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Fragment-based estimation methods are very useful for determining the 

energy of chemical systems, because it gets increasingly less possible to 

calculate the actual energy of a system as it increases in size. The many-

body expansion method circumvents this by combining sums of energies 

of smaller fragments of a system into terms which account for the energy 

of fragments, and the energies of the interactions between fragments. In 

this project, 2 variations of the many-body expansion method were 

performed on a NH3(H2O)3 system undergoing several proton transfer 

reactions. The 3-body method was able to estimate the energy of the 

NH3(H2O)3 system being studied with a mean absolute error of 1.21 

kcal/mol. This estimate appeared to follow the same trends as the actual 

energy of the system. The 2-body method was able to estimate the energy 

of the system with a mean absolute error of 9.123 kcal/mol and did not 

appear to follow the same trends as the actual energy. Both the 2-body and 

3-body estimates appear to perform worse when atoms are close to being 

between multiple fragments. 

Abstract

Introduction

The GAMESS output file from an attempted geometry optimization of a 

system including an NH3 molecule and three H2O molecules was used to 

obtain energy values, the coordinates of atoms, and the distances between 

each atom at various steps in several proton transfer reactions. Figure 1 

shows four steps showing the overall proton transfer reactions.

Figure 1. Visualizations of four steps in the proton transfer reactions. 

wxMacMolPlt7 was used to view the GAMESS output file as a visual 

model.

For each step that was tested, the value listed in the output file as FINAL 

R-B3LYP ENERGY was recorded as the GAMESS total energy for that 

step. The list of atom coordinates for each step were used in the GAMESS 

calculations of each of the fragments needed to estimate the total energy 

using the 2-body and 3-body methods. The nitrogen atom was set as the 

center of fragment A for each step, while the three oxygen atoms were set 

as the centers of fragments B, C, and D. These fragments also included 

whichever hydrogen atoms were closer to the center of that fragment than 

to the center of any other fragment at that step.

Fragments A, B, C, and D are the monomer fragments used in the many-

body estimate calculations. The dimer fragments AB, AC, AD, BC, BD, 

and CD are each made up of all the atoms in the monomer fragments that 

make up that dimer (AB includes all the atoms in A and B). The trimer 

fragments ABC, ABD, ACD, and BCD are each made up of all the atoms 

in the monomer fragments that make up that trimer. GAMESS molecular 

energy calculations were performed on the atoms included in these 

fourteen fragments at nineteen steps in the reaction. The B3LYP8,9,10

method and the 6-311G11,12 basis set were used. 

The energy of the 2-body estimate was calculated by summing the terms 

V1 and V2. V1 is equal to the sum of all the monomer fragment energies 

and V2 is equal to the sum of six terms accounting for the energy of the 

interaction between monomers within the dimer fragments. Ei represents 

the energy of the fragment i.

𝑉1 = 𝐸𝐴 + 𝐸𝐵 + 𝐸𝐶 + 𝐸𝐷
𝑉2
= (𝐸𝐴𝐵 − 𝐸𝐴 − 𝐸𝐵) + (𝐸𝐴𝐶 − 𝐸𝐴 − 𝐸𝐶) + (𝐸𝐴𝐷 − 𝐸𝐴 − 𝐸𝐷) + (𝐸𝐵𝐶 − 𝐸𝐵
− 𝐸𝐶) + (𝐸𝐵𝐷 − 𝐸𝐵 − 𝐸𝐷) + (𝐸𝐶𝐷 − 𝐸𝐶 − 𝐸𝐷)

The full calculation of the 2-body estimate is:

𝐸2−𝑏𝑜𝑑𝑦
= 𝐸𝐴 + 𝐸𝐵 + 𝐸𝐶 + 𝐸𝐷 + (𝐸𝐴𝐵 − 𝐸𝐴 − 𝐸𝐵) + (𝐸𝐴𝐶 − 𝐸𝐴 − 𝐸𝐶) + (𝐸𝐴𝐷
− 𝐸𝐴 − 𝐸𝐷) + (𝐸𝐵𝐶 − 𝐸𝐵 − 𝐸𝐶) + (𝐸𝐵𝐷 − 𝐸𝐵 − 𝐸𝐷) + (𝐸𝐶𝐷 − 𝐸𝐶 − 𝐸𝐷)

The energy of the 3-body estimate was calculated by summing the terms 

V1, V2, and V3. V3 is equal to the sum of four terms accounting to the 

interaction between monomers within the trimer fragments.

