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Scott L. Fulford† and Scott Schuh‡
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Abstract

We use comprehensive U.S. credit bureau data to document stable consumer utilization of
credit card debt over the business cycle, life-cycle, and individually quarter to quarter, despite
massive variation in available credit. To explain these facts, we propose a model of life-cycle
consumption with heterogeneous discounting and credit cards used for payments and con-
sumption smoothing. Using diary data to identify payment use, the estimated model matches
consumption and credit use at every frequency and suggests that around half the population has
an endogenously high marginal propensity to consume. The results suggest consumer credit
availability and heterogeneity of use could be important for counter-cyclical policy.
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1 Introduction

A striking feature of the 2008 financial crisis and Great Recession was a remarkable stability in

the average utilization of unsecured revolving credit. Using comprehensive U.S. credit bureau

data, Figure 1 shows that the average credit card limit fell by about 40 percent from September

2008 to March 2010, nearly a trillion dollars in aggregate. During this same time period, however,

Americans also reduced their aggregate credit card debt by a similar percentage. Consequently,

average credit utilization was nearly constant during that tumultuous time, as it was over the longer

period from 2000–2015. In aggregate, this debt reduction was approximately double the value of

the tax rebates from the Economic Stimulus Act (Parker et al. 2013); individually, average debt

fell more than $1,000 dollars per cardholder.

We show that remarkably stable individual credit utilization explains the aggregate stability.

Beneath the dramatic cyclical changes in credit and debt, even larger changes occur over the life

cycle of individuals: average credit card limits increase more than 700 percent from ages 20–40

and continue to increase after age 40, albeit more slowly (see Figure 2). Because many households

hold little or no liquid assets, increases in credit are one of the largest sources of “savings” early

in life. These massive increases in credit with age are matched by increases in debt at almost the

same rate, so average credit utilization is stable over the life-cycle, declining very slowly with

age. Consistent with prior work (Gross and Souleles 2002, Agarwal et al. 2017, Fulford and

Schuh 2015, Aydin 2015), we find that increases in credit at the individual level pass through to

increases in debt and individuals close to their limits are more sensitive to changes. Our new

finding is that utilization is largely fixed at the individual level with shocks dying off quickly so

that individual credit utilization is extremely persistent despite credit volatility that is several times

greater than income volatility (Fulford 2015). Yet this individually persistent utilization is highly

heterogeneous; a large portion of the population is using most of its available credit well into

retirement, even as another large portion uses almost none.

Existing models of consumption and saving are not well-suited to explain this individually

stable yet heterogeneous utilization of credit. Models of precautionary savings, for example, imply
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individuals should move around the savings-debt distribution as they absorb shocks, rather than

display persistent and stable utilization. Life-cycle models, whether incorporating precautionary

motives or not, typically imply an accumulation of resources for late in life, rather than a large

portion of the population borrowing even into retirement age as we document. In addition, no

existing models incorporate both the payments use of credit cards and the longer-term revolving

credit use. Yet 90 percent of the population with a credit card uses it for payments in a given month

and half borrow from month to month, so incorporating both uses is necessary to understand credit

card behavior.

To explain the expanded facts about credit card borrowing, we build and estimate a new model

that allows for preference heterogeneity, payment choice, and credit cards used for long-term bor-

rowing in a life-cycle model with uninsured shocks. The econometric estimates reveal a clear and

significant distinction between two types of consumers. About half the population must have a high

discount rate (about 11 percent) and low relative risk aversion to be willing to hold the amount of

credit card debt observed. This impatient population has a high marginal propensity to consume,

so increases in credit lead directly to increases in debt and a stable—but high—utilization. In con-

trast, the rest of the population has a “standard” discount rate (about 4 percent) and relative risk

aversion and uses their credit cards only for payments. They have low and stable utilization be-

cause both their credit limits and their expenditure on credit cards are tied to to their income. The

econometric results also offer the first estimates of the direct utility value of credit cards as a means

of payment. In the model, consumers endogenously decide how much of current consumption to

pay for with a credit card. We estimate that consumers would be willing to pay about 0.3 percent

of their consumption (around $40 billion a year) to continue using credit cards given the current

structure of U.S. credit card payment networks, interchange fees, rewards, and prices.

Identification of the model’s parameters is driven by the heterogeneous uses of credit cards.

About half of credit card holders are revolvers who exercise the option to roll over debt indefi-

nitely at 14 percent or higher interest and thus must be discounting the future around the rate of

borrowing. Yet because some consumers do not borrow except for payments use on their credit
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cards and have liquid savings, there must be a large patient population. We estimate the value

of credit cards for payments using new micro data from the Diary of Consumer Payment Choice

(DCPC). Credit card purchases are less valuable for revolvers because interest on purchases accu-

mulates immediately, while payments users benefit from a free float for a month. Under simple

assumptions, we show that the different payment use of revolvers and non-revolvers identifies the

value they put on using credit cards for payments.

Our model is constructed for feasible estimation of all model parameters, rather than cali-

bration, using a rich array of data available to better inform our understanding of heterogeneous

consumer choices. We start from the framework of Gourinchas and Parker (2002) and Cagetti

(2003), which captures life-cycle variation in income with uninsured income shocks, and add a

high-interest liquid borrowing option following Laibson et al. (2003). To this underlying approach,

we add a new tractable endogenous consumer payment choice between liquid assets (“cash”) and

credit card liabilities. Explicit treatment of payments for expenditures enables the model to dis-

tinguish between two distinct uses of credit card debt: 1) convenience use, where consumers pay

off all debt each month and incur zero interest; and 2) revolving use, where consumers exercise

their option to roll over unpaid debt at high interest (around 14 percent on average). Second, to

capture this heterogeneous use we allow our econometric application to include sub-populations

with distinct preferences. Allowing this heterogeneity is crucial for capturing both the distinct uses

of credit cards and the heterogeneous yet persistent utilization that we document. Third, to capture

the unsecured nature of credit card debt, we introduce the ability to default (Livshits et al. 2007,

Chatterjee et al. 2007, Athreya 2008), so the interest rate and credit limit faced by consumers is

endogenous to past behavior. Finally, we build on Fulford (2015) to incorporate a tractable process

for individually varying credit limits over the life-cycle.

The different consumption choices made by revolvers and convenience users is at the heart of

our identification of heterogeneous preferences and is empirically necessary because credit bureau

data does not distinguish explicitly between revolving and convenience debt. Our parsimonious

payment approach captures many different reasons consumers might choose one payment means
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over another including: non-pecuniary preferences and rewards (Koulayev et al. 2016, Wakamori

and Welte 2017), an ordering of accounts by interest rate cost (Alvarez and Lippi 2017), and the

costs of non-acceptance of the preferred method at the point of sale (Telyukova and Wright 2008,

Telyukova 2013). Our work thus helps bridge a growing monetary and payment choice literature

with the broader consumption literature.1

We appear to be the first to study credit limits and utilization over the life cycle, although mod-

els with endogenous credit constraints (Lawrence 1995, Cocco et al. 2005, Lopes 2008, Athreya

2008) typically imply increasing credit limits with age as lenders gain more information. In con-

trast to our focus on the heterogeneity and stability of credit use, Laibson et al. (2003) seek to

explain aggregate life-cycle accumulation of both credit card debt and illiquid saving by calibrat-

ing a model in which all agents have hyperbolic preferences. While we model the highly impatient

consumers as fully time consistent, our results do not preclude other approaches such as hyperbolic

discounting (Laibson et al. 2003, Meier and Sprenger 2010) that could explain this population as

well or better. In any case, the importance of population level heterogeneity hearkens back to

Campbell and Mankiw (1989, 1990), who explained aggregate income and consumption with two

representative consumers with similar population shares, one living hand to mouth and the other

saving for the future. Heterogeneous preferences also seem necessary to match wealth inequality

(Krusell and Smith 1998), the average marginal propensity to consume (Carroll et al. 2017), persis-

tent financial distress (Athreya et al. 2017), simultaneous holdings of liquid assets and credit card

debt (Gorbachev and Luengo-Prado forthcoming), and experimentally elicited preferences (see,

for example, Andreoni and Sprenger (2012)).

The estimated model explains smooth utilization at the micro and macro levels. In sample, it

simultaneously fits the life-cycle paths of debt, consumption, and default. Existing consumption

models do not incorporate the life-cycle changes in credit that we document and thus overlook

1Our structural model could be used to evaluate credit card use and consumer decision making at the level of
daily individual transactions from linked-account data as in related work by Gelman et al. (2014), Baker (2018), and
Kuchler and Pagel (2018) among others, although the specialized data to do so is not generally available. Furthermore,
with expanded details on individual payment choices, our model can implement the integrated financial accounting
framework proposed by Samphantharak et al. (2018) that measures exact cash flows by linking household balance
sheets with income statements at the level of individual transactions.
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an important form of early-life liquidity. Allowing for heterogeneous uses for credit suggests an

explanation for the hump shape of life-cycle consumption (Attanasio et al. 1999) that is subtly

different from the combination of precaution and life-cycle savings in the Gourinchas and Parker

(2002) framework. Our estimates suggest the hump comes mainly from the average of two popu-

lations: one impatient enough that consumption largely follows income over the life-cycle, closely

resembling the buffer-stock population in Carroll (1997), and the other patient population with flat

or growing consumption. Incorporating increasing credit also reinforces the hypothesis that de-

fault must be substantially driven by shocks outside of the consumer’s control rather than strategic

default (Livshits et al. 2007). Because credit limits are increasing over the life cycle, the incentive

to voluntarily run up a large balance and default is increasing, while default after an expenditure

shock is decreasing because credit is more available. Thus, if voluntary default is important, the

frequency of default should be increasing over the life cycle rather than decreasing after age 30 as

we observe in credit bureau data.

Out of sample, the simulated model can replicate important facets of consumption and credit

use. It matches the qualitative smoothness of credit utilization observed during the financial crisis

and Great Recession. At the micro-level, our simulations produce estimates of the individual re-

lationship between credit and debt that closely match the reduced form estimates from the credit

bureau data. Combining the estimated moments for payment choice and life-cycle consumption

with out-of-sample predictions at the micro and macro levels, our estimated model thusfits ob-

served data at every frequency: very short-term (payment choice), quarterly (consumption and

savings), life-cycle (accumulation of assets and liabilities), and even the business cycle (aggregate

changes during the Great Recession).

This close fit suggests our new facts about credit use, and the model we propose to explain

them, may have implications for policy. Our simulated consumption response to a small unex-

pected cash rebate is about 23 percent within a quarter, very close to estimates based on tax rebates

(Parker et al. 2013). Such a strong response is puzzling (Kaplan and Violante 2014), but in our

approach it is driven by the impatient population, a result consistent with recent estimates of the
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heterogeneity of response by Parker (2017). Yet because so much of the available liquidity of U.S.

households comes from credit, the simulated consumption response to an unexpected increase in

credit is nearly as large as a cash rebate. In total, the decline in available credit we document

over 2008 and 2009 may have been responsible for one quarter of the fall in consumption during

the Great Recession. Moreover, we show that the more that declines in credit are concentrated

among the high utilization population—who are often the highest risk for banks—the larger the

consumption response. Our approach thus further supports and adds micro-empirical support for

the emphasis in Guerrieri and Lorenzoni (2017) on the relationship between consumer credit, pre-

caution, and the macreconomy. Policy makers may benefit from considering the importance of

consumer credit supply and the heterogeneity of its use as a complement to existing conventional

counter-cyclical policies.

2 Credit card use

This section briefly introduces our main data sources and presents empirical results on credit card

use. Fulford and Schuh (2015) provide additional descriptive statistics, including additional evi-

dence on the distribution of credit and on credit card holding by age.Our main data source is the

Equifax/Federal Reserve Bank of New York Consumer Credit Panel (CCP) which contains a quar-

terly 5 percent sample of all accounts reported to the credit-reporting agency Equifax starting in

1999. The data set contains a complete picture of the debt of any individual that is reported to

the credit agency: all credit-cards, auto, mortgage, and student-loan debt, as well as some other,

smaller categories.2 While the CCP gives a detailed panel on credit and debt, its coverage of other

variables is extremely limited. It contains birth year and geography, but not income, sex, or other

demographics. An important advantage of the CCP over other data sources is that it includes all of

the credit cards held by an individual. Throughout, we combine all credit cards, giving the com-

2Lee and van der Klaauw (2010) provide additional details on the sampling methodology and how closely the
overall sample corresponds to the demographic characteristics of the overall U.S population, and conclude that the
demographics match the overall population very closely. We use only a 0.1 percent sample for analytical tractability
for much of the analysis.
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plete credit and debt picture.3 Importantly, the CCP measures total credit card debt and does not

directly distinguish new charges from revolving debt from previous months. We limit the sample

to include only accounts that have a birth year and that had an open credit card account at some

point from 2000–2015. The likelihood of credit card possession increases for people when they

are in their 20s, but then it quickly stabilizes. We show the age and year distribution of having a

positive limit or debt in Figure A-1 in the appendix.

We use several other data sources: To estimate our payments model, we also use data from the

Federal Reserve Bank of Atlanta’s Diary of Consumer Payment Choice, which asks a nationally

representative sample of consumers to record all of their expenditures and how they paid for them

over a three-day period (Schuh and Stavins 2017, Schuh 2018). In addition, we estimate life-cycle

profiles for consumption from from the Consumer Expenditure Survey (CE), for fraction revolving

from the Federal Reserve Bank of Atlanta’s Survey of Consumer Payment Choice, and bankruptcy

rates from the Consumer Financial Protection Bureau’s Consumer Credit Panel which is derived

from a 1 in 48 sample of credit bureau data.

