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ABSTRACT 

The Effects of Coal Capacity Retirement on Wholesale Electricity Prices: 

A Demand Side Analysis 

 

Michael O’Conor 

U.S. electric utilities retired 47% of their coal-fired generation capacity between 2008-

2017 and have plans to continue decreasing this capacity through 2020.  This means that areas of 

the U.S., like the Pennsylvania-New Jersey-Maryland Interconnection (PJM) Regional 

Transmission Organization, not only have experienced, but will continue to experience major 

shifts in its energy fuel mix and available electricity generation capacity. On June 1, 2015, the 

American Electric Power (AEP) zone experienced the retirement of 5,408 MW of coal-fired 

generation capacity from the wholesale electricity market. This research analyzes the impacts of 

this retirement on wholesale prices, i.e., locational marginal price (LMP) of electricity. Demand-

side analyses of wholesale electricity prices are performed by regressing LMP against electricity 

demand variables.  These variables include: the generation forecast error occurring from 

differences between forecasted day-ahead electricity consumption and real-time consumption, 

degree cooling and heating days, and accounting for hourly, daily, and seasonal differences in 

electricity consumption.  Regression analyses were performed for six zones within the PJM for a 

24-month period from June 1st, 2014 – June 1st, 2016, thus including 12 months of available data 

before and after the capacity retirement. Four analyses were created to measure the effects of 

consumption forecast error and coal-fired capacity retirement timing on LMP. The results from 

the four analyses demonstrate that: (1) average LMP in all zones decreased by between 16.6% 

and 29.2% if coal-fired generation capacity was projected to retire a year earlier than its observed 

retirement, and (2) average LMP in all zones increased by between 15.0% and 26.9% if this 

capacity was projected not to retire. The outcomes also showed early retirement of the coal-fired 

capacity resulted in more stable LMPs. The magnitude of percent decreases in LMP in the top 

5% of observations was much larger during the early retirement analyses compared to the no 

retirement analyses.  These price trends align with the national wholesale electricity price 

averages decreasing from June 1st, 2014 – June 1st, 2016.  Thus, each of the six PJM zones did 

not experience any observed adverse effects on LMP from retirement of coal-fired generation 

capacity. 
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Chapter 1: Introduction 

Electricity is an integral aspect of everyday life in developed economies.  In the United 

States (U.S.), people use electricity for work and leisure every hour of the day, year-round.  

Consumers of electricity often take it for granted when a switch is flicked or a button is pressed 

that electricity will be provided.  When over 328 million people expect the electricity in their 

homes and offices to be available on demand, the U.S. electricity sector must utilize an immense 

amount of energy to meet the electricity needs of its people.  

The U.S. economy consumed 97.7 quadrillion British thermal units (BTU) of energy in 

2017 (U.S. Energy Information Administration, 2018). From this total, the electricity sector 

consumed the largest share at 38% (37.2 quadrillion BTU).  The remaining energy consuming 

sectors were the transportation sector (29%), industrial sector (22%), and residential and 

commercial sectors (11%) (U.S. Energy Information Administration, 2018). The electricity 

sector uses a multitude of different energy resources to generate enough electricity in order to 

meet the nation’s consumption needs.  

Electricity in the U.S. is primarily generated from coal, natural gas, and nuclear power. 

Renewable energy forms such as solar, wind, and hydroelectric power have been a growing 

portion of the electricity generation mix in the U.S. over the past 20 years (U.S. Energy 

Information Administration, 2018). Figure 1 shows the energy resource consumption to generate 

electricity over the past two decades.  While dropping steadily since 2008, coal-fired generation 

has remained the leading source of electricity over the past 20 years. There are, however, signs 

of declining coal-fired generation and expansion of natural gas consumption.  The past ten years 

have seen growth in the natural gas and renewables sectors, which are replacing much of the 

coal-fired capacity. Figure 2 displays the U.S. electricity generation fuel mix from 2012-2018 
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with the projected generation mix for 2019 and 2020. Natural gas-fueled generation passed coal 

in 2016 in terms of the amount of electricity generated and is expected to continue increasing its 

share of the market in the future.  

Coal is facing new competition in the U.S. Demand for coal and coal-fired electricity 

generation is falling due to decreasing natural gas prices and production costs (Alexopolous, 

2017). Figure 3 shows the 10-year trend of quarterly electrical generation produced by coal 

combined with coal and natural gas prices in the U.S. This figure shows the generation of 

electricity from coal has declined while the price of coal has relatively remained constant.  Also 

shown in Figure 3 is a mostly downward trend in natural gas prices since 2008. As Coglianese et 

al. (2017) report: “Over the full period, of the 433-million-ton decline in production, 397 million 

tons – 92% of the reduction – is attributable to cheaper gas relative to coal”. Thus, drops in 

natural gas prices are responsible for the coal production decline. Low prices of natural gas 

caused by the shale boom in 2008 have allowed electricity generators to produce gas-powered 

electricity at lower costs. The decrease in coal generation also shows that many coal power 

plants are no longer economically capable of competing within their respective Independent 

System Operator or Regional Transmission Organization (ISO/RTO).  

 While Figure 3 shows that coal is cheaper than natural gas on a per MMBtu basis, this 

advantage does not ensure that electricity generation costs from coal are lower than natural gas. 

Other factors related to generation costs are the transportation of the resources to the generator, 

ramping costs, and environmental costs. While coal is easy to transport and store at a power 

station, coal-fired generators require more time to ramp-up and ramp-down their electricity 

output compared to natural gas power stations. Another cost which coal-fired generators must 

consider is the environmental cost of burning coal.  
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The status of electricity generation infrastructure in the U.S. shows few signs of new 

coal-fired power plants being built. The average age of a coal plant across the nation is 39 years 

(Jell, 2017). With an expected lifespan of a coal power plant being about 40 years, utilities across 

the U.S. are facing difficult decisions of whether to renovate their existing coal plants or build 

new generation plants. Utilities that decide to build brand new energy generators are 

transitioning away from coal and towards natural gas and renewable generation. Economic 

reality explains why natural gas power plants are being built at a swift rate, outpacing coal plants 

by 14.2 times in new capacity additions since 2000 (see Figure 4) (Jell, 2017). Natural gas power 

plants are brought on-line for various reasons, including faster ramping speeds and decreased 

amounts of harmful emissions. Coal-fired power plants are rarely being considered when utility 

companies and investors are planning to build new generating capacity due to their high cost and 

pollution. 

Along with facing competitive price difficulties, coal-fired electricity generation faces 

current and future environmental challenges. Common emissions from burning coal are sulfur 

dioxide, nitrogen oxide, particulate matter, carbon dioxide, and mercury. The Clean Air Act and 

Clean Water Act restrict harmful emissions from electricity generators. An important amendment 

to the Clean Air Act was passed in 1990 which increased the number of controlled pollutants. 

The Maximum Achievable Control Technology (MACT) standard was part of the amendment. 

MACT created “MACT floors” that forced existing industry emitters to decrease their levels of 

emissions of harmful pollutants into the environment. The amendment created, “MACT floor" 

for existing sources is the average level of HAP emission control achieved by the top 12% of that 

industry group's currently operating sources. At a minimum, a MACT standard must achieve, 

throughout the industry, a level of emissions control that is at least equivalent to the MACT 
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floor” (Ohio Environmental Protection Agency, 2019). Older generators were forced to adapt to 

the new restrictions on sulfur dioxide and mercury. Coal power plants were hit hard by the new 

regulation since most of these generators were built before 1990 and did not fall in the top 12% 

of the industry group’s lowest pollution emitter. Older, less efficient power plants were required 

to install new technology to make their production clean enough to warrant the necessary permits 

by the Environmental Protection Agency to continue generating electricity.  

 Emission standards are constantly evolving and often change depending on the 

administration in control of the EPA. While the U.S. government is working to produce less 

environmentally harmful energy, it is also focused on maintaining reliability through diversified 

generation. The electricity sector has seen 37 GW of coal-fired generation retired from 2010 to 

2015. These retirements accounted for 52 percent of the total retirement capacity over the five-

year period. Nuclear generation accounted for another 15 percent of the retirement capacity 

during this time-period (Department of Energy, 2018). The DOE, in this proposal, believes the 

benefits of a power plant’s resiliency is not being properly accounted for. The resilient energy 

generators are, therefore, not being properly compensated for the benefits they provide. 