𝑉3
= 𝐸𝐴𝐵𝐶 − 𝐸𝐴𝐵 − 𝐸𝐴 − 𝐸𝐵 − 𝐸𝐴𝐶 − 𝐸𝐴 − 𝐸𝐶 − 𝐸𝐵𝐶 − 𝐸𝐵 − 𝐸𝐶
+ 𝐸𝐴𝐵𝐷 − 𝐸𝐴𝐵 − 𝐸𝐴 − 𝐸𝐵 − 𝐸𝐴𝐷 − 𝐸𝐴 − 𝐸𝐷 − 𝐸𝐵𝐷 − 𝐸𝐵 − 𝐸𝐷
+ 𝐸𝐴𝐶𝐷 − 𝐸𝐴𝐶 − 𝐸𝐴 − 𝐸𝐶 − 𝐸𝐴𝐷 − 𝐸𝐴 − 𝐸𝐷 − 𝐸𝐶𝐷 − 𝐸𝐶 − 𝐸𝐷
+ (𝐸𝐵𝐶𝐷 − 𝐸𝐵𝐶 − 𝐸𝐵 − 𝐸𝐶 − 𝐸𝐵𝐷 − 𝐸𝐵 − 𝐸𝐷 − 𝐸𝐶𝐷 − 𝐸𝐶 − 𝐸𝐷 )

The full calculation of the 3-body estimate is:

𝐸3−𝑏𝑜𝑑𝑦
= 𝐸𝐴 + 𝐸𝐵 + 𝐸𝐶 + 𝐸𝐷
+ ൫

൯

𝐸𝐴𝐵 − 𝐸𝐴 − 𝐸𝐵 + 𝐸𝐴𝐶 − 𝐸𝐴 − 𝐸𝐶 + 𝐸𝐴𝐷 − 𝐸𝐴 − 𝐸𝐷
+ 𝐸𝐵𝐶 − 𝐸𝐵 − 𝐸𝐶 + 𝐸𝐵𝐷 − 𝐸𝐵 − 𝐸𝐷 + 𝐸𝐶𝐷 − 𝐸𝐶 − 𝐸𝐷
+ 𝐸𝐴𝐵𝐶 − 𝐸𝐴𝐵 − 𝐸𝐴 − 𝐸𝐵 − 𝐸𝐴𝐶 − 𝐸𝐴 − 𝐸𝐶 − 𝐸𝐵𝐶 − 𝐸𝐵 − 𝐸𝐶
+ 𝐸𝐴𝐵𝐷 − 𝐸𝐴𝐵 − 𝐸𝐴 − 𝐸𝐵 − 𝐸𝐴𝐷 − 𝐸𝐴 − 𝐸𝐷 − 𝐸𝐵𝐷 − 𝐸𝐵 − 𝐸𝐷
+ 𝐸𝐴𝐶𝐷 − 𝐸𝐴𝐶 − 𝐸𝐴 − 𝐸𝐶 − 𝐸𝐴𝐷 − 𝐸𝐴 − 𝐸𝐷 − 𝐸𝐶𝐷 − 𝐸𝐶 − 𝐸𝐷
+ (𝐸𝐵𝐶𝐷 − 𝐸𝐵𝐶 − 𝐸𝐵 − 𝐸𝐶 − 𝐸𝐵𝐷 − 𝐸𝐵 − 𝐸𝐷 − 𝐸𝐶𝐷 − 𝐸𝐶 − 𝐸𝐷 )

Calculations of 2-body and 3 body estimates were performed using 

Microsoft Excel. 

Methods
The GAMESS total energy value at step 0 was subtracted from each 

energy value. The relative energy data calculated by GAMESS and 

estimated with the 2-body and 3-body methods were plotted on a graph 

(Figure 3).

Figure 2. Relative energy values at nineteen points in the proton 

transfer. Total energy determined by GAMESS is shown as well as 

energy values estimated using the 2-body and 3-body methods.

For each of the steps tested, the GAMESS total energy was subtracted 

from the total energy estimated by the 3-body method. The difference 

between the values was graphed (Figure 4).

Figure 3. Differences between the GAMESS total energy and the 

energy estimated by the 3-body method at nineteen points in the proton 

transfer reactions. 

For each of the steps tested, the GAMESS total energy was subtracted 

from the total energy estimated by the 2-body method. The difference 

between the values was graphed (Figure 4).