2.1 Credit and debt over the business cycle

Figure 1 shows how the average U.S. consumer’s credit card limit and debt varied significantly

from 2000–2014. From 2000–2008, the average credit card limit increased by approximately 40

percent, from around $10,000 to a peak of $14,000. During 2009, overall limits collapsed rapidly

before recovering slightly in 2012. Credit card debt shows a similar variation over time. From

2000–2008, the average U.S. consumer’s credit card debt increased from just over $4,000 to just

under $5,000 before returning to around $4,000 during 2009 and 2010.4

3The CCP reports only the aggregate limit for cards that are updated in a given quarter. Cards with current debt
are updated, but accounts with no debt and no new charges may not be. To deal with this problem, we follow Fulford
(2015) and create an implied aggregate limit by taking the average limit of reported cards times the total number of
open cards. This method is exact if cards that have not been updated have the same limit as updated cards. Estimating
the difference based on changes as new cards are reported and the limit changes, Fulford (2015) finds that non-updated
cards typically have larger limits, and so the overall limit is an underestimate for some consumers with unused lines.
For consumers who use much of their credit and so may actually be bound by the limit, the limit is accurate because
all their cards are updated.

4The fall in debt is not because of charge-offs in which the bank writes off the debt from its books as unrecoverable.
The consumer still owes the charged-off debt and it generally still appears on the credit record. Banks may eventually
sell charged-off debt to a collection agency, in which case it may no longer appear as credit card debt within credit
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Figure 1: Credit card limits, debt, and utilization: 2000–2015
Observed from credit bureau Model prediction given fall in credit limits
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Notes: The left panel shows observed limits, debts, and utilization from credit bureau data (see Section 2 for details).
The right panel shows model predictions given an unexpected fall in credit (see section 5 for details). For both panels,
the left axis shows the average credit card limits (top line) and debt (bottom line). Note the log scale. The right axis
shows mean credit utilization (middle line) defined as the credit card debt/credit card limit if the limit is greater than
zero. Source: Authors’ calculations from Equifax/NY Fed CCP.

Utilization is much less volatile than credit or debt. The thick line in the middle of Figure 1

shows credit utilization, the average fraction of available credit used. Because the scale on the left

axis of the figure is in logarithms for credit and debt, a 1 percentage point change in utilization on

the right axis has the same vertical distance as a 1 percent change in credit or debt. The similar

scales mean that we can directly compare the relative changes over time in limits, debt, and credit

utilization. Credit and debt vary together in ways that produce extremely stable utilization that has

no obvious relationship with the overall business cycle. The next two sections examine how the

decisions made by individuals combine to form this aggregate relationship.

2.2 Credit and debt over the life cycle

Figure 2 shows how credit card limits, debt and utilization evolve over the life cycle. In the left

panels, each line is for an age cohort that we follow over the entire time possible. The figure

bureau accounts. Charge-offs are not large enough to explain the fall in debt, although they did increase in 2009. The
average charge-off rate from 2000–2007 was 4.35, increasing to 5.03 in 2008 and to 6.52 in 2009, before declining
again to 4.9 in 2010 and 3.54 in 2011, and averaging 2.41 since then. See https://www.federalreserve.
gov/releases/chargeoff/delallsa.htm for charge-off rates for credit cards. Note that our econometric
estimation captures defaults.
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Figure 2: Credit card limits, debt, and credit utilization
Limit and debt by cohort Limit distribution
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Figure 8: Percentiles of log credit card limit by cohort (1920, 1930, 1940, 1950, 1960, 1970, 1980).
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utilization. Source: Author’s calculations from Equifax/NY Fed CCP.

therefore makes no assumptions about cohort, age, or time effects. Credit limits increase very

rapidly early in life, rising by around 400 percent from age 20–30, and continue to increase after

age 30, although less rapidly. Life-cycle variation dominates everything else in Figure 2; while

there is clearly some common variation over the business cycle, cohorts move nearly in line with

age. We show a more formal decomposition into age and year effects in Figure A-3 in the appendix.

Despite the very large variation over the business cycle evident in Figure 1, changes over the life

cycle are an order of magnitude greater.
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The bottom two panels of Figure 2 show the credit card utilization—credit card debt divided by

the credit limit—for each cohort and the distribution of utilization. Consumers with zero debt have

zero credit utilization, so they are included in the calculation of utilization but are excluded from

mean debt, which includes only positive values.5 Credit utilization falls slowly from ages 20–80.

On average, 20-year-olds are using more than 50 percent of their available credit, and 50-year-olds

are still using 40 percent of their credit. Credit utilization does not fall to 20 percent until around

age 70. Moreover, there is substantial and persistent heterogeneity of utilization. More than 10

percent of the population is nearly at its credit limit even past age 70.

2.3 The reduced form evolution of individual utilization

This section shows that utilization for an individual rapidly reverts to an individual specific mean.

Credit utilization is therefore best characterized by fixed heterogeneity across individuals and rel-

atively small transitory deviations for an individual over time. We present parametric results here

and non-parametric results in Appendix A and Appendix Figure A-4. The non-parametric results

suggest that the simple linear dynamic reduced-form model we employ is surprisingly accurate.

Fulford and Schuh (2015) give additional variations for utilization and show results on how debt

and credit co-evolve, rather than fixing the relationship by combining them into utilization. Rela-

tively little is lost by simplifying only to utilization. Moreover, in a Granger Causality sense, the

direction of causality moves primarily from changes in credit to change in debt.

Table 1 shows how utilization this quarter relates to utilization in the previous quarter. For

simplicity, we estimate AR(1) regressions of the form:

υit = θt + θa + αi + βυit−1 + εit, (1)

where υit is the credit utilization, conditional on a positive credit limit, and age (θa) and quarter

(θt) effects that allow utilization to vary systematically by age and year. Column 1 does not include

fixed effects and so assumes a common intercept. Column 2 includes quarter and age effects, while

5The calculations in Figure 2 are the average of log limits and log debts to match later analysis and so exclude
zeros except for utilization. Figure A-1 in the appendix shows the fraction in each cohort who have positive credit and
debt. Including the zeros would lower the average credit limit and debt, but makes the life-cycle variation larger.
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Table 1: Credit utilization
Equifax/NY Fed CCP Model

Credit utilizationt
Credit utilizationt−1 0.874*** 0.868*** 0.647*** 0.699***

(0.000876) (0.000892) (0.00131) (0.000492)
Constant 0.0479***

(0.000461)

Observations 347,642 347,642 347,642 2,168,011
R-squared 0.741 0.743 0.429 0.491
Fixed effects No No Yes Yes
Age and year effects No Yes Yes Yes
Number of accounts 10,451 46,607
Frac. Variance from FE 0.477 0.217

Notes: The sample includes zero credit utilization but excludes individual quarters where the utilization is undefined
since the limit is zero and when utilization is greater than five (a very small fraction, see distributions of utilization in
Fulford and Schuh (2015)). Source: Authors’ calculations from Equifax/NY Fed CCP.

the other columns include individual fixed effects, quarter effects, and age effects.6

Without fixed effects, credit utilization is very persistent in column 1. Including age and year

effects in column 2 barely changes the persistence. The third column shows how credit utilization

varies around an individual-specific mean. Nearly half of the overall variance in utilization comes

from these fixed effects. In other words, about half of the distribution comes from factors that are

fixed for an individual, allowing for common age and year trends, and half from relatively short-

term deviations from the mean. After a 10 percentage point increase in utilization, 6.47 percentage

points remain in one quarter, 1.7 percentage points in a year, and fewer than 0.3 percentage points

after two years.

Moreover, this individual persistent utilization is highly heterogeneous. As Figure 2 shows, for

most of the life cycle, the 25th percentile is using less than 10 percent of available credit, while the

75th percentile is using more than 80 percent. Following people quarterly for 15 years, people who

are using more than 60 percent of their credit on average spend 80 percent of the time using more

6The combined age, year, and individual fixed effects in equation (1) are not fully identified. To implement the
additional necessary restriction, we follow Deaton (1997, pp. 123–126) by recasting the age dummies such that Îa =
Ia − [(a− 1)I21 − (a− 2)I20], where Ia is 1 if the age of person i is a and zero otherwise.
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than have 60 percent; people using less than 30 percent, spend more than 90 percent of time using

less than 30 percent. In the next section, we describe a model that helps explain this persistent yet

heterogeneous utilization.

3 A model of life-cycle consumption and credit card debt

To explain the observations in the previous section, this section describes a life-cycle consumption

model that builds on the models in Gourinchas and Parker (2002) and Cagetti (2003) but includes

the addition of a payment choice, the ability to borrow at a higher interest rate, the choice to

default on debt, expenditure shocks, and changing credit over the life cycle. Although we describe

the decision making for a particular consumer, in the estimation we allow for multiple populations

of consumers with distinct preferences.

To keep the model numerically tractable and thus able to be estimated, we make a number of

modeling decisions that simplify the full richness of the decision environment—particularly of the

payment choice and default—but allow us to capture the important dimensions of the problem.

We focus on unsecured credit card debt of individual consumers and do not directly model the

endogenous decision to take on non-credit card debt or interactions within households. While these

other elements likely affect credit card decisions to some extent, data limitations and numerical

complexity make them difficult to address directly, although we can deal with some indirectly.7

3.1 The decision problem

From any age t, a consumer indexed by i seeks to maximize her utility for remaining life given

current resources and expected future income. Consumers may belong to a population with distinct

preferences which we denote with j. With additively separable preferences, the consumer with

liquid funds Wit and current credit limit Bit maximizes the discounted value of expected future
7Most other forms of household debt, such as mortgages, home equity, and auto loans, are secured directly against a

household asset, and so their main influence on credit card decisions is how they affect liquidity. The model allows for
asset accumulation and income from illiquid assets in late life, but it does not directly model an endogenous liquidity
decision as in Kaplan and Violante (2014) or Kaboski and Townsend (2011). Fulford and Schuh (2015) show that the
reduced-form relationship between credit card limits and debts explored in Section 2.3 does not seem to change based
on whether someone has a mortgage. Households may provide insurance across members (Blundell et al. 2008) and
across generations.
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utility:

max
{Xs,πs,fs}Ts=t

{
E

[
T∑
s=t

βs−tj u(Cis) + βT+1
j S(AiT )

]}
subject to

Cis = νis(1− fisφcs)Xis (Consumption from expenditures)
Xis ≤ Wis (Expenditures limited by liquidity)
Wis = Ri,sAi,s−1 + Yis +Bis −Kis (Evolution of liquidity)
Ai,s−1 = Wi,s−1 −Bis−1 −Xis−1 (Relationship between liquidity and assets)
νis = ν(πis;Ai,s−1) (Payment decision)
fis = f(Fis,Wis) (Default decision)
Fis = H(Fi,s−1, fi,s−1) (Evolution of default state)

where she gets period utility u(·) from consumption Cis, which she gets by making expenditures

Xis adjusted for the payment choice and default. The decision at t depends on what she expects

her future decisions and utility to be at ages s ≥ t. The consumer discounts the future with a fixed

discounted factor βj and so has time-consistent preferences. We therefore drop the distinction

between age t and future ages s ≥ t for clarity.

The discount factor is fixed for the individual consumer, but may vary across consumers in

different groups j and we will estimate the importance of this variation. We assume that period

utility displays Constant Relative Risk Aversion (CRRA) and allow the risk aversion parameter γj

to vary across types. Appendix B.2 discusses how to rewrite the consumer’s problem recursively in

terms of the normalized state variable wt and thus write the solution of the consumer’s normalized

recursive problem as an age-specific expenditure/consumption function xt(wit, ai,t−1, Fit).

Beyond expenditures, the consumers faces two additional decisions each period: how to pay

for her expenditures and whether to default. Within each period she decides what portion of ex-

penditures to fund using credit versus liquid funds. Making payments from different sources of

funds comes at a price that drives a small wedge νit between expenditures and consumption, the

evolution of which we explain below. Expenditures are limited by the available liquidity Wit,

which is the sum of assets left at the end of the previous period Ai,t−1 (which may be positive or

negative) earning total return Rit which depends on the default status and assets in the previous

period, income this period Yit, and the credit limit this period Bit, minus an expenditure shock

Kit. The consumer may choose to default, indicated by the binary variable fit and enter the default
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state Fit, or be forced to default if the expenditure shock pushes liquidity below zero. Defaulting

reduces expenditures in the current period and puts the consumer in the default state which has

costs in future periods, but removes all debt. We discuss the consumption and credit implications

of default below. Many of the elements in this problem are standard. We focus on the nonstandard

ones.

Rate of return on assets Borrowers face a higher interest rate than savers, and those in default

face an even higher interest rate. If the assets Ai,t−1 at the end of the period are positive, her assets

grow at the return on savings; if assets are negative, she is revolving debt, and her debt grows at

the rate for borrowers or defaulted borrowers if she has a bankruptcy on her credit record:

Rit = R(Ai,t−1, Fi,t−t) =


R if Ai,t−1 ≥ 0

RB if Ai,t−1 < 0

RD if Ai,t−1 < 0 and in default (Fi,t−1 = 1),

with RD ≥ RB ≥ R.

