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New technique for achieving an approximate solution to optimal control problems (OCPs) is
considered in this paper. The algorithm is based upon B-spline polynomials (BSPs)
approximation with state parameterization method. An important property concerning the B-
spline functions is first presented then it is utilized to propose a modified restarted technique to
reduce the number of unknown parameters with fast convergence. The method is applied through
four illustrative examples and is compared with other results.

1. INTRODUCTION

The study of problems in optimal control is very
important in our day life. The application of optimal
control problems can be studied in many disciplines
based on mathematical modeling physics, chemistry,
and economy [1-3]. Because of the complexity of
most applications, optimal control problems are
solved numerically. Various numerical methods have
been proposed to solve (OCPs). In [4] Yousef Edrisi
studied the solution of OCPs using collocation
method using B-spline functions. Authors of [5]
presented a numerical solution of OCPs with aid of
state parameterization technique. Different numerical
algorithms for treating OCPs have been introduced by
utilizing the orthogonal functions. The complexity of
the OCPs is decreased by reducing it to an algebraic
system of equation, for example, B-spline
polynomials [6], generalized Laguerre polynomials
[7], Chebyshev polynomials [8-10] as well as third
kind Chebyshev wavelets functions [11], Boubaker
polynomials [12]. Special attention is given to find
the approximate solution of OCPs using BEPs. These
polynomials have already been utilized for solving
OCPs [13] and integral equation [14]. In [15], authors
have constructed orthonormal BEPs and applied them
to solve integral equations.

The approach in the current paper based on BSPs
expansion for solving OCPs . These polynomials
introduced by [16-17]. In [17], Mohson, A., applied
the operational matrices of BEPs and proposed a
numerical solution of fractional optimal control
problems while Safaie E. and Farahi M. H. in [16]
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solved delay fractional OCP with the aid of BEPs.
For the historical development of BEPs properties
and their applications, the reader can be referred to
[18-20].

2. B-SPLINE POLYNOMIALS

DEFINITION AND PROPERTIES
2.1. DEFINITION OF BSPS [18]
The general form of B-spline polynomials of degree
in n of the interval (0, 1) is defined by:
Bsl'(t) = (?) tt{A-"t0<i<n
n n!
where (1) = il(n—i)!
The first four B-spline bases are:

Bsd =1

Bsg=1—t Bs{ =t
Bs2 = (1 —t)? Bs? =2t(1 —t) Bs? = t?
Bs3 =(1—1t)% Bs} =3t(1—1t)? Bs} =
3t2(1 —1t)
Bs§ = (1 —1t)* Bs{ =4t(1—1t)® Bsj

= 6t%(1 —t)?

For mathematical convenience, Bs]*(t) =0 ifi < 0
ori <n.

Remark 1:

Any nth degree of B-spline polynomial can be
expressed in terms of the power basis. Using the
Bernstein-spline polynomial
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B (t) = (?) tt{@-o)"to0<i<n
Then the binomial theorem one can get

Bin(t)— tlZ( 1)S tS
Z< D s_i) e
ZZ(_l)S_i s i) £

S=1
This means that

ny n—-i _ _1\s—i n SN ;s
(Dea-om=) o= () ()
The derivative of the nt" degree BSPs are
polynomials of degree n — 1 and are given by
DBs!(t) = n(Bs L) = Bs (b)) 1)

where D = —
dt

it is important in numerical formulation of the
problem using the basis for n = 1 with the following
useful degree elevation property

Bs[5'(t) = [(n — DBs{ () + (i + 1)Bs{y, (0] (2)
The values of BSFs at the end points are

Bs'(0) = {0 Li=0 and

i=1,2, ...,n
Bst(1) = {

i=0,1,. -1
1 i=

A square integrable functlons f(@)in (0,1) can be

expressed in terms of the BSPs basis

f() = -0 ciBs'(t) = c"Q(¢)

where cT = [cy, ¢q, ..., ¢, ] and Q(t) =

[Bsg(t), Bs}(t),...,Bsi()] T

2.2. HGMH NEW PROPERTY OF B-SPLINE
POLYNOMIALS FOR CONVERTING THE
POWER BASIS TO B-SPLINE BASIS

The expression of converting the bases between the
power basis and B-spline functions is presented in
this subsection. Given power basis{t‘};_,, this can be
written in the B-spline as follows

t" = [Bsp=i(t) — = Bsp_1(8)] 3)
forn =23, ...
Proof:

In order to prove Eq. 3, the mathematical induction is
used.

