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ABSTRACT

Evaluation and Understandability of Face Image Quality Assessment.

Mohammad Iqbal Nouyed

Face image quality assessment (FIQA) has been an area of interest to researchers as a
way to improve the face recognition accuracy. By filtering out the low quality images we can
reduce various difficulties faced in unconstrained face recognition, such as, failure in face or facial
landmark detection or low presence of useful facial information. In last decade or so, researchers
have proposed different methods to assess the face image quality, spanning from fusion of quality
measures to using learning based methods. Different approaches have their own strength and
weaknesses. But, it is hard to perform a comparative assessment of these methods without a
database containing wide variety of face quality, a suitable training protocol that can efficiently
utilize this large-scale dataset. In this thesis we focus on developing an evaluation platfrom using
a large scale face database containing wide ranging face image quality and try to deconstruct
the reason behind the predicted scores of learning based face image quality assessment methods.
Contributions of this thesis is two-fold.

Firstly, (i) a carefully crafted large scale database dedicated entirely to face image quality
assessment has been proposed; (ii) a learning to rank based large-scale training protocol is devel-
oped. Finally, (iii) a comprehensive study of 15 face image quality assessment methods using 12
different feature types, and relative ranking based label generation schemes, is performed. Evalua-
tion results show various insights about the assessment methods which indicate the significance of
the proposed database and the training protocol.

Secondly, we have seen that in last few years, researchers have tried various learning based
approaches to assess the face image quality. Most of these methods offer either a quality bin or
a score summary as a measure of the biometric quality of the face image. But, to the best of
our knowledge, so far there has not been any investigation on what are the explainable reasons
behind the predicted scores. In this thesis, we propose a method to provide a clear and concise
understanding of the predicted quality score of a learning based face image quality assessment. It
is believed that this approach can be integrated into the FBI’s understandable template and can
help in improving the image acquisition process by providing information on what quality factors
need to be addressed.
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Chapter 1

Introduction

It has been well agreed upon by researchers [2–4] that, biometric sample quality is defined as a
measure of a samples utility to automatic matching. It has been refered as an intrinsic physical
data content. National Institute of Standards and Technology (NIST) defined biometric quality
scores as - “the accuracy with which physical characteristics are represented in a given biometric
data” [5,6]. Note that, the term quality here, is not just limited to image size, resolution, dimension,
color depth and any acquisition parameters. We know that, in ideal scenario, the image acquisition
process should produce high quality images that are ideal for feature extraction and matching in
later steps. But in real-world cases, live samples are obtained under unconstrained environments
which necessitates preprocessing the non-ideal real world image to either enhance quality and
remove different types noises present in the image. For example, face images obtained in non-ideal
conditions can have blurriness, large pose variations and poor illumination. Therefore, quality of the
biometric data, such as face images, is a very important factor in ensuring robustness of any security
system. By using sophisticated sensor technologies and by applying advanced noise removal and
image enhancement methods the condition of the low quality face images can be improved. Thus,
assessment of quality (and enhancement afterwords if necessary) is crucial in any biometric modality,
especially in face biometrics. But, till today, face image quality assessment is a non-trivial problem
because of a multitude of behavioral and extraneous conditions that can simultaneously affect the
face appearance. Moreover, there is a major difference between quality assessment of face images
and the traditional image and video quality assessment in terms of its multiple objectives, e.g.,
to ensure its fidelity to the human visual system (HVS), generating feedback to image acquisition
system, predict face matching performance, securing the image enrollment process and in case of
multimodal biometrics, provided a weight for deciding merger.

Face image quality assessment (FIQA) has been an area of interest to researchers as a
way to improve the face recognition accuracy. By filtering out the low quality images we can
reduce various difficulties faced in unconstrained face recognition, such as, failure in face or facial
landmark detection or low presence of useful facial information. In last decade or so, researchers
have proposed different methods to assess the face image quality, spanning from fusion of quality
measures to using learning based methods. Different approaches have their own strength and
weaknesses. But, it is hard to perform a comparative assessment of these methods without a
database containing wide variety of face quality, a suitable training protocol that can efficiently
utilize this large-scale dataset. In the first part of this thesis, (i) a carefully crafted large scale
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database dedicated entirely to face image quality assessment has been proposed; (ii) a learning
to rank based large-scale training protocol is developed. Finally, (iii) a comparative study of
representative face image quality assessment methods is conducted using 12 different feature types
is performed. Evaluation results show various insights about the assessment methods which indicate
the significance of the proposed database and the training protocol.

Recent studies (including our work in the first part of this thesis) have shown that a
learning-based paradigm can do better than the traditional heuristic methods [7]. But, these
methods usually provides a quality score summary or a bin label. This single value prediction does
not provide use much information to understand what are the underlying factors regarding the
quality change. Since it has been found that, biometric quality of face image is defined in terms
of automatic face recognition performance, human visual perception of image quality may not be
well correlated with recognition performance [2, 3, 7]. Therefore, intuitive judgement by visually
inspecting the predicted face image is not enough to understand how the learning based method
has learned to label quality itself. In the second part of this thesis, we propose a novel method,
which provides human understandable information for face image quality assessment, which can
help address the issues in quality assessment of face images. We believe that this novel approach can
give a better understanding about the characteristics of learning based quality assessment method
in consideration.

1.1 Summary of contributions

• Developing of a large scale quality database containing a wide range of face image qualities.

• Establishing a learning to rank based face image quality label generation method for the large
scale data set.

• A comparative evaluation of a 15 different learning based representative FIQA methods along
with a traditional FIQA approach, which use 12 different feature types for quality assessment.

• Define the understandable face image quality (UFIQ) paradigm, and how a mapping from
score summary to heuristic attributes can provide understanding regarding quality change.

• Establish the understandable face quality method using the help of statistical measures.

• Provide experimental evaluation of understandable face image quality.

1.2 Organization of Thesis

The thesis has been divided into two different parts based on the handled problems. In chapter
2, we present the comparative assessment of face image quality assessment method using a large
database. We describe the organization of the large scale face database focused on face image
quality, training protocol development and comparative analysis of different representative face
image quality assessment methods. In chapter 3, we describe the problem of understandable face
image quality assessment, how we approach to solve it, the statistical method to understandability
using heuristic attributes and finally experimental evaluation and discussions are provided. Finally,
we conclude and mention plans regarding future works in Chapter 4.
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Chapter 2

Evaluation of Face Image Quality
Assessment Methods on a Large
Dataset

2.1 Introduction

In the field of biometrics research, the term biometric quality is defined as a measure of a sample’s
utility to automatic matching [2–4]. National Institute of Standards and Technology (NIST) has
defined biometric quality score as the accuracy with which physical characteristics are represented
in a given biometric data [5, 6]. The quality of biometric data is an important issue to ensure
the robustness of the biometric system. In various real world scenarios, samples may be collected
in non-ideal conditions, which needs a quality assessment before recognition. Estimation of the
quality of face images is a non-trivial problem. The reason is, there can be a large number of
behavioral and extraneous conditions that can impact on the face appearance in images, such as,
different facial variations, image acquisition devices, and environmental conditions. The quality of
the input samples can vary from one system to another. Moreover, face image quality assessment is
different from the traditional image or video quality assessment, because it also has to ensure several
other criteria as well, e.g., it has to provide a reliable prediction on face matching performance,
generate feedback on the quality of the image acquisition, contribute to the robustness of the face
registration process, and provide a weight for each modality, in the case of multimodal biometrics.
Researchers have worked on developing different biometric quality assessment methods for face
images, however, all these methods may have either used a single, or a combination of few public
databases, privately collected face images, and surveillance videos for training and testing (see
Table 2.1). Even the recently proposed, deep learning based FIQA methods have used relatively
small datasets, e.g., [8] used video frames of 37, 213 images of 93 subjects, [9] used ChokePoint
dataset of 64, 204 images of 25 subjects, and [10] used combination of Color FERET and Kinect
Face database containing a total of 11, 338 of 994 subjects to train their deep models. So far,
there is no large scale database specifically built for benchmarking face image quality assessment
methods, to the best of our knowledge. Also, lack of a reliable quality label generation strategy
pose further problem for such large databases. In this chapter, a large-scale database named “Face
Image Quality Database (FIQDB)” is presented, containing more than 500K images of more than
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14K subjects. To demonstrate its usefulness, a comprehensive evaluation is conducted on a set of
representative face image quality assessment methods with specially selected feature types. Our
main contributions include:

• Developing of a large scale quality database containing a wide range of face image qualities.

• Establishing a learning to rank based face image quality label generation method for the large
scale data set.

• A comparative evaluation of a 15 different learning based representative FIQA methods along
with a traditional FIQA approach, which use 12 different feature types for quality assessment.

2.2 Related Work

There have been various approaches to assess the face image quality [11]. Table 2.1 provides a brief
review of face image quality assessment approaches developed in last decades or so. A traditional
approach to assess face image quality is to use various facial attributes measures, and fuse these
values as quality score. Hsu et al. [12] presented a quality assessment framework that employs a
classification based score normalization process for various quality metrics and techniques to fuse
those quality scores into an overall quality score. Fourney and Laganiere [13] proposed a quality
assessment method based on 6 different criteria, then performed a weighted sum of the measures
to get the overall quality score. Abaza et al. [14] developed an image quality assessment for face
recognition based on five quality factors, then integrated into a generic face quality index (FQI).
They also proposed a face image quality index that combines mutliple quality measures [15]. Omid-
iora et al. [16,17] developed a facial image verification and quality assessment framework (FVQA)
using different algorithms and methods to extract quality measures. Chen and Li [18] presented an
image quality assessment model which produces a noise score for a face image using several quality
measures. Bagdanov et al. [19] proposed two quality measures for face images based on symmetry
and pose. Zhang and Wang [20] proposed three asymmetry-based face quality measures by utilizing
SIFT feature points on face images. Xiong and Jaynes [21] introduced an intrinsic quality measure
using bilateral symmetry, color, resolution and aspect ratio, and performed a weighted summation
to get the quality score. Yao et al. [22] developed an adaptive face image quality measure based on
image sharpness measures. Bhattacharjee et al. [23] proposed a quality metric based on sharpness,
noise, contrast, luminance and eye detection ability. Anantharajah et al. [24] presented a framework
that used face symmetry, sharpness, contrast, closeness of mouth, brightness and openness of the
eye, and employed a neural network to fuse the normalized feature scores. In another work, they
also considered a fusion of all four measures using a weighted summation [25]. Nasrollahi and Moes-
lund did several studies [26–29] where they used a four parameter based face quality assessment
method: head-pose, resolution, sharpness and brightness. They tried different fusion methods, such
as, using fuzzy inference engine [26], or, combining them into one quality score using weighted sum
of normalized values [27, 29]. Nasrollahi et al. [30] also proposed a face quality assessment system
based on ten facial attributes fed to a multilayer perceptron to produce the quality score. Haque
et al. [31] employed a face quality assessment method using the out-of-plan face rotation (pose),
sharpness, brightness and resolution, and calculated the final quality score by linearly combining
the parameters with empirically assigned weight factors. Lin et al. [32] employed a fuzzy infer-
ence engine based data fusion method to integrate four quality criteria. Wei et al. [33] used pose,
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brightness, and face size as quality features, and used a weighted averaging scheme for fusion. Gao
et al. [34] developed a face symmetry based quality score generation method. Long and Li [35]
presented a five feature based near infrared face image quality assessment system. They combined
the features into a general score using a weighted sum, where weights were empirically set. Sang
et al. [36] presented methods using Gabor feature based facial symmetry and sharpness measure.
De Marisco et al. [37] proposed new quality indices based on pose and illumination distortion and
face symmetry. Abboud et al. [38] presented two no-reference image quality measures for face
recognition, called symmetrical adaptive local quality index (SALQI) and middle halve (MH).

