously, but in this section the main purpose is to try 

to focus on the overall effect of the moisture content on the studied pyrolysis process. 

The values in the figure are similar, with minor differences. For the case of a dry 

sample where MC is zero, the highest CH4 Avg-GCVP yields 21% when the 

microwave power is 700 W and the particle size is 1790 µm, while the lowest is Avg-
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GCVP 13.64% when the microwave power is 700 W and the particle size is 783 µm. 

As for the instance with a MC of 0.2 the highest CH4 Avg-GCVP yield of 15.82% is 

achieved with a microwave power of 700 W and a particle size of 1790 µm. The lowest 

Avg-GCVP of 11.56%, on the other hand, is obtain accompanied by a microwave 

power of 1000 W and a particle size of 1790 µm. 

Under the condition of a MC of 0.3 the maximum CH4 Avg-GCVP yield is 

12.35%, when paired with a microwave power 700 W and a particle size of 783 µm. 

Meanwhile, the minimum Avg-GCVP is 8.37% under the same MC but with a 

microwave power 300 W and particle size of 783 µm. In general, we can conclude that 

the CH4 Avg-GCVP yield is inversely proportional to the MC in the sample. Where 

the dry samples produce the highest yield average amongst all the other samples with 

higher MC. 

Figure 35: The effect of moisture content on CH4 average concentration volume 

percentages for all of microwave powers and particle sizes cases 
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Figure 36 shows the effect of moisture content on the average CO 

concentration volume percentages at all of the microwave powers and particle sizes. 

There is no clear trend for any of the MCs. For the cases that have zero MC, the 

maximum CO Avg-GCVP yield and the lowest are associated with the cases of a 

microwave power of 1000 W and a particle size of 783 µm, and a microwave power 

300 W and a particle size of 467 µm with 8.67% and 1.71% respectively. For the MC 

of 0.2, case 8 is the highest CO Avg-GCVP, and the lowest Avg-GCVP are cases of 

microwave power 1000 W and particle size of 467 µm with 5.08%, and microwave 

power 300 W and particle size of 467 µm with 1.30% respectively. Finally, for the 

case of MC is 0.4 the maximum CO Avg-GCVP yield is for the situation of a 

microwave power of 1000 W and a particle size of 1790 µm with 4.44%. While the 

minimum CO Avg-GCVP yield for this case is achieve with a microwave power 300 

W and a particle size of 783 µm with 1.6%. Consequently, we can conclude that the 

CO Avg-GCVP yield is inversely relative to the MC in the sample. Where the dry 

samples produce the most astounding yield normal among every single other sample 

with higher MC. 
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Figure 36: The effect of moisture content on CO average concentration volume 

percentages for all of microwave powers and particle sizes cases 

Figure 37 expresses the effect of moisture content on the average CO2 

concentration volume percentages at all of the microwave powers and particle sizes. 

For the dry cases where MC is zero, the highest CO2 Avg-GCVP yields 3.4% when 

the microwave power is 1000 W and the particle size is 783 µm, and the lowest Avg-

GCVP is 2.31% for the case of a microwave power of 300 W and a particle size of 467 

µm. Samples with a MC of 0.2, on the other hand, have a maximum CO2 Avg-GCVP 

yield of 2.53% when accompanied by a microwave power of 700 W and a particle size 

of 1790 µm; and a minimum of 0.65% when accompanied with a microwave power of 

1000 W and a particle size of 783 µm. 

For the circumstances of a MC of 0.4 the maximum CO2 Avg-GCVP yield is 

1.9%, when the microwave power is 1000 W and the particle size is 1790 µm, and 

the minimum Avg-GCVP is 1.02% for the case of a microwave power of 1000 W 

and a particle size of 467 µm. 
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In the instances of zero moisture, the sample contains more carbon that will 

eventually convert to CO2 in the presence of the oxygen. Therefore, the higher CO2 

levels seen in the figure when the samples are dry. Generally, in the cases with 

intermediate to high particle sizes, more CO2 is generated. This may be related to the 

higher porosity in the samples where the particles are larger, and so the chance for the 

oxygen to get inside the core of the sample is easier than when the particles are small 

and very compact, hindering, thereby, effective O2 penetration into the inner core of 

the sample.  