The payments wedge between expenditures and consumption Credit card debt includes un-

paid revolving debt from a previous period as well as all new charges that may be paid off. To

understand credit card debt, we must account for this payment or “convenience” use as well as the

revolving-debt use of credit cards. We model the within-period decision of what portion of expen-

ditures to pay for using credit cards in a simple way that allows us to estimate it with observable

behavior and embed it in the consumption model.

A consumer has two choices for converting liquid funds into consumption. She can use a

credit card or some other option that, for simplicity, we will call cash. The consumer pays a

cost or receives some possibly non-pecuniary benefit when using each method. Each fraction

of expenditures π ∈ [0, 1] has a value N(π) of using a credit card relative to all other payment

methods, so that if N(π) > 0, using a credit card is less costly than other methods. By making

the value relative to other means, we effectively normalize the cost of using cash to zero. Thus

we ask whether, for that fraction of expenditures, using a credit card is less costly than cash. The
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normalization is key to our identification approach, which can identify the value of credit cards only

relative to other choices, not in absolute terms. The normalization is innocuous in the consumption

model because it affects the marginal value of expenditures in all periods. By indexing the value

using the fraction of expenditures, we rule out the possibility that the size of expenditures affects

the costs of paying for them. This simplification is important for fitting the within-period payment

decision into the consumption decision.

We next put a simple functional form onN(π), which allows us to directly identify willingness-

to-pay given observable behavior. We order expenditures so that the value of using a credit card at

π = 0 is the largest and π = 1 the smallest. With this order, we assume that the relative value of

using a credit card is falling at a linear rate with the fraction of expenditures:

N(π) = ν0 − v1π.

For the first fraction of expenditures, consumers are willing to pay ν0 to use a credit card instead

of cash. For expenditures for which N(π) ≥ 0, the consumer prefers using a credit card. When

N(π) < 0, she prefers cash because it is less costly. By ordering the costs and assuming a contin-

uous and strictly monotonically decreasing function, we have simplified the consumer’s decision

from which option to use for every iota of expenditures to finding the optimal fraction of expendi-

tures π∗ to use a credit card for, where N(π∗) = 0. The consumer uses a credit card only for the

fraction of expenditures for which she gets positive value, relative to other payment methods.

Consumers who revolved debt the previous period have to immediately pay interest on new

payments, while convenience users do not. Revolving makes consumption slightly more costly, and

so the payment decision influences the consumption decision. If expenditures are spread evenly

over the month, then a revolver will pay additional interest of ((RB − 1)/12)/2 on her credit card

expenditure that month.8 Assuming the loss of float is the only factor explaining different usage,

the cost function for revolvers shifts down by (RB − 1)/24.

8This formula comes from the way that annual credit card rates are reported and interest charged. The interest rate
on debt is RB − 1. The Annual Percentage Rate, or APR, is not a compound rate, and so it is appropriate to divide it
by 12 to find the rate of interest. The financing charge on a credit card is calculated based on the average daily balance
within a month, and so the financing charge on consumption spread evenly throughout a month is half the interest rate.
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Figure 3: Value or cost of expenditure using a credit card, relative to other means
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Notes: This figure shows the value or cost of expenditure on a credit card at each expenditure share π relative to cash.
The top line is for convenience users who put an optimal share πc of consumption on a credit card. The bottom line
for revolvers is shifted down by the amount −rB/24, because revolvers lose the float on payments made using credit
cards and therefore put a smaller optimal share on their credit cards πR.

Figure 3 illustrates these two cost functions and why these simple assumptions help us find

the payments wedge. As the fraction spent on a credit card increases, the value of paying for the

next bit of expenditures declines. Eventually, expenditures on a credit card are less valuable than

expenditures with cash, and so there is an optimum πC . Because revolvers start at a lower initial

value, their optimum πR is lower, a prediction we see in the data and will discuss more when

we estimate this model in Section 4. Figure 3 also makes clear the identification strategy. With

estimates of πC , πR, and rB, it is possible to solve for the two parameters ν0 and ν1 and find the

area of the wedge for convenience users, νC , and revolvers, νR. The area is the sum of the benefits

of using a credit card to access funds instead of using cash when a credit card is a better choice.

Appendix D goes through the algebra of exact expressions for νC , νR, πC and πR given ν0 and ν1,

and it shows how to calculate standard errors given estimates of πC and πR using the delta method.

To understand why we need to model the payments use of credit cards, consider what the model

says we will see for convenience use and revolving debt. The observed credit card debt at time

t in the credit bureau data includes both new charges and previous debt for revolvers, but only
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convenience debt from charges in the past month for convenience users:

Di,t =

{
πCXit if not revolving so At−1 ≥ 0)

πRXi,t + Ai,t−1 if revolving so At−1 < 0).

Debt evolves differently because for revolvers it includes the stock of previous debt, while for

convenience users it is only the flow of expenditures.

The income process and expenditure shocks Income or disposable income follows a random

walk with drift:

Yi,t+1 = Pi,t+1(Ui,t+1 − Fi,t+1φ
y
t+t)

Pi,t+1 = Gj
t+1PitMi,t+1,

where Gj
t+1 is the known life-cycle income growth rate from period to period for population j.

Fi,t+1φ
y
it+t is an income cost of being in the default state Fi,t+1 = 1 discussed more below. The

“permanent” or random-walk shocks Mi,t+1 are independently and identically distributed as log-

normal with mean one: lnMi,.t+1 ∼ N(−σ2
M/2, σ

2
M). The transitory shocks are similarly dis-

tributed lognormally with mean one and variance parameter σ2
U . We allow for a temporary low

income UL from unemployment or other shocks with probability pL each period.9 The structure of

the shocks ensures that the expected income next period is always Et[Yi,t+1] = Gj
t+1Pit when not

defaulting, because the mean of both transitory and permanent shocks is one.

A consumer also faces expenditure shocks Ki,t which are either 0 or a multiple of permanent

income, kPi,t with probability pk. These expenditure shocks represent expenditures the consumer

is required to make, but derives no utility from. Thus, while they do not count as consumption

for utility purposes, they are expenditures for accounting purposes, and we include them when we

compare model expenditures to actual consumer expenditures.

9Low-income shocks, in addition to lognormal shocks, may matter for precautionary reasons by putting additional
probability on very bad outcomes. We introduce low-income shocks in such a way that Et[Ui,t+1] = 1. Formally, the
transitory shocks are distributed as: Ui.t+1 = UL with probability pL and Ũt(1 − ULpL)/(1 − pL) with probability
1−pL, where Ũ is i.i.d. lognormally distributed with mean one: ln Ũi,t+1 ∼ N(−σ2

U/2, σ
2
U ) andUL is unemployment

income as a fraction of permanent income.
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The credit limit Life-cycle variation in credit limits is proportionally several times larger than

life-cycle variation in income (compare Figure 2 to Appendix Figure A-6), and the dispersion of

credit limits across individuals of the same age is also large (see Appendix Figure A-2). We allow

for life-cycle growth and dispersion across consumers by assuming that the credit limit Bit is an

age-dependent multiple of permanent income:

Bit = btPitb
Fit
f ,

where bt ≥ 0 is the age-varying fraction of permanent income that can be borrowed, which is

set outside the control of the consumer and bf is the fraction that the consumer can borrow in the

default state (Fit = 1). This approach means that across consumers, Bit will be in proportion to

income Pit, but it allows credit to follow an average path over the life cycle that is different from

income and affected by consumer decisions.10

The decision to default The consumer may voluntarily decide to default (fit = 1) and enter the

default state (Fit = 1). Alternatively, if the expenditure shock is sufficient to push Wit ≤ 0, the

consumer is forced into involuntary default.

Defaulting has a series of consequences. Involuntary defaulters consume the consumption

minimum cminPit. In the period of default for voluntary defaulters, expenditure is all of available

liquidity (Xit = Wit), but the consumption value of this expenditure is reduced by (1 − φc). We

think of this reduction as capturing three costs: a non-pecuniary cost of default; pecuniary default

penalties that apply during the period of default; and the possible ability of card issuers to limit

default exposure by reducing credit limits proactively. After defaulting, the consumer enters the

10The consumer’s problem as written, withWt as a sufficient period budget constraint, implies that a consumer must
immediately repay all debt over her limit if her credit limit falls. To see this, consider what happens if Bi,t−1 > 0 and
the consumer borrows, leavings negative assets at the end of period Ai,t−1 < 0. If Bit = 0, then assets at the end of
period t must be weakly positive (Ait ≥ 0), and so all debt has been repaid within a single period. A cut in credit
limits implies an immediate repayment of debt in excess of the limit. This debt repayment when credit is cut below
debt does not match credit card contracts, which do not require immediate and complete payment following a fall in
credit (Fulford 2015). Instead, credit card borrowers can pay off their debt under the same terms; they just cannot add
to it. However, allowing for such behavior means that there must be an additional continuous state variable, because
Wt and Bt no longer fully describe the consumer’s problem. This adds substantially to the numerical complexity of
the solution through the curse of dimensionality.
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next period with no debt (Ai,t+1 = 0).

Having entered the default state, the consumer faces a modified consumption problem of some-

one with a bankruptcy on her credit record. Her credit limits is a fraction bf of non-defaulted credit

limits. Her cost of borrowing is higher. To reflect possible wage garnishment or the effect default

may have on available employment, the income process is reduced by a multiple of the default

debt φyit = φy(RB − 1)btPit in every period. Formulated this way, the cost of default is increasing

with the credit limit, so that as credit limits increase with age, so does the cost of default. Because

the credit limit is increasing over the life cycle, the consumption value of maxing out credit cards

is also increasing, so the incentive to default is increasing. The current period and future costs of

default are conceptually distinct, but difficult to distinguish empirically, so we link them and set

φc = φy so that only one parameter governs the total cost of default.

To keep the state space tractable, we model the evolution of the default stateFi,t = H(Fi,t−1, fi,t−1)

as an absorbing Markov process: A consumer in default in the previous period (Fi,t−1 = 0) stays

in default with probability pF , and exits default with probability 1−pF . The consumer is in default

with certainty if she defaulted in the previous period (fi,t−1 = 1).

Given the costs and benefits of default, consumers must decide whether to default. Only con-

sumers not currently in default may decide to default. Because default is a discrete decision, con-

sumers decide whether the value of current and expected future utility from defaulting is greater

than defaulting:

fit = f(Fi,t,Wi.t) =

{
1 if V Default(Wi,t) > V Not Default(Wi,t) and not in default (Fit = 0)

0 else.

Following Chatterjee et al. (2007), we can simplify this decision into finding the crossing point,

if it exists, of the two value functions, so characterize the decision as finding the liquidity below

which default occurs: WDefault
t .

The beginning and end of life Several important decision parameters affect initial distributions

and decisions late in life. We assume the initial distribution of the wealth/permanent-income ratio
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is lognormal with variance that matches the variance of permanent income shocks and mean λj0

that may be different for consumers in different populations j. The consumer lives for T periods,

where T is a random number that we match to actual life tables, and we assume she dies with

certainty at age T̃ . At death, she receives a final utility S(·) from leftover positive resources. In

our base estimations, we set the bequest motive to allow for an annuity to heirs. Appendix B.1

discusses the specific function.11

Late in life, consumers may face income and expenses different from those they face during

working years. Labor income may drop, but consumers may start claiming illiquid retirement

benefits such as pensions and Social Security, and they may derive income from other illiquid assets

such as housing. They may also face an increase in necessary expenses from additional medical

care or other needs. We summarize all of these changes by assuming that income starting at TRet

is a fraction λj1 of pre-retirement permanent income (λj1Pi,TRet−1). Allowing for a fall in outside

disposable income is a flexible way of combining the many late-in-life changes that consumers

may want to plan for during working years, including possibly the acquisition of illiquid assets

for retirement. Consumers still earn the return on their liquid assets accumulated before TRet, but

they face no income volatility and continue to consume optimally given their income and expected

longevity.

Model frequency We model all decisions as being made quarterly to match the data and ad-

just the discount rates and interest rates accordingly, although we report the yearly equivalent for

straightforward comparison to other work. Quarterly decision-making is approximately four times

more computationally intensive than yearly yet helps to capture the within year consequences of

hitting a budget constraint. Because of data and computational constraints, much of the structural

consumption literature has been limited to examining decisions made at a yearly frequency. We ad-
11Recent work has disagreed over the importance of a bequest motive as opposed to other possible motives for

keeping assets late in life, such as long-term care and medical needs (De Nardi et al. 2010). Since we focus primarily
on debt, our model and estimates are not well situated to distinguish between motives. While the exact form of the
bequest motive or another motive for keeping assets late in life is not important, removing it entirely is consequential.
Because the likelihood of dying is increasing with age, people with no bequest motive are effectively getting more
impatient. Therefore, they should not decrease the amount of debt they hold as much as the data shows they do. We
discuss the effects of alternate formulations of the bequest motive more in Section 4.4.
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just convenience credit card debt appropriately so that it represents only one month of expenditure

when we estimate the model.

3.2 The consumer’s decision

For a given set of parameters, we find a numerical approximation of the consumer’s problem by

writing the problem recursively and proceed through backward recursion from the end of life.

We give a detailed discussion in Appendix B.3. We follow the method of endogenous gridpoints

(Carroll 2006), which substantially reduces the computation costs for the expenditure problem.

The payments problem can be solved separately from the decision problem in each period, which

makes the model numerically tractable.