To keep the American energy fuel mix resilient and diverse, the U.S. DOE proposed on 

September 29, 2017 a regulation to subsidize resilient energy sources. This proposal stated: “The 

nation’s electric grid is threatened by the premature retirements of power plants that can 

withstand major fuel supply disruptions caused by natural or man-made disasters.” (Department 

of Energy, 2018) The DOE argues that it is in America’s best interest to protect resilient energy 

sources for economic, national security and quality of life purposes. Coal and nuclear power 

generation, because of the ability to store stockpiles of natural resources on site, are considered 

very resilient forms of electricity generation.  
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This proposal would have been extremely beneficial to the owners of coal and nuclear 

generation plants. The DOE proposal, however, was rejected by the Federal Energy Regulatory 

Commission on January 8, 2018. It was declined because the rule did not follow the Federal 

Power Act (FPA). The FPA requires that current tariffs in the existing RTO/ISO must be unjust 

and unreasonable for a change to occur. The FPA also found that the planned generation 

retirements do not threaten grid resiliency in the U.S.   

The economic makeup of the U.S. electricity markets is diverse. The regulatory structure 

of the electricity market changes depending on the geographic location. Figure 5 shows seven 

competitive wholesale electricity markets in assorted colors. The gray areas on the map remain 

regulated markets. The colored regions are competitive wholesale markets which are run by an 

Independent Systems Operator (ISO) or Regional Transmission Organization (RTO). The ruling 

ISO/RTO in the area, “uses competitive market mechanisms that allow independent power 

producers and non-utility generators to trade power” (United States Environmental Protection 

Agency, 2018).  The governing ISO/RTO forecasts the consumption of electricity and, using 

market signals, solicits bids from generators to generate the correct amount of electricity needed 

at any given time. In competitive markets, there is not a single owner and operator of both 

generation and transmission resources. The opposite is true for regulated markets. Regulated 

markets have, “vertically-integrated utilities which are responsible for the entire flow of 

electricity to consumers. Utilities own the generation, transmission and distribution systems used 

to serve electricity consumers” (United States Environmental Protection Agency, 2018). 

Consumers in these areas do not have the option of choosing their power provider. The rates for 

electricity in these vertically-integrated areas are regulated by utility commissions, and one 

utility is given a regulated monopoly over a certain area in the provision of electricity.   
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While competitive markets are monitored by their ISO/RTO and regulated by the national 

government, market prices are not controlled. Electricity generators in these markets can be 

considered profit maximizing firms. Figure 6 presents information on the eight competitive 

wholesale electricity regions from June 1st, 2014 – June 1st, 2016. Figure 6 analyzes all 

volumetric weighted average index market prices for electricity in the U.S. An overview of the 

markets shows they all follow a similar price path over the two-year period. All markets display 

a downward linear trend of prices over time. The price of electricity in the PJM and NEPOOL 

(New England Power Pool) experienced a massive average price spike in the winter of 2015, but 

that was the result of the extreme cold temperatures.  

Figure 7 displays the weighted average Intercontinental Exchange (ICE) wholesale 

electricity prices based on averages over all the competitive regions shown in Figure 6. The 

linear trend line shows a downward slope in weighted average price. The ICE has managed to 

provide wholesale electricity in the U.S. at decreasing prices. The price drops are the result of 

different factors. Factors that often help wholesale price decreases are markets and generators 

becoming more efficient, favorable weather, and natural resource price decreases. 

While there is a total of seven wholesale electricity markets in the U.S., this research 

specifically examines price trends only in the PJM Interconnect. The PJM is an RTO that 

provides electricity in 13 states in the northeast United States (purple shaded region in Figure 5). 

The PJM is suited for this research because of its large capacity of aging coal power generation 

and the market’s competitive makeup. The PJM allows generators to compete when offering 

wholesale electricity to the market. The PJM, while being competitive, includes states with 

vertically-integrated regulation along with states whose electricity markets are deregulated. This 

variation creates the potential for different incentives of utility-owned power stations depending 
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on if they are located within a regulated or deregulated market. When a utility within a regulated 

state owns power plants, the cost (including a reasonable rate of return) of the electricity 

generation is covered for the generation plant owner regardless of whether the generation of 

electricity is profitable at the wholesale electricity market prices. Any extra costs of a generation 

not covered by the electricity revenue is passed onto its consumers who are mandated to use that 

provider’s electricity. Power plants within regulated states are therefore always able to compete 

with unregulated power plants. Coal power plants in regulated markets that have aged past being 

competitive are still able to generate electricity for the market. This situation has the potential to 

increase the amount of electricity generated into the PJM market, thus driving wholesale prices 

down.  

Natural gas is relatively cheap and accessible in the PJM region. The electric power price 

of purchasing and delivering natural gas to consumers in West Virginia was $3.66 ($3.66 in 

Pennsylvania  and $3.40 in Ohio) in dollars per thousand cubic feet during January 2019. The 

electric power price for the entire U.S. was $4.16 in January 2019 (U.S. Energy Information 

Administration, 2019). The PJM’s geographic region has lower natural gas prices than the U.S. 

average. Its production is becoming heavily linked to electricity prices in the PJM. The 

connection between prices exist, “the cross-correlation between the quantile-hit processes in PJM 

is found to be around 20-30% from gas to electricity and around 15% from electricity to gas” 

(Uribe et al., 2018). The price of natural gas has a 20-30% correlation related to influencing 

electricity prices in the PJM. The price of electricity in the PJM has a 15% correlation related to 

influencing natural gas prices. The Marcellus Shale Formation is located directly under the 

western portion of the PJM, making access to natural gas deposits for energy production in the 

region increasingly cheaper over the past decade. The Marcellus Shale play, as seen in Figure 8, 
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extends from West Virginia into Ohio, Pennsylvania, a small part of Maryland and lower New 

York. Most natural gas production occurs in West Virginia and Pennsylvania. There are ample 

natural gas supplies in the PJM region for new natural gas-powered electricity generation 

capacity.   

Related research on the electricity markets, policy, and regulated versus deregulated 

markets is plentiful. Three essential articles that relate to this research are Woo et al. (2014), 

Kaufmann and Vaid (2016), and Rahmani et al. (2016). Woo et al. (2014) use a regression model 

to evaluate nuclear power plant deactivations in California. This paper examines the effects of 

closed nuclear power plants on each of California’s zonal locational marginal prices of 

electricity.  Kaufman and Viad (2016) perform a study similar to Woo et al.’s, but their paper 

relates to solar energy in Massachusetts. This paper offers insight into the effects of weather on 

electricity generation. The authors also calculate the potential external benefits received from 

federal renewable energy credits and emission reductions. Finally, Rahmani et al. (2016) use a 

security constrained unit commitment model to address the PJM region’s recent closure of coal-

fired power plants. These authors find that deactivating the coal power plants will likely lead to 

more transmission congestion and increased energy prices. Each of these three articles examines 

electricity markets from the generation side. Megawatt production from each plant is a known 

variable. This research utilizes demand-side information to explain wholesale electricity prices.  

The objective of this thesis is to analyze the impacts of coal-fired capacity retirement in 

the PJM region on wholesale electricity prices. This research differs from other studies because it 

examines the demand-side effects of plant closures on electricity prices. The study utilizes hourly 

data from June 1, 2014 to June 1, 2016. On June 1, 2015, a total of 5,408 MW of coal-fired 

electricity generation capacity was retired from the American Electric Power zone in the PJM. 
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This research will examine hourly wholesale electricity price data from six PJM zones one year 

before and one year after the plant closures. While it is common for aging and inefficient power 

plants to be retired in the PJM RTO, a mass retirement of one type of generation, however, can 

raise questions about the stability of the entire system. Do wholesale electricity prices in the PJM 

region react to this sudden loss in coal-fired generation capacity? How are PJM wholesale price 

extremes (low and high) impacted by the retirements? Does the change in price differ with 

overpredicted and underpredicted electricity consumptions? These questions will be answered in 

this research.  

The rest of the thesis will be reported as follows. Chapter 2 will begin with an overview 

of the electricity industry: its history, its state and federal regulations, and the PJM. This chapter 

also provides a literature review on the effects of regulation on the electricity industry in various 

countries including the United States and factors that affect wholesale price changes in 

competitive electricity markets. Chapter 3 presents the data used for the analyses and the 

methods utilized to analyze these data. Chapter 4 provides the results which were obtained by 

identifying important time series regression outputs and drawing conclusions from their 

coefficients. Chapter 5 concludes the research by showing the significance and policy 

implications of the findings, describe the limitations of the report, and present areas that demand 

further research. 