Figure 4. Differences between the GAMESS total energy and the 

energy estimated by the 2-body method at nineteen points in the proton 

transfer reactions. 

Results

Conclusions

Due to its low mean absolute error of 1.21 kcal/mol and clear matching of 

the trend of the actual energy, the 3-body method appears to be an accurate 

method of estimating the energy of the system being studied. Of the 

nineteen steps in the proton transfer reactions that were tested, the greatest 

variance of this estimate from the actual energy was 2.46 kcal/mol. When 

only using the 2-body method, the estimates are not nearly as good, with a 

mean absolute error of 9.13 kcal/mol. The 2-body estimates did not appear 

to follow the same trend as the actual energy values. The 2-body method 

appeared to perform the worst when it was ambiguous which fragment an 

atom belonged to. It appears that the worst performance of the 3-body 

method occurred in similar circumstances.
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One major goal of computational chemistry is to be able to calculate the 

potential energy of molecular systems. Knowing the energy of a system can 

allow predictions to be made about the system’s reactivity and other 

chemical properties. Unfortunately for the exact energy of a system to be 

calculated, the time-dependent Schrodinger equation must be solved for the 

system. Since this quantum-mechanical equation must incorporate the 

interactions between each nucleus and each electron in the system, this 

quickly becomes impossible to solve as a system’s size increases. This is 

the purpose of molecular fragmentation methods of estimation. The basic 

idea of fragment-based methods is that the total energy of a system can be 

determined by summing the energies of smaller fragments in the system. 

The Schrodinger equation for these fragments has fewer interactions to 

account for, and therefore it will be possible to solve for smaller fragments 

where it would be impossible to solve for an entire system.1

Molecular fragmentation methods can be divided into three general 

categories.2 The first category are the divide-and-conquer methods. These 

methods sum the electron density of subsystems to estimate the electron 

density of the overall system.3 The second category are the transferrable 

approaches. One example of this is the systematic molecular fragmentation 

method. This method has fragments which overlap, with some atoms being 

included in more than one fragment. This is the way that this method 

accounts for the interactions between fragments.4 The last category of 

fragmentation methods are the many-body methods. These methods utilize 

“many-body expansion,” which include fragments made up of several 

smaller fragments.5 These fragments are incorporated in sums which 

account for the interactions between the smaller fragments. The methods 

used in this project are the 2-body and 3-body expansion methods. The 2-

body method incorporates fragments made up of 2 smaller fragments while 

the 3-body method incorporates these as well as fragments made up of 3 

smaller fragments.

The methods were tested on an NH3(H2O)3 system involved in atmospheric 

nucleation. A geometry optimization was performed on this system by 

Angie Hartman using GAMESS.6 In this optimization the positions of a 

nitrogen, a hydrogen, and an oxygen atom were all held constant. A 

minimum-energy geometry for the system was unable to be determined by 

GAMESS, but several proton transfer reactions occurred during the 

geometry optimization. Fifty steps of this optimization were performed by 

GAMESS to attempt to find an optimum geometry for this system.

The objective of this project was to determine how 2-body and 3-body 

estimates for the energy of this NH3(H2O)3 system at various points in the 

geometry optimization compared to the total energy of the system. This is a 

potentially challenging system to use a fragment-based method with due to 

the definition of each fragment changing as the proton transfers occurred. 

By looking for trends in how the many-body estimates differ from the 

actual energy, weaknesses of the methods can be determined, and new 

methods can be developed. If the energy of the NH3(H2O)3 system can be 

estimated accurately enough, larger atmospheric systems could possibly be 

studied by breaking them down into fragments which can be studied with 

the many-body expansion method. 
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GAMESS Total 2 Body 3 Body

The difference data in Figure 3 was used to determine the minimum, 
maximum, and mean absolute error for the 3-body method (Table 1).
Table 1. Minimum, maximum, and mean differences between the 3-
body estimate and the GAMESS total energy.

The difference data in Figure 4 was used to determine the 
minimum, maximum, and mean absolute error for the 2-body 
method (Table 2).
Table 2. Minimum, maximum, and mean differences between 
the 2-body estimate and the GAMESS total energy.

Energy Difference (kcal/mol) Step

Minimum -1.605 28

Maximum -19.523 31

Mean 9.126 -

Energy Difference (kcal/mol) Step

Minimum 0.682 50

Maximum 3.031 23

Mean 1.402 -