Figure 37: The effect of moisture content on CO2 average concentration volume 

percentages for all of microwave powers and particle sizes cases 

Figure 38 shows the effect of moisture content on the average H2 concentration 

volume percentages at all of the microwave powers and particle sizes. By observing 

the dry cases, we can conclude that the maximum H2 Avg-GCVP yield is 2.71% when 

the microwave power is 1000 W and a particle size is 783 µm. In the occurances where 

the MC is 0.2, the highest H2 Avg-GCVP yield is 0.91% if coupled with the microwave 

power of 1000 W and a particle size of 783 µm. Finally, if the MC is 0.4, the maximum 
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H2 Avg-GCVP yield is 1.03% for the case of a microwave power of 1000 W and a 

particle size of 467 µm. The level of H2 is generally very low, especially when the 

sample contains moisture and, concurrently, when the microwave power is low. 

 

Figure 38: The effect of moisture content on H2 average concentration volume 

percentages for all of microwave powers and particle sizes cases 

Figure 39 express the effect of moisture content on the cold gas production 

efficiency at all of the microwave powers and particle sizes. Fig. 40 presents the effect 

of moisture content on the hot gas production efficiency at all of the microwave powers 

and particle sizes. The values of 𝜂𝐻𝑜𝑡−𝐴𝑣𝑔 and  𝜂𝐶𝑜𝑙𝑑−𝐴𝑣𝑔 have small differences. 

 When the MC is zero the highest 𝜂𝐶𝑜𝑙𝑑−𝐴𝑣𝑔 and 𝜂𝐻𝑜𝑡−𝐴𝑣𝑔 values are 54.03% 

and 55.71% respectively for a microwave power of 700 W and a particle size of 1790 

µm, while the lowest values are 28% and 28.8% respectively for a microwave power 

of 300 W and a particle size of 467 µm. As for the tests with a MC of 0.2, the maximum 

𝜂𝐶𝑜𝑙𝑑−𝐴𝑣𝑔 is 48.68% and maximum 𝜂𝐻𝑜𝑡−𝐴𝑣𝑔 50.22% in the case of a microwave 

power of 1000 W and a particle size of 1790 µm; meanwhile, the minimum 𝜂𝐶𝑜𝑙𝑑−𝐴𝑣𝑔 
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and 𝜂𝐻𝑜𝑡−𝐴𝑣𝑔 values are 31.35% and 32.24% respectively when matched with a 

microwave power of 300 W and the particle size is 783 µm . Lastly, the maximum 

values of 𝜂𝐶𝑜𝑙𝑑−𝐴𝑣𝑔 and 𝜂𝐻𝑜𝑡−𝐴𝑣𝑔 in a sample of  MC is 0.4, are 54.39% and 56.11% 

respectively under a microwave power 1000 W and a particle size of 1790 µm, on the 

other hand,  the lowest values are 20.45% and 21.06%  respectively in the case of a 

microwave power of 300 W and a particle size of 467 µm. 

It is noticeable that samples with a lower moisture content produces higher CH4 

and CO Avg-GCVP yield. This behavior, may be, due to the fact that whenever the 

moisture content increases in the sample, it requires more energy to evaporate the 

water content, leaving less amounts of heat dedicated for the pyrolysis process 

compared to the one used for the dry sample, resulting in less amount of Avg-GCVP 

yield.  

 

Figure 39: The effect of moisture content on the cold gas efficiency for all of 

microwave powers and particle sizes cases 
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Figure 40: The effect of moisture content on the hot gas efficiency for all of 

microwave powers and particle sizes cases 

3.3 Statistical Analysis 

The statistical analysis using Minitab-18 is implemented, in this section, in 

order to determine the nonlinear correlation modeling the CH4 and CO gas yield 

average concentration volume percentage, as a function of all studied parameters. 