Chapter 2: Background 

2.1 United States Electricity History 

 The North American electricity grid is a complicated infrastructure that provides power 

throughout the United States and Canada. The energy industry transforms natural resources into 

electricity. It is then transported directly to the consumers’ homes and businesses. In order to 
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provide power consistently, the electrical grid must have exceptionally reliable generation 

capabilities, transmission lines, and people to monitor the grid and properly react as consumption 

of electricity rises and falls. Over the course of more than 100 years, the U.S. has experienced 

private unregulated, public regulated, and private regulated markets for electricity. While the 

electricity industry has grown and shifted drastically over this time period, the reliability of 

providing electricity to consumers on demand at reasonable prices remains a top priority for the 

United States.   

 The electricity industry requires a complex interconnected system to provide electricity to 

our homes and businesses. The process is effectively divided into three categories: generation, 

transmission and distribution. Generation is the first step; primary energy sources such as coal or 

wind are converted into electrical power here. Transmission is next; it moves bulk electricity at 

high voltage levels from the generation site over long distances to areas of demand for 

electricity. The transmission stage includes transmission lines, transformers, substations and 

other equipment that manages the “stepping down” of current before it reaches its destination. 

Distribution is the final stage of electricity. When power is “stepped down” from the 

transmission level to a voltage capable of being delivered to the consumer, it has reached the 

distribution phase. Generation and transmission of electricity are priced on the wholesale level 

while the distribution part of delivering electricity uses retail prices. This paper focuses primarily 

on the generation side of the electricity industry and thus uses wholesale price data.  

 Electricity production across multiple locations first began in Manhattan in 1882. The 

initial power plant provided electricity to 400 lamps and served 85 customers when electricity 

was still in its infancy. Edison and Tesla/Westinghouse were competing over whether direct 

current (DC) or alternating current (AC) was the more effective form of current for 
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transportation of electricity. In the end, AC was chosen as the distribution current for its ability 

to provide electricity over long distances and for its ease of ‘step up’ and ‘step down’ voltage 

capabilities. The industry was initially private and unregulated. Every producer of electricity 

installed its own electrical wire system to transport their product to their consumers. This led to a 

very cluttered transmission system. When the great depression hit in 1929, the U.S. electricity 

market was forced to change drastically. The federal government invested in infrastructure 

projects to provide jobs to its citizens. The new influx of publicly funded electricity generation 

and transmission led to federal regulation of the electricity industry in the United States. The 

Public Utility Holding Company Act (PUHCA) was signed in 1935 to facilitate regulation of 

electric utilities throughout the U.S. PUHCA was created to limit the geographic spread of utility 

holding companies; control amount of loan debt; regulate cross-subsidies of unregulated business 

to regulated business; limit common ownership of both electric and natural gas (Hargis, 2018). 

Overall, PUHCA regulated electricity in the U.S. to prevent companies from monopolizing the 

entire national energy industry. Electric companies were limited to owning utilities in one state; 

they were also unable to leverage their utilities to obtain a loan for business ventures unrelated to 

the utilities they already own.  

 The regulated utility model remained mostly unchanged until the 1970s. At this time, 

high worldwide energy prices and a growing population led to utilities building large-scale coal 

and nuclear power plants in the United States. To encourage small firms to participate in the 

electricity generation industry, President Jimmy Carter signed the Public Utility Regulatory Act 

of 1978 (PURPA). The act mandated utilities to purchase electric energy from co-generation 

plants and renewable generation facilities with a capacity of 80MW or less at a rate that does not 

exceed the utility’s avoided cost. The avoided cost rates, terms, and conditions are determined by 
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each state’s Public Utility Commission (PUC). Natural gas generators, however, were prevented 

from growing with the other fuel types during the 1970’s due to the Power Plant and Industrial 

Fuel Use Act (PIFUA) (Tuttle et al., 2016). At the time the United States believed it only had 

small reserves of natural gas and did not want to rely on foreign countries for this resource. 

Congress reorganized FERC to, “Streamline regulations, encourage greater energy security, and 

contain the increases in energy costs” (Tuttle et al., 2016). U.S. power generation was shifted 

from foreign resources to domestic sources of energy.  

Regulated electricity laws began to change again in 1992 with the passing of the National 

Energy Policy Act (United States Congress, 1992). The act allowed for private market 

competition within wholesale electricity generation. FERC made decisions after the National 

Energy Policy Act of 1992 that affected the entire makeup of the U.S. electricity industry. More 

reforms were added to the act over time. Orders 888 and 889 allowed the transmission to 

separate from the generation which led to the beginning of deregulating the electricity market. 

The schism effectively lowered the barriers to entry in the market and allowed new companies to 

invest and own stakes in the electricity industry. Independent Power Producers (IPPs) were 

created as a result of the orders. They encouraged new forms of energy technology to enter the 

market by raising capital and taking advantage of government tax credits. Order 2000 created 

Regional Transmission Organizations (RTOs) which allowed organizations to form across state 

borders to create larger markets for electricity generation and vaster control of the transmission 

grid. While the FERC loosened their rules on electricity regulations, the U.S. government 

tightened regulations on environmental standards for pollution.  

Environmental regulation is another influential factor in molding the United States utility 

industry into what it is today. The Environmental Protection Agency (EPA) has issued important 
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regulations on air and water that directly affect energy production. The Clean Air Act (1963) and 

the Clean Water Act (1977) were among the first acts signed into federal law and enforced by the 

EPA that continue to alter the power generation process today. The Clean Water Act, in section 

316, created thermal pollution standards that mandate power plants and other industrial 

industries to clean the polluted water they use as a coolant in production (Federal Water 

Pollution Control Act, 2002). The Clean Air Act was initially created to research and regulate air 

pollution. The act was amended in 1990 to add emission restrictions on electric power plants for 

nitrogen oxide and sulfur dioxide. The amendment also created MACTS regulation. The EPA 

researched the topic for ten years, a report called “Utility Air Toxic Study” which was given to 

Congress stating regulation of coal-fired electric utilities was needed (History, 2017). In 2005, 

the EPA issued the final Clean Air Mercury Rule which placed restrictions on mercury emissions 

from new and existing utilities. This rule did not come to fruition and was vacated in 2008 by the 

D.C. Circuit court. In 2011, the EPA proposed a new rule called “Mercury and Air Toxic 

Standards” (MATS). This rule passed in January 2018.  

MATS effectively set emission standards on existing coal and oil-fired electric generators 

that have a capacity equal to and greater than 25 MW. The sources of generation are allowed 

four years to reduce emissions to levels equal to or better than those achieved by the baseline top 

12% of current generators (United States Environmental Protection Agency, 2017). The 

hazardous air pollutants include: benzene, perchloroethylene, methylene chloride, dioxin, 

asbestos, toluene, cadmium, mercury, chromium, and lead. (United States Environmental 

Protection Agency, 2017) The new standards are going to require most of the coal and oil-fired 

generators to either spend money to update their plants or retire them.  
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2.2 PJM Interconnect 

 One of the first regions to shift towards deregulation ensued in the northeast U.S. with the 

PJM Interconnect. The PJM interconnect was first created in 1927, but it did not become an 

independent organization until 1997. Before 1997 it acted as a fully regulated industry. After 

deregulation, the PJM became the United States’ first independent system operator (ISO). The 

duty of an ISO is to “operate, but do not own, transmission systems in order to provide open 

access to the grid for non-utility users” (PJM, 2019). In 1998, the PJM became the first bid-based 

energy market based on locational marginal pricing created in the US. As the PJM expanded 

over time, incorporating more states into the deregulated ISO, FERC encouraged the ISO to form 

into an RTO in 2002.  

The PJM Interconnection is a regional transmission organization located in the Eastern 

Interconnection grid. The PJM contains 20 zones and serves 13 Eastern and Midwest states 

including the District of Columbia (Figure 9). Each zone has its own specific locational marginal 

price (LMP). The zones are connected through high capacity transmission lines known as the 

“backbone” of the PJM transmission system (Figure 10). Transmission lines are responsible for 

delivering the generator’s electricity at the proper voltage to the distributors. While transmission 

is not the focus of this study, transmission lines affect the LMP of zones. Transmission lines 

experience constraints when delivering electricity called congestion and marginal loss. 