Another traditional approach for face quality assessment is to use a standard face template,
and use the discrepancy from this template to the query image as the measure of face quality.
Kryszczuk et al. [39] used a combination three quality measures: the difference of mean of query
image from the mean of the normalized images of the reference set, normalized cross-correlation
between query image and the average face template, and block based likelihood estimation. Later
they modeled the quality of the face images by creating an average face template out of reference
images, they also incorporate sharpness estimation for quality assessment [40]. Kryszczuk and
Drygajlo [41,42] used absolute distance between the log-likelihood ratio and the decision threshold,
sum of log-likelihoods, correlation with average face template and image sharpness estimation as
quality measures. Truong et al. [43] used a quality measure that reflects the difference in quality
between a template image and quality image.

Researchers have also shown interest in learning based face image quality assessment
methods. Liao et al. [44] employed a hierarchical binary decision tree classifier based on support
vector machines (SVM) to categorize the face images into five quality levels. Bharadwaj et al. [45]
used Gist and sparsely pooled Histogram of Oriented Gradient (HoG) features and a one-vs-all
multi-class SVM to classify face images into four quality categories. Bhatt et al. [46, 47] presented
a quality assessment algorithm which computes a quality vector comprising no-reference quality,
edge spread, spectral energy, and pose, and then trained SVMs for decision making. Ozay et al. [48]
proposed a unified probabilistic framework to simultaneously predict the quality of the facial image
samples and perform quality-based face recognition by exploiting these relationships. Wong et al. [7]
proposed a patch-based face image quality assessment algorithm which quantifies the similarity of
a face image to a probabilistic face model. El-Abed et al. [49] used a no-reference based image
quality metric called BLIINDS, SIFT keypoints, DC coefficient, and, mean and standard deviation
of scales as features and then used a SVM to predict the quality. Chen et al. [50] proposed a
learning to rank based framework for assessing the face image quality. Kim et al. [51] proposed a
learned FIQ assessment method that considers visual quality and mismatch between training and
test face images for quality assessment. Recently, deep learning based quality assessment methods
have also been introduced by different researchers. Liu et al. [8] proposed a non-reference face
image assessment algorithm based on the deep features extracted from the VGG network. Vignesh
et al. [9] proposed a FQA algorithm based on mimiking the recognition capability of a given face
recognition algorithm by using a Convolutional Neural Network (CNN). Pan et al. [10] trained
the VGG-16 deep CNN to output a general face quality metric which consideres various quality
factors such as bright, contrast, bluarriness, occlusion, pose etc. Thorsten et al [52] used a type of
Recurrent Neural Network (RNN) called Long Short-Term Memory (LSTM) to perform a binary
quality classification.
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Table 2.1: A brief overview of FIQA methods. (Details of the databases can be found in [1])

Paper Database Features / Quality metrics Method / Model

Hsu et al. [12] FRGC 2.0, passport
database (private)

Detectable Eyes, Face Geometry,
Good exposure and contrast, well
focused, proper lighting, head pose,
wearing eyeglasses, presence of face,
high resolution skin texture, live-
ness, natural expression etc.

Fusion of quality
metrics

Fourney et al. [13] Videos (private) Pose, illumination, sharpness, pres-
ence of human skin, image resolu-
tion

Fusion of quality
metrics

Abaza et al. [14,
15]

CAS-PEAL,
Yale, FMTC
(FERET+MBGC),
FOCS, QFIRE

Contrast, brightness, focus, sharp-
ness, illumination

Fusion of quality
metrics

Omidiora et al.
[16, 17], Abayomi
et al. [53]

SCFace, BFSC, local
database (private)

Faceness, pose, contrast, illumina-
tion, similarity

Fusion of quality
metrics

Chen et al. [18] CAS-PEAL Occlusion, face-to-camera distance,
pose, uneven illumination

Fusion of quality
metrics

Bagdanov et al.
[19]

Videos (private) Image symmetry, face pose Quality metric
thresholding

Bhattacharjee et
al. [23]

IITK Eye detection, sharpness, noise,
contrast, luminance

Fusion of quality
metrics

Anantharajah et
al. [24, 25]

Honda/UCSD Face symmetry, sharpness, con-
trast, brightness, expression neu-
trality (mouth closeness), eye open-
ness

Fusion of quality
metrics

Nasrollahi et al.
[26–29], Haque et
al. [31], Lin et al.
[32]

CVL, AT&T (ORL),
FERET, Face96, Video
database (private)

Pose, sharpness, brightness, image
resolution

Fusion of quality
metrics

Nasrollahi et al.
[30]

FERET, CVL, Face96,
local database (private)

Pose, brightness, sharpness, reso-
lution, eye openness, gaze, mouth
closeness

Fusion of quality
metrics

Wei et al. [33] ICP Workshp Evalua-
tion Data

Pose, sharpness, brightness, face
size

Fusion of quality
metrics

Long et al. [35] CBSR (private) Pose, brightness, sharpness, resolu-
tion, eye openness, mouth closeness

Fusion of quality
metrics

De Marsico et al.
[37]

FERET, LFW, SCFace Pose, illumination, and symmetry
distortion

Quality metric
thresholding

Abboud et al. [38] YaleB Universal Image Quality Index
(UIQI), symmetrical adaptive lo-
cal quality index (SALQI), middle
halve (MH)

Quality metric
thresholding
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Table 2.1: A brief overview of FIQA methods. (Details of the databases can be found in [1])
(continued.)

Kryszczuk et al.
[39, 41,42]

BANCA Distance between log-likelihood and
decision threshold, Sum of log-
likelihoods, Correlation with an av-
erage face template, sharpness

Gaussian Mixture
Model (GMM)

Truong et al. [43] Local database (pri-
vate)

brightness, contrast, focus, illumi-
nation

Fusion of quality
metrics

Raghavendra et
al. [54]

Video (private) Pose and texture features extracted
using GLCM

GMM Classifier

Vatsa et al. [55] Local database (pri-
vate)

Redundant DWT based quality
metrics

Multiclass SVM
classifier trained
on fusion score

Liao et al. [44] Local database (pri-
vate)

Gabor feature SVM

Bharadwaj et al.
[45]

CAS-PEAL, SCFace Gist, HoG Multi-class SVM

Bhatt et al. [46],
Bharadwaj et al.
[47]

WVU Multimodal
Database, MBGCv2,
Multi-PIE, AR, LEA
(private)

Energy spectrum, Edge spread,
Blockiness, Activity, ZC-rate, Pose

SVM

Ozay et al. [48] IMM Face Database Appearance coefficient of an Active
Appearance Model (AAM)

Maximum Likeli-
hood Estimation
(MLE)

Wong et al. [7] FERET, PIE, Choke-
point

2D Discrete Cosine Transform
(DCT) feature

Probabilistic face
model to measure
distance from an
‘ideal’ face

El-Abed et al. [49] Faces94, ENSIB,
FERET, AR

BLIINDS, SIFT keypoints, DC co-
efficients, mean of scale, standard
deviation of scale

Multiclass SVM

Chen et al. [50] LFW,ALFW,FRGC,FERET,ID
card photo db (private)

HoG, Gabor, Gist, LBP, CNN Ranking SVM

Kim et al. [51] FRGC 2.0 Pose/alignment, blurriness, bright-
ness, mismatch in metric, color mis-
match

AdaBoost

Berrani et al. [56] Asian Face Image DB,
FDB15

Image vectors processed using clas-
sical PCA

RobPCA

Sellahewa et al.
[57]

Extended YaleB, AT&T
(ORL)

Universal image quality index
(UIQI)

Quality metric
compared against
a reference image

Abdel-Motaleb et
al. [58]

WVU face database,
FERET

Sharpness, illumination, pose, ex-
pression assessment

GMM-UBM clas-
sifier

Kim et al. [59, 60] FRGC 2.0, Local
database (private)

Pose, illumination, sharpness, eye
openness, contrast, resolution

Fusion of quality
metrics

Liu et al. [8] Surveillence video db
(private)

VGG deep feature support vector re-
gression(SVR)
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Table 2.1: A brief overview of FIQA methods. (Details of the databases can be found in [1])
(continued.)

Vignesh et al. [9] ChokePoint dataset Mutual Subspace Method (MSM)
based match scores from a face
recognition method using LBP and
HoG features

Custom defined
CNN

Best-Rowden and
Jain [61]

LFW, IJB-A Deep-320 (deep features), Feat-5
(Hog, Gabor, Gist, LBP, CNN)

SVR, RankSVM

Pan et al. [10] Color FERET, Kinect-
FaceDB

Deep features VGG-16 network

Yu et al. [62] CASIA-Webface, LFW,
YoutubeFaces

Deep features LightCNN

Thorsten et al.
[52]

AR, FRGC, NCKU
face, Yale Face, CASIA
Face V5

Deep features LSTMs

2.3 Face Image Quality Database

Almost all works reviewed in previous section use small datasets for face quality assessment (See also
Table 2.1). To develop a large-scale face image quality database, we have made some preliminary
observations: 1) The database should contain a wide range of quality, hopefully with all possible face
image qualities; 2) If face matching, is a step towards quality assessment then, the subjects should
have at least two images; 3) It could be useful to have face images with many different qualities for
each subject. For the publicly available face databases, we can find basically two groups of datasets:
1) Controlled: constructed with sets of images taken in several environmental conditions, such as
lighting, expression, accessories, pose, indoor/outdoor, etc. Each of these variations are usually
grouped into data subsets; 2) Real-world: collected from the internet, where images are taken in
unconstrained environments, and then annotated according to the identity. We utilized both data
types by regrouping the controlled subsets each subject, which gives us subjects with varied face
image quality. For, real-world face images, the main concern was to avoid identity noise images.
Manual cleaning was done for some of the comparatively larger real-world datasets as much as
possible.

We selected 40 public databases from the list of face databases available in the face recog-
nition homepage [1]. Our composite database contains face images taken in controlled and un-
constrained real-world scenarios. The resulted FIQDB database has a total number of 545, 684
images of 14, 373 subjects. How to ensure that the database is large enough to contain all possible
qualities? It is not trivial because there is no universal consensus about all factors that affect the
face image quality. Controlled face recognition databases are usually constructed with emphasis
on some specific set of imaging conditions, so there is less chance for these databases to cover a
wide range of qualities. Even for datasets with real-world images, there could be a large imbalance
among the image numbers of different quality levels. We assume that by aggregating as many
datasets as possible with varied conditions, we may acquire all possible qualities potentially.

8



Figure 2.1: Quadrature face match graph showing cosine similarity scores between arrow points
and quality scores above/below face image. Cropped faces shown inset.