Also, to determine the level of dependance of each parameter. Where, in the model, 

CH4 and CO (Avg-GCVP) – the main produced gases- are used as the dependent 

values, while the sample size, the MWP, and the MC are used as the independent 

parameters. The process is performed through several steps. Firstly, all the 

experimental data with the corresponding Avg-GCVP values are used in the program; 

then the DOE option is selected. Lastly, the analyze response surface design option is 

applied to generate a nonlinear model. In this process, a null hypothesis and an 

alternate hypothesis is used for the statistical tests. The P-value revealed, from a 

statistical test, is the probability of the outcome, given that the theory was right. This 

is the reason that small P-values are exceedingly attractive. The lower they are, the 
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more uncertain the result would be, if the null-theory is true. If the P-value is small 

enough (for example < 0.05) the null hypothesis is accepted. Likewise, the P-value of 

lack of fit must be > 0.05 to be measurably unimportant to assume that the model 

represents the data. Table 11 represents CO & CH4 experimental data, the model 

prediction results, and the corresponding error difference. 

Table 11: CO & CH4 experimental and statistical analysis 
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1 0.0 1000 467 17.910 16.572 7.473 7.432 6.287 15.415 

2 0.0 1000 783 17.037 16.644 2.304 8.678 6.612 23.804 

3 0.0 1000 1790 15.950 18.208 -14.155 6.152 6.317 -2.679 

4 0.2 1000 467 11.568 12.336 -6.645 4.344 3.623 16.615 

5 0.2 1000 783 11.596 12.413 -7.050 3.373 4.016 -19.039 

6 0.2 1000 1790 13.059 13.991 -7.143 5.086 3.936 22.601 

7 0.4 1000 467 8.800 9.837 -11.783 2.647 2.531 4.413 

8 0.4 1000 783 10.343 9.918 4.104 4.130 2.991 27.577 

9 0.4 1000 1790 11.472 11.510 -0.336 4.449 3.127 29.708 

10 0.0 700 467 16.593 17.200 -3.655 4.741 4.769 -0.587 

11 0.0 700 783 13.646 17.178 -25.880 4.049 5.094 -25.823 

12 0.0 700 1790 21.000 18.439 12.195 6.836 4.799 29.798 

13 0.2 700 467 12.820 13.042 -1.725 3.123 2.847 8.847 

14 0.2 700 783 12.361 13.024 -5.365 3.709 3.240 12.649 

15 0.2 700 1790 15.825 14.300 9.636 4.122 3.160 23.328 

16 0.4 700 467 10.301 10.620 -3.092 2.373 2.497 -5.244 

17 0.4 700 783 12.358 10.606 14.175 3.723 2.958 20.560 

18 0.4 700 1790 9.058 11.896 -31.339 4.244 3.094 27.111 

19 0.0 300 467 17.207 16.357 4.939 1.716 1.905 -10.990 

20 0.0 300 783 16.386 16.208 1.087 2.504 2.230 10.935 

21 0.0 300 1790 15.792 17.067 -8.073 2.447 1.935 20.920 

22 0.2 300 467 12.919 12.302 4.775 1.307 0.972 25.621 

23 0.2 300 783 12.119 12.158 -0.321 1.916 1.366 28.737 

24 0.2 300 1790 11.964 13.031 -8.916 2.076 1.286 38.067 

25 0.4 300 467 8.663 9.983 -15.240 2.166 1.612 25.554 

26 0.4 300 783 10.267 9.843 4.121 1.967 2.073 -5.365 

27 0.4 300 1790 11.285 10.731 4.909 2.005 2.209 -10.139 
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3.3.1 Statistical Analysis CH4 Case: 

After finding multiple regressions for the CH4 data, the following equation was 

found to represent the CH4 Avg-GCVP yield prediction, as a function of the three used 

parameters and their interactions. Table 12 is a way to express the coefficients of the 

equation. Where constants represent the y-intercept from the equation. The most 

important values to be checked are the P-values and T-Values. Both of the values are 

used to check how significant the parameters or the terms, in the equation, are. The P-

Value checking method, that is used, states: If the P-Value for the term is < α= 0.05, 

then the term is significant in the equation. Table 14 shows that MC is the only 

significant term in the corresponding equation. The Pareto chart, of the standardized 

effects (Fig. 41), is a bar chart to show which parameter is vital in our study case. 

Knowing that any bar that exceeds the red line with a value higher than 2.11 is the 

most significant parameter, which in this case is MC. It is clear that the Pareto chart of 

the standardized effect and the Table of the uncoded coefficient both conclude to the 

same result that MC is the most significant parameter.   