Congestion occurs when transmission lines carry too much load and are unable to provide 

enough electricity to an area. The electricity lines are only capable of delivering a certain amount 

of electricity at a safe level. When there is too much demand in a certain area, congestion 

happens. Marginal loss occurs when electricity must be carried from the generator to the 

customer. Energy is lost through electrical resistance and heating of conductors. The further a 

customer is from the generator, the higher the marginal loss of electricity is likely to be (Energy 
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Markets, 2011). Both costs are added to the total cost of the generator producing the energy to 

create the LMP in a zone.  

LMP is the price of electricity within the borders of each zone. The prices are very 

dynamic and are subject to change every five minutes depending on what the needs of the PJM 

are. This study utilizes LMPs, and it is important to develop a stronger understanding of what 

they are and how they help explain the state of electricity flow in the PJM RTO. Locational 

marginal prices are calculated by combining the system energy price, transmission congestion 

cost and the cost of marginal losses. The system energy price “represents optimal dispatch 

ignoring congestion and losses” (Energy Markets, 2011). It is the price of electricity without 

interference from external forces. Transmission congestion and marginal loss often add to the 

LMP for generators. When there is congestion in the transmission lines it adds costs to the 

system generators to deliver electricity to the customer in high demand areas and times.  The cost 

of marginal loss is dependent on loss of power caused by changes in the system load and 

generation patterns. Congestion and marginal loss are both capable of having positive and 

negative prices. Negative congestion prices occur when generators create more electricity than is 

being consumed, and the generators are willing to pay to have the electricity handled by another 

entity. Negative marginal loss prices occur when the load losses are smaller than the generation 

loss. (Monitoring Analytics, 2012) Locational marginal price is the most effective way to 

measure cost variance within the PJM. LMP accounts for both system energy price and 

transmission inefficiency within the specific zone being measured. This leaves forecasting error, 

unplanned maintenance and severe weather as externalities that would explain drastic short-term 

shifts in price.  
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The PJM provides an average daily wholesale price of electricity report on its website. 

Figure 11 reports daily prices over ten years from June 1st, 2007 to June 1st, 2017. A linear trend 

line was added to the graph to show the downward trend in average price per MWH. The long-

term price decrease in wholesale electricity from the PJM RTO follows in line with the national 

trend of decreasing wholesale electricity prices. Upon further examination, the rapid spikes in 

price seen in Figure 11 are likely the result of extreme weather conditions. The most significant 

increase occurred in January 2014. A polar vortex blew through the Midwest into the east coast, 

and on January 7th, 2014 states experienced record low temperatures. Morgantown had a record 

low temperature of -7° Fahrenheit on this day (Weather Underground, 2018). Two other price 

spikes that occurred during the time period being assessed were February 18th-21st, 2015 and July 

20th, 2015, both of which also experienced extreme temperatures. Catalão et al. (2007) state that 

large temperature fluctuations lead to increases in the short-term price of electricity. Even when 

cold temperatures are forecasted and properly accounted for by electricity generators, the price of 

electricity can still soar as electricity customers demand more electricity during this time.  

A market’s ability to handle large shifts in electricity consumption over short time 

periods depends on its fuel generation mix. Having a good mix of baseload and peaking 

generation sources allows the wholesale market to properly adjust generation based on 

costumers’ needs. Baseload electricity generation is the minimum amount of electricity supplied 

to the grid at a given time. These generators are commonly the lowest cost generators which 

maintain production over extended periods of time. Coal and Nuclear generators are examples of 

baseload generators. Peaking electricity generators commonly only generate electricity when 

there is a high electricity consumption. Gas and hydroelectric plants offer peaking capable 

electricity generation for when consumption is high. 
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 The event that unfolded in the PJM on June 1st, 2015 was a massive overhaul of the 

current energy balance in the RTO. On this day 5,408 MW of available coal powered generation 

capacity was retired from the PJM. Table 1 reveals the generation mix of natural resources at 

approximately six-month intervals from June 1st, 2014 to June 1st, 2016. Coal generated 41.3% of 

the energy mix in the PJM in June 2014. By June 2016, coal generation only accounted for 

36.6% of the PJM fuel mix. Coal-fired generation lost 4.7% of its share of the PJM in two years. 

Natural gas was the second largest producer in the PJM and grew at a rapid pace from 29.2% in 

June 2014 to 35.5% in June 2016. The capacity lost by coal over this time period was mostly 

replaced by natural gas power plants. Nuclear, hydro and oil generate almost all the rest of the 

PJM’s fuel mix with renewables like solar, solid waste, and wind only contributing about one 

percent of the total mix.  

As Table 1 suggests, the PJM is highly dependent on fossil fuel resources for its energy 

generation. This perhaps due to the geologic makeup of the region it covers. The RTO lies 

directly on top of abundant recoverable coal and natural gas reserves. The Northern and Central 

Appalachian coal basins are located in parts of Ohio, Pennsylvania, and West Virginia and 

provide coal at low cost to power plants within the PJM. The Marcellus Shale Play is currently 

the largest source of gas in the United States. It produced over 30,000 million cubic feet of 

natural gas in March 2019, and the play has shown constant growth in production since 2010 

where production in the area was under 6,000 million cubic feet per day (U.S. Energy 

Information Administration, 2019). The play is also believed to be the largest reserve of 

recoverable natural gas in the U.S. Proved reserves in 2015 reached 148.7 trillion cubic feet of 

gas in the Marcellus formation (United States Environmental Protection Agency, 2017). The 
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large reserves of available natural gas in the region ensures there will be no potential problem of 

the natural resource running out in the foreseeable future.   

 The PJM RTO is a single integrated market for electricity, but each state within the RTO 

creates its own laws and regulations for electricity production. The six zones examined in this 

study cover portions of Illinois, Indiana, Kentucky, Maryland, Michigan, Ohio, Pennsylvania, 

Tennessee, Virginia and West Virginia (Figure 9). The states with regulated electricity utilities 

are Indiana, Kentucky, Tennessee, and West Virginia. The other states are deregulated. 

Tennessee has a very small part of its state within the PJM and has not a large influence on the 

LMP. Indiana, Kentucky and West Virginia have regulated electricity where the consumer has 

no choice in provider and the total cost of production and transportation of electricity are covered 

entirely by the consumers. Every electricity producer in these states is guaranteed a 

predetermined profit which is decided upon by the state commission each year. The state 

government regulatory commissions also determine when plants will be retired and when new 

power plants will be proposed.  

2.3 Literature Review 

 Power plants in deregulated markets operate based on whether they can produce 

electricity at a competitive price. Scholarly journal articles focusing on electricity prices remain 

valuable as the U.S. electricity industry continues to morph due to changes in weather patterns, 

government regulations, natural resource availability, and technology advancements. The 

literature review has been separated into two parts. The first part offers background information 

on the U.S. electricity industry and the external forces affecting market prices. The second part 

gives a closer examination of three articles, namely Woo et al. (2014), Kaufmann and Vaid 

(2016), and Rahmani et al. (2016). These articles utilize LMP data to study different forms of 
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generation retirement in wholesale markets. They were referenced in the introduction and are 

very important to why this research was initially performed.  

 2.3.1 Industry, History, and Factors Effecting Wholesale Price 

 The background information from earlier provides a basic overview on the development 

of the U.S. electricity industry over time. In their book The Economics of Electricity Markets, 

Biggar and Hasamzadeh (2014) provide a more in-depth description of the economic nuances 

within electricity markets. Another book that offers insight into the recent history of the U.S. 

electricity industry is Electricity Deregulation: Choices and Challenges by Griffin & Puller 

(2005). This book discusses some of the large crises that occurred when the states restructured 

from regulated into deregulated markets.  Both books are useful for anyone who wishes to learn 

about the electricity industry.  

 Economists continue to debate the benefits and costs of restructuring the U.S. electricity 

industry. With only a portion of the U.S. electricity industry residing within competitive markets, 

it is clear some states see benefits in maintaining a fully regulated industry.  Borenstein and 

Bushnell (2015) discuss the effects of market structure on electricity prices in the U.S. over the 

past 20 years. They argue that there is a divergence between the commodity of electricity price 

made by producers and the retail market price of electricity. However, they argue that the 

creation of markets is not solely responsible for decreasing prices—electricity rates have 

changed more from, “exogenous factors, such as generation technology advances and natural gas 

price fluctuations, than by restructuring.”  