2.4 Quality Labels

There is no clearly defined method for generating face image quality labels. Rowden and Jain [61]
identified three possible approaches for quality label generation: (1) using a fusing scheme with
different face image quality measures to generate a single score representing overall face image
quality, (2) using human assessors to estimate face image quality, and (3) generating labels from
match scores coming from face recognition methods. A major limitation of using fusion of quality
measures is that there are an overwhelmingly large number of quality factors that can influence
the performance of a face recognition system and their exact count is still unknown. Furthermore,
accurate measurement of image quality measures is still an open problem. Kryszczuk et al. [63]
provided theoretical and experimental results to show that the mapping of quality measures into
one quality score inadvertently causes a loss of information and a reduction of the classifier’s degree
of freedom. Moreover, fusion-based approaches only perform as well as their individual classifiers.

Since the biometric sample quality is typically defined in terms of automatic recognition
performance, human visual perception of image quality may not be well correlated with recogni-
tion performance [2, 3, 45]. Adler and Dembinsky [64] found very low correlation between human
and algorithm measurements of the face image quality. It is evident that human perception and
computer processing are not always consistent. For example, a human may assess a face image
to have good quality because of its sharpness measure, but a recognition algorithm that works in
low frequencies will be inconsistent with the human statement of quality. Human inspection can
improve with adequate training on quality assessment, but it is expensive and time consuming. In
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addition, incorporating a human quality assessor could create other problems, such as inaccuracy
due to the tiredness, boredom, or lack of motivation [65]. These problems will increase more as
the database gets larger. Hsu et al. [66] found some correlation between human assessment and
recognition based measures of face image quality, but also showed that it is more difficult to sep-
arate middle quality images from the low quality than to separate high quality from the middle
quality. Recently, Best-Rowden and Jain [61] did a comparison between match score and human
assessment based quality labeling. The results based on assessing false non-match rate (FNMR)
against “percentage of probe images removed” showed that, match score based labels are much
more efficient in reducing FNMR than human assessment based quality labels. But, directly using
face match scores as labels might not be optimal solution for training learning based face image
quality assessment methods. Beveridge et al. [67] showed that, it is much more common to find
relationships in which two images that are hard to match to each other can be easily matched with
other images of the same person. Figure 2.1 shows an example of low quality image pair of the
same subject matching with high similarity scores, but high and low quality pairs produce lower
similarity scores.

2.4.1 Relevance levels from identification rank

It is relatively easier to evaluate the quality difference between two face images, than individually
assess the absolute quality of a face image. This information can be used to train a ranking
function in a semi-supervised manner to generate quality labels. Rowden and Jain [61] used human
assessment to partially obtain preference information for the training data and then used a matrix
completion technique to generate the preference for the rest of the face images. This kind of
semi-supervised approach is based on the assumption that the human assessments are consistent,
which is actually difficult to satisfy because it is dependent on the expertise of the humans on
assessing the biometric quality. Chen et al. [50] assumed the same quality for all images in one
dataset. This assumption may be unrealistic, because databases constructed using real world
images have different biometric qualities. Another way to generate the preference pairs is from
relevance levels, specially when the number of images is large. In their implementation of large
scale linear RankSVM (denoted as LSLRSVM in this chapter), Lee and Jin [68] used relevance
levels to construct the preference pair matrix. But for their work they used web-search engine
ranks which is widely different than our case where we used different types of image features. In
our work, the image with the higher preference will have a higher relevance level than the other,
which can be represented by a rank or score.

In this work we propose to generate the relevance levels from the identification rank.
Usually the face quality is related to the face recognition method in consideration when the matching
scores are used to compute the quality values. Using a suitable face recognition method, we find
out the match rank of each probe image and use it as its relevance level. We try to resolve the
ambiguity issue in match scores, by ensuring that the gallery is constructed with high quality face
images. Note that, we cannot use the match scores directly as relevance levels because it is not
always the case that the true positive image will have the highest match score. Moreover, human
based relative ranking of each preference pair is also not feasible due to the huge number of pairs
that can be generated for our FIQDB training set.

In order to compute the relevance levels from the identification rank, the gallery images
are sorted in a descending order of similarity score, and then the position of the true positive

10



(TP ) image is located. If the TP image for the i-th probe image is at the r-th position of the
sorted gallery, then the relevance level yi = |G| − r, where G is the gallery set. If K is the set of
relevance levels, then we can write, yi ∈ K ⊂ R and the extracted feature vectors as xi ∈ Rn,
where i = 1, 2, . . . , l, and l is the number of samples. From the relevance levels, we can obtain the
set of preference pairs as,

P = {(i, j)|yi > yj} (2.1)

If p = |P | then, we can construct a preference pair matrix A of size p× l such that,

... . . . i . . . j . . .

A = (i, j)

0 . . . 0 +1 0 . . . 0 −1 0 . . .


...

That is for a preference pair (i, j), s.t. yi > yj the corresponding row in A in the i-th column is +1,
and j-th column is −1. Then, according to Lee and Jin [68], an the objective function of L2-loss
linear RankSVM can be written as,

min
w

1

2
wTw + C(e−AXw)TDw(e−AXw) (2.2)

where C > 0 is a regularization parameter, w is the weight vector, X = {x1,x2, . . . ,xl} is the set
of feature vectors, e ∈ Rp×1 is a vector of ones, and Dw is a p× p diagonal binary matrix following
a conditional property. In prediction, for any test feature vector x, a larger wTx implies that x
should be ranked higher.

Algorithm 1 Quality label generation algorithm

Input: G,P // probes, P = {pi}M−1
i=0 , gallery, G = {gj}N−1

j=0

Input: IG, IP // Identity of gallery and probe sets.
Output: predicted scores {ŷi}m−1

i=0

1: R = {} // R stores the relevance levels
2: k = 0
3: for i = 0, . . . , M-1 do
4: S = {} // S stores the match scores.
5: for j = 0,. . . , N-1 do
6: Si ← Cosine Similarity(pi, gj) // Get match score
7: end for
8: Sort(S,Descend) // Sort in descending order
9: r = FindTPRank(S, IG, IP ) // Get position of the TP feature

10: Rk ← |G| − r
11: k = k + 1
12: end for
13: construct preference pair matrix A using R
14: Divide P into non-overlapping training and test set Ptrain and Ptest
15: Divide Ptrain into subsets Ptr1, Ptr2
16: optimize Eq. (2.2) using Ptr1 and A
17: ŷ ← predict(Ptr2) // Ptr2 is used for training the FIQA methods
18:

19: return predicted quality scores {ŷi}m−1
i=0
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Addressing the large number of pair generation problem: If on an average, l/k instances are with
the same relevance level where k = |K|, the number of pairs in P is

(
k
2

)
×O(( lk )2) = O(l2). This large

number of pairs is the main difficulty to train the RankSVM, because of the memory issue. For a
database, such as our FIQDB with over 500K images, this becomes a huge problem. Airola et al. [69]
showed that it is possible to avoid the O(l2) complexity of going through all the pairs in calculating
the objective function, gradient or other information needed in the optimization procedure, by
employing an order-statistic tree. The complexity can be reduced to O(ln + llogl + llogk + n),
where O(ln) cost is for calculating wTxi, ∀i; n is the average number of non-zero features per
training instance; O(llogl + lk) is for the sum of training losses in Eq. (2.2); and O(n) is for the
regularization term wTw/2.

2.5 Quality Representation

Based on the existing FIQA approaches (Table 2.1, three different feature categories were selected
for the study. They are: 1) a set of traditional face image quality measures, which are referred to
as “heuristic measures”; 2) face recognition features; and 3) natural scene statistics based image
quality features. A total of 12 different feature types are explored for the quality representation: 4
facial, 7 natural scene statistics, and 1 set of heuristic features.

2.5.1 Heuristics (HR) based features

We use the following 14 commonly used quality measures that can be directly calculated from the
image in consideration:
1) Brightness: The average value of the illumination component of all pixels in the face region is
considered as the brightness measure. For a grayscale face image I, the brightness measure B is
calculated as [27,31],

B =
1

MN

M∑
x=1

N∑
y=1

[I(x, y)] (2.3)

where the image size is I is M ×N .
2) Contrast: Image contrast is the difference in color intensities that makes a face distinguishable.
The face image contrast C can be measured using the following [15]

C =

√∑M
x=1

∑N
y=1[I(x, y)− µ]2

MN
(2.4)

where µ is the mean of pixel values in image I.
3) Focus: Edge density measures the average magnitude of the gradient over the face image. The
assumption is that when images are in focus, the average gradient magnitude will be higher than
when the image is out of focus [3, 70–72].
4) Illumination: Spectral energy is used as the illumination measure, which describes abrupt
changes in illumination and specular reflection. The image is tessellated into several non-overlapping
blocks and the spectral energy is computed for each block. The value is computed as the magnitude
of Fourier transform components in both horizontal and vertical directions [13,46].
5) Illumination Symmetry: This is calculated as the absolute difference between the mean intensity
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of left and right sides of the face image.
6) Sharpness: The sharpness measure, denoted by S, is computed by [27]:

S =
1

MN

M∑
x=0

N∑
y=0

(
|I(x, y)−H(I(x, y))|

)
(2.5)

where I(x, y) is the intensity of image I at location (x, y), H(·) is a lowpass Gaussian filter, and
M ×N is the size of the image.
7) Compression: A no-reference based JPEG image quality measure [73] is used to measure the
compression quality.
8-10) Pose estimation (yaw, pitch and roll): Three euler angles in radian are estimated for the
three poses w.r.t the camera center. The angles are in the range [−π, π].
11-13) Eyes and mouth openness: Eyes and mouth openness is calculated based on the rectangular
region detected around the eyes and mouth measured from facial landmarks. The ratio of the width
and height of the detected region is considered. The higher the ratio, the more open the eyes or
mouth. For two eye regions the mean of the ratios is considered.
14) Face symmetry: The mean difference between the original and horizontally flipped images is
considered as the measure of how symmetrical are both sides of the face. The lower the difference,
the more symmetrical [25]. This can also assess the pose and illumination variance of the face.

2.5.2 Weighted sum of heuristic measures (WSHRM)

From Table 2.1 it is evident that most of the traditional fusion based methods use a limited
number of quality measures to calculated their fusion based quality score. We propose to use a
quality measure fusion based approach by aggregating the above mentioned 14 heuristic measures
for quality. To calulate WSHRM, for each image, all heuristic measures are collected and then
normalized. A weighted sum of the normalized measures is used to map the heuristic measures to
a quality score.

QS =

∑n
i=0 Si ∗Wi∑n
i=0Wi

(2.6)

We use the spearman correlation between the individual heuristic measure and the identifi-
cation ranks as the summation weights W . We use the training set Ptr1 to calculate the correlation.

2.5.3 Face recognition (FR) features

It is quite natural to use face recognition features for quality assessment. Several researches have
used face recognition features for FIQA [11, 45, 50, 61]. We chose, four different face recognition
features were chosen, e.g., HoG [74], Gist [75], Gabor [76], and LBP [77], to characterize the face
quality from different aspects.
HOG descriptor [74]: This feature representation is based on local histograms of image gradient
orientations in a dense grid. This is implemented by dividing the image window into small spatial
regions called “cells”. Each cell accumulates a local 1-D histogram of gradient directions or edge
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orientations over the pixels of the cell. The combined histogram of all the cell entries form the
feature representation. To improve robustness against illumination variance, contrast-normalization
is performed on the local responses.