CH4 regression equation in uncoded units is given by: 

𝐶𝐻4 %(𝐴𝑉𝐺) = 15.19 − 24.26 ∗ 𝑀𝐶 + 0.00764 ∗ 𝑃𝑜𝑤𝑒𝑟 − 0.00202 ∗ 𝑆𝑖𝑧𝑒

+ 21.7 ∗ 𝑀𝐶2 − 0.000006 ∗ 𝑃𝑜𝑤𝑒𝑟2 + 0.000001 ∗ 𝑆𝑖𝑧𝑒2

− 0.00129 ∗ 𝑀𝐶 ∗ 𝑃𝑜𝑤𝑒𝑟 + 0.00007 ∗ 𝑀𝐶 ∗ 𝑆𝑖𝑧𝑒 + 0.000001

∗ 𝑃𝑜𝑤𝑒𝑟 ∗ 𝑆𝑖𝑧𝑒 
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Table 12: Uncoded coefficients 

Term Coef SE Coef T-Value P-Value VIF 

Constant 15.19 3.61 4.20 0.001    

MC -24.26 9.15 -2.65 0.017 21.63 

Power 0.00764 0.00779 0.98 0.341 48.36 

Size -0.00202 0.00546 -0.37 0.716 91.94 

MC*MC 21.7 17.0 1.27 0.220 13.00 

Power*Power -0.000006 0.000006 -1.09 0.291 43.64 

Size*Size 0.000001 0.000002 0.43 0.676 85.03 

MC*Power -0.00129 0.00686 -0.19 0.853 7.91 

MC*Size 0.00007 0.00349 0.02 0.985 5.73 

Power*Size 0.000001 0.000002 0.44 0.668 9.63 

 

 

Figure 41: Pareto chart of the standardized effects CH4 case 

The model summary in Table 13 represents the R-sq value which expresses 

how much the independent variables explains or represents the dependent variable. We 

got, in our model for the CH4 Avg-GCVP case, a R-sq value of about 81.43%, from 

this value we can get r = √R − sq=√0.8143 = 0.902 = 90.2% which shows how the 

correlation is strong between the dependent variable “ CH4 Avg-GCVP “ and the 
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independent variables: MC, microwave power and size of the particles. It is well 

known, in the statistics field, that if r = 90.2%, then we have very strong positive 

correlation between the dependent and the independent variables. 

 R-sq (adj) is a value that represents how much the independent variables 

explained the dependent variable, if the software removes the non-effected 

independent variables. We obtained the values of about 71.60% and r = 84.625% , 

which is in the region where we can suppose that there is a very strong positive strength 

between the dependent and the independent variables. 

From Table 14 (Analysis of variance), we will focus on two columns, F-Value 

and P-Value. Using the same method explained above, we reach the same conclusion 

from the previous Tables and chart. 

Figure 42 shows the scattered plot where R2 is 0.8143, meanwhile the error is 

randomly distributed and the values are too close between the experiment and 

prediction values. Through this, we can notice the linear relation where the data is 

scattered around the line.  

Figure 43 displays 3D surface graphs for each sample size showing the CH4 

yield as a function of the power and MC. The surface graph is used to give a better 

visual idea about the independence of the three parameters and demonstrate the results. 

Table 13: Model summary 

S R-sq R-sq(adj) R-sq(pred) 

1.66970 81.43% 71.60% 52.44% 
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Table 14: Analysis of variance 

Source DF Adj SS Adj MS F-Value P-Value 

Model 9 207.845 23.094 8.28 0.000 

Linear 3 188.393 62.798 22.53 0.000 

MC 1 184.253 184.253 66.09 0.000 

Power 1 0.166 0.166 0.06 0.810 

Size 1 3.956 3.956 1.42 0.250 

Square 3 8.333 2.778 1.00 0.418 

MC*MC 1 4.512 4.512 1.62 0.220 

Power*Power 1 3.316 3.316 1.19 0.291 

Size*Size 1 0.505 0.505 0.18 0.676 

2-Way Interaction 3 0.632 0.211 0.08 0.972 

MC*Power 1 0.099 0.099 0.04 0.853 

MC*Size 1 0.001 0.001 0.00 0.985 

Power*Size 1 0.533 0.533 0.19 0.668 

Error 17 47.394 2.788       

Total 26 255.239          

 