Since this report focuses on LMP within wholesale markets, it is important to understand 

how firms in this setting are expected to act. Kishimoto et al. (2017) question if acquiring and 

merging electricity companies create value to the market. While previous studies on this topic 

show no sign of a positive effect, the paper finds that there is an increase in the acquiring firms’ 
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share value and improvements to their operating performance, primarily through efficiency gains 

after the deregulation. The paper examines the time period of 1998-2013 in the UK, France, 

Germany, Canada and the US. The findings follow Coase’s argument that firms enhance 

shareholder value and reduce transaction costs in a deregulated market. Firms in the electricity 

industry are encouraged to grow larger in a deregulated market to please the company’s 

shareholders and decrease costs.  

Firms attempt to maximize their profit when generating electricity. Firms only generate 

when the LMP in their zone is above the cost of generation. They must be vigilant in observing 

exogenous factors like weather and resource prices that affect the electricity price. Fluctuations 

in weather are strong predictors of electricity price spikes. Valor et al. (2001) consider the 

relationship between daily air temperature and electricity load in Spain. The results of the study 

found that the relationship between the two is nonlinear. A comfort interval of +/- 3℃ around 

18℃ (64.4℉) and two saturation points occur at which electricity load no longer increases. 

Population-weighted index, socioeconomic factors, and daily and monthly effects were added to 

isolate the weather influence on electricity load. The results found in this paper were useful for 

understanding the expected shift in electricity prices depending on the degree day value. The 

report found as degree day value increased, the price of electricity increased in a nonlinear 

fashion. Additionally, the authors noted that days where degree day values exist for warm 

weather are more likely to increase electricity prices than degree day values caused by cold 

weather of equivalent magnitude.  

Urbine et al. (2018) measure the causality between natural gas and electricity prices in 

the New England and PJM markets. The report finds that New England has a higher cross-

correlation between the two areas, but both areas experience significant effects on each other’s 
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prices. The PJM area has a cross-correlation of 20-30% from gas to electric and 15% from 

electric to gas. The conclusion to the paper states “the PJM and the NE interconnection markets 

show that natural gas prices can indeed be used as a predictor of electricity prices, but it also 

shows that electricity prices can predict natural gas prices, especially when the two resources are 

trading relatively high in the market.” The fall in natural gas prices and the rise in natural gas 

production capacity in the U.S. promises the future role of natural gas prices as an increasingly 

influential determining factor of electricity prices.   

Cabral et al. (2017) discuss electricity consumption forecasting in Brazil. The study 

compares a spatial Autoregressive Integrated Moving Average (ARIMA) model to a regular 

ARIMA model and found the spatial version to be a better predictor of performance. The authors 

use the Moran Index neighbor test for spatially identifying neighboring electrical regions. The 

new method found that regional electricity consumption in Brazil is spatially dependent. Adding 

a spatial dimension ensures consistent unbiased and efficient estimates. The continuing research 

plans to study the predictive performance of multivariate models like vector autoregressive 

(VAR), spatial autoregressive model with autoregressive disturbances (SARAR), and spatial 

panel vector autoregressive (SpVAR) in the future. This type of analysis is a potential direction 

this research could take moving forward with the spatial analysis of LMP before and after the 

coal production retirement.  

2.3.2 LMP Literature 

 Three journal articles best define why this research was performed. Woo et al. (2014), 

Kauffmann and Vaid (2016), and Rahmani et al. (2016) examine LMP change when there is a 

change in generation capacity within a wholesale market. All articles offer unique approaches to 

aid in understanding the constant transformation and growth of the U.S. electricity industry. 
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These articles offer prior information and standpoints that can be used as a comparison for the 

results found in this paper.  

 Woo et al. (2014) examine the likely increase in price due to a nuclear plant closure and 

the potential ways of mitigating a price increase. The paper performs a regression analysis of 

electricity market price data from California Independent System Operator (CAISO). Three 

regions’ hourly wholesale price and load data along with daily Henry Hub natural gas price data 

were obtained to perform the analysis. The results of a shutdown of the nuclear power plants 

within CAISO raised hourly prices by $6-$9/MWH. Some recommended ways of mitigating the 

price increase suggested by the authors are demand reduction and solar and wind generation 

increases. This paper uses a similar approach to that in our paper, but ours will work with coal-

fired plant deactivation in the PJM.  

Kauffmann and Vaid (2016) analyze Massachusetts rooftop solar utilization and its 

effects on electricity prices. Massachusetts electricity distribution system is split into three 

separate zones. It finds that a 10% increase in solar production could lead to $184 million in 

savings for ratepayers in 2010-2012. The paper uses Newey and West (1987) estimator to avoid 

difficulties with autocorrelation and heteroscedasticity. It also found that photovoltaic (PV) 

reduces the amount of carbon emissions by 0.3% relative to the annual average. This article uses 

regression analysis to measure the effects of changes in generation capacity on LMP. 

Implementing PV in Massachusetts will effectively decrease LMP, congestion, and emissions. 

Rahmani et al. (2016) review the retirement of coal power plants on transmission 

congestion and LMP prices. The paper also examines the effect of increased levels of wind 

power and new EPA rules on the PJM electricity system. By creating a forecast model, the paper 

was able to predict the effects of different future scenarios for the PJM. The results show, 
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“Without transmission upgrades, retirement of coal-fired power plants will likely result in 

considerable transmission congestion and higher energy prices.” (Rahmani, 2016) The authors 

argue that the best way to mitigate the problem is to integrate wind power, which will diminish 

the negative effects of coal retirement while also reducing emissions. Implementing the wind 

over diverse geographic areas will also reduce congestion and provide larger emissions reduction 

benefits. 

Chapter 3: Data & Methodology 

3.1 Data 

There are two possible approaches to the research problem of how wholesale electricity 

prices will respond to the retirement of coal-fired electricity generation power stations: (1) 

regression analysis that relates the impact of retirements by comparing the predicted electricity 

prices and observed wholesale electricity prices; or (2) optimization analysis of the PJM 

electricity market with and without the retired 5,408 MW of coal-fired capacity in the model 

assuming different generation replacement responses.  Since the second method would require 

funding to secure and implement the appropriate optimization models, this research will apply a 

regression analysis.  This research utilizes electricity data obtained from the pjm.com website. 

PJM Interconnection LLC is an organization of more than 900 companies in 14 states that 

formed a competitive electricity market in northeastern United States. PJM offers zonal hourly 

load consumed and locational marginal pricing data. The study includes a total of 105,408 

unique wholesale price observations from six zones during June 1st, 2014 – June 1st, 2016.  

Data were collected for the following 6 zones within the PJM region: American Electric 

Power Company (AEP), Allegheny Energy (APS), American Transmission Systems (ATSI), 

Commonwealth Edison (COMED), Dayton Power and Light Company (DAY) and Duquesne 
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Light (DUQ). The data obtained from the PJM contain real-time hourly historical prices, day-

ahead prices, real-time historical load consumed, and eight separate forecasted loads consumed 

for each zone. The forecasted loads consumed were formulated at 5:45, 11:45, 17:45, and 23:45 

the day ahead (DA) of when the load is physically consumed and the day of (DO) the consumed 

load. All electricity data used in this report were gathered directly from the PJM website.    

The raw data were moved from the PJM website into Excel documents where they were 

cleaned and reformatted. These data were then transferred into STATA where the regressions 

would be performed. Each variable was transposed so that the observations read in a vertical 

column manner from top to bottom according to time. Hours in the day are aligned from 1 to 24. 

Hour 1 signifies the hour from 0:00 to 1:00 am and 24 is hour 23:00 to 24:00 or midnight. June 

1st, 2014 hour 1 is the first observation for each of the six zone’s LMP and load consumed 

variables. This format continues vertically until June 1st, 2015 hour 24. At this point the data set 

is ended, and a new set of data reading the same way from June 2nd, 2015 hour 1 to June 1st, 2016 

hour 24 was created. Separating the two years allows for evaluation of the retirement of coal 

generation within the zones to be tested for by regression analysis.  

Five of the six zones retired coal-fired capacity on June 1st, 2015. Table 2 shows each 

zone’s average load consumption and retired coal capacity over this two-year time span. The 

AEP zone contained a retired 5,408 MW of coal-fired electricity capacity. The ATSI zone, at 

986.6MW retired, had the second highest retirement capacity. The ATSI zone encompasses the 

northern portion of Ohio and some of Pennsylvania. DAY and DUQ are small zones in terms of 

consumption at 277 MW and 125 MW respectively. COMED did not experience much coal 

capacity retirement either at 251 MW. Every zone except the APS zone lost some capacity 

during the two years being observed. Thus, LMP within APS, COMED, DAY, and DUQ should 
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experience different LMP shifts than the AEP and ATSI, since these zones experienced less 

change. 