Figure 4 illustrates some of the complexities of the decision problem. The consumption func-

tions then show how much a consumer at that age with those preferences will consume at each

liquidity. Because credit limits also scale with permanent income, only age, default status, pre-

vious borrowing, and the current liquidity ratio enter the consumption decision. There are three

kinks in the consumption function, which are most visible for the impatient 30-year-olds. First, the

consumption function has an inflection point where the consumer goes from leaving nothing for

the next to period to leaving some liquidity by not borrowing up to her credit limit as examined by

Deaton (1991). The second two inflection points arise because the interest-rate differential means

there are two solutions to the Euler equation for leaving zero assets. One, the limit with assets

approaching zero from below, uses the borrowing rate RB, and the other uses the savings rate R.

Figure 4 is based on the estimates in the next section which suggest a cost of default parameter high

enough that voluntary default is never optimal. With a lower cost of default, the decision becomes

even more complex as is illustrated by appendix Figure A-5. With a voluntary default, there is a

discrete jump in consumption at the optimal default liquidity; below the default point, consumers

spend all available liquidity and suffer the costs of default, above the default point consumers leave

some liquidity for the next period.12

12The standard method of endogenous gridpoints breaks down when there is a discontinuity in the value function
at the default point. We therefore use a modified version that forms endogenous gridpoints on either side of the
discontinuity and then enters a successive approximation around the discontinuity from above and below to choose
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Figure 4: Expenditure functions over the life cycle with borrowing
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Notes: This figure uses the estimates in Table 3 column 1 at age 30 and age 60 to show the quarterly expenditure
function for impatient (A) consumers and patient (B) consumers. Liquidity wt is a multiple of quarterly permanent
income Pt and includes available credit. The densities for liquidity are for age 30 and show where individuals are
along their consumption functions. Because the rate of savings is lower than the rate of borrowing, the expenditure
function has kink going from borrowing to saving nothing for the next period to actively saving.

4 Estimation

This section describes how we estimate the structural model using life-cycle profiles of consump-

tion, debt, and default. The estimation works in two stages: First, we estimate the payments value

of credit cards for revolvers νR and convenience users νC in Section 4.1. The structure of the

payments problem means it can be estimated separately. We also estimate other observable param-

eters at this stage. Second, we estimate the parameters of the model that minimize the difference

between the life-cycle profiles the model produces and the life-cycle profiles of debt, consumption,

and default we observe in the data.

We allow for preference heterogeneity by introducing two sub-populations with different pref-

erences and overall income. Of course, additional preference heterogeneity is possible, but our

results suggest that this is the minimum heterogeneity necessary, and we prefer this parsimo-

nious form because it makes obvious the contribution of different populations while not adding

gridpoints that capture the discontinuity correctly.
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too much complexity to the computational problem. Moreover, it is not clear that more preference

heterogeneity is identified without additional assumptions or data. We estimate differences in the

income-generating process between the two populations to allow for arbitrary correlation between

preferences and income.

There are thus three forms of heterogeneity in the estimated model: (1) life cycle, as people

make different decisions at different ages; (2) heterogeneous agents, as people are hit with different

shocks and so have different assets and incomes and make different decisions based on their current

wealth; and (3) population-level preference and income heterogeneity, as distinct sub-groups that

have different preferences and different income processes react differently to shocks.

To combine groups we estimate the share of group A (fA) and the multiple of the average

permanent income earned by group A (ζA). We constrain the population average income of the

two groups to match the empirical income profile so that if population A has a higher income,

then population B must have a lower income.13 For each sub-population, the entire decision is

described by four parameters: the discount rate β, the coefficient of relative risk aversion γ, the

initial wealth-to-income ratio λ0, and the fraction of permanent labor income expected from illiq-

uid assets such as housing, pensions, or Social Security in late life λ1. Finally, we estimate the

probability (pk) and cost (k) of expenditure shocks. We show that the default cost parameter

φ is identified only up to an inequality, so jointly estimate 12 parameters in the second stage:

θ = {γA, βA, λA0 , λA1 , γB, βB, λB0 , λB1 , fA, ζA, pk, k}.

We estimate the parameters of the nonlinear model using the Method of Simulated Moments

(MSM) of McFadden (1989). Appendix C gives additional details. Briefly, given set of parameters

θ ∈ Θ and first-stage parameters χ, we solve the consumer’s problem and then simulate the life-

cycle decisions for a large population of consumers. We then minimize the weighted sum of square

differences between the empirical and simulated life-cycle moments for the population. Our stan-

dard weighting matrix is block proportional to the inverse variance of the empirical moments (the

optimal weighting matrix with no first-stage correction). We also show results using the “optimal”

13Together fA and ζA directly determine ζB . For the average income of the combined populations to equal the
average observed income fAζA + fBζB = 1, which implies that ζB = (1− fAζA)/(1− fA), since fB = 1− fA.
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Table 2: Fraction of expenditure on a credit card and value for payments

Fraction on Std. Std.
Credit card error dev.

All consumers 0.172 0.0082 0.310
All revolvers 0.156 0.0130 0.283
All convenience users 0.182 0.0105 0.324

Model Estimates

Level ν0 0.035 0.0216
Slope ν1 0.194 0.1259

Implied value of credit card use (percent of consumption)

Revolvers 0.235 0.1512
Convenience users 0.319 0.0962

Notes: Authors’ calculations from the Federal Reserve Bank of Boston Diary of Consumer Payment Choice. The
standard errors are calculated by bootstrapping.

weighting matrix, following Laibson et al. (2007), who improve on the work of Gourinchas and

Parker (2002) by allowing for the empirical moments to have different numbers of observations.

4.1 Estimation and identification of the payments model

Because of the structure of the consumer’s problem, whether the consumer was revolving as of the

previous period is the only way the consumption decision influences the payment decision. We can

thus find the solution to the payments problem first and then allow the solution to the payments

problem to influence the consumption problem. Table 2 shows the fraction of all expenditures

over a three-day period that the nationally representative sample of consumers from the Diary of

Consumer Payment Choice puts on a credit card. The average consumer pays for 17.2 percent of

expenditure with a credit card. Revolvers pay for slightly less at 15.6 percent, and convenience

users pay for slightly more at 18.2 percent.14

The difference between revolvers and convenience users then exactly identifies the payment

model, as Figure 3 illustrates. We show the algebra for the identification of the payment parameters

14Credit card use is fairly stable with age, although with wide standard errors (Fulford and Schuh 2015). Interest-
ingly, both revolvers and convenience users over 65 tend to spend more on a credit card.
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ν0 and ν1 and the delta method to calculate their standard errors in Appendix D. Table 2 shows the

estimated coefficients with an interest rate on borrowing of 14.11 percent adjusted for inflation of

2.15 percent (see discussion in Appendix C.2 for sources).

The model directly gives the convenience value of credit cards. For a real borrowing rate of

close to 12 percent, the value of using a credit card for payments over other methods is worth 0.319

percent of expenditures to convenience users and 0.235 percent to revolvers, although with fairly

wide standard errors. The implied aggregate value of using credit cards for payments is around $40

billion a year.15 As a comparison, the fees that banks charge merchants for processing credit cards

are roughly $60 billion per year.16 The value of the intercept ν0 suggests that for the most valuable

purchases, using a credit card has a value of 4.1 percent of all expenditures for these purchases. For

comparison, if all convenience consumers received the equivalent of 1 percent cash back on their

purchases with credit cards, the implied consumer surplus would be 0.182 percent of consumption.

This calculation likely overstates the direct value of rewards because not all cards offer rewards, but

it suggests that about half of the convenience value from credit cards comes from direct rewards or

other card benefits, and the other half comes from their value as a convenient payment mechanism.

4.2 The empirical life-cycle moments and first stage moments

We estimate the model to provide the best fit to three life-cycle profiles: (1) log mean credit card

debt over the life cycle from the Equifax/NY Fed CCP described in Section 2, (2) log mean house-

hold consumption over the life cycle from the CE from 2000–2014,17 (3) the fraction of consumers

15Personal consumption expenditures were $12.3 trillion in 2015, according to the BEA. If half of the population is
revolving, then 12283 ∗ (0.319/100 + 0.234/100)/2 = 36.6 billion. Note that this calculation is an estimate of the
consumer surplus of credit cards as a payment mechanism over other means, given the current payments ecosystem,
and so does not directly calculate welfare. For example, the calculation does not take into account the costs of operating
the payments system or the producer surplus from additional sales made because some purchases are more convenient,
or the gains to the processors, network operators, and banks.

16The total value of credit card payments was $3.16 trillion in 2015 (see the 2016 Federal Re-
serve Payments Study https://www.federalreserve.gov/newsevents/press/other/
2016-payments-study-20161222.pdf). The percentage charged to merchants varies from approxi-
mately 0.75 percent to 4 percent, but appears to average around 2 percent. Fee revenue is therefore around $60 billion,
most of which is accounted for by the interchange fees shared by banks after payouts to card networks, processors,
and other parties.

17Because our observed credit data are for individuals rather than households, we adjust household consumption by
dividing by the number of adults in the household. We allow for some unobserved taste changes over the life cycle
by adjusting consumption for the number of children in the household. Formally, we estimate: ln(Ci,t/Adultsi,t) =
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with a credit card line charged off in bankruptcy from the CFPB Consumer Credit Panel which

is derived from credit bureau data, and which, unlike the Equifax/NY Fed CCP, shows individual

credit card lines.18 We show each of these moments in Figure 5 together with their estimates from

the model, and have already discussed the debt profile in Section 2.2. Consumption follows the

characteristic hump shape (Gourinchas and Parker 2002, Attanasio et al. 1999). Bankruptcy is

increasing early in the life-cycle, before declining. Appendix C.3 discusses the construction of the

variance-covariance matrix of the combined moments.

We briefly describe the sources and estimates from other data sets that identify the ancillary

parameters of the model, providing greater detail in in Appendix C.2. We estimate the average life

cycle of income growth (Gt) using the Consumer Expenditure Survey to match our consumption

data, adjusting for aggregate growth. s. We use the estimates of income shocks from Gourinchas

and Parker (2002), which are updates of Carroll and Samwick (1997), calculated from the Panel

Study of Income Dynamics. We adjust these volatilities for quarterly dynamics so that four quar-

terly shocks combine to produce the same variance as one yearly shock and allow for unemploy-

ment shocks. We estimate the total credit limit for a consumer from the Equifax/NY Fed CCP to

form Bt. For the other parameters and prices, we estimate the interest rate on debt Rb− 1 = 14.11

percent based on the average revolving interest rate over the period. From the SCF, we estimate

that those with a bankruptcy pay 1.92 percentage points more in interest on their credit card debt

and have only 42 percent of the credit limit (bf ). We estimate the return on savings for an all-bond

portfolio. We adjust both borrowing and saving interest rates for the geometric average inflation

rate from 2000–2015 of 2.15 percent.

θa + θt + βChildreni,t + εi,t, and then calculate average household consumption per adult at each age after removing
the effect of children at the individual level. Removing the implied consumption effect of children has a surprisingly
small effect. Figure A-6 in the appendix shows the unadjusted and adjusted consumption. Children slightly raise
expenditures per adult household member from ages 35–45, but the adjustment is small.

18We use bankruptcy as the appropriate empirical comparison because we model default as wiping away debts, but
there are many forms of default not directly coming from bankruptcy. At any age, the fraction of consumers with a
credit card line marked as charged off by the issuer (including for bankruptcy) is approximately double the fraction
with a line charged off for bankruptcy. Only in bankruptcy is the debt actually removed for the consumer allowing a
clean start, a charge off simple means that the bank has marked the debt on its books as uncollectable for regulatory
purposes. The bank may continue to try to collect the debt or sell it to a firm specializing in collection. See Athreya
et al. (2017) for a model that allows both non-payment default and bankruptcy.
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4.3 Estimation and identification of the life-cycle model

Using the first-stage estimates of the payments problem and the other parameters, we next estimate

the full life-cycle model. Because this is a nonlinear model, all moments are typically used to

identify all parameters. Appendix C.5 provides a discussion of how different sources of variation

help identify the parameters. Table 3 shows the model estimates, while Figure 5 shows how debt,

consumption, and bankruptcy vary over the life cycle in the model and empirical moments. Be-

cause the scales of the two top panels of Figure 5 are in logs, the estimation approximately finds the

parameters so that the weighted sum of the squared differences between the predicted consump-

tion and debt lines is as small as possible. It is clear that, given the constraints of the life-cycle

optimization model, the model estimates can successfully capture the life-cycle profiles of debt,

consumption, and default.

To do so, the model suggests that about two thirds of the population (fA) must be fairly im-

patient (βA) and not care very much about risks (γA). This portion of the population, which the

figure and tables call population A, has already acquired some debt (λA0 ) by age 24 and has sub-

stantial revolving debt throughout the life cycle. To match the amount of debt and consumption,

the estimates suggest that this population has an income about average (ζA).19 Because individual

credit limits are proportional to income, the members of this group cannot be too poor on average,

otherwise they would not be able to hold and make payments on their debts. Because the discount

rate is high and risk aversion is low, most of this population lives essentially hand to mouth over the

entire life cycle, relying on credit for all of their smoothing. This population’s average utilization

is high through much of the life cycle (see the fourth panel in Figure 5).