A cell size of 10 × 10 is adopted to capture the spatial information. A 2 × 2 block size
was used to hold the cells with 1 × 1 block overlap to ensure adequate contrast normalization. 8
orientation histogram bins were used where orientation values were evenly spaced. The resulted
feature vector size is 1440 with an image size of 100× 60.

Gabor filters [78]: Due to the biological relevance and computation properties, Gabor wavelets
were introduced to image analysis. As a feature generator, Gabor filters have been widely used
in face recognition. The kernels of Gabor wavelets are similar to the 2D receptive field profiles
of the mammalian cortical simple cells, exhibiting desirable characteristics of spatial locality and
orientation selectivity. The Gabor wavelets (kernels, filters) can be defined as following:

ψµ,v =
||kµ,v||2

σ2
e−||kµ,v ||

2 ||z||2

2σ2 [eikµ,vz − e−
σ2

2 ] (2.7)

where v and µ define the scale and orientation of the Gabor kernel, z = (x, y) denotes the pixel
location, || · || denotes the Euclidean norm operator, and the wave vector kµ,v = kve

iφµ . Here,
φµ = πµ

8 is the orientation parameter and kv = kmax
fv , where f is the spacing factor between filters

in the frquency domain. Given an input face image I, its convolution with a Gabor wavelet ψµ,v
can be defined as

Gµ,v = I(z) ∗ ψµ,v(z) (2.8)

were ∗ denotes the convolution operator. For each Gabor kernel, at every image pixel z, a complex
number containing two parts; real Re(·) and imaginary Im(·), can be obtained. Based on these
two parts, the magnitude |Gµ,v(z)| is computed as follows:

|Gµ,v| =
√
Im(Gµ,v(z))2 +Re(Gµ,v(z))2 (2.9)

A Gabor filter bank with filter size 29 × 29 at 3 scales and 8 orientations was used to
convolve with the cropped face image of size 100×60. Then the magnitude part of Gabor response
was extracted, down sampled by a factor of 10 and normalized. The size of the feature vector is
10× 6× 3× 8 = 1440.

GIST descriptor [75]: GIST summarizes the gradient information (scales and orientations) for
different parts of an image, which provides a rough description, “the gist”, of the scene. This
descriptor is computed by convolving the image with 32 Gabor filters at 4 scales, 8 orientations,
producing 32 feature maps of the same size of the input image. Each feature map is divided into
36 regions by a 6x6 grid and then we average the feature values within each region. Concatenating
the 36 averaged values of all 32 feature maps results in a 36 × 32 = 1152 size GIST descriptor .
Before convolving, the image is usually pre-filtered using the local contrast scaling method.

Local Binary Pattern (LBP) [77]: LBP is a type of visual descriptor that encode local texture
information. It is a powerful feature for texture extraction. To create LBP feature, the image is
divided into cells. For each pixel in a cell, it is compared with the pixel to each of its 8 neighbors
by following in a clockwise or counter-clockwise direction. If the center pixel’s value is greater than
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the neighbor’s value, a value of 1 is assigned, otherwise, 0 is assigned. This gives an 8-digit binary
number, which is usually converted to decimal for convenience.

An input image of size 100 × 60 is scaled to half its size of 50 × 30, then convolved with
8 3 × 3 LBP filters. The response matrices are then converted to binary based on the positive
or negative values, and combined by multipying with corresponding positional weights. Resultant
LBP Feature size is 50× 30 = 1500.

2.5.4 Natural Scene Statistics (NSS) features

Natural scene statistics (NSS) models seek to capture the statistical properties of natural scenes
that hold across different contents. Presence of distortions in natural images alters the natural sta-
tistical properties of images, thereby rendering them and their statistics unnatural. Image quality
assessment methods based on NSS capture this ”unnaturalness” in the distorted image and relate
it to the perceived quality. Several researchers have tried to incorporate NSS based IQA methods
for FIQA: El-Abel et al. [49] used BLIINDS features [79] combined with others. Bharadwaj et
al. [11] used BRISQUE index [80] as a quality metric to study its behavior with respect to match
scores obtained from face recognition systems. Recently, Liu et al. [81] have done a performance
evaluation of different no-reference measures for face biometrics. A comparative study on the NSS
features with other popular feature types could tell us more about the usefulness of this feature
type for FIQA. We selected seven NSS feature types from well known no-reference image qual-
ity assessment (NR-IQA) algorithms for our study. These are: 1) Spatial and spectral entropy
features [82], 2) BRISQUE features [80], 3) BLIINDS-II features [79], 4) DIIVINE features [83],
5) Curvelet features [84], 6) NIQE features [85] and 7) TMIQA features [86]. Sizes of the NSS
features are: Spatial and spectral entropy features 12, BRISQUE features 36, BLIINDS-II features
24, DIIVINE features 88, Curvelet features 12, NIQE features 36 and TMIQA features 36.

1) Spatial and spectral entropy features [82]: Natural photographic images are highly structured in
the sense that their pixels exhibit strong dependencies in space and frequency. These dependencies
carry important information about the visual scene. Localized image entropy features can capture
the degree of local image structure and the entropy degree can denote the dependence level between
pixels.

To extract these features, input image is first downsampled by a factor of 2, enabling
simple multiscale analysis. The image is decomposed into 3 scales: low, middle and high, yielding
3 scale responses. These responses are partitioned in 8 × 8 blocks, called local image patches.
For each image blocks spatial and frequency entropies are computed. In final step, a percentile
feature pooling is performed, the spatial and spectral entropies are sorted in non-decreasing order.
This provides two ordered sets S = {s1, s2, . . . , sn}, and F = {f1, f2, . . . , fn}, where si and fi are
local spatial and spectral entropies, respectively. 60% of the central elements are extracted from
S, which produces the set Sc = {sb0.2mc, sb0.2mc+1, . . . , sb0.8mc}, also 60% of the central elements
are extracted from F , which produces Fc = {fb0.2mc, fb0.2mc+1, . . . , fb0.8mc}. The following formula
produces the features from each scale:

f = (Sc, Sγ , Fc, Fγ) (2.10)

where Sc and Fc are mean of Sc and Fc, Sγ and Fγ are skewness of S and F , respectively. For three
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scales, the combined final feature size becomes 2× 2× 3 = 12.

2) BRISQUE features [80]: Blind/Referenceless Image Spatial QUality Evaluator (BRISQUE) ap-
proach is based on the assumption that when image distortions are introduced statistical regularities
of natural images are disturbed. It uses scene statistics of locally normalized luminance coefficients
to quantify possible losses of “naturalness” in the image due to the presence of distortions. The
features used are derived from the empirical distribution of locally normalized luminances and
products of locally normalized luminances under a spatial natural scene statistic model. Given an
input image, locally normalized luminances are computed via local mean subtraction and divisive
normalization. Local mean (µ) and contrast (σ) are computed by.

µ(i, j) =
K∑

k=−K

L∑
l=−L

wk,lIk,l(i, j), (2.11)

σ(i, j) =

√√√√ K∑
k=−K

L∑
l=−L

wk,l(Ik,l(i, j)− µ(i, j))2, (2.12)

where w is 2D Gaussian weighting function. Then a zero mode asymmetric generalized Gaussian
distribution (AGGD) is utilized to produce the features (γ, σ2

l , σ
2
r ):

f(x; γ, σ2
l , σ

2
r ) =


γ

(βl+βr)Γ( 1
γ

)
e
−(−x

βl
)γ ∀x ≤ 0

γ

(βl+βr)Γ( 1
γ

)
e
−( x

βr
)γ ∀x > 0

(2.13)

where

βl = σl

√√√√Γ( 1
γ )

Γ( 3
γ )

(2.14)

βr = σr

√√√√Γ( 1
γ )

Γ( 3
γ )

(2.15)

and Γ(·) is the gamma function

Γ(a) =

∫ ∞
0

ta−1e−tdt, a > 0 (2.16)

The parameter γ controls the shape of the distribution, while σ2
l and σ2

r are scale parameters that
control the spread on each side of the mode, respectively. Mean of the distribution is also used as
a feature, which is defined as below:

η = (βr − βl)
Γ( 2

γ )

Γ 1
γ

(2.17)

16 parameters are calculated by computing (γ, σ2
l , σ

2
r , η) along four orientations, which gives a total

of 18 features (including local mean and contrast) per scale. Two scales are used to compute all
features, by low pass filtering and downsampling by a factor of 2, to capture multiscale behavior.
This gives the final feature of size 36.
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3) BLIINDS-II features [79]: BLind Image Integrity Notator using DCT Statistics - II (BLIINDS-
II) is a blind/ no-reference image quality assessment (IQA) algorithm which uses a natural scene
statistics (NSS) model of discrete cosine transform (DCT) coefficients. The features are based on
an NSS model of the image DCT coefficients. The input image, first subjected to local 2-D DCT
coefficient computation. The image is partitioned into equally sized 5×5 blocks, called local image
patches. Then on each of these blocks, a local 2-D DCT is computed. 4 model based features are
computed: 1) Shape parameter (γ), 2) coefficient of frequency variation (ζ), 3) energy subband
ratio measure (R), and 4) orientation feature. The shape parameter (γ) is a model-based feature
obtained by using the generalized Gaussian density function:

f(x|α, β, γ) = αe(−β|x−µ|)γ , (2.18)

where µ is the mean, and α and β are the normalizing and scale parameters. Coefficient of frequency
variation feature is defined as:

ζ =

√
Γ(1/γ)Γ(3/γ)

Γ2(2/γ)
− 1, (2.19)

The energy subband ratio measure is computed by the following function:

Rn =
|En − 1

n−1

∑
j<nEj |

En + 1
n−1

∑
j<nEj

, (2.20)

where Rn is defined for n = 2, 3, and the means of R2 and R3 are used.

For orientation features, DCT coefficients are collected along three orientation bands. A
generalized Gaussian model is fitted to the coefficients and the variance of ζ is computed along
each of the three orientations.

All features are computed for all blocks in the image. Then the feature is pooled by aver-
aging over the highest 10th percentile and over all (100th percentile) of the local block scores across
the image. This provides 2 numbers for each feature per image, resulting in a 2 × 4 = 8 features.
The feature extraction is repeated 3 times after low-pass filtering of the image, and subsampling it
by a factor of 2, which gives a final feature of size 3× 8 = 24.