Part of the reason the APS did not lose any capacity is that a large portion of this zone is 

located within the vertically integrated regulatory state of West Virginia. Large scale retirements 

are less likely to occur in regulated states since costs of production are covered by the ratepayers. 

The only other zone of the six chosen for research that encompasses states with regulated 

markets is the AEP. The power stations retired in the AEP all are located within the deregulated 

states of Ohio and Virginia. The ATSI, COMED, DAY and DUQ all act in accordance with the 

PJM to retire generation if their power stations are no longer competitive in the market. Parts of 

the AEP and APS generation capacity are at the mercy of the regulated states’ decisions to keep 

or retire their power stations.  

Generators, both in competitive states and vertically-integrated states, are provided day 

ahead price and load consumption forecasts by the PJM to signal whether the generator should 

be expected to produce in the future. These estimates provide an indication of what real-time 

markets could be. Power generators use these estimates to determine how much electricity they 

should produce per hour. The estimates are not always correct, however, and incorrect estimates 

lead to over or underproduction of electricity compared to the real-time consumption of 

electricity. This market force is accounted for by creating two new variables called over-

predicted consumption and under-predicted consumption. Equations (1) and (2) represent the 

over- and under-predicted consumption by the PJM.  

 𝑂𝑣𝑒𝑟 − 𝑃𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑 𝐶𝑜𝑛𝑠𝑢𝑚𝑝𝑡𝑖𝑜𝑛:         ∑ 𝐷𝐴ℎ𝑍 − ∑ 𝑅𝑇ℎ𝑍 𝑛
𝑡=1 ≥ 0 𝑛

𝑡=1            (1) 

 𝑈𝑛𝑑𝑒𝑟 − 𝑃𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑 𝐶𝑜𝑛𝑠𝑢𝑚𝑝𝑡𝑖𝑜𝑛:      ∑ 𝐷𝐴ℎ𝑍 − ∑ 𝑅𝑇ℎ𝑍 𝑛
𝑡=1 < 0 𝑛

𝑡=1         (2) 

DAhz = Day Ahead Load Consumed on hour h assigned to each zone z 
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RThz = Real Time Load Consumed on hour h assigned to each zone z 

  n = Number of observations measured in hours 

Predicted consumption was split into two different variables. The first one involved over-

predicting the real-time consumption which is expected to lead to a relatively small shift in real-

time prices. The surplus of generated electricity is either sent to zones in need of more electricity 

or stored using hydro dams (pumped storage) or dumped from the grid using synchronous 

condensers. The second variable, under-predicting the real-time consumption, is expected to 

have a more consequential effect on electricity prices. When the estimate is below the real-time 

electricity consumption, the PJM must find and send electricity from an external area to meet the 

consumption needs of the area or zone in need. This can lead to real-time increases in LMP in 

the zones that under-predicted consumption.  

Another force which affects the real-time price of electricity is regional temperature. The 

best available weather data offers daily temperature readings. Weather information was gathered 

from 16 metropolitan locations within the six zones (Table 3). A single weighted temperature 

was created for each of the six zones based on the populations of metropolitan locations located 

within each individual zone. Equations (3) and (4) explain how each metropolitan location was 

weighted within its zone and describe how the final temperature was determined using the 

population weights.  

   𝑤𝐼𝑍 =  
𝑃𝐼𝑍

∑ 𝑃𝐼𝑍
𝑛
𝑖=1

      (3) 

   𝑇𝐼ℎ𝑍 =  ∑ �̅�ℎ𝐼𝑤𝐼𝑍
𝑛
𝑖=1      (4) 

TIhZ = Mean Population Weighted Temperature 

�̅�ℎ𝐼= Mean Temperature  
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WIZ = Population Weight  

PIZ = Population 

Z = Zone 

I = Metropolitan Area 

h = Hour 

n = Number of observations 

This approach is similar to the one used by Valor et al. (2001). The population weight in 

equation (4) weighs the metropolitan areas in each zone based on their total population. The 

population weight of the area is then multiplied by the temperature for each hour in the 

metropolitan area to create an average temperature for each zone.  

After the weighting, temperature data were split into heating and cooling degree days. 

The term degree day is defined as, “Measures of how cold or warm a location is. A degree day 

compares the mean (the average of the high and low) outdoor temperatures recorded for a 

location to a standard temperature, usually 65° Fahrenheit (°F) in the United States.” A heating 

degree day (HDD) occurs when the temperature of the day is less than 65°F. A cooling degree 

day (CDD) occurs when the temperature is more than 65°F. Equations (5) and (6) represent the 

algebraic approach taken to obtain degree days. 

    𝐻𝐷𝐷𝑖 = 65 −  𝑇𝐼ℎ𝑖 ≥ 0     (5) 

   𝐶𝐷𝐷𝑖 = 65 −  𝑇𝐼ℎ𝑖 < 0     (6) 

   HDD = Heating Degree Days 

  CDD = Cooling Degree Days 

TIhz = Mean temperature on hour assigned to each zone 

 h = Hour 
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 i = ith zone 

After the degree day values are separated, the variables are then squared. Valor et al. (2001) 

describes how degree day values increase energy use increases in an exponential fashion. 

Squaring the variables allows for the magnitude of influence each extra degree has on the 

wholesale prices to be properly quantified.  

Degree days are separated because Valor et al. (2001) show that HDD and CDD have 

different effects on LMP values. CDD values generally lead to more electricity consumption than 

HDD days of the same magnitude. For example, a day at 85°F is likely to have more electricity 

consumption than a day at 45°F (Valor et al., 2001). Both temperatures maintain a degree day 

value of 20, but the degree day with warmer temperature demands more electricity for air 

conditioning. CDD has a larger impact on prices than HDD. Tables 4 and 5 provide statistical 

information on the mean, standard deviation, minimum, and maximum of zonal LMPs, degree 

days, and predicted consumption variables. After degree day and predicted consumption 

variables were created, dummy variables were created and added to account for time.  

Electricity consumption shifts depending on the time of day, day of week, and month of 

year. To account for the regime switching, dummy variables were created in a similar approach 

as Kauffman and Vaid (2016). A total of 23 dummy variables were used for hours of the day, six 

dummy variables for days of the week, and 11 dummy variables for months of the year. Bases 

for each dummy variable were defined at 0:00 to 1:00, or hour 1, for hours, Wednesday for days, 

and December for months. Figures 12 and 13 show the average real-time price of electricity in 

each zone for each hour before and after the coal plants were retired. Figures 12 and 13 show 

prices are lowest during the night hours, and highest during the day around 18:00-20:00. The 

average price per Megawatt of electricity for every hour is higher before the capacity was retired. 
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The APS has the highest average price and COMED has the lowest average price. The AEP zone 

falls in the middle relative to the other five zones.  

Figures 14 and 15 show the average daily price of electricity in each zone. The values on 

the x-axis represent the days of the week: Monday is denoted as 1 and Sunday is 7. Figures 14 

and 15 do not follow the same price trend; however, both figures maintain lower average LMPs 

on the weekend than during weekdays. A quick overview of Figures 16 and 17 shows the 

average monthly price of electricity in each zone. The values on the x-axis represent the days of 

the week: January is denoted as 1 and December is 12.  Prices rise during the summer and winter 

seasons and fall during the spring and autumn seasons. This observation coincides with 

Kaufmann and Vaid (2016), mentioned in the background, on the effects of weather on 

electricity prices. The average price of electricity in the APS during the winter months before the 

plants were retired is abnormally high. While the winter of 2015 was very cold, it does not 

explain why the APS zone is so much higher than the other zones in the PJM. The APS did not 

experience the same type of price jump in the second year of data after the other zones’ capacity 

retirements occurred. 

The summary of statistical data for the variables utilized in the research is available in 

Tables 4 and 5. Table 4 summarizes the data used in the pre-retirement period, while Table 5 

summarizes the data used in the post-retirement period. The only data altered in the regressions 

were the heating and cooling degree days. Both variables were squared to emphasize the effects 

of extreme weather on electricity prices. While consumption (C) was not used in the regressions, 

the summary of its statistical data is available in Tables 4 and 5. Consumption of electricity in 

the pre-retirement time period is larger than consumption in the post-retirement time period for 

every zone. 
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3.2 Methodology 

3.2.1 Regression Models 

 The primary goal of this report is to quantify the effects of coal-fired electricity 

generation retirements on each of the six zone’s LMP. To achieve this, we use a single regression 

employing the data explained above. Equations (7) and (8) represent a series of six hourly-price 

regressions, one for each of the six zonal locational marginal prices. The regressions for the 

zones AEP, APS, ATSI, COMED, DAY, DUQ are represented in equations (7) and (8). 