 

Figure 42: CH4%(AVG)-Exp. vs CH4%-(AVG)-Prediction 

 

Table 15 shows the fits and diagnostics for unusual observations: 

 

Table 15: Fits and diagnostics for unusual observations 

Obs CH4%(AVG)_1 Fit Resid Std Resid 
 

4 13.646 16.541 -2.895 -3.28 R 

CH4%(AVG)-Pred.= 1.0097 CH4%(AVG)-Exp

R² = 0.8143
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Figure 43: 3D Surface plot of CH4 volume% as function of particle sizes, microwave 

power, and MC 

3.3.2 Statistical Analysis CO Case: 

As explained in the previous subsection, the equation below represents the 

CO% (Avg-GCVP) as a predicted value. From Table 16, after applying the P-Value 

method, it is noticeable that MC, Particle Size, MW Power, MC2 and (MC * MW 

Power) are the most significant parameters that have p-Value less than 0.05. This is 

graphically exhibited in the Pareto chart of the standardized effects (Fig 44). The fact 

that the two ways to explore the significance of the parameters agrees on the same 

result also proves the previous finding. 
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CO regression equation in uncoded units is as follows. 

 

𝐶𝑂 % (𝐴𝑉𝐺) = −1.72 − 5.38 ∗ 𝑀𝐶 + 0.01016 ∗ 𝑃𝑜𝑤𝑒𝑟 + 0.00228 ∗ 𝑆𝑖𝑧𝑒

+ 19.65 ∗ 𝑀𝐶2 − 0.000003 ∗ 𝑃𝑜𝑤𝑒𝑟2 − 0.000001 ∗ 𝑆𝑖𝑧𝑒2

− 0.01237 ∗ 𝑀𝐶 ∗ 𝑃𝑜𝑤𝑒𝑟 + 0.00107 ∗ 𝑀𝐶 ∗ 𝑆𝑖𝑧𝑒 + 0.000001

∗ 𝑃𝑜𝑤𝑒𝑟 ∗ 𝑆𝑖𝑧𝑒 

Table 16: Uncoded coefficients 

Term Coef SE Coef T-Value P-Value VIF 

Constant -1.72 1.78 7.14 0.000    

MC -5.38 4.50 -4.40 0.000 1.05 

Power 0.01016 0.00383 7.93 0.000 1.05 

Size 0.00228 0.00269 2.17 0.045 1.09 

MC*MC 19.65 8.39 2.34 0.032 1.00 

Power*Power -0.000003 0.000003 -0.89 0.384 1.01 

Size*Size -0.000001 0.000001 -0.76 0.458 1.09 

MC*Power -0.01237 0.00338 -3.66 0.002 1.00 

MC*Size 0.00107 0.00172 0.63 0.540 1.04 

Power*Size 0.000000 0.000001 0.04 0.965 1.05 
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Figure 44: Pareto chart of the standardized effects CO case 

The model summary in Table 17 lists the R-sq value, which represents how 

significantly the independent variables explains or represents the dependent variable. 

We got, in our model for CO Avg-GCVP Case, a R-sq value of 87.14%; from this 

value we can get r = √R − sq=√0.8714 = 0.9335 = 93.35%  which shows how 

strong the correlation is between the dependent variable CO Avg-GCVP and the 

independent variables MC, microwave power and size of the particles. It is well 

known, in the statistics field, that if r = 93.35% then we have very strong positive 

strength between the dependent and the independent variables. 

 R-sq (adj) is a value that represents how much the independent variables 

explain the dependent variable, if the software removes the non-effected independent 

variables. We found, in this instance, 80.34% and r = 89.63% which is also in the 

region where we can suppose that there is a very strong positive strength between the 

dependent and the independent variables. 
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From Table 18 (Analysis of variance), we will focus on two columns, the F-

Values and P-Values. Using the P-Value method, we reach the same conclusion from 

the previous Tables and chart. 

Figure 45 shows the scattered plot in which R2 is 0.8714. Meanwhile, the error 

is randomly distributed, and the difference between the values are insignificant 

between the experiment and the prediction values. Using this, the linear relation where 

the data is scattered around the line can be observed. 