4) DIIVINE features [83]: Distortion Identification-based Image Verity and INtegrity Evaluation
(DIIVINE) index is a NSS based QA algorithm that assesses the quality of a distorted image with-
out the need for a reference image. The input image goes through a wavelet decomposition using a
steerable pyramid decomposition, over two scales and six orientations. The resulting decomposition
results in 12 subbands across orientations and scales. The obtained subband coefficients are then
utilized to extract a series of statistical features, stacked to form a vector, which is a statistical
description of the distortion in the image. The features extracted are: 1) Scale and orientation
selective statistics (f1 − f24), 2) orientation selective statistics (f25 − f31), 3) correlations across
scales (f32 − f43), 4) spatial correlation (f44 − f73), and 5) across orientation statistics (f74 − f88).

f1 − f12 correspond to variance σ2 accross subbands, f13 − f24 correspond to the shape
parameter γ across subbands. f25 − f30 correspond to γ from the statistics across scales over
different orientations, while f31 corresponds to γ from the statistics across subbands. The structural
correlation is computed as

ρ =
2σxy + C2

σ2
x + σ2

y + C2
(2.21)
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where σxy is the cross-covariance between the windowed regions from the band-pass and high-pass
bands, σ2

x, σ
2
y are their windowed variances, respectively, and C2 is a stabilizing constant. Using 12

subbands, 12 such correlations are computed, creating the features f32 − f43. In order to capture
spatial correlation statistics, for each chess-board distance τ ∈ {1, 2, . . . , 25} the joint distribution
is computed. The joint distribution for a value of τ can be considered as the joint distribution
pXY (x, y) between the random variables X and Y . To estimate the correlation between the two
variables, we can compute as follows,

ρ(τ) =
EpXY (x,y)[(X − EpX(x)[X])T (Y − EpY (y)[Y ])]

σXσY
, (2.22)

where EpX(x)[X] is the expectation of X with respect to the marginal distribution pX(x), τ is
the distance at which the estimate of ρ is computed. After calculating ρ(τ) the obtained curve is
parameterized by fitting it with a 3rd order polynomial. The coefficients of the polynomial and the
error between the fit and the actual ρ(τ) form the features f44− f73. Statistical correlations across
orientations are computed by utilizing windowed structural correlation between all possible pairs
of subbands at the coarsest scale. The lowest 5% of the structural correlation values for each pair
form the features f74 − f88. The final feature representation is constructed by concatenating all 88
features f1 − f88.

5) Curvelet features [84]: These are intermediate-level image features, extracted from the curvelet
image transform. They capture regularities arising in low-level NSS models in a localized way, and
consequently capture perceptual image distortions in a content independent way. The input image
is divided into blocks of size 256 × 256, and curvelet features [84] are extracted from each block,
yielding a set of feature vectors. Then, the mean feature vectors are calculated to create the final
feature vector f . During the curvelet transform from each block 5 layers of curvelet coefficients
can be obtained at 5 different scales. AGGD fitting (Eqn (2.13)) is deployed over the fine scale to
create a 4-dimensional feature vector fCNSS = (γ, µ, σl, σr), consisting of amplitude (γ), mean (µ),
and standard deviations σl, σr.

Curvelet transform provides 64 orientation information, which can be divided into two
halves. The mean magnitude of the coeffcient of the prior 32 orientation matrices provides the
orientation energy. 2 peaks occur near the cardinal (horizontal and vertical) orientations. The
mean kurtosis mk around these cardinal peaks is used as a feature. The coeffcient of variation of
the non-cardinal orientation energy, cv = σso/µso is another feature, where µso and σso are the
sample mean and standard deviation of the non-cardinal orientation energies.

The mean of the logarithm of the magnitude of the curvelet coefficients in all scales are
utilized as scalar energy measure to calculate the energy differences between the adjacent lay-
ers and interval layers. Energy difference can be calculated as, ej = E(log10(|θj |), where θ is a
set of coefficients of the orientation matrix, and j = 1, 2, 3, 4, 5. This provides a six-dimensional
feature group that describe the scalar energy distribution fSED = (d1, d2, d3, d4, d5, d6), where
d1 = e5 − e4, d2 = e4 − e3, d3 = e3 − e2, d4 = e2 − e1, d5 = e5 − e3, d6 = e4 − e2. Thus, the final
feature vector (f) is concatenation of all these features, f = (fCNSS , fSED,mk, cv) of size 12.

6) NIQE features [85]: Natural Image Quality Evaluator (NIQE) features are based on the con-
struction of a quality aware collection of statistical measures. The features used are similar to
those used in BRISQUE [80]. To extract NIQE features, the input image is partitioned into 96×96
image patches. Specific NSS features are then computed from the coefficients of each patch. The
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4 parameters (γ, βl, βr, η), from Eqn. (2.13), (2.14) and (2.17), respectively, are computed along
the four orientations which yields 16 parameters. Combined with the γ and (βl + βr)/2 computed
from original coefficients, it yields 18 overall features. All features are computed at two scales to
capture multiscale behavior, by low pass filtering and downsampling by a factor of 2, yielding a
final feature set of size 36, extracted from each patch.

7) TMIQA features [86]: Topic model based Image Quality Assessment (TMIQA) uses the NSS
features introduced in BRISQUE [80]. Given an input image, it is at first divided into overlapping
patches of size 64× 64, with an overlap of 8× 8 between neighboring patches, and local BRISQUE
features are computed from each patch. This gives a set of 36 features per patch.

2.5.5 Other features

Several researchers have used deep features for FIQA. Liu et al. [8] used features extracted from
a pretrained VGG model [87]. Best-Rowden and Jain [61] used ConvNet CNN, and Yu et al. [62]
used LightCNN, both trained on CASIA-Webface containing 10,575 subjects of 494,414 images (an
avearge of about 47 images per person). For a deep face model to be effective, it requires a large
number of images, with varied images per subject, and these images are usually different qualities.
Datasets, such as CASIA-Webface, that are constructed using images in the wild do not have the
same quality images per subject. Moreover, the architectures of deep networks need intra-face
variations. So it seems contradictory to use a deep neural network face model to extract features
for assessing the face image quality, from a theoretical point of view. Recently, Na and Guo [88]
found that the deep features have the difficulty in matching face images with large quality gap (in
a quality score range of 0-100, score difference > 60), but matching with smaller gaps can get very
high accuracies. This reduced sensitivity to quality changes make deep features less preferable for
learning the quality differences.

2.6 Evaluation results

In this section, we discuss about the evaluation settings, present evaluation results, detail the ob-
servations and discuss the significance of the comparative study of the FIQA methods.
Rank labels for classification and regression: To train the regressors and classifiers, at first
LSLRSVM based methods are trained and performance comparison is made using the test set.
Then the best method is used to generate training label for the SVR and SVM based FIQA meth-
ods. To train the classifiers, the LSLRSVM predicted scores (ranging 0-100) are converted into 10
classes {1, . . . , 10}, such that score 0-10 is converted to label 1, 11-20 converted to label 2 and so
on.
Gallery and probe sets: For each subject, the image with highest quality is manually selected for
the gallery set, and, rest of the images are assigned to the probe set. This results a probe set
of 531, 311 images and a gallery set containing 14, 374 images (equal to the number of available
subjects).
Training and test sets: The probe set is split in 25%-50%-25% ratio, with no overlap between train-
ing and test sets. In order to make sure that the training set has all quality variations, the probe
set was split into 10 quality groups and then from each group images were taken from randomly
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(a) Error vs. Reject curves for LSLRSVM based methods.

(b) Error vs. Reject curves for SVR based methods.

(c) Error vs. Reject curves for SVM based methods.

Figure 2.2: Error vs. Reject curves of the all face image quality assessment methods used in
our experiment. X-axis indicates the percetage of low quality images rejected. Y-axis indicates
FNMR@FMR=0.01%
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selected non-overlaping subjects. The first training set is used to train the LSLRSVMs using the
relevance levels. Then, those trained LSLRSVMs are used to generate training label for the second
set. This second training set is used to train the regressor and classifiers.
Selection of face recognition method: There has to be a trade-off between the strength of the face
recognition method and its ability to assess quality variance. The stronger the algorithm, the better
is the recognition of low quality face images. Therefore, a robust and advanced face recognition
method, such as those using deep features, can be counter productive for the quality assessor. The
face recognition method should be sensitive enough to produce high variance in match rank. Na
and Guo [88] have tested using 4 different types of popular deep face features and found that unless
there is a very large quality gap between the probe and gallery set (quality score difference > 30 in
a 0−100 range) then the quality variance does not significantly affect the recognition performance.
Moreover, most commercial off-the-shelf (COTS) face recognition systems still uses traditional face
recognition features, so if we want to train FIQA models that can accurately assess the quality of
the face images for majority of the COTS systems, it is more preferable to use the similar tradi-
tional features. Similar approaches have been taken by other researchers, e.g., Bharadwaj et al. [45]
and Best-Rowden and Jain [61] used match scores from two commercial off-the-shelf (COTS) face
recognition systems instead of choosing the state-of-the-art. Vignesh et al. [9] used HoG and LBP
feature based face recognition methods. We used the fusion of the four different face recognition
features, i.e, HoG, Gabor, LBP and Gist for face matching. Cosine distance is used to find the
match score.
Score level fusion: In order to investigate the effect of the different feature combinations, we ap-
plied score fusion to the predicted scores to generate the final score. For LSLRSVM and SVR, this
was done by averaging the predicted scores. For SVM, majority vote was used to select the final
predicted class. The different types of FR and NSS features are individually combined using this
strategy. Moreover, FR, HR and NSS features are also combined, which are denoted as FR+NSS
and FR+HR.

2.6.1 EvR based evaluation: Observations and findings

Error versus Reject (EvR) curves evaluate the efficiency of rejecting low quality samples for re-
ducing error rates. EvR curve plots an error rate (FNMR or FMR) versus the fraction of images
removed/rejected, where the error rates are computed using a fixed threshold (e.g. FMR=0.01%).
We measure performance based on how well (in percentage) the method reduces FNMR after 50%
of low quality images are rejected. Based on this evaluation criteria, from Figure 2.2 several im-
portant observations have been made about the representative FIQA methods:
1) For LSLRSVM based methods we observed that, FR+LSLRSVM is top performing, followed by
NSS+LSLRSVM and HR+LSLRSVM. Same is true for their SVR based counter parts. Though
for SVM, NSS+SVM performs poorly compared to HR+SVM. This observation indicate that FR
features are most favorable for FIQA, and for classification scenario NSS features could be more
discriminative than the HR features.
2) (FR+HR)+LSLRSVM and (FR+NSS)+LSLRSVM do not improve upon the performance of
the FR+LSLRSVM based method. Which is also true for SVR and SVM based counterparts.
This further indicates that fusioning FR feature with NSS and HR feature does not improve the
performance.
3) Fusion (NSS+HR)+LSLRSVM performs better than the HR+LSLRSVM and NSS+LSLRSVM
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Figure 2.3: Demonstrating the effect of different types of biometric quality degradation on the
predicted scores. Cropped faces are shown inset. Quality scores are generated by (FR+HR)+SVR
method

individually. Which is also true for (NSS+HR)+SVR and HR+SVR. Though these methods are
not top performing their feature size is very small compared to FR feature based method, which
can be useful when computational cost is very high.
4) For Figure 2.2(a) and (b) we can see, HR+SVR performs slightly better than HR+LSLRSVM.
This may be indicative of SVR has generalized well when using LSLRSVM generated training la-
bels to train the model. Though the better performing FR features using SVR and SVM, do not
improve upon their LSLRSVM counterparts, more sophisticated models using the rank scores as
training labels with FR features may be able to achieve that.
5) Though HR+LSLRSVM, HR+SVR and HR+SVM reduces FNMR close to 15% at 50% reject,
when the same 14 heuristic measures are used in a traditional approach (WSHRM) there is no
FNMR reduction. This provides evidence that learning based methods are more effective than the
traditional quality measure fusion based approach.