𝑃𝑖 = 𝛼 + 𝛽𝑋𝑖 + 𝛽𝑋𝑗 + 𝛽𝑍𝑗 + 𝛽𝐻𝑖 + 𝛽𝐶𝑖 + 𝛽𝐻𝐷𝐷𝑖
2 + 𝛽𝐶𝐷𝐷𝑖

2 + 𝛽ℎ + 𝛽𝑑 + 𝛽𝑚 + 𝜀  (7)   

 𝑃𝑖 = 𝛼 + 𝛽𝑍𝑖 + 𝛽𝑋𝑗 + 𝛽𝑍𝑗 + 𝛽𝐻𝑖 + 𝛽𝐶𝑖 + 𝛽𝐻𝐷𝐷𝑖
2 + 𝛽𝐶𝐷𝐷𝑖

2 + 𝛽ℎ + 𝛽𝑑 + 𝛽𝑚 + 𝜀  (8) 

   P = Locational Marginal Price of Electricity 

X = Over-Predicted Consumption 

   Z = Under-Predicted Consumption 

   HDD = Heating Degree Days 

   CDD = Cooling Degree Days 

   i = Dependent Variable Zone 

   j = Other 5 Independent Variable Zones 

   h = Dummy Variable Hours (Hour 1 Base) 

d = Dummy Variable Days (Wednesday Base) 

m = Dummy Variable Months (December Base) 

α = Y-Intercept 

   ε = Residual 

These equations are estimated as regressions based on the Woo et al. (2014) study for electricity-

market price behavior in California when nuclear power stations are shut down. The dependent 
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variable in each equation is P - the real-time locational marginal price ($/MWH) at zone i.  

Equation (7) involves a regression using data when consumption is over-predicted in the 

dependent variable zone. Equation (8) is a regression using data when consumption is under-

predicted in the dependent variable zone. The degree day and dummy variables are used in the 

same manner for both equations (7) and (8). The final term ε is an autoregressive error term for 

the hourly LMP.  

 Similar regressions to equations (7) and (8) using logged dependent and independent 

variables were performed at the beginning of this research. Log-log models were created with the 

intent of minimizing the influence of price spikes on the results. The log-log models are not 

reported in this research due to an inability to account for negative LMP values. Tables 6, 7, 8 

and 9 display the results of the regressions performed. Tables 10, 11, 12 and 13 display the 

correlation of over-predicted and under-predicted consumption between zones during the pre-

retirement and post-retirement time periods. Further explanation of these tables is available in the 

Results section of the report. 

3.2.1 Statistical Tests 

Regressions were examined and adjusted using three tests: Chow, likelihood ratio, and t-

test. All three of these tests molded the regression into its final form and are discussed in detail 

below. The Chow test was utilized to determine if there were structural breaks within the two-

year time series data set. The first Chow test was used to examine whether there was a structural 

break in the model caused by the retirement of coal-fired electricity generation capacity in the 

AEP zone on June 1st, 2015. Table 14 shows the Chow test results. The null hypothesis is that the 

model should be singular over the two-years rather than split based on pre-retirement and post-

retirement of the coal capacity. Based on statistically significant F-tests, there were indeed 
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structural breaks in each zone caused by these retirements and that a single regression model 

with the entire data set is less efficient than two regression models: one before the retirement of 

the coal capacity from June 1st, 2014 – June 1st, 2015 (pre-retirement), and one after the 

retirement of coal capacity from June 2nd, 2015 – June 1st, 2016 (post-retirement).  

A second Chow test was performed after the structural break test to examine if there was 

a structural break caused by the predicted consumption variables within the model. The null 

hypothesis is that the pre- and post-models should be one model rather than split again based on 

whether the zone experiences over-predicted or under-predicted consumption.  Table 15 presents 

the second Chow test results.  The interpretation is that there are structural breaks caused by 

splitting the predicted consumption variable into under-predicted consumption and over-

predicted consumption. Every zone in both the pre-retirement, post-retirement, and two-year 

time periods experiences a statistically significant structural break between a single Diff 

predicted consumption model, predicted consumption model with only positive Diff values, and 

a predicted consumption model with only negative Diff values.  

While Chow tests are useful for determining whether there is a structural break within the 

data, they do not explain whether a split model is more effective in explaining price than a whole 

model. A likelihood ratio test was performed to test for goodness of fit between a two-year single 

model and two one-year models. The results of the test in Table 16 show the two one-year 

models had a better fit than the single two-year model when evaluating LMPs as the dependent 

variable. The two-year model was split into two one-year models because of this LR-test. 

A likelihood-ratio test was then utilized on the two-year model and both one-year models 

to compare the goodness of fit between a single predicted consumption variable against split 

under-predicted and over-predicted consumption variables. The null hypothesis is that the pre- 
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and post-models should be one Diff value model rather than split again based on whether the 

zone experiences over-predicted or under-predicted consumption. Table 16 displays the LR-test 

results. For each zone, the model featuring no predicted consumption split was less efficient than 

the model with separate positive Diff and negative Diff values. The predicted consumption 

because of the test was separated into positive over-predicted real-time consumption and 

negative under-predicted real-time consumption. These structural breaks and LR-tests show that 

four separate models are appropriate: pre-retirement with over-predicted consumption, post-

retirement with over-predicted consumption, pre-retirement with under-predicted consumption 

and post-retirement under-predicted consumption. 

Finally, student’s t-tests are used to determine if there is a significant difference between 

the averages of two sets of data. The t-test serves three separate purposes for this report. The first 

use of the t-test will be to compare the average observed LMP values to the average 

counterfactual LMP values. These t-tests verify whether the observed data is statistically 

different from the counterfactual data. To accomplish this, a t-test using Diff values against was 

performed. The null hypothesis of this test is that the Diff values are no different than the 

counterfactual LMP. The results of this test are available in Table 17. The second t-test is used to 

determine if each zone’s LMP is significantly different from other wholesale electricity markets 

within the U.S. The null hypothesis of this test is the LMP for each hour is not different than the 

wholesale price of each hour in other electricity markets within the U.S. Table 18 displays the t-

tests for observed LMP against other market prices. The third t-test is used to determine if each 

zone’s electricity consumption is significantly different between pre-retirement and post-

retirement time periods. The null hypothesis of this test is the consumption for pre-retirement is 

not different than the consumption for post-retirement. Table 19 displays the t-tests for electricity 
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consumption between pre-retirement and post-retirement time periods. Each t-test will be 

explained in further depth in the Results section of this report.   

3.3 Analyses 

Four counterfactual analyses were produced using the obtained data and regression 

coefficients estimated from equations (7) and (8) which were discussed at length in the 

methodology section. Each hour of the observed LMP was equated against its counterfactual 

counterpart for all four analyses being performed to find the change in LMP values. The outputs 

from sections 3.3.1 through 3.3.4 are shown in Tables 20, 21, 22 and 23. The results were also 

converted into percent change in LMP and are presented in Tables 24, 25, 26 and 27. Locational 

Marginal Price is the dependent variable being evaluated in these analyses and change in LMP is 

the resulting solution. The independent variables affecting the LMP are predicted consumption, 

degree day, fixed effects and the error term. The analyses examine each zone individually and 

offer a change in LMP result, also referred to as Diff, measured in $/MWH. 

3.3.1 Early Retirement with Over-Predicted Consumption 

The early retirement analysis with over-predicted consumption was created to examine 

the effects of the PJM zones over-predicting real-time consumption of electricity from June 1st, 

2014 – June 1st, 2016. The analysis utilizes an estimated LMP as if the retirement of electricity 

occurred on June 1st, 2014 rather than the actual retirement date of June 1st, 2015. Equation (9) 

results in the difference in LMP according to the analysis’s framework.  

𝑃𝑃𝑟𝑒 − 𝑃𝑃𝑟𝑒
̂ =  𝐷𝑖𝑓𝑓𝐸𝑎𝑟𝑙𝑦 𝑅𝑒𝑡𝑖𝑟𝑒𝑚𝑒𝑛𝑡,   𝑂𝑃    (9) 

P̂Pre = Projected LMP Post-Retirement with Over-Predicted Consumption 

Coefficients • Observed Pre-Retirement Data 

 PPre = Pre-Retirement Observed LMP Data  
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 Diff = Locational Marginal Price Difference in $/MWH 

 OP = Over-Prediction of Consumption 

The observed data in this analysis is derived from the pre-retirement time-period of June 1st, 

2014 – June 1st, 2015. The P̂Pre estimates provide a counterfactual LMP in each zone if the coal-

fired capacity had retired a year earlier than its actual retirement date.  