The estimates suggest that the other portion of the population must be relatively patient and risk

averse. Population B is too patient to ever want to hold much debt and has not acquired much debt

by age 24 in any case (λB0 ). So consumers in population B rarely borrow except in their 20s, when

some have enough shocks to want to borrow for a brief time. Their credit card debt is thus almost

19Depending on the particular weights, some estimates suggest an impatient income higher than average. In compar-
isons using the SCF, we found that the median income of revolvers was larger than the median income of convenience
users, while the mean income of convenience users was larger.
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Table 3: Model estimates
Standard Optimal Endogenous Low
Weights Weights payments bequest

Population A
CRRA γA 0.067 0.121 0.067 0.066

(0.018) (0.008) (0.018) (0.014)
Discount βA 0.892 0.887 0.892 0.893

(0.001) (0.003) (0.001) (0.001)
Initial wealth λA0 0.516 0.481 0.516 0.516

(0.087) (0.220) (0.114) (0.072)
Late life inc. λA1 0.727 0.719 0.727 0.731

(0.033) (1.766) (0.049) (0.033)
Population B

CRRA γA 2.023 1.975 2.023 2.023
(1.007) (42.111) (0.946) (1.134)

Discount βB 0.963 0.963 0.963 0.962
(0.018) (0.350) (0.020) (0.020)

Initial wealth λB0 1.728 1.658 1.728 1.728
(2.245) (90.275) (2.267) (1.826)

Late life inc. λB1 0.212 0.200 0.212 0.212
(0.260) (8.444) (0.251) (0.180)

Share A fA 0.669 0.648 0.669 0.669
(0.008) (0.005) (0.008) (0.013)

Inc. mult. A ζA 0.991 0.971 0.991 0.995
(0.099) (0.506) (0.137) (0.099)

Prob. of exp. shock 0.040 0.031 0.040 0.040
(0.005) (0.008) (0.005) (0.005)

Size of exp. Shock 0.660 0.532 0.660 0.659
(0.146) (0.073) (0.117) (0.135)

SSR (g’g) 0.3484 1.5633 0.3618 0.4558
J-stat 4.46E+08 1.37E+09 3.62E+08 5.08E+08
p-val 0 0 0 0
Weights Standard Optimal Standard Standard
Endogenous payments Yes Yes No Yes

Notes: Standard errors in parentheses. Optimal weights are the inverse of the variance of each individual moment.
Endogenous payments makes the consumer’s aware that revolving affects the value of credit cards for payments. The
standard default cost parameter φf = 7 bequest parameter is 1. Low bequest reduces the bequest motive.
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Figure 5: Consumption and debt over the life cycle: model estimates
Estimation moments: Debt Estimation moments: Consumption
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entirely from convenience use.20 Because this population expects to receive little income after

expenses (λB1 ) in late life and is relatively patient, this population spends early life accumulating

savings for late life. Consumption increases early in the life cycle as income and savings increase,

but it becomes relatively flat afterward as this population smooths consumption over the rest of the

life cycle.

The cost of default is identified only up to an inequality, so it is not estimated directly. As Ap-

pendix Figure A-8 shows, holding other parameters fixed at their values in column 1, changing the

bankruptcy cost parameter does not improves the fit until it goes below a threshold, after which the

model fit rapidly deteriorates. For estimates larger than the threshold, no one voluntarily defaults.

To see why the data push this conclusion so strongly, Appendix Figure A-9 shows bankruptcy

over the life-cycle with the standard bankruptcy cost parameter and one below the threshold. As

credit limits increase and the remaining expected life decreases, the gains from bankruptcy get

ever larger. At approximately age 35, much of the impatient population finds it better to default

and the bankruptcy rate changes precipitously. Increasing the cost of default increases the age at

which it becomes optimal for much of the impatient population to voluntarily default, but does not

change the rapid shift to default. Since the observed fraction of the population with a bankruptcy

on record is declining over the life-cycle as shown in Figure 5, voluntary default is not useful for

explaining the fraction in default. The estimates thus reject cost-of-default parameters in which

there is substantial voluntary default. Note that the model ties the default cost to the credit limit, so

the costs of default are increasing over the life-cycle. Not doing so makes default even more likely

at older ages.

Expenditure shocks, on the other hand, are useful for explaining default over the life cycle.

Early in life, consumers hit by an expenditure shock are likely to go bankrupt because they have

little credit. Because bankruptcy stays on the record for seven years, the fraction in bankruptcy is

increasing. But as credit limits increase, expenditure shocks are less likely to push someone into

bankruptcy, and the fraction in bankruptcy starts to decline in mid-life, matching the data.

20The added debt from convenience use of credit cards is one month’s worth of consumption (one-third of quarterly
consumption) times the estimated rate of consumption on a credit card for a convenience user from Table 2.
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The remaining three panels of Figure 5 show model predictions for other life-cycle paths. The

model captures the slow fall in credit utilization over the life cycle. The fall comes primarily

from revolvers using less of their credit as their limits increase and, secondarily, from incomes

decreasing and making debts less affordable. To examine the evolution of wealth, which may be

negative, we take the log of wealth after giving everyone $10,000, which allows us to consider

the full distribution in a single graph. The model estimates predict less wealth accumulation over

the life cycle than estimates from the Survey of Consumer Finances, but it predicts a similar trend

increase and flattening after age 55.21 The model was not estimated to match these profiles, and

so its ability to successfully predict something close to their level and evolution suggests that the

model is capturing important facets of life-cycle decision-making.

The heterogeneity in preferences is key to the model’s ability to capture, even approximately,

more than one life-cycle profile. Gourinchas and Parker (2002) estimate parameters to match

the consumption profile and under-predict wealth accumulation, while Cagetti (2003) estimates

parameters to match the wealth profile but needs such a high degree of risk aversion that it is

difficult to capture the consumption profile.

4.4 Robustness and variations

In this section, we briefly examine the robustness of the estimates to changes in weighting matri-

ces, starting points of the estimation, and model choices. Appendix C.6 offers additional details.

The general conclusion is that while particular parameters are sensitive to estimation and model

choices, our overall conclusions are not. Our overall conclusions are also robust to alternative

starting points for estimation. Table 3 shows the over-identification statistic for each estimation,

which always decisively rejects the hypothesis that the model is not over-identified.22 The choice

21We have also estimated the variance of credit card debt and the variance in the change in debt from quarter to
quarter, which controls for the permanent income and preference heterogeneity. The model captures the level of the
variance of credit card debt reasonably well, although it does not predict the shape very well. Our simulations of the
variance of the change are somewhat lower than the empirical counterparts because the only change in credit limits
comes from changes in permanent income. Since our estimates do not include credit limit volatility apart from income
volatility, and Fulford (2015), using the Equifax/NY Fed data, shows that credit-limit volatility is about four times
greater than income volatility, our model has too little credit-limit volatility.

22The over-identification statistic is large because the debt and bankruptcy moments are estimated very precisely
from the administrative data. The over-identification statistic rejects that the model can simultaneously fit all moments
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of weighting matrix is therefore not innocuous; because the model is over-identified, different

weighting matrices will give statistically different results, so the best estimate we present should

be viewed as one of many possible estimates. Our standard weight matrix gives equal weight to

all three blocks of life-cycle moments.The second column of Table 3 shows estimates that use

the two-stage “optimal” weighting matrix, which first estimates the parameters using our standard

weighting matrix and then uses those estimates to calculate the weights that asymptotically mini-

mize the variance of the estimator. The estimates are broadly similar; the impatient population is

more risk averse but less patient, and so it carries more debt and is a smaller share of the population.

The last two columns of Table 3 examine how changing the model changes estimates. Allowing

consumers to take into account how their their payments decisions will affect their consumption

decisions does not not appear to be important in column 3. Similarly, substantially increasing

the bequest motive in column 4 barely changes the estimates. Appendix C.6 provides additional

discussion.

5 Model predictions and policy implications

In this section, we take the estimated model and ask how well it predicts phenomena outside the life

cycle. These results provide both an out-of-sample examination of how good the model estimates

are and whether the model can successfully explain other phenomena that we did not estimate

it explicitly to explain. After showing it has substantial success out of sample, we explore the

estimated model’s implications for stimulus policy.

We simulate a large population with an age profile matching the population from age 24–74

and a credit drop of the same size as the one that occurred over 2008–2009. In addition to life-cycle

income growth and individual income volatility, aggregate income grows at a constant rate of 1.5

percent per year, just as the consumers in the model assume. We also adjust the dollar values for

the average inflation rate. Finally, to mimic the fall in credit limits that started in the final quarter

of 2008 and continued through 2009, we introduce a fall in credit of 35 percent for one-sixth of the

because the debt and default moments are so precisely estimated that even small departures from exact fit leads to a
rejection of the hypothesis.
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population over six quarters. This experiment is the simplest way to produce the approximately 35

percent drop in credit limits spread over more than a year that is evident in Figure 1, but it is not a

full replication of the changing environment. In particular, it does not include a fall in income or a

possible decline in expectations of future income growth.

The individual dynamics of credit utilization from the simulations closely match the dynamics

from the credit bureau data. Table 1 shows that once we control for unobserved heterogeneity with

fixed effects in the credit bureau data, shocks to utilization disappear quickly, with 64.7 percent

of a shock surviving each quarter (the third column). The last column performs exactly the same

regression on the simulated data. The simulated consumers experience the large unexpected fall in

credit in 2009 and the expected increase over the life cycle, but the only unexpected credit volatility

that they face comes because credit is proportional to volatile permanent income. Because volatility

in income is much less than volatility in credit (Fulford 2015), the consumers in the model face

less credit volatility than actual consumers do over the time period. Nonetheless, their average

response to changes in credit limits is very close to that of actual consumers; the estimated model

captures the dynamics of credit utilization closely, with 69.9 percent of a shock persisting to the

next quarter compared to 64.7 percent in column 3.

The right panel of Figure 1 shows the aggregate response of the simulated consumers to the

35 percent fall in credit introduced over six quarters. Credit continues to increase over the entire

period at the same 1.5 percent rate as income, plus 2.1 percent for average inflation, partly coun-

teracting the large fall. Model credit growth is slightly slower than actual credit growth over the

period, suggesting that pegging credit to income does not fully capture the aggregate growth. Since

consumers expect credit growth, their debt grows at the same time, and credit utilization is stable

despite the growth before and after the crisis, just as in the data. In addition, the model successfully

predicts about the same credit utilization as in the data.

During the crisis, debt quickly adjusts to the fall in credit, so utilization is much smoother than

either credit or debt, although not as smooth as the data. As the individual dynamics show, while

shocks at the individual level disappear quickly in both the model and data, it still takes several
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Figure 6: Consumption over the business cycle
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Notes: This figure shows personal consumption from the BEA and average consumption from simulations with a 35
percent fall in available credit starting in 2008q3. Each series is detrended using the 2000–2008 period. When the
credit fall is concentrated among the high utilization, only consumers in this population have a fall in credit, but the
aggregate fall in credit credit is held constant. The BEA consumption series continues to fall after 2012 relative to the
2000-2008 trend. We omit the continuing fall to focus on the impact of consumer credit changes.

quarters for consumers to fully adjust their debt and savings to a 35 percent fall in credit. The

excessive smoothness of utilization in the credit bureau data suggests that there must be additional

features of the period not captured by the simple simulated shock spread evenly among the pop-

ulation., Even so, our model produces a notably smoother path than a simple version of the Life

Cycle/Permanent Income Hypothesis (LC/PIH) would suggest.23

How important was the fall in credit for consumption? Our model makes clear a causal con-

nection between the fall in credit limits and the fall in debt through a reduction in consumption.

Figure 6 shows the relative paths of consumption from our simulations and detrended real personal

consumption per person from the BEA. From the second quarter of 2008 to the final quarter of

2009, real consumption per person fell 9.2 percent relative to the trend from 2000–2008. The sim-

ulations based on our estimated model suggest that the fall in credit limits over the same period

23Constructing the path of the LCH/PIH is not entirely trivial or without assumptions. By definition, in the PIH,
liquidity constraints can never bind, otherwise a precautionary motive arises (Carroll and Kimball 2001). We construct
the PIH line in Figure 1 by taking the 2008Q1 debt as the optimal distribution. Since we do not vary the age structure
of the population or the growth rate, that amount of debt, adjusted for inflation, is the correct amount of debt for the
entire period.
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was responsible for a fall in consumption of 2.5 percent relative to trend, or about one-quarter of

the fall. The fall in consumption is also quite rapid initially, matching the BEA series well as high

utilization consumers are pushed to deleverage and convenience users reduce their consumption to

build up their buffer. The fall in consumption from the simulations quickly rebounds, however, as

consumers rebuild their liquidity, so a fall in credit does not explain the continuing weakness in

consumption after 2009. Other features not captured by our estimated model of consumer decision

making must be important.24

The policy implications are even more striking when we instead assume that the fall in credit

was concentrated among the high-utilization consumers. These consumers are often the highest

risk, so are the most likely to be targeted for limit cuts when banks want to reduce risk. If the fall

in credit had been concentrated among these consumers, it would have explained nearly half of the

consumption fall during the Great Recession, yet utilization would have been just as smooth. This

heterogeneity in response is thus a central feature in understanding the impact of both monetary

and fiscal policy, a topic we turn to next.

5.1 Implications for stimulus policy

The ability to temporarily boost consumption is an important tool for counter-cyclical policy. One

way to provide such a boost is with direct cash infusions through tax rebates (Parker et al. 2013).