From the Figure 2.2 we can observe that, the range of FNMR drops from 0.824 to at most
0.672 (difference 0.152). At 50% removal, most of the learning based methods reduces FNMR from
12% to 15%. This narrow difference in rate drop indicate that for benchmarking FIQA methods
on a large dataset, there is a scope of using more effective evaluation strategy that can show more
information to better compare the FIQA methods. Note that, we could have gone to reject more
images, but as discussed by Grother and Tabassi [5] rejecting such large percentage of images from
the test data is not a operational possibility. In following section we use a quality bin versus face
recognition rate based evaluation method that may provide further insight.
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2.6.2 Bin vs Recognition rate: Evaluation measures

It has been widely established that biometric sample quality is defined as a measure of a sample’s
utility to automatic matching [2–5]. Assessment of face image quality should be an indicator of
face recognition performance. In this work, we evaluate the different FIQA methods based on the
relation between quality level and recognition performance. We divide the test images based on
their predicted scores into different quality bins (or levels), and use these bins (or quality levels)
as probe sets and match them with the previously constructed gallery. The correlation between
binned predicted scores of a FIQA method and the recognition accuracy of the corresponding face
matching algorithm should produce a increasing monotonic function, such that higher values of
quality, correspond to higher similarity scores for the same subject. This approach is similar to
Chen et al’s [50] evaluation using identification accuracy w.r.t. face quality ordering and bin to
rank-1 identification approach taken in [45], but we further incorporate three evaluation measures
to assess performance among different FIQA methods. Note that, in our case, instead of rank-1
we perform rank-100 recognition in order to get a higher than 0% recognition rate in the lower
quality bins so that a meaningful curve is obtained. The three evaluation criteria are described in
following:
1) Linear correlation (ρ): For the FIQA method to closely predict the recognition performance,
there has to be a strong correlation between the predicted quality scores and recognition rates.
Therefore, if the quality scores are binned by partitioning them into equal intervals, the face
images in high quality bins should perform better than the lower quality ones. In ideal scenario the
bin numbers and their corresponding identification rate should form a linearly increasing relation
between the two lists demonstrating maximum separation of the identification performance between
consecutive quality bins. Pearson’s correlation coefficient (ρ) can provide us the measure of the
relation, which is defined as:

ρ(X,Y ) =
cov(X,Y )

σxσy
, (2.23)

where X and Y are two variables and σx and σy are their standard deviations, respectively.
2) Nonmonotonicity (N): It is reasonable to assume that a FIQA and the corresponding face
matching algorithm are bound by an increasing monotonic function, such that higher values of
quality, correspond to higher recognition rate. Therefore, higher quality bins should produce higher
accuracy than the lower quality ones. We measure nonmonotonicity using the Kendall tau rank
distance, this metric can give us a count of the number of pairwise disagreements between the
bin ranking and their corresponding identification rates. Larger distance signifies more order-wise
dissimilarity between the two lists. This metric is also known as the bubble-sort distance, since it
is equivalent to the number of swaps that the bubble sort algorithm would require to place one list
in the same order as the other list. Kendall tau ranking distance N between two lists τ1 and τ2 is
defined as follows [89]:

N(τ1, τ2) = |{(i, j) : i < j, (τ1(i) < τ1(j)∧
τ2(i) > τ2(j)) ∨ (τ1(i) > τ1(j) ∧ τ2(i) < τ2(j))}|

(2.24)

where τ1(i) and τ2(i) are the rankings of the element i in τ1 and τ2 respectively and |τ1| = |τ2| = n.
N(τ1, τ2) will be equal to 0 if the two lists are identical in order and n(n − 1)/2 if one list is the
reverse of the other.
3) Uniformity (U): The training and test sets were constructed by randomly sampling equal
number of images from 10 quality bins. And after prediction, again 10 quality bins were created by
partitioning the test set images according to their predicted score. We argue that this newly binned
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test images also need to show a tendency towards equal distribution among all bins. A method
that cannot differentiate the quality well, will have the tendency to clump together all the images
to few number of bins and thereby produce a high variance of number of images in bins, whereas, a
good quality assessor will produce a uniform distribution (low variance) of images among the bins.
We define uniformity of the bins U as:

U =

∑|B|
i=1 |bi − b|∑|B|

i=1 bi
, (2.25)

where B = {b1, b2, . . . , bn}, bi denotes the number of images in the i-th bin and |B| = n. U is 0
when all the bins have same number of images.

2.6.3 Bin vs Recognition rate: Observations and findings

From Table 2.2 and Figure 2.4, the following observations were made:
1) 6 out of the 15 learning-based methods show linear correlations ρ ≥ 0.9. In descending order of
correlation they can be represented as follows: FR+LSLRSVM (0.971) > (FR+HR)+LSLRSVM
(0.969) > NSS+SVR (0.927) > FR+SVM (0.916) > FR+SVR (0.910) > (FR+HR)+SVR (0.900).
2) Among the 6 methods with ρ ≥ 0.9, 4 of them have a correlation curve which is increasingly mono-
tonic (N = 0). They are: FR+LSLRSVM, (FR+HR)+LSLRSVM, FR+SVR, (FR+HR)+SVR
3) Out of the 4 methods with (ρ ≥ 0.9, N = 0), 2 of them have uniformity measure, U < 1.0. In
ascending order of bin uniformity, they are: (FR+HR)+SVR (0.854) < FR+SVR (0.932).
4) 9 out of the 15 learning based methods have better bin-to-recognition rate correlation than the
traditional approach WSHRM. Also, the traditional approach fails to produce a monotonic corre-
lation curve, where 7 out of the 15 learning based methods produce monotonic correlations.
5) Based on the combined assessment of the 3 evaluation metrics, it can be concluded that
(FR+HR)+SVR (ρ = 0.900, N = 0, U = 0.854) FR+SVR (ρ = 0.910, N = 0, U = 0.932) are
the top performing methods among all 15 learning based methods evaluated. Also, all top perform-
ing methods used FR feature to get their results.
6) Table 2.2 shows all the relative rank label generation methods for training the classifiers and re-
gressors. Both of the top performing methods were trained using labels generated by FR+LSLRSVM
and (FR+HR)+LSLRSVM, respectively. They are the two methods that also show high bin
number-to-identification rate correlation with ρ > 0.9 and nonmonotonicityN = 0, with FR+LSLRSVM
showing highest correlation measures. This indicates the effectiveness of FR+LSLRSVM generated
quality labels for training the learning based FIQA methods.

2.6.4 Observation from inspecting sample face images

In Figure 2.3(b) it can be observed how expression change affecting the quality score for a subject
whose images were taken in a controlled environment with just expression variation. It can be
observed that the neutral face has the highest score which deteriorates as the expression changes.
This shows that the method has been able to capture the affect of expression change on quality.
Figure 2.3(d) shows the affect of pose change on quality on two different subjects. Even though
frontal faces have high scores, they drastically reduce as the pose angle increases. Figure 2.3(c)
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(a) Correlation plot for LSLRSVM based methods.

(b) Correlation plot SVR based methods.

(c) Correlation plot for SVM based methods.

Figure 2.4: Correlation plot of all face image quality assessment methods investigated in this study,
grouped by feature type. X-axis indicates the bin number (quality level). Y-axis indicates the
rank-100 identification rate for each bin (quality level).
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Table 2.2: Results for FIQA methods.

FIQA Method ρ N U

FR+LSLRSVM 0.971 0 1.056

NSS+LSLRSVM 0.512 0 1.600

HR+LSLRSVM 0.774 2 0.900

(FR+NSS)+LSLRSVM 0.659 0 1.473

(FR+HR)+LSLRSVM 0.969 0 1.054

FR+SVR 0.910 0 0.932

NSS+SVR 0.927 2 1.163

HR+SVR 0.886 1 0.680

(FR+NSS)+SVR 0.889 1 1.020

(FR+HR)+SVR 0.900 0 0.854

FR+SVM 0.916 1 0.978

NSS+SVM -0.113 9 1.412

HR+SVM 0.586 7 0.911

(FR+NSS)+SVM -0.108 12 1.587

(FR+HR)+SVM 0.884 0 0.924

WSHRM 0.879 1 0.518

shows the affect on quality score for low or uneven illumination for two different subjects. Right
most image has the highest score with comparatively better illumination of the face region, while
other faces either have partial illumination or very low illumination, which is reflected in the quality
scores. Figure 2.3(a) demonstrates that the FIQA method has been able to capture quality variance
due to occlusion such as sun-glass or scarf etc. It can also be observed that, illumination variation
also affects over occlusion and reduce the score in the right most two, and left most two images.
This is an example of combined quality attribute change and this method successfully captures
this. In real world scenario, where images are taken from the wild, faces are affected by multiple
issues of quality distortion simultaneously, such as pose, expression, illumination changes occurring
for the same face image. Figure 2.3(e) shows two examples of this using two different subjects, for
the subject in the top row, it can be seen that, face size, sun-glass and pose variation affecting the
quality. For the subject in the bottom row, it is shown how pose, illumination and expression change
affecting the quality score. It can be noticed that, the quality score reflecting those deteriorations.

2.6.5 Discussion

From both EvR and Bin vs Recognition rate based evaluation results, it can be observed that, the
top performing methods use face recognition features to get high correlation. One reason for this
can be face recognition features contain much more information regarding facial characteristics than
the heuristic measures. Natural scene statistics can predict image distortion, but not all aspects
of biometric quality is affected by image quality distortion. Poor performance of heuristic features
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confirmed the previously stated argument that the traditional quality measures about face image
quality is not optimally predictive of the recognition performance.

Observations made on Table 2.2 show that the semi-supervised approach using ranking
models can improve performance of FIQA methods. This is because relative ranks are devoid of
the problem of “contrary images”, where face same image can produce high and low match scores
with different images of the same subject [67]. It is also evident that, as a quality label generation
scheme, relative ranking can perform better than traditional approach.

The weighted sum of heuristic measures (WSHRM) method was outperformed by most
of the learning-based methods. Moreover, learning based approaches using heuristic features out-
performs the traditional approach using the same set of features. This shows the efficacy of the
learning-based approaches over the traditional approach.

2.7 Conclusion

Biometric quality assessment for face images is quite a challenging topic. In this chapter, a large
scale database, solely for studying face image quality assessment is introduced, a learning to rank
based approach for quality label generation is presented, and a comparative evaluation of different
representative face quality assessment methods, using commonly used feature types, is performed
to demonstrate the usefulness of this database and the training protocol. The comparative study
has shown that, the ranking based quality scores can help improve results, especially for, regressor
based methods when used with face recognition features. Investigation on the predicted quality
scores by the top performing method show that the method can capture various face quality changes
such as illumination, pose, occlusion, expression etc. With this new database, we wish to encourage
the research community to further investigate the challenges of face image quality assessment. We
believe that, by having a platform for benchmarking the state-of-the-art will move community
further in face biometric quality research.
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Chapter 3

Understandable Face Image Quality

3.1 Introduction

Face recognition performance is affected significantly by the face image quality, especially in real-
world applications [90–92], where images are taken from unconstrained environment. Face image
quality varies significantly because of the use of different imaging sensors, compression techniques,
video frames, and image acquisition conditions. It is very challenging to assess face image qualities
automatically, quickly and precisely in real world images.