In order to establish the validity of formula in Eq.3,
the following steps are needed.

e To prove that Eq. 3 is true for n = 2
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1 1
= Bsi(t) —EBsf(t) =t —EZt(l —t) =t
This has been shown in Eq. 3

o For fixed k, assume Eq. 3 is true
th = BsZi (t) — _Bsk 1(©) 4

Then prove that Eq. 3 is true for n = k + 1 that is we
want to prove that
th+t = Bsk(t) — ” L Bsk*1(p) (5)

Multiply Eq. 4 by t, one can obtain
tthk = (Bsk HO Bsk 1(t))

or th*1 = ¢ BsETL(t) — £ Bsi_y(6)

By using t Bs¥(t) = in+1,k+1 , the result can be

obtained.

Note that the above formula Eq. 3 can be generalized
fort € [a, b]

n _ 1 n 1 n+1
P =Goar (Bs () =+ Bsp ™ ()
where
Bsin(®) = o (1) e — (b — )" (6)

3. OUTLINE OF THE METHOD

3.1. THE PROBLEM STATEMENT

Find the optimal control u(t) which minimizes the
cost function

J=17 F(t,x(0), u(t))de @
subject to u(t) = f(t, x(t), x(t)
8

where x(.): [a, b] — R is the state variable,

u(.): [a, b] = R is the control variable

and f: is a real valued continuously differentiable
function.

The boundary conditions are x(a)=x, and
x(b) = xp

9)

where x, and b are states given in R.

3.2. SOLUTION SCHEME

First we start with the initial approximation

x;(t) = (agBsy(t) + a;Bsi (1)) (10)
Using the initial and final conditions to obtain
xg=ap(l1—a)+agaandx, = a,(1—b) +a.;b  (11)
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Eq. 11 will give the values of the unknown a, and a,
as below

__ bxg—axp _ xq(b-1)-xp (1-a)
Q=" 7 h= b—

a
After substituting these values into Eq. 10, yields
xy(£) = P22 4 (x — 2t
The optimal control u(t) can be obtained from Eq. 8
to get
uy (8) = f(t,x,(t), %, (1)) (12)
The functional J can be evaluated using Eq. 7
J=LF (% (0, w4 (Ode
Now the second approximation is calculated as below

1
X, (8) = x,(t) + a,[— EBsf ®]
u ()= F(t, x5 (1), %, (1))
Jo=f, F(t,22(8), u5(t))

By continuing the procedure, the n® approximated
solution for x(t), u(t) will be as follows

xn+1(t) = xn(t) + an+1[BSr711 (t) -

oL N0

~ BSIA(0) + By ()
Upy (t%: F(t, % 41(2), X1 (1))
]n+1:fa F(t' Xn+1 (t)' Un+1 (t)dt

4. APPLICATION EXAMPLES
The following examples are considered to illustrate
the efficiency of the proposed algorithm

Example 1

This example clarifies the following concepts:

Find the optimal state and optimal control based on
minimizing the performance index

J=1, (x(®) =3u@®?)dt, 0<t <1

subject to u(t) = x(t) + x(t) with the condition
x(0) = 0, x(1) = >(1—)?

where Jyqce = 0.08404562020

In this example the initial approximation is

2
x,(6) = %(1 —i) t
The approximate state variables for n=2, 3 and 4
using B-spline polynomial can be expressed as below:
x,(t) = 0.6091t — 0.4091¢2
x3(t) = 0.6091t — 0.4208t% + 0.0117¢3
x,(t) = 0.6091t — 0.4208t% + 0.0091¢3
+ 0.0026t*
The approximate state variables for n=2, 3 and 4
using B-spline polynomial can be expressed as below:
u,(t) = 0.6091 — 0.2091 t — 0.4091¢2
uz(t) = 0.6091 — 0.2325t — 0.3857t%2 + 0.0117¢3
u,(t) = 0.6091 — 0.2325¢ — 0.3935t2 + 0.0195¢3
+ 0.0026t*
The approximate results are obtained by the proposed
algorithm based on B-spline polynomial with n=1, 2,
3. The results are compared with results obtained in
[21]. Table 1 illustrates the total information of the
optimal values for the functional J with different
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iterations and one can observe that our results have
almost better accuracy.

Table 1. Results of the functional J

I 0. M. E M.in [ 21] E

0.08401526011 | 3.047x10° | 0.0533262210 | 3.0x102

1
2 | 0.08402489318 | 2.073x105 | 0.0840152600 | 3.0x1072
3| 0.08402519637 | 2.042x105 | 0.8402496180 | 2.0x1072

L. — Iteration; O.M. — Our Method:; E. - Error; M. —
Method

The primacy of present algorithm compared with
method in [21] is clear in this example because by the
same number of iteration n, the present algorithm
error is lower. The obtained results are plotted in
Figure 1 against the actual solution

x(t) =1—0.5e"1 — 0.8160603¢~‘and

u(t) =1-—et?