For such a policy to be effective as a stimulus, individuals must increase spending soon after the

rebate. Kaplan and Violante (2014) summarize the literature and suggest that the additional non-

durable consumption within a quarter is around 25 percent of the rebate. Yet standard models,

even with income uncertainty, predict very small responses. Figure 4 illustrates why. Our patient

population B has preferences that look similar to standard assumptions based on calibration or

estimation that attempts to match the level of wealth. The distribution of liquidity for our patient

24Note that consumption from the simulations is actually higher after several years, because debt is lower, so interest
payments decline. This initial decrease followed by a higher steady state is a general feature of credit changes in
precautionary models (Fulford 2013). Because credit card interest rates were relatively steady over the period (the
lack of response of credit card rates was noted in earlier work by Ausubel (1991)), our estimated model captures the
consumption response to the fall in credit, but misses production and savings responses which we are not modeling.
Guerrieri and Lorenzoni (2017) examine the interaction between credit contractions and precautionary preferences in
general equilibrium with plausible, but not estimated, preferences.
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Table 4: Effects of temporary cash infusion or permanent credit increase

Full pop. Pop. A Pop B. Full pop. Pop. A Pop B.

∆ Expenditure from previous quarter

Transitory income 0.226*** 0.270*** 0.0904***
increase (0.0250) (0.0334) (0.0333)

Permanenent credit 0.296*** 0.340*** 0.162***
limit increase (0.0248) (0.0330) (0.0337)

Observations 533,288 329,560 203,728 533,288 329,560 203,728
R-squared 0.000 0.001 0.000 0.001 0.001 0.000
Age effects Yes Yes Yes Yes Yes Yes

Notes: This table shows the results of experiments using the estimates from column 1 in Table 3. We give a randomly
selected portion of our simulated population a cash gift of 5 percent of permanent income or a 5 percent increase in
individual credit limit. The regression is then ∆Const = α + f(age) + βCasht + εt measuring how much of the
increase in cash or credit limit is consumed within one quarter.

population at age 30 puts almost no one at a steep part of the consumption function, even this early

in the life cycle, and so rebates have a small impact.

Our population estimates produce responses to temporary payments that are similar to empiri-

cal estimates. Using the estimates from column 1 in Table 3, we simulate the population response

to a temporary, unexpected cash gift of 5 percent of permanent income distributed evenly over age

groups. The results are in Table 4. On average, 23 percent of the gift is consumed within a quarter,

driven by a strong consumption response by the impatient population A. In Figure 4, the mass of

this population is generally along a high marginal propensity to consume part of the consumption

function and holds relatively little wealth. Our results thus provide an alternate, but complemen-

tary, explanation to Kaplan and Violante (2014) for why the consumption response to rebates is so

large.

Both the reduced-form estimates from the credit bureau data and the structural estimates sug-

gest that changes in consumer credit produce large consumption responses. An alternate way to

increase liquidity is to increase credit rather than income. When we increase the credit limits of

the population by 5 percent in Table 4, we get consumption effects that are almost as large as direct

cash infusions, again driven mostly by our impatient population. While the structural model allows
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us to increase credit in a way that is uncorrelated with anything else, our reduced-form estimates

from the credit bureau data give nearly the same estimates in response to an increase in credit that

reduces utilization (see Table 1).

6 Conclusion

This paper uses the consumer’s decision about how to use credit cards to provide a window into

more general savings and consumption decisions. We show that credit changes are very large over

the business cycle, the life cycle, and for individuals. Changes in credit are therefore some of the

largest changes in liquidity faced by households. On average, people react quickly to these credit

changes, so credit utilization is stable over the business cycle, life cycle, and for individuals.

We take the insight this tight link between credit and debt gives and estimate a model of life-

cycle consumption, debt, default, and payments. The model has a number of notable successes.

It captures the hump shape of debt and consumption. It predicts the slow decline in utilization

over the life cycle and the steady increase in wealth. Out of sample, it predicts smooth utilization

over the business cycle, and it closely matches the reduced-form relationship at the individual level

between credit and debt that we estimate from the credit bureau data.

Many of our results come directly from the insight that not everyone who has a credit card uses

it to borrow, while some people are willing to borrow at a high rate of interest. Borrowing implies

the consumer places substantial weight on consumption today versus tomorrow. Other people have

a credit card and use it only to make payments, suggesting they place more equal weight on today

and the future. This heterogeneity of use suggests that preference heterogeneity is an important

part of understanding consumption decisions, and that a large fraction of the population must

have a relatively high marginal propensity to consume. The preference heterogeneity is key to the

estimated model’s ability to match the data on so many dimensions, including the impact of a cash

infusion (Kaplan and Violante 2014, Parker et al. 2013). The implications of the heterogeneity of

credit use we document for counter-cyclical policy are also important. The more that banks reduce

risk or are encouraged to reduce risk by not extending or reducing credit among high-utilization
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customers, the larger the consumption impact of a credit crunch. Conversely, credit increases or

other cash infusions targeted to the highest utilization consumers have an especially large impact.

An important unanswered question for future research is the source and nature of the impa-

tience found in the high discount rate population. Certainly, behavioral economic approaches such

as quasi-hyperbolic discounting and present bias could be consistent with our finding of a high

discount rates for some, though not all, consumers. Our results do not rule out such approaches,

but also show they are not necessary to explain credit card use.
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A Changes in credit utilization: non-parametric evidence

Figure A-4 shows conditional mean scatter plots of credit utilization in one quarter against credit

utilization in the next quarter, in the next year, and in two years. The top row shows the mean

in the future, conditional only on having the utilization shown on the x-axis in that quarter. The

bottom row instead takes the within transformation and allows for age and year effects. It therefore

shows how far from the individual’s average credit utilization she is in the next quarter, conditional

on differing from her average utilization by the amount on the x-axis this quarter. In other words,

if an individual is 10 percentage points above her typical utilization in one quarter, how far will

she be on average in the next quarter, next year, and in two years? Each dot contains an equal

portion of the sample. Figure A-4 thus captures the relationship between utilization today and in

the future without imposing any parametric assumptions. Each panel also shows the best fit line

for the conditional means and the estimated coefficients.

The top panels show that credit utilization is highly persistent and does not trend to zero on

average. Credit utilization this quarter is typically very close to credit utilization next quarter,

because the conditional means are typically very close to the 45-degree line. For example, on

average, if a person is using 40 percent of her credit this quarter, she will be using about 40 percent

of her credit next quarter. On closer examination, average credit utilization is higher next quarter

for those using less than 20 percent of their credit, and lower for those using more than 80 percent
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of their credit. The best fit line through the conditional means suggests that credit utilization is not

trending to zero. Instead, the long-term steady-state utilization is 0.39.1 The same conclusion is

evident from the conditional changes comparing utilization this quarter to a year from now and to

two years from now. Those consumers using less than approximately 40 percent of their available

credit this quarter are using more of their credit in one year and in two years. Those using more than

40 percent of their credit are using less of their credit on average within one year and two years.

The steady-state credit utilization is around 40 percent (evident by finding where the conditional

expectation function crosses the 45-degree line), although the movement toward the steady state is

fairly slow.

On average, individuals do not trend to zero utilization or to using all their credit. Conditional

on using zero credit this quarter, credit utilization is nearly 5 percent within one quarter and nearly

8 percent in a year. On the other hand, the average person using all her credit in one quarter is

using less than 90 percent of it in a year.

The second row of Figure A-4 allows individuals to return to their own mean and adds sub-

stantial nuance. Credit utilization is so persistent in the top row because individuals have their own

mean to which they actually return quite rapidly. The speed of the return is evident from the slopes

of the lines. Only 67 percent of a shock to utilization remains after one quarter, and 13 percent

remains after two years.

Even if individuals return very rapidly to their own means, it is important to note that those

means are not zero. Credit utilization is persistent in the top row of Figure A-4 because individuals

are typically quite close to their own mean credit utilization. Since credit utilization is the ratio

of debt and credit, the stability of credit utilization implies that an individual with an increase in

credit has increased her debt by 33 percent of the increase in credit within one quarter, and by 87

percent of the increase in credit in two years.

1Since the conditional expectation of utilization next quarter given this quarter is ut+1 = 0.041 + 0.896ut, the
steady-state utilization is 0.39=0.041/(1-0.896).

A-2



B Additional Model Details

This section provides additional discussion of the model’s formulation and numerical solution.

B.1 Bequests

In our base estimation, we give consumers who die with positive resources some extra utility

from bequests. Bequests end up being important only because they help explain our impatient

group’s decrease in debt after 60, although the exact parameters are not well identified. Without

any bequest motive, as the likelihood of dying increases, it becomes optimal to increase debt for

impatient nearly risk-neutral consumers because they are effectively becoming more impatient. A

bequest motive keeps the increasing probability of death from effectively translating into increased

impatience, and so it allows debt to decline with income after age 60. This appendix outlines one

flexible approach to including bequests.

When introducing bequests in a model with both debt and savings, it is difficult to value what

happens when people die in debt. Unsecured consumer credit is taken out of any estate passed on

to heirs, but is not directly passed on. Simply including bequests in the sub-utility function will

therefore produce negative infinite value from leaving no bequest, which consumers will counter-

factually act to avoid by never being in debt. Instead, we model the bequest motive as the con-

sumer’s considering the marginal utility a bequest to her heirs will bring them on top of the heirs’

own incomes and any non-liquid bequest she may consider leaving. We model these non-liquid

bequests and heirs’ income as a multiple ζ of permanent income on death, adding the annuity value

of the assets left at death and taking the present value using the consumer’s preferences:

S(At) =

 T̃∑
s=0

βs
(ζPt + rBAt)

1−γ

1− γ

 .

The parameter ζ determines the marginal utility of bequests and can be thought of as how much

more or less income children have compared to their parents, and T̃ is the same finite life as the

parents’. The reason to use finite rather than infinite heirs’ lifetimes is to allow for possibly very
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patient parents with β close to or greater than one.

B.2 Recursive formulation and normalization

Rewritten in recursive form and normalized by permanent income Pt, the consumer’s problem

when not in default and not defaulting is equivalent to:

vNDt (wt, bt, at−1) = max
xt,πt

{
u(νtxt) + Et[βt+1(Gt+1Nt+1)1−γvNDt+1 (wt+1, bt+1)]

}
subject to

xt ≤ wt

wt+1 = Rt+1(IRt )at + Ut+1 + bt+1 − kt+1

at = wt − bt − xt

νt = ν(πt; at−1),

where Rt+1(IRt ) = R/(Gt+1Nt+1) if at ≥ 0 and Rt+1(IRt ) = RB/(Gt+1Nt+1) if at < 0. The

expectation at t includes the possibility of death before T and the certainty of death at T̃ , leaving a

bequest worth βt+1s(at), where s(·) is the bequest function normalized by Pt. Note that if bt is not

stochastic and instead follows the average path of the credit limit to permanent income ratio, then

bt, like Gt+1, is not a part of the state space that differs for individuals and the decision simplifies

slightly to vt(wt, at−1). Of course, credit limits and income growth still matter, but they do not

vary individually and so show up in each consumer’s expenditure function xt(wt, at−1). Because

of the structure of the payment problem, ν(πt; at−1) takes on only two values for an optimizing

consumer, νR for revolvers and νC for convenience users. The value expenditure function depends

only on whether at−1 ≥ 1, substantially reducing the dimensionality of the problem.

The consumer’s problem when in the default state is nearly analogous. Income and credit

limits are lower. In the next period with probability pF consumer is still in default and uses the

value function vD and with probability (1− pF ) the non-default value function.
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The consumer’s value function if defaulting is then

vDefaultingt (wt, bt, at−1) = u(νtφwt) + Et[βt+1(Gt+1Nt+1)1−γvDt+1(wt+1, bt+1)].

If vDefaultingt (wt, bt, at−1) > vND(wt, bt, at−1), then the consumer defaults.

B.3 Numerical solution

With the problem written recursively, we proceed through backward recursion to find a numerical

approximation of the consumer’s problem. Let IRt indicate revolving status: It is 1 if at−1 < 0

and 0 else. For a given set of parameters, once vT+1(aT , 0, I
R) is given, it is possible to find

an approximation of vT (w, b, IR) and use the approximation of vT (w, b, IR) to find vT−1(w, b, IR).

Note that in each case we find a separate function for revolvers and convenience users. The solution

to each period’s value function is an expenditure function xt(w, b, IR). We follow several standard

steps (see Carroll (2012) for a more in-depth discussion of many of these approaches). First, we

discretize the lognormal shocks using a Gauss-Hermite quadrature, which turns the integration in

the expectation function into a summation over discrete states. Because the income process is

surely not exactly lognormal, there is no gain or loss in accuracy from doing so; we are simply

replacing one approximation of shocks with another.

Second, we follow the method of endogenous gridpoints (Carroll 2006) to find the optimal

expenditure that leads to end-of-period assets at at a number of gridpoints for at and bt. It is then

possible to very elegantly find optimal consumption that leaves this amount of assets xt(w, b, IR)

at the endogenous gridpoints for w simply by using the accounting identity at = wt − bt − xt.