There have been a lot of learning-based face image quality assessment methods proposed
in last few years. These approaches usually provide a single quality score ( or a quality bin label
) as the output. However, this “single-value quality score” cannot provide enough information to
communicate effectively with the human assessors. Furthermore, many issues regarding face image
quality still have not been addressed yet, such as, what does a quality score mean? How to interpret
a quality score with imaging conditions? Why a face image has a quality score of 50 rather than
60? How well the quality scores characterize the real face image qualities? Can more useful cues
(e.g., levels of details) be acquired to develop a complete representation for face image quality
assessment? In this chapter, a new paradigm is investigated which provides human understandable
information for face image quality assessment. It is motivated by the understandable template of
FBI, where some detailed information of faces is included during face template extraction. The
proposed new face image quality representation has the potential to be integrated into the FBIs
understandable template. Following list of contributions are made in this chapter:

• Define the understandable face image quality (UFIQ) paradigm, and how a mapping from
score summary to heuristic attributes can provide understanding regarding quality change.

• Establish the understandable face quality method using the help of statistical measures.

• Provide experimental evaluation of understandable face image quality.
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3.2 Related Works

In last few decades, quite a few learning based face image quality assessment methods have been
proposed by researchers. Vatsa et al. [55] proposed a biometric image quality assessment algorithm
that uses redundant discrete wavelet transform to compute to the approximation of horizontal,
vertical and diagonal bands, which are used as quality factors. These quality factors are combined
using a weighted sum to get the quality score and SVM based mutliclass classification is performed
to determine the class of the score. Liao et al. [44] proposed a face image quality assessment
scheme that employs a hierarchical binary decision tree classifier based on support vector machines
(SVM) to categorize the face images into five quality levels. Bharadwaj et al. [45] used Gist and
sparsely pooled Histogram of Oriented Gradient (HoG) features and a one-vs-all mutli-class SVM
to classify face images into four different quality categories. Bhatt et al. [46,47] presented a quality
assessment algorithm which computes a quality vector comprising no-reference quality, edge spread,
spectral energy, and pose, and then trained Support Vector Machines (SVM) for decision making.
Ozay et al. [48] proposed a unified probabilistic framework to simultaneously predict the quality
of the facial image samples and perform quality-based face recognition. Wong et al. [7] proposed a
patch-based face image quality assessment algorithm which quantifies the similarity of a face image
to a probabilistic face model. El-Abed et al. [49] used no-reference based image quality metric
called BLIINDS, SIFT keypoints, DC coefficient, and, mean and standard deviation of scales as
features and then used a SVM to predict the quality. Chen et al. [50] proposed a learning to
rank based framework for assessing the face image quality. Kim et al. [51] proposed a learned
FIQA method that considers visual quality and mismatch between training and test face images
for quality assessment.

Recently, deep learning based quality assessment methods have also been introduced by
different researchers. Liu et al. [8] proposed a no-reference face image assessment algorithm based on
the deep features extracted from VGG network [93]. Vignesh et al. [9] proposed a FIQA algorithm
which is based on mimicking the recognition capability of a given face recognition algorithm by using
a Convolutional Neural Network (CNN). Yu et a. [94] proposed a novel FIQA method where five
common homogeneous distortion categories in video surveillance applications were considered. A
lightweight CNN was trained to simultaneously predict the categories and degrees of the degradation
in a face image.

3.3 The understandable face image quality method

3.3.1 What is Understandable face image quality ?

From the early days of face image quality assessment research, researchers have tried to identify a
particular set of quality metrics that can effectively measure the face image quality and tried to set
an optimal range of values for these metrics [34]. Several standards are available that describe what
a top quality face image should consist of. E.g. what the value of the brightness should be, what is
the optimum intra-ocular distance, optimal range of head pose etc. [95, 96]. All these estimations
are based on human visual perception. Because human visual processing is still considered to
perform the best for face identification, researchers considered that expert human assessors should
be able to provide the best set of measures and their optimal range required for top quality face
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Figure 3.1: Example of obtaining understandable information for a test image.

images. But later on, it was found that, because biometric quality of face image is defined in terms
of automatic face recognition performance, human visual perception of image quality may not be
well correlated with recognition performance [2, 3, 7]. Investigation were made on finding learning
based methods [7,9,49,50,55]. Instead of identifying the quality degradation factors, these methods
provided either a quality score or a quality bin label to establish the face image quality. But since
these methods are based on image features the reason for their performance went hidden from
human understanding. Moreover, most image quality assessment techniques strive to achieve the
perceptual understanding of the image, and therefore consider human annotation of quality as the
gold standard for comparison and testing of automated face image quality assessment algorithms.
A high correlation between the predicted quality and the human measure of quality is considered
as good assessor of image quality. But, there is no conclusive evidence that human interpretation of
quality has any correlation with the biometric quality in terms of performance of a face recognition
method [3]. For these reasons, face image quality has become almost an abstract concept.

In this work, it is proposed that, for any reliable score summary producing learning based
FIQA method, it is possible to trace back to a set of quality measures and find out what quality
measures and what range of values of these measures, are optimal. By trying to find out the
statistical distribution for each of the heuristic attributes for a number of quality levels, this method
gives back that “understandability” that was lacking due to the use of learning based face image
quality assessment. But, in order to do that, at first the relationship between each of the quality
measures (or heuristic attributes) and the predicted score of the FIQA method in consideration has
to be mapped. Using a carefully crafted database consisting of wide ranging quality, this relationship
between a quality measure and a quality score can be learned. By using a simple statistical model,
it is possible to obtain a stochastic measure of the heuristic attribute for all quality levels and then
we can categorize the values in a meaningful way that can clearly communicate what the value of
the quality measure mean in terms of the predicted quality score. By providing such information
for all the quality metrics, we believe, it is possible to provide an overall picture for at least some
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of the major reasons behind the face image achieving predicted quality score to a certain extent.

Based on the above description, the different stages of the method can be divided as
following: 1) Construct a large scale face database with enough width (in terms of number of
subjects ) and depth (in terms of number of images per subject) and with wide ranging quality
variance. 2) Select a set of quality measures that are commonly used for FIQA and can be directly
extracted from face images, 3) Select a reliable learning based FIQA method whose predicted
scores will be investigated. 5) Generate quality scores using the learning based FIQA method for
all images of the database. 6) Obtain the heuristic features for all images of the database, 7) Apply
a statistical analysis to obtain distribution models, 8) Using these statistical models, for a test
image, we obtain a probabilistic decision for the quality measures. This decision tells us which
quality level the quality measure is highest probable to belong. Using this we can produce a helpful
picture for a human observer to understand whether the quality measure is degraded or not. 9)
Finally, through aggregating all these categorized quality measure values, a human understandable
information about the quality score is provided. Figure 3.1 provides an overview of this process.
More details about developing the UFIQ method is provided in the following sections.

Figure 3.2: An example face image consisting of composite biometric quality. Which quality
measure(s) has ultimately caused the quality score to be 5?

3.3.2 Database description

In the following sections details about how to create a suitable database for learning UFIQ is
provided.

For a face image with low quality score, the problem of identifying the affected quality
measure (or measures) for the non-optimal quality score is a hard problem. Because all the quality
measures in the low quality bin may not be responsible the low quality range. One quality metric
with low quality value is enough to change the low quality score, e.g., a face image with optimal
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pose angle, sharpness, no occlusion can still have low quality score if the brightness is too low or too
high, which will hamper the face recognition performance. One approach to ensure the collection
of right value range for a quality measure, is to create or obtain a database that has collected the
quality scores for every quality measure variation possible.

Currently, there is no readily available public database that can satisfy this requirement.
So, any one of the following two choices can be taken: 1) to synthetically change the quality measure
of a high quality image to create images at different quality levels and collect subjects with largest
possible variation in facial variations (e.g. pose, expression etc). But the problem is you can only
generate a limited number of images per subject. Moreover, not for all cases it is possible to produce
synthesized faces without altering the facial identity, such as expression and pose. The other option
is, 2) to construct a large database by assembling datasets constructed both in controlled and real-
world scenario such that a wide range of face quality can be obtained. It is reasonable to assume
that by aggregating datasets from different sources where image acquisition process had different
environmental parameters and by making the assembled database large enough, we can achieve a
large variance in face quality. And by analyzing a large database like that a general trend for the
heuristic attributes at different quality levels can be identified. This is not an optimal solution, but
it is something we can work on.

If we study the publicly available face databases, we can find basically two groups of
datasets: 1) constructed with sets of images taken in a specific number of different environmen-
tal conditions such as, lighting, expression, accessories, pose, indoor/outdoor etc. Each of these
variations are usually grouped into data subsets. 2) constructed using images collected from the in-
ternet, where images are taken in unconstrained environments, and then grouped according to each
identity. For our database, we can utilize both of these scenario by regrouping the controlled (or
semi-controlled) subsets into each subject, which gives us subjects with varied face image quality.
For, datasets containing real-world images, the main concern was to avoid noisy images as much as
possible. Since, no data-driven cleaning approach were applied for these datasets, manual cleaning
was done for some of the comparatively larger real-world datasets as much as possible.

Based on the above mentioned criteria, a database, named “Face Image Quality Database
(FIQDB)” is assembled. We selected 40 public databases from the list of face databases available
in the face recognition homepage [1]. The database contains images taken in controlled, semi-
constrained and unconstrained real-world scenarios. The resulted FIQDB database has a total
number of 545, 684 images of 14, 373 subjects.

How to make sure the database is large enough to contain all possible qualities ? It is
not a trivial problem because there is no universal consensus about all factors that affect face
image quality. We make a simplistic assumption that by applying a reliable FIQA method on the
dataset and inspecting whether the generated scores cover all possible quality scores produced by
the method can ensure it to some extent. To demonstrate this a third party learning based face
image quality assessment method [50] is applied on FIQDB. The FIQA method provides quality
scores ranging from 0 to 100. Figure 3.3 shows some sample images with their corresponding quality
scores. It can be noticed that, the images have scores as low as 2 to as high as 97 which indicates
that the database has a wide quality range.
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Figure 3.3: Sample images from the database with predicted scores, shown in the top-right corner,
demonstrating the variety of face image qualities.

3.3.3 The quality measures

A major limitation of using quality measures as a performance prediction feature is that there are
an overwhelmingly large number of quality factors that can influence the performance of a face
recognition system and their exact count is still unknown. Furthermore, accurate measurement
of image quality measures is still an unsolved problem. But the goal of this chapter is not to
evaluate the quality using these quality measures, rather to provide a kind of understandability
to the predicted score. Very few studies have been done on comparative assessment of different
measuring method of the quality measures. Abaza et al [14, 15] did a investigation on the image
quality measures and found several useful formulas. Some of these measures are selected for this
work and add additional measures that have been used for traditional face quality assessment.
Description of all these quality measures are given below -
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Brightness

Mean of intensity has been a common way to measure brightness found in several traditional face
quality assessment. The average value of the illumination component of all of the pixels in the face
region can be considered as the brightness of that region. Therefore, for a graycale image I(x, y),
brightness B is defined as [15,27,31]:

B =
1

MN

M∑
x=1

N∑
y=1

I(x, y) (3.1)

Sharpness

The sharpness measure, denoted by S, is computed by [27]:

S =
1

MN

M∑
x=0

N∑
y=0

(
|I(x, y)−H(I(x, y))|

)
(3.2)

where I(x, y) = is the intensity of the image I at location (x, y), H(·) is a lowpass Gaussian filter,
and M ×N is the size of the image.