Figure 46 shows the correlation between particle sizes, microwave powers and 

MCs of CO Avg-GCVP in a 3D representation for the three particle sizes: 1790 µm, 

783 µm, and 467 µm respectively. Moreover, the results from the bar code are 

presented in the 3D visual image. 

Table 17: Model summary 

S R-sq R-sq(adj) R-sq(pred) 

0.821605 87.14% 80.34% 64.47% 

 

Table 18: Analysis of variance 

Source DF Adj SS Adj MS F-Value P-Value 

Model 9 77.7857 8.6429 12.80 0.000 

Linear 3 58.9494 19.6498 29.11 0.000 

MC 1 13.0422 13.0422 19.32 0.000 

Power 1 42.4795 42.4795 62.93 0.000 

Size 1 3.1651 3.1651 4.69 0.045 

Square 3 4.6332 1.5444 2.29 0.115 

MC*MC 1 3.7052 3.7052 5.49 0.032 

Power*Power 1 0.5393 0.5393 0.80 0.384 

Size*Size 1 0.3887 0.3887 0.58 0.458 

2-Way Interaction 3 9.3211 3.1070 4.60 0.016 

MC*Power 1 9.0558 9.0558 13.42 0.002 

MC*Size 1 0.2640 0.2640 0.39 0.540 

Power*Size 1 0.0013 0.0013 0.00 0.965 

Error 17 11.4756 0.6750 
  

Lack-of-Fit 26 89.2613 
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Figure 45: CO% -Exp. vs Prediction 

 

Figure 46: 3D Surface plot of CO volume% as function of particle sizes, microwave 

power and MC 

Table 19: Fits and diagnostics for unusual observations 

Obs CO%(AVG) Fit Resid Std Resid 
 

3 4.049 5.463 -1.414 -2.01 R 

20 6.152 7.416 -1.263 -2.25 R 

27 8.678 7.243 1.435 2.17 R 

CO%(AVG)-Pred. = 0.8466CO%(AVG)-Exp

R² = 0.8714
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3 Chapter 4: Conclusion 

4.1 Research Conclusions and Implications 

Over the course of this chapter, the main observations of the conducted 

experiments, covering the studied cases and parameters, will be briefly specified. 

Overall, the findings are summarized in the following key points. Lastly, several 

recommendations are mentioned to help further develop and facilitate this idea, for 

future research and applications. 

Through the analysis of the previous studies, the following can be concluded: 

 From the previous chapter, it was recognizable that when the 

microwave power increases, the sample will be exposed to more heat, 

leading to the elevation in the internal heating process in the biomass 

sample. As a result, the production of the yield gases will increase. 

 According to the verdicts of chapter 3, the smaller the size of the 

particles is, the higher the CH4 average concentration volume 

percentage yield is. It assumed that this occurs due to samples of small-

sized particles giving the heat a chance to reach all the portions in the 

sample. 

 It is understandable that samples produce higher CH4 and CO Avg-

GCVP yield at lower moisture content values. This behavior ensues as 

a result of the fact that, at a high moisture content, the sample needs 

more energy to evaporate the water; thus leaving, in contrast to dry 

samples, fewer amounts of heat dedicated for the pyrolysis procedure. 



92 

 

 

 

 

4.2 Recommendations and Future Work 

After carrying out numerous experiments and facing various challenges, 

many recommendations and suggestions can be extracted.  

 The experimental setup can be improved to provide better control and 

measurement, by enhancing the design of the reactor and using 

advanced microwaves with more alternative microwave power 

options.  

 The usage of different types of date seeds would help in the better 

evaluation of the effect of the biomass types on the pyrolysis process.  

 Metal catalysts can be added to enrich further the understanding and 

reasoning, of having a high production of CH4 gas and a low 

production of H2 gas.  

 Using other gas analyzers with a broader range of gas measurements 

will help in highlighting the expected produced gases from the 

pyrolysis process. 

 Having a more robust sealed, heated piping system, from the reactor 

to the gas analyzer, will ensure the minimization of the air-gas leak to 

the system, consequently, a complete pyrolysis process. 
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5 Appendices 

 

Appendix A: Practical Size Distribution 

This appendix represent Rosin Rammier Regression Check for the three Date 

seeds powder sizes, (a) X vs. Y and (b) the Sieve Size vs. Cumulative% Retained. 