Doing so avoids a computationally costly numerical root-finding approximation entirely. More

precisely, if the consumer has not consumed all available liquidity for the next period, and therefore

is not strictly constrained by the credit limit, then the standard first-order conditions and the Euler

equation imply that:

u′(ν(IRt )xt) = Et[βtRt+1(at)(Gt+1Mt+1)1−γu′(νt+1xt+1(wt+1,bt+1, I
R
t+1))],
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where, despite its subscript, νt+t = ν(IRt+1) is determined entirely by the choice of whether to

leave positive or negative assets for the next period. Given the next-period expenditure function, it

is straightforward to find the optimal expenditure that leaves end-of-period assets at as:

xat (a, b, I
R) =

(1/νt)
(
Et

[
ββ̂t+1Rt+1(a)(Gt+1Mt+1)1−γ (νt+1x(Rt+1(a)a+ Ut+1 + bt+1, bt+1))−γ

])−1/γ

. (1)

For a vector of end-of-period assets ~a, it is nearly costless to find the optimal consumption at a

vector of endogenous points for liquidity where ~w = ~a + b + xat (~a, b, I
R) is the amount at which

consuming xat (a, b, I
R) and leaving a for next period is optimal. We linearly interpolate between

these points to find an approximation of the expenditure function. Note that the expenditure func-

tion is a function of whether the consumer is revolving by having negative assets last period, in

addition to the current state of liquidity and the credit limit. While revolving status is not a con-

tinuous state, the addition of another state variable complicates the solution because we must find

the optimal expenditure for convenience users and revolvers, who find consuming less valuable

because they pay for it in a slightly less convenient way. For the most part, someone who is not

revolving this period will not be revolving next period, and so vt = νt+1, and the payment choice

does not affect the expenditure decision directly. It does, however, make revolving somewhat more

costly.

Because the consumer’s problem includes an externally imposed credit limit as well as interest

rates that differ depending on whether assets are positive or negative, there are several additional

complications. The first is that the standard Euler equation does not hold when the consumer is

against her credit limit, and so she spends all available resources because she would like to spend

more today but cannot (Deaton 1991). This problem is relatively easy to deal with, however, by

including the inflection point that is the last point at which the Euler equation holds. At this point

the assets left for the next period are −bt. For any liquidity less than w∗ = xat (−b, b, IR), the

consumer expends all liquidity, so xt(w, b, I
R) = w if w ≤ w∗. The second problem is that
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the interest-rate differential introduces a step in the consumption function, because there are two

solutions to equation (1) for a = 0. One, the limit with assets approaching zero from below, uses

the borrowing rate RB, and the other uses the saving rate R. The economic intuition is that leaving

zero assets for the next period is optimal at a high borrowing rate well before it is optimal at a

low savings rate. For liquidity between these two points, the consumer has a marginal propensity

to consume of one since the return on savings is not high enough to induce her to save, but the

cost of borrowing is sufficient to keep her from borrowing, and so additional resources go straight

to consumption. To deal with this issue, the endogenous gridpoints include two points where

a = 0: The first, xBt = xat (0, b, I
R;RB), is the solution to equation (1) when a = 0 using RB and

wBt = 0 + b + xBt ; and the second is xFt = xat (0, b, I
R;R) and wFt . Between the points (wBt , x

B
t )

and (wFt , x
F
t ), the consumer has a marginal propensity to consume of one.

Figure 4 in the main paper illustrates these kink points, labeling wBt as the point where con-

sumers stop borrowing and wFt as the point where they start saving. Several points are worth

discussing. First, the consumption function generally falls with age. This occurs as the consumer

plans for retirement, when having accumulated a large amount of savings is valuable. Second,

for low liquidity below w∗, the marginal propensity to consume is one. Between w∗ and wB, the

consumer is leaving debt for next period and so is paying a high interest rate RB. Between wB and

wF , the consumer does not want to borrow, but the return on savings is not high enough, so she

leaves zero assets and has a marginal propensity to consume of one. This kink in the consumption

function implies that there can be a positive fraction of consumers who hold exactly zero assets.

The distance between wB and wF depends on the interest-rate differential, with a wider differential

implying a larger distance.

C Estimation details

This section provides a more complete discussion of first stage estimates and the construction of

the variance covariance matrix of moments from credit bureau data. It then shows the effect of

varying the cost of default parameter and characterizes other local minima in the estimation.
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C.1 Estimation procedure

For a given set of parameters θ ∈ Θ and first-stage parameters χ such as the interest rates,

payments parameters, and income process estimated separately, we numerically find consump-

tion/expenditure functions at each age. These same θ and χ determine the initial distribution of

assets, income, and credit limits across consumers, and how these processes evolve stochastically.

For each consumer, we draw from the initial distribution, then for each period we draw from the

income-shock distribution. Then the consumer chooses her consumption, whether to default or be

forced into default, and her assets or debt accumulates for the next period. This process proceeds

until the final period, generating for a large number of simulated consumers their own idiosyncratic

paths of expenditure, assets, debt, and default at every quarter over their entire life cycle. Combin-

ing the simulated consumers, a given set of model parameters generates a life-cycle distribution of

consumption, debt, savings, and default.

The estimation then finds the parameters θ that produce a life-cycle evolution of average sim-

ulated consumption, debt, and default that best matches their empirical counterparts from ages

24–74. Each profile is annual, so there are T = 51 years.2 More formally, for a given θ ∈ Θ,

and first stage parameters χ estimated below, let gt(θ;χ) be the difference between an empirical

moment and a simulated moment for each of 3T total moments. The MSM then seeks to minimize

the weighted square of these differences:

min
θ∈Θ

g(θ;χ)′Wg(θ;χ), (2)

where g(θ;χ) = (g1(θ;χ), . . . , g3T (θ;χ)), and W is a (3T ) × (3T ) weighting matrix. Our stan-

dard weighting matrix is block proportional to the inverse variance of the empirical moments (the

optimal weighting matrix with no first-stage correction). Because our life-cycle moments come

from surveys and administrative data, they are estimated with very different levels of precision

2The model is quarterly, so we aggregate appropriately to match the data by taking the average model debt for a
given age. The annual nature of the empirical age profiles is driven by the data source. The Equifax/NY Fed CCP, for
example, reports only the year of birth from which we calculate age.
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and the estimates tend to attempt to fit only the administrative data. We therefore weight each

life-cycle moment block so that the each bock receives the same weight, but within each life-cycle

moment better-estimated moments receive more weight.3 We also show results using the “opti-

mal” weighting matrix, which takes the estimated θ̂ using our standard weights and calculates the

optimal weights, taking into account the impact of the first-stage estimates. We adjust the variance-

covariance matrix of the estimates of θ for the first-stage estimates, following Laibson et al. (2007),

who improve on the work of Gourinchas and Parker (2002) by allowing for the empirical moments

to have different numbers of observations.

C.2 First-stage estimates and observed parameters

This section describes the sources and estimates from other data sets that identify the ancillary

parameters of the model. We estimate a fifth-order polynomial of the average life cycle of income

to find income growth (Gs) at each age using after-tax income per adult household member from

the Consumer Expenditure Survey from 2000–2015. The raw data and the fitted lines are in Ap-

pendix Figure A-6. Similarly, we take a fifth-order polynomial estimate of the total credit limit per

account from the Equifax/NY Fed CCP to form Bs.4

While average income follows the observed life-cycle path, individual incomes vary based on

their idiosyncratic shocks. We use the estimates of the annual income process from Gourinchas and

Parker (2002), which are updates of Carroll and Samwick (1997), calculated from the Panel Study

of Income Dynamics. We adjust these volatilities for quarterly dynamics so that four quarterly

shocks combine to produce the same variance as one yearly shock. The quarterly transitory vari-

ance is approximately four times the annual variance because quarterly shocks average out, while

3Starting from VM , the (3T )×(3T ) block-diagonal variance covariance matrix of the moments, we form W̃ = V −1M

which is also block-diagonal. For each block of W̃ we take a vector ι of ones of size T and calculate the weight
function for each block of life-cycle moments w1 = ι′W1ι which is the impact on the objective function if that all
of the moments (g1(θ;χ), . . . , gT (θ;χ) in that life-cycle block were equal to one. We then form W by dividing each
life-cycle block by its scalar weight.

4Not smoothing these two budget constraints makes little difference to the overall estimates, but it introduces
distracting jumps in life-cycle consumption and debt as consumers respond to sudden changes in the budget constraint
driven by jumps in income or credit that disappear. Bs is proportional to permanent income for an individual consumer,
and the problem is set up so that the average permanent income across all consumers is the average income, allowing
us to back out bs.
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the quarterly permanent variance is approximately one-fourth the yearly variance because perma-

nent shocks stack. We estimate the probability of low income pL based on the average monthly

unemployment rate from 2000–2015 of 6.3 percent.

We observe three interest rates directly, although there is likely greater heterogeneity in interest

rates than we incorporate in the model. We set the interest rate on debt Rb − 1 = 14.73 percent

based on the average revolving interest rate over the period from the Federal Reserve Series G19.

We estimate the increased interest rate when in the default state of 2.1 percent based on the credit

card rate reported by households in the SCF with bankruptcy in the previous seven years.5 We

would like to capture the returns that people expect to receive on their savings, but the appropriate

rate of return is not obvious because there is only one riskless asset. We therefore set the return

on savings at 5.4 percent, which is the average return on an all-bond portfolio from 1926–2015 as

calculated by the mutual fund company Vanguard. We adjust both borrowing and saving prices

for the geometric average inflation rate from 2000–2015 of 2.15 percent. In the expected growth

over the life cycle, we also include expected real aggregate growth of 1.5 percent, the average

compounded rate from 1947–2015 from the Bureau of Economic Analysis (2009 chained dollars

GDP per capita).6

We consider economically active life to last for 51 years (204 quarters) from age 24, when

most people have finished schooling, through age 74, when differential death rates and other end-

of-life concerns dominate. While the Equifax/NY Fed credit data have many observations even for

older ages, the Consumer Expenditure Survey (CE) becomes increasingly sparse and, for privacy

reasons, topcodes ages above 80, with the top age varying by year of the survey. Before age 94,

individuals have a probability of dying and leaving a bequest at each age. We set the probability

of death to match the age structure of the population in 2010.7

5The Federal Reserve series G19 (Commercial Bank Interest Rate on Credit Card Plans NSA, rate for accounts
assessed interest) average over the period is 14.73 percent. The average credit card interest rate reported in the SCF is
14.22 percent. Based on calculating the risk of default from the PSID, Edelberg (2006) calculates the zero bankruptcy
risk rate would be 0.62 percentage points lower, a smaller adjustment than in Angeletos et al. (2001), who adjust for
default by 2 percentage points.

6While each of these parameters is volatile, and different agents may experience different prices, there is no sam-
pling variance about them, and so we do not adjust the MSM variance-covariance matrix for them.

7See (Arias 2014) https://www.cdc.gov/nchs/data/nvsr/nvsr63/nvsr63_07.pdf, accessed 8
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We set the probability of staying in default from period to period pF so that the expected

duration of being default is 7 years.

C.3 Construction of variance-covariance matrix

The variance-covariance matrix for the combined moments is simply block diagonal, because they

are sampled independently from a large population. The Consumer Expenditure Survey block

of the variance-covariance matrix is simply diagonal, since the survey does not repeat the same

households over multiple years.

Because we observe individuals over time in the Equifax/NY Fed CCP data, the credit bureau

portion of the variance-covariance matrix has off-diagonal elements. We populate this matrix by

estimating the co-variance of debts in the population at various lags. Since the data is quarterly, the

full matrix is 204x204, and because our data agreement limited what we could make public (and

the size of the data limited what we could practically calculate), in practice we do not estimate

each element separately. Instead we estimate the covariance at each age from 24–74 at quarterly

lags 1, 2, 3, 4, 8, 12, 16, 32, and 48 and assume that the co-variance at each age changes smoothly

in between them. Since the data cover only 16 years, all covariances beyond 64 quarterly lags are

zero. The combination of estimating covariances from a sample, constructing intermediate covari-

ances, and numerical precision leaves the resulting covariance matrix with minimum eigenvalues

that are slightly negative, and so the matrix is not positive definite. We make a “ridge adjustment”

by adding a small amount to the diagonal until all eigenvalues are greater than or equal to zero.

This adjustment effectively increases the variance of our main moments, and so it is generally con-

servative although not entirely innocuous, since it changes the variances but not the covariances.

C.4 Characterization and discussion of local minima

While Table 3 presents the best estimate after starting the estimation at a grid of points, given the

over-identification, it is useful to briefly characterize other possible minima. Table A-1 shows the

August 2017.
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other minima where the optimization converged to locally. While many starting points converged

to our best estimate, it is clear that the starting point for θ0 does not determine θ∗ and so one should

be cautious about drawing global conclusions from what may be only local minima.

Among the estimates with objective functions close to that produced by θ∗, the only important

variation is that there is a tradeoff between risk aversion and impatience. Because the coefficient

of relative risk aversion is the inverse of the intertemporal elasticity of substitution, γ and β have

similar roles in utility. Loosely, β governs how much the consumer cares about expected marginal

utility in the future, while γ shifts expected marginal utility by making bad states better or worse.

Beyond the best estimate, there are larger differences in the parameters at the local maximum, but

the fit was always substantially worse. The impatient population could be somewhat less patient

and have higher risk aversion. The more patient population B faces a similar tradeoff between βB

and γB.

The proportion of population A (fA) changes across the local minima in more substantial ways.

While allowing for preference heterogeneity is a step forward in our work, imposing only two pop-

ulations is still a simplification, albeit one that is useful both expositionally and computationally.

At each minimum, fA is tightly estimated. However, the range of fA in the local minima suggests

that different weights would produce different estimates of fA. The overall conclusion holds for

all estimates, however: In order to match the amount of debt we see in the data, half or more of the

population must be fairly impatient and close to risk neutral.