Focus

Edge density measures the average magnitude of the gradient over the face image. The assumption
is that when images are in focus the average gradient magnitude will be higher than when the
image is out of focus [3, 70–72].

Contrast

Image contrast is the difference in color intensities that makes a face distinguishable. The face
image contrast C can be measured using the following equation [15]

C =

√∑M
x=1

∑N
y=1[I(x, y)− µ]2

MN
(3.3)

where µ is the mean of image I.

Illumination

Spectral energy is used as the illumination measure, which describes abrupt changes in illumination
and specular reflection. The image is tessellated into several non-overlapping blocks and the spectral
energy is computed for each block. The value is computed as the magnitude of Fourier transform
components in both horizontal and vertical directions [13,46].
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Illumination Symmetry:

This is calculated as the absolute difference between the mean intensity of left and right sides of
the face image.

Compression

A no-reference perceptual quality assessment method for JPEG compressed images proposed by
Wang et al. [97] was used to measure the compression quality. This method is able to effectively
capture the artifacts introduced by JPEG compression.

Eye openness

The Openface toolkit [98] was used for this measure, Figure 3.4 shows the detected 68 landmarks.
It detects 6 points for each eye region, these points are used to calculate the convex hull. The mean
of the two areas is considered as the eye openness measure.

Figure 3.4: Face image with 68 face landmarks detected using Openface toolkit.

Mouth closeness

Openface toolkit [98] detects 8 points around the boundary of the inner lip region. Similar to eye
openness measure, the area of the convex hull of the region is calculated by connecting these points,
which is used as the measure of the mouth closeness.

Pose measure: Roll, Yaw and pitch

a headpose angle detection method provided by Openface was used. This provides three different
Euler angles for pitch, yaw and roll, eulerz, eulery and eulerx, respectively. The angles are in
radian and ranges from [−π, π].
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Figure 3.5: We can use are under the gaussian distribution for a quality bin to obtain the probability
of any quality measure belong to that disribution.

Face symmetry

The mean difference between the original and horizontally flipped images is considered as the mea-
sure of how symmetrical are both sides of the face. The lower the difference, the more symmetrical
is the face [25]. This can also assess the pose and illumination variance of the face.

3.3.4 The statistical approach

From our observation of the histogram of the quality bins of each of the heuristic attributes, all
of them form the unimodal Gaussian distribution (See Figure 3.6. Therefore, for each heuristic
attribute and quality bin pair we can obtain a Gaussian model N (x|µ, σ). During test, we can use
N (x|µ, σ) to measure the probability of x belonging to any of the quality bin distributions. We
know

P (X ≤ c|µ, σ) =

∫ c

−∞

1√
2πσ2

e
−(x−µ)2

2σ2 (3.4)

where µ and σ are the mean and standard deviations; and X is a normally distributed
random variable. Because the probabilities P (X ≤ x) and P (X > x) span the entire sample space
(−∞ < x < ∞), therefore, P (X ≤ x) + P (X > x) = 1. Then, we can also write, P (X > x) =
1− P (X ≤ x).

Then, we can formulate the probability formula of x belonging to a continuous distribution
N(x|µ, σ) as a simple conditional function as below,
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P (X = x|µ, σ) =

{
2 ∗ P (X ≤ x|µ, σ), if x < µ

1− 2 ∗ P (X ≤ x|µ, σ), otherwise
(3.5)

Closer the value of x to mu the closer the probability is to 1. In Figure 3.5 we depict how
our probabilistic measure is applied for a generic normal distribution.

Figure 3.6: Histogram for each quality bins for sharpness measure and head pose yaw measure
(euler y). bin=1 has the lowest quality and bin=10 is the bin with highest quality images.

37



3.4 Experiments

Using the large database containing wide range of face quality, at first we obtain the quality scores.
We selected Chen et al. [50] learning to rank based FIQA method for this work. The authors have
generously made their implementation online which provides a score between 0 to 100 for each face,
where higher value indicates higher quality. After that, we obtain the set of 14 different heuristic
attributes for each image. We divide the images into 10 such that image scoring 0..10 goes to bin
1, image scoring 11..20 goes to bin 2, and so on. This creates 10 quality bins, where each image
has 14 different heuristic attribute values. For each attribute for each quality bin, we generate the
histograms, so 140 histograms in total. A few of them are shown in Figure 3.6.

Several observations have been made from this histogram plots: 1) All of the distributions
following the unimodal Gaussian distribution pattern with one mean peak and symmetric distri-
bution. 2) For illumination symmetry we have a truncated Gaussian distribution because there
is no value below 0, but we can still model it using Gaussian function. 3) For eye openness and
mouth closeness ratio, there were a lot of default values that we needed to ignore in order to get
the original distribution that why the frequency is so low. Same situation for some bins in the pose
angle based attributes.

The mean (µ) and standard deviation (σ) from these histograms are used to create indi-
vidual Gaussian model N (x|µ, σ) for each quality bin for each heuristic attributes.

Now, from the previous discussion it is evident that, even with a large scale face database
with wide ranging quality is not possible to guarantee that each distribution calculated above
represents the values responsible for the quality scores in that quality bin. Because of the presence
of a composite of different biometric qualities in the face images, it is very difficult to separately
identify which quality measure (or measures) has ultimately caused its predicted quality score. But,
we can assume that the reasonable distribution of any one of the attributes will have 10 unique
mean values, otherwise, it will not be possible to use the statistical measure devised above. In order
to obtain unique distributions, we have to consider the distributions not following the order of the
bin quality level are the noisy distributions and disregard them during probability calculation.
Figure 3.7 shows a mean and standard deviation scatter plot for contrast and focus measure . We
can observe, bin 8 and bin 10 are out of order for contrast measure, and, bin 1 is out of order for
focus measure. We manually select the maximum number of bin distributions for all attributes
that can be kept without destroying the quality bin order.

We kept a 100 randomly selected face image for manually investigating how much the
provided information is relevant to the face image. Figure 3.8 provides some sample from the
outputs we received for the test set. Each figure shows the original image, estimated quality score
and the values of the quality metrics that are found to be sub-optimal. The estimated quality
score is calculated using the learning based FIQA mentioned earlier. Note that, the degree of
deterioration is not measured in terms of the quality metric or general human perception of that
quality metric, but how the quality metric has affected the quality score. In other words, it is
mainly describes how far from the optimum range of values is the measure. For some cases where
the ranges are very narrow, even a small change in quality metric can cause high deviation in
quality score. Moreover, intuitively we might think that all measures in the low quality images
will be in low quality range, but that is not the case because low quality of any one or few of the
quality metrics are enough to cause a overall quality degradation , and thus a low quality score.
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Figure 3.7: Mean vs Standard deviation plot for contrast and focus measure. We can observe the
noisy distriubtions are not following the order of the quality level.
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But, we need all of the quality metrics to provide optimal to near optimal measure values to get a
high quality score. For this reason, quantitative evaluation of “understandability” is a very hard
problem. Because, in order to calculate that we need to study how change in one quality metric
affects the rest of the metrics, which is a whole new research topic.

3.4.1 Limitations

Some of the limitation we faced while performing the experiments are: 1) Noise in data hampers
getting better results, as we have seen because of the composite effect of different quality factors,
it is very difficult to figure out which factors are ultimately responsible for the quality degradation,
especially for lower quality images. It is possible that composite effect of two or more quality
measures, how ever small, can have bigger effect than a single measure, this could be something
needed to be investigated in future work , 2) even though the database we have used has wide
ranging quality, it is possible that it has not covered all possible quality values for every quality
measures considered, 3) there are more ways quality measures which can affect the face quality
outside of what we have considered. 4) Some quality measures may have bimodal distributions
.e.g. brightness, sharpness, focus, illumination etc. Because quality can degrade both higher and
lower values of these measures, but from our database it seems that in reality the occurrence of
such cases is not common, but with more data it can be further looked into.

3.5 Conclusions

There are number of reasons that can affect the quality of a face image. These reasons can range
from presence of different image sensors, compression algorithms, video or image acquisition con-
ditions, time of acquisition etc. For these varied reasons, automatic face image quality assessment
is a very challenging subject. In recent years a number of learning based FIQA methods have been
proposed which provides good prediction of face recognition performance based on the face image
quality score. But, providing just a single score or a quality bin for the face image cannot provide
much information for the human assessor. From the end-user perspective, it is important that there
should more explanation provided for the predicted score and some form of interpretation of it.
This auxiliary information can help provide useful hints that can help to develop a improved image
acquisition process or set up suitable environment that can ensure high face recognition accuracy.
In this chapter, we have proposed a new paradigm, which can provide human understandable infor-
mation for face image quality assessment. We believe this can help address the lack of explanation
for a learning based quality assessment of face images. Our experiments and provided results show
the effectiveness of the proposed method in providing important information regarding different
quality factors related for face images.
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Figure 3.8: Sample images with understandable information regarding quality. At right side of the
images we have: 1) the predicted quality score 2) quality measure having non-optimal value 3) Prob-
ability of the value belonging to bin-N 4) Bin number with the max probability 5) understandable
label category
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Chapter 4

Conclusion & Future work

In this work we have presented, a large scale database for benchmarking face image quality as-
sessment methods, proposed a learning to rank based approach for quality label generation, and
a comparative study of different representative face quality assessment methods, using commonly
used feature types, to demonstrate the effectiveness of this database and the training protocol as a
FIQA benchmarking platform. The results found in comparative study has shown that, the ranking
based quality scores can help improve results, especially for, regressor based methods when used
with face recognition features. Face recognition features has been found to be the best suitable
for FIQA. Visual inspection of the scores generated by the top performing method show that the
method can capture various face quality changes such as illumination, pose, occlusion, expression
etc. With this new database and training protocol, we wish to invite the biomtric research com-
munity to further investigate the challenges of face image quality assessment. We believe that,
by having a platform for benchmarking the state-of-the-art will move the biometric research com-
munity further in face biometric quality research. In future work we plan to further increase the
database both in width and depth, to include much more quality variance. Deep feature based
facial quality assessment is another aspect that needs to be investigated.

In second part of this thesis, we have shown providing just a single score or a quality bin
for the face image cannot provide much information for the human assessor. From an end-user
point-of-view, it is important that there more explanation should be provided for the predicted
score. This auxiliary information can help provide useful hints that can help to develop a improved
image acquisition process or set up robust enrollment system that can ensure high confidence in
face recognition accuracy. In our work, we have proposed a novel stochastic method which can
provide human understandable information for face image quality assessment. We believe this can
help address those issues. Our experiments and provided results show promising aspects of the
proposed method. In future work, we have plans to devise methods that can be devised to enhance
those degraded quality measures, detected using UFIQ, so that the quality score can be improved.
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