Example 2
Consider the non-linear control system which consists
of minimizing
1
f u?(t)dt

0
subject to u(t) = x(t) — x2(t)sint, x(0) = 0,
x(1) =0.5

In this example the initial approximation is
x,(t) = 0.5t

The approximate state variables for n = 2,3 and 4
using B-spline polynomial can be expressed as below:

x,(t) = 0.4622 t + 0.0378¢2
x3(t) = 0.4622t + 0.0215t2 + 0.0136¢3

x,(t) = 0.4622 ¢ + 0.0215t2 + 2.1159¢3
+ 2.0996¢t*

The approximate state variables for n = 2,3 and 4
using B-spline polynomial can be expressed as below:

u,(t) = 0.4622 + 0.756 t
—sint[(0.4622t + 0.765t2)?]

us(t) = 0.4622 — 0.043 t + 0.0489¢2
— sint(0.4622t + 0.0215¢?
+ 0.0163t3)
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u,(t) = 0.4622 — 0.043 t + 6.3477t% — 8.3984¢3
— sint(0.4622t + 0.0215¢2
+ 2.1153t3 — 2.0996t%)

The approximate performance index is J = 0.2005.
the obtained results and the actual solution are plotted
in Figure 2.

Example 3

The proposed method in this example is applied to the
following problem

I= 2 [ Bx(t)? + u(t)?)dt

subject to u(t) = x(t) + x(t), x(0) = 0, x(1) = 2

In this example the initial approximation is
xl(t) = Zt

The approximate state variables for n=2, 3 and 4
using B-spline polynomial can be expressed as below:

x,(t) = 0.5714 t + 1.4286t>
x3(t) = 0.5714 t + 1.0397t% + 0.3889¢3

x4(t) = 0.5714 t + 1.0397t? + 01798¢3
+0.2091t*

The approximate state variables for n=2, 3 and 4
using B-spline polynomial can be expressed as below:

u,(t) = 0.5714 + 3.4286t + 1.4286t>
uz(t) = 0.5714 + 2.6508 t + 2.2063t% + 0.3889¢3

u,(t) = 0.5714 + 2.6508t + 1.5912t% + 1.0161¢3
+0.2091t*

The comparison among the B-spline algorithm with
different iterations beside method in [21] are listed in
Table 2 . The exact value for the cost is J=6.1586.
The obtained results and the actual solution are
plotted in Figure 3.

Table 2: The values of cost functional ] in Example 3

} 0. M. E Min[21] | E

1 (6.190476192 |0.03187624 | 6.195 |0.0319
2 16.177513228 |0.01891323 | 6.1775 |0.0189
3 16.174827155 |0.01622723 | 6.1753 |0.0167

L. — Iteration; O.M. — Our Method; E. - Error; M. —
Method
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Example 4

The proposed method in this example is applied to the
following problem

3= [ (x(t)? + u(t)?)dt
subjectto u = %, x(0) = 0, x(1) = 0.5

In this example the initial approximation is
xl(t) = O.St

The approximate state variables for n=2, 3 and 4
using B-spline polynomial can be expressed as below:

x,(t) = 03863t + 0.1136¢2
x;(t) = 0.3863 t + 0.0844¢t2 + 0.0292¢t3

x,(t) = 0.3863 t + 0.0844t% + 0.0242¢3
+ 0.0485¢t*

The approximate state variables for n=2, 3 and 4
using B-spline polynomial can be expressed as below:

u,(t) = 0.3864 + 0.2273t
u5(t) = 0.3864 + 0.1689 ¢ + 0.0875t2

u,(t) = 0.3864 + 0.1689 t + 00497t
+ 0.0504¢3

Table 3 illustrates the results based on B-spline
algorithm for this example in comparison with results
obtained by [21]. The optimal values for performance
index J are also compared with the exact solution
while the exact state and control solution as well as
the actual value for J are Note that, the actual solution
of this problem is
t -t
x(8) = S
Jexace = 0.3023

e(et+e™h)

202D and

u(t) =

The obtained results and the actual solution are
plotted in Figure 4.

Table 3 The values of cost functional J in Example 4

I.| 0.Mm. E M.in [ 21] E
0.3286 | 3.37910 x10~*| 0.3333 |5.0x10°

0.3262 | 2.18140 x10~*| 0.3286 |3.4x10%
0.3226 | 2.03089 x10~*| 0.3285 |2.1x10*

WIN| -
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5. CONCLUSION

Some

modification is proposed by introducing

accelerating iterative algorithm for solving optimal
control problem directly based on B-spline functions
with only unknown coefficient must be evaluated in
each approximation. A new resulted modification
solution was constructed which based upon an
interesting property of B-spline functions. The
examples illustrated the reliability of the devoted
B-spline algorithm presented in this paper.
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Fig. 1 Solution of Example 1. The solution of the five
iterative compared with the analytical solution
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Fig. 2 Solution of Example 2. The solution of the first
iterative compared with the exact solution.
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Fig. 3 Solution of Example 3. The solution of the first
iterative compared with the exact analytical solution.
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Fig. 4 Solution of Example 4. The solution of the first
iterative compared with the exact solution.
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