

Introduction

- Natural Language Processing allows for extracting significant words from natural language expressions
- Computing with Words is useful for inferring words from natural languages, and applying their meaning to an application
- Joining these two fields will allow for more advanced application of natural language processing, as meaning and significance can be applied to what Natural Language Processing can extract

Hypothesis

A program can be written to convert a natural language expression stored as lambda calculus into Generalized Constraint Language.

Method

- Program was written in Java
- Used Strings to take in input
- Constructed initial relationship (ex. X is R)
- Evaluated words and relationships to determine modality
- Output was the GCL constructed from the lambda calculus expression

Natural Language Phrases in Lambda Calculus **Converted into Generalized Constraint Language** Matthew Dill **Computer Science Department**

Advisor Dr. Marhamati

Explanation of Modalities Used in this Study

Modality	Meaning	Example	For\/h
Blank	Shows direct relationship	Distance of robot <i>is</i> close	R isPur
V	Shows truth probability	(Status of tank of gas <i>is</i> full) <i>isv</i> somewhat true	sigr lana • Mo
U	Shows usuality	(Taste of food <i>is</i> good) <i>isu</i> not usually	whi rela
p	Shows likelihood	(Contents of groceries <i>is</i> milk) <i>isp</i> likely	

Examples of Inputs and Outputs

Sentence	Lambda Calculus	GCL	The r t
The robot is close to the wall.	(λx.λy.distance(y, x))	Distance of robot is close	express was all the m • Add Dr. Z • Add lear accu
The tank of gas is full.	(λx.λy.status(y, x))(v.0.7)	(Status of tank of gas <i>is</i> full) <i>isv</i> somewhat true	
The food tastes good.	(λx.λy.taste(y, x))(u.0.45)	(Taste of food <i>is</i> good) <i>isu</i> not usually	
The groceries contain milk.	(λx.λy.contents(y, x))(p.0.8)	(Contents of groceries <i>is</i> milk) <i>isp</i> likely	

GCL Overview

rmatted as X is R nere X is a linguistic variable and the constraint on X pose is to show the meaning of nificant words in a natural guage expression dality can also be applied, ich is used to show the specific ationship between X and R

Conclusion

program was successfully able to translate the lambda calculus essions into GCL. The program also ble to correctly detect and output modality of the original sentence.

Future Work

the other modalities defined by Zadeh to the program's capabilities

the functionality for the program rn from past translations for higher uracy