C.5 Discussion of identification of the life-cycle model

Because this is a nonlinear model, all moments are typically used to identify all parameters, but

it is useful to understand how different sources of variation identify the parameters. Both the

consumption and debt that we observe over the life cycle are population averages, so the model is

identified from the average of the two model populations. The share of population A (fA) and its

relative income (ζA)) change the mix of the two populations. For the model to produce as much

debt as in the data, a large portion of the population (fA) must be relatively impatient and not
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overly concerned about debt. This population’s impatience (βA) is mostly pinned down by the

borrowing rate (RB) to make its members willing to hold debt. If the population is too patient, it

will not accumulate enough debt. If it is too impatient, it will acquire too little debt. It must have

enough income to support the amount of debt it holds, helping to identify ζa. To get an average

consumption profile in which consumption is below income for much of the life cycle therefore

requires the other portion of the population to be relatively patient, with its discount rate (βB) close

to the savings rate R.8

While the levels of consumption and debt come from the average, the life-cycle profiles are

largely determined by only one of the populations. Because the patient population carries almost

no debt—the flow of debt from payments is relatively small compared to the stock of revolving

debt—the profile of credit card debt largely identifies the preferences of the impatient population,

their initial wealth, and their expected residual income late in life. Given this population’s impa-

tience, consumption must closely follow income. The hump shape of debt comes from increases

in credit limits early in life, which allow this population to increase its debts, and the fall in income

after age 50, which makes carrying as much debt less affordable. This population’s risk aversion

(γB) is identified by how much credit it keeps as a buffer.

The more patient and risk-averse population carries little revolving debt, so all of its debt comes

from the convenience use as a share of consumption. The impatient population A has a strong

hump in consumption as it follows income. For the average consumption profile to be below

average income, the patient population B must have a relatively flat or increasing consumption

profile without a downturn late in life. Its preference for risk (γB) and expected late-life income

after expenses ζB) are determined by this shape, with its discount rate (βB) pinned down by the

rate of return on savings. Its risk aversion determines the size of the buffer of savings it builds

up early in life, and so the initial level and slope of consumption over the life cycle help identify

8Since we include expected aggregate growth and adjust for inflation, βA and βB are more closely pinned down
relative to RB − Inflation + Real Aggregage Growth. We thank Chris Carroll for pointing out that even if we remove
trends from life-cycle profiles, the economic decision of the agent includes expected aggregate growth, and so we need
to include it to correctly model their decisions. Aggregate growth implies everyone expects to have more income next
period and so should be more impatient.
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γB. The risk aversion and initial wealth (λB) are not particularly well identified by the life-cycle

moments, and their standard errors are relatively large.

C.6 Robustness and variations

Our numerical procedure for finding the minimum of equation (2) proceeds by using numerical

derivatives calculated from a starting θ0 to move to a local minimum where the derivatives in

all dimensions are zero to within a small tolerance. This procedure is only guaranteed to find a

local minimum, however. We therefore start the procedure with θ0 at random points in a grid that

covers the 12 dimensional parameter space. Not all starting points produce the same estimate of

θ, indicating that the objective function in equation (2) has multiple local minima. The procedure

converged to our best θ∗ from a wide range of starting θ0, and so θ∗ is a candidate for the global

mimum. We discuss other local minima in Appendix C.4. The overall conclusion holds for all

local minima: Around half of the population must be fairly impatient and have low risk aversion.

In the last two columns of Table 3 we examine how changing the model changes estimates.

Our baseline estimates do not allow consumers to take into account the effect their consumption

decisions will have on their payments decisions. In column 3, we allow for this feedback, at

the cost of substantial additional computation time. Allowing this feedback leaves the estimates

almost exactly the same. Because so few people switch from revolving to convenience use, the

value an individual gets from credit card consumption this period is almost always the same as

next period. Since the value of consumption on a credit card does not affect the marginal utility

tradeoff between today and the future, it does not affect the decision. Including convenience use

as part of credit card debt is necessary, however, because the debts we observe in the credit bureau

data include both revolving and convenience debts. Allowing consumers to take into account the

impact of consumption choices on payment choices in the future does not appear to be particularly

important for their consumption decisions.

We do not estimate directly the strength of the bequest motive since it is not well identified.

Our bequest function, described in greater detail in Appendix B.1, gives people the discounted
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utility from their heirs consuming the annuity value of assets at death as well as the heirs’ own

income. The strength of the bequest motive is determined by how much more income the heirs have

compared to the individual; as the heirs’ income increases, the marginal value of leaving anything

to them diminishes. Our baseline estimates assume heirs have the same permanent income upon

death as the individual. The last column assumes heirs instead have five times the permanent

income. The estimates are similar, suggesting that our estimates are robust to other assumptions

about bequests, and confirming that, given our approach and data, the bequest motive is not well

identified.

D Identification of the payments model

This section shows how to identify the payment-model parameters and standard errors from ob-

servable moments. It then calculates the consumer surplus and its standard errors. We observe:

πR =
1

N

N∑
i=1

π∗i,t|IRi,t−1 = 1,

the average expenditures by revolvers on a credit card, and similarly πC , the average for con-

venience users. We denote our estimates of the standard errors of these means as σR and σC .

Then the intercept for the average convenience user is just πC = ν0/ν1, and for a revolver it is

πR = (ν0− rB/24)/ν1, where rB is the APR interest charged on payments, which have an average

daily balance of half of the month’s consumption. Solving for ν0 and ν1 gives:

ν1 =
rB/24

πC − πR

ν0 = πCν1 =
(rB/24)πC

πC − πR
.
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Solving for the areas under the curves:

νt = max
πt

ν(πt, At−1) =


νC = 1 + (πCν0)/2 if not revolving (At−1 ≥ 0)

νR = 1 +
(
πR(ν0 − rB/24

)
/2 if revolving (At−1 < 0),

where πC and πR are the optimum fraction for revolvers and convenience users.

The presence of a difference of two random variables whose supports may overlap in the de-

nominator of the transformed variables makes calculating their variances potentially tricky. Since

πC −πR may be close to zero, then ν1 and ν0 may be very large, which is a different way of saying

that the model is not identified if there is not a difference in the average behavior of convenience

users and revolvers. We calculate the standard errors of the transformed variables using the delta

method, which avoids this issue by examining only small changes around the optimum, and so it

does not consider the highly nonlinear increase around πC −πR = 0. For small changes εC and εR

around πC and πR:

ν1 ≈ (rB/24)

(
1

πC − πR
− εC − εR

(πC − πR)2

)
.

Since πR and πC are independent, the variance of ν1 is approximately:

V ar[ν1] ≈
(

rB/24

(πC − πR)2

)2

(σ2
C + σ2

R).

Taking the same expansion for ν0, including the covariance of the numerator and denominator:

V ar[ν0] ≈
(

πCrB/24

(πC − πR)2

)2
(
σ2
C +

(
πR

πC

)2

σ2
R

)
.

Finally, the total additional convenience value of using a credit card over the alternatives for a

convenience user is just the area under the curve:

νC = ν(πC ; IRi,t−1 = 0) = 1 + (πCν0)/2 = 1 +
(rB/48)(πC)2

πC − πR
,

A-16



and for revolvers it is:

νR = ν(πR; IRi,t−1 = 1) = 1 +
πR

2

(
(rB/24)πC

πC − πR
− rB

24

)
.

Taking an expansion around πC and πR yields:

V ar[νC ] ≈
(
rB

48

)2
(

2πC

πC − πR
−
(

πC

πC − πR

)2
)2

σ2
C +

(
πC

πC − πR

)2

σ2
R

and

V ar[νR] ≈
(
rB

48

)2(
πC

πC − πR
− πCπR

(πC − πR)2

)2

σ2
C +

(
πC

πC − πR
− πCπR

(πC − πR)2 − 1

)2

σ2
R.
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Table A-1: Characterization of other local minima
Best Other local minima

Parameter [1] [2] [3] [4]

CRRA γA 0.0667 0.0794 0.0822 0.3234
Discount βA 0.8917 0.8894 0.8894 0.873
Initial wealth λA0 0.5158 0.4998 0.934 0.6322
Late life inc. λA1 0.7271 0.6007 0.5378 0.6175
CRRA γA 2.0233 1.7495 1.8937 1.5929
Discount βB 0.9631 0.92 0.9323 0.8952
Initial wealth λB0 1.7284 3.499 2.1163 2.2534
Late life inc. λB1 0.212 0.5004 0.3111 0.2932
Share A fA 0.669 0.62 0.5337 0.6103
Inc. mult. A ζA 0.9912 0.9001 1.0895 0.8285
Prob. of exp. shock 0.0402 0.01 0.0175 0.0023
Size of exp. Shock 0.6603 0.8 0.5159 0.5597

Objective (g’Wg) 0.0032 0.0074 0.0085 0.0105
SSR (g’g) 0.3493 0.7131 0.648 1.2345

Notes: This table shows the top four results from starting the optimization at different points in the parameter space.
The objective (g′Wg) is what the estimation attempts to minimize. The sum of squared residuals (SSR or g′g) is the
sum of the squared difference in moments (which would be the objective function with the identity matrix).

Figure A-1: Fraction with positive credit card limit and debt by cohort and age from CCP
(A) Fraction with positive limit (B) Fraction with positive debt
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Notes: Each line represents the fraction with positive credit card limits or debt of one birth cohort, 1999–2014. Source:
Authors’ calculations from Equifax/NY Fed CCP.
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Figure A-2: Credit card limit, debt, and credit utilization distributions and standard deviations by
age
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Figure 8: Percentiles of log credit card limit by cohort (1920, 1930, 1940, 1950, 1960, 1970, 1980).
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Figure 9: Percentiles of log credit limit by age
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(B) Credit card debt
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Figure 10: Percentiles of log credit debt by age
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(C) Credit utilization

0
.5

1
1.

5

C
re

di
t u

til
iz

at
io

n 
pe

rc
en

til
es

 

20 40 60 80
Age

99

90

75

Median

25
1 and 10 .1

.2
.3

.4
.5

st
an

da
rd

 d
ev

ia
tio

n 
of

 c
re

di
t c

ar
d 

ut
ili

za
tio

n

20 40 60 80
Age

Notes: Each line is the percentile of credit limit at that age, conditional on having a positive credit limit on a log scale.
For example, the 90th percentile line shows that 10 percent of the population (with a positive credit limit) has a limit
larger than that line. Source: Authors’ calculations from Equifax/NY Fed CCP.
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Figure A-3: Credit card limits, debt, and utilization: age and year effects
Credit card limits
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Notes: This figure shows the age and year effects from estimating a simple regression of the form:

lnDit = θ + θt + θa + εit,

where lnDit is either log debt, log credit limits, or utilization, and allows these to vary between age effects θa and year
effects θt but imposes common cohort effects. The excluded group is age 20 and year 2000, so each panel starts at zero
at age 20 and year 2000. The estimated effect is in log units, and so the scale of the figure suggests that variation over
the life cycle in credit is around nine (e2..5/e0.3) times larger than over time, even with a massive credit contraction.
Source: Authors’ calculations from Equifax/NY Fed CCP.
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Figure A-4: Changes in credit utilization in one quarter, one year, and two years
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Notes: Each point in the top row shows the mean credit utilization in the future, conditional on being in the bin with a
mean credit utilization on x-axis today. The bottom row shows the conditional relationship between deviations from
the individual mean utilization over the entire sample, adjusting for age and year. Source: Authors’ calculations from
Equifax/NY Fed CCP using the program binscatter (Stepner 2013).
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Figure A-5: Expenditure functions over the life cycle with borrowing and active default
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Notes: This figure uses the estimates in Table 3 column 1, with a lower cost of default to illustrate the decision when
voluntary default is important. The incentive to default is increasing with age and, with the assumed cost of default
parameter, default is not optimal at 30 but may be at 60 for the impatient population. The point of of indifference
between defaulting and not is shown by the sharp drop in consumption. Below that point, the consumer defaults,
spends all liquidity, but suffers the consumption cost of default in the current period, and the lower credit limit, higher
interest rate, and income cost in the future periods. Above the default point, the consumer leaves some liquidity for
the next period. The small jumps in the expenditure function just above the default point are caused by the interaction
of the discrete income process and the large jump in consumption.
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Figure A-6: Consumption and income over the life cycle from the Consumer Expenditure Survey
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Notes: This figure shows the average consumption and income at each age from the CE, pooling all surveys from
2000–2014. Consumption is the total household expenditures divided by the number of adults. Adjusted consumption
removes the estimated effect of children. Income is after-tax income, and its smoothed version is based on a quintic
from ages 24–81. Since the survey pools income and consumption after age 81 (or 83 in later years), ages 81 and older
are the average for this group.
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Figure A-7: Consumption and debt over the life cycle: model estimates with “optimal” weights
Estimation moments: Debt Estimation moments: Consumption
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Figure A-8: Identification of default cost parameter: Sum of squared residuals for different default
costs, holding other parameters fixed
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Notes: This figure shows the sensitivity of estimates to the default cost parameter. The default cost parameter is is
identified only up to an inequality. Holding other parameters fixed at their values in column 1 of Table 3, the figure
varies the default cost parameter and plots the weighted sum of squared residuals (g′Wg).

Figure A-9: Identification of default cost parameter: Life-cycle in bankruptcy if default costs are
lower than the standard cost
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Notes: This figure shows the sensitivity of estimates to the default cost parameter. The figure shows the path of the
fraction of consumers with a bankruptcy on their record if default costs are lower. The low default cost is 5, while the
standard one is 7.
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