While Table 20 shows the size calculations that dependent on the equations in section 

2.2.3. 

 

Figure 47: Rosin Rammier Regression Check for (400<DSP<3000 µm), (a) X vs. Y 

(b) the Sieve Size vs. Cumulative% Retained 
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Figure 48: Rosin Rammier Regression Check (50<DSP<2000 µm), (a) X vs. Y (b) 

the Sieve Size vs. Cumulative% Retained 
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Figure 49: Rosin Rammier Regression Check (50<DSP<1500 µm), (a) X vs. Y (b) 

the Sieve Size vs. Cumulative% Retained 
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Table 20: Size calculations 

Large Particles Size 400<DSP<3000  

Sample size 92.137 gm 

Particle Average Size 1790 m 

Weights 

Cumulative 

Normalized D R X Y 

Fitted Y 

Fitted  
% 

retained gm 
Cumulative 
%Retained 

Sieve,  
µm 

Cumulative 
%Retained   

0 0 0 3000 0.0% x Y  0 

8.991 0.09758 9.8% 2360 9.8% 7.7664 0.8446 0.8907 8.7% 

61.867 0.67147 76.9% 1180 76.9% 7.0733 -1.3371 -1.3428 77.0% 

6.980 0.07576 84.5% 1000 84.5% 6.9078 -1.7799 -1.8762 85.8% 

12.880 0.13979 98.5% 500 98.5% 6.2146 -4.1656 -4.1098 98.4% 

1.419 0.01540 100.0% 0 100.0%    100.0% 

Large Particles Size 50<DSP<2000  

Sample size 50.08 gm 

Particle Average Size 783 m 

Weights 

Cumulative 

Normalized D R X Y 

Fitted Y 

Fitted  
% 

retained gm 
Cumulative 
%Retained 

Sieve,  
µm 

Cumulative 
%Retained   

0 0 0 2000 0.0% x Y  0 

1.667 0.0333 3.3% 1000 3.3% 6.9078 1.2245 0.7077 13.1% 

41.384 0.8264 86.0% 500 86.0% 6.2146 -1.8889 -1.2979 76.1% 

6.350 0.1268 98.6% 200 98.6% 5.2983 -4.2939 -3.9493 98.1% 

0.482 0.0096 99.6% 100 99.6% 4.6052 -5.5362 -5.9550 99.7% 

0.197 0.0039 100.0% 0 100.0%    100.0% 

Small Particles Size 50<DSP<1500  

Sample size 45.104 gm 

Particle Average Size 467 m 

Weights 

Cumulative 

Normalized D R X Y 

Fitted Y 

Fitted  
% 

retained gm 
Cumulative 
%Retained 

Sieve,  
µm 

Cumulative 
%Retained   

0 0 0 2000 0.0% x Y  0 

0.227 0.0050 0.5% 1000 0.5% 6.9078 1.6662 2.1668 0.0% 

4.833 0.1072 11.2% 500 11.2% 6.2146 0.7828 0.1931 29.7% 

34.952 0.7749 88.7% 200 88.7% 5.2983 -2.1220 -2.4158 91.5% 

4.712 0.1045 99.2% 100 99.2% 4.6052 -4.7723 -4.3894 98.8% 

0.380 0.0084 100.0% 0 100.0%    100.0% 
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Appendix B: Error and Uncertainties 

The standard uncertainty, 𝑢𝑖 (𝑥), of a 𝑛 estimation repeats of an amount, 𝑥, is 

the standard deviation of the outcomes, and it is determined by the accompanying 

equation:  

𝐮𝒊(𝐱) = √∑ (𝐱𝒋 – �̅�)
𝟐

 𝐧
𝐣=𝟏

𝒏 − 𝟏
 

Where 𝑥 ̅ is the normal of estimation aftereffects of the amount, 𝑥. The 

uncertainty interims (blunder bars in charts) depended on the standard uncertainty. The 

repeated results estimations were, in this manner, shown as: 𝑥 ± 𝑢𝑖 (𝑥) 
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