 Under a scenario where early retirement with over-predicted consumption occurs, the 

expected result is to return positive Diff results for each zone. A positive Diff occurs when the 

observed PPre is larger than the P̂Pre counterfactual LMP. If the average of all the Diff values is a 

positive value, the results of that analysis would lead to a decreased LMP average compared to 

the observed LMP average. If the average of all the Diff values is a negative value, the results of 

that analysis would lead to an increased LMP average compared to the observed LMP average.   

The observed PPre is expected to be higher than the P̂Pre counterfactual LMP because 

coal-fired capacity being retired is no longer competitive within the wholesale electricity market 

is being removed to allow more cost competitive generators of electricity to compete in the PJM 

market. The 25 percent decrease in U.S. coal-fired generation from 2007-2013 was influenced by 

“Falling natural gas prices combined with increased wind generation account for most of the 

observed decline in average coal capacity factors” (Fell and Kaffine, 2018). Coal-fired capacity’s 

ability to compete has diminished within wholesale markets over the past decade. The 

counterfactual experiencing early retirement is therefore expected to decrease each zone’s LMP. 

The over-predicted consumption factor is not expected to be very influential in determining the 

LMP. If the consumption is over-predicted, the counterfactual may decrease the zone’s LMP due 

to excess generation of electricity within the zone.  
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3.3.2 No Retirement with Over-Predicted Consumption 

This analysis was produced to examine the effects on each zone’s LMP given over-

prediction of consumption conditions using the counterfactual that coal-fired capacity is not 

retired. Equation (10) is the basis for this analysis as the LMP difference between the actual 

LMP and projected LMP under the counterfactual of no retirement. 

𝑃𝑃𝑜𝑠𝑡 − �̂�𝑃𝑜𝑠𝑡 =  𝐷𝑖𝑓𝑓𝑁𝑜 𝑅𝑒𝑡𝑖𝑟𝑒𝑚𝑒𝑛𝑡,   𝑂𝑃    (10) 

P̂Post = Projected LMP Post-Retirement with Over-Predicted Consumption 

Coefficients • Observed Post-Retirement Data 

 PPost = Post-Retirement Observed LMP Data  

 Diff = Locational Marginal Price Difference in $/MWH 

 OP = Over-Prediction of Consumption  

PPost is derived from the post-retirement time-period of June 1st, 2015 – June 1st, 2016. The pre-

retirement with over-predicted consumption coefficients were multiplied by the observed post-

retirement data to create P̂Post. The observed PPost was then subtracted by the P̂Post to create the 

difference in $/MWH of non-retirement over-predicted consumption analysis.  

 Under a scenario containing no retirement with over-predicted consumption, the 

expectation is for negative Diff results. An average negative Diff is the result of projected LMPs 

being larger, on average, compared to the observed LMP. The observed PPost is expected to be 

lower than the P̂Post counterfactual LMP because coal-fired capacity that is no longer price 

competitive with other sources of electricity generation. The coal-fired capacity remaining in the 

PJM adds unnecessary bloat to the generation side of the RTO. The counterfactual experiencing 

no retirement is expected to increase the zone’s LMP due to this bloat.  The over-predicted 

consumption factor is not expected to be very influential in determining the LMP.  
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3.3.3 Early Retirement with Under-Predicted Consumption  

This analysis was produced to examine the effects of the PJM zones under-predicting 

real-time consumption of electricity from June 1st, 2014 – June 1st, 2016. The analysis is based 

upon equation (11) to find the difference between actual pre-retirement real-time LMP and 

projected LMP under the counterfactual of the retirement of coal-fired electricity occurred early 

on June 1st, 2014 rather than their actual retirement date of June 1st, 2015. Equation (11) presents 

the difference in LMP according to the analysis’s specifications.  

𝑃𝑃𝑟𝑒 − �̂�𝑃𝑟𝑒 =  𝐷𝑖𝑓𝑓𝐸𝑎𝑟𝑙𝑦 𝑅𝑒𝑡𝑖𝑟𝑒𝑚𝑒𝑛𝑡,   𝑈𝑃    (11) 

P̂Pre = Projected LMP Post-Retirement with Under-Predicted Consumption 

Coefficients • Observed Pre-Retirement Data 

 PPre = Pre-Retirement Observed LMP Data  

 Diff = Locational Marginal Price Difference in $/MWH 

 UP = Under-Prediction of Consumption 

The observed data in this analysis is derived from the pre-retirement time-period of June 

1st, 2014 – June 1st, 2015.  Projected LMP of each zone is created by the multiplication of the 

coefficients from the post-retirement regression model times the observed pre-retirement data. 

The average difference in observed PPre was subtracted by the average difference in 

counterfactual P̂Pre to find the average difference in LMP.  

A scenario of early retirement with over-predicted consumption was expected to produce 

positive Diff results. A positive Diff average is the result of smaller projected LMPs compared to 

the observed LMPs.  The counterfactual experiencing early retirement is expected to decrease 

each zone’s LMP due to higher cost coal-fired electricity generation. In addition, the under-

predicted consumption factor should increase each zone’s LMP. If consumption is under-
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predicted, the counterfactual may experience an increase in LMP due to the lack of electricity 

generation driving the wholesale prices up within the zone. The Diff value for this analysis 

should be positive.  

3.3.4 No Retirement with Under-Predicted Consumption 

The no retirement analysis with under-predicted consumption uses observed data from 

the post-retirement time-period where the real-time consumption is under-predicted. Post-

retirement data were multiplied by the pre-retirement coefficients to produce projected LMPs 

that represent a no retirement scenario. Equation (12) was used to find the differences between 

the observed LMP and the no retirement analysis with under-predicted consumption LMP.  

𝑃𝑃𝑜𝑠𝑡 − �̂�𝑃𝑜𝑠𝑡 =  𝐷𝑖𝑓𝑓𝑁𝑜 𝑅𝑒𝑡𝑖𝑟𝑒𝑚𝑒𝑛𝑡,   𝑈𝑃    (12) 

P̂Post = Projected LMP Pre-Retirement with Under-Predicted Consumption 

Coefficients • Observed Post-Retirement Data 

 PPost = Post-Retirement Observed LMP Data  

 Diff = Locational Marginal Price Difference in $/MWH 

 UP = Under-Prediction of Consumption 

The observed data in this analysis is derived from the no retirement time-period of June 

2nd, 2015 – June 1st, 2016. A projected LMP for each zone as if the coal-fired capacity retired a 

year earlier than its actual retirement date is created by multiplying the coefficients from pre-

retirement by the observed post-retirement data. Observed LMP was subtracted by projected 

LMP to find the average difference in LMP.  

 Under this scenario, the expectation is to return negative Diff results. A negative Diff is 

the result of projected LMPs being larger than observed LMPs. The counterfactual experiencing 

no retirement is expected to experience LMP increases for each zone. Under the no retirement 
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scenario, the inefficient power stations are kept in the PJM. These inefficient generators drive up 

the wholesale price of electricity; therefore, the under-predicted consumption factor is expected 

to increase the LMP.  

Chapter 4: Results 

4.1 Regression Models 

A total of 24 time-series regressions were performed to evaluate the impacts of predicted 

consumption, degree days, and time fixed effects have on locational marginal prices in the six 

zones of the PJM RTO.  LMPs for each zone were regressed under four different models: (1) 

pre-retirement with over-predicted consumption, (2) post-retirement with over-predicted 

consumption, (3) pre-retirement with under-predicted consumption, and (4) post-retirement with 

under-predicted consumption. Tables 6, 7, 8 and 9 present the coefficient and standard error 

results of all 24 regressions. The results of the four models are described in sections 4.1.1 

through 4.1.4. All the regressions, chow tests, and LR-tests were found to be statistically 

significant according to the F-test.   

4.1.1 Pre-Retirement with Over-Predicted Consumption 

 Table 6 shows the coefficients from the pre-retirement with over-predicted consumption 

model for the six zones. The variables with statistically significant coefficients at least at the 

10% level across a minimum of four of the six zones are ZAEP, XAPS, XCOMED, ZCOMED, CDD, 

HDD2, CDD2, and intercept term. The dummy variables that experienced, on a consistent basis, 

statistically significance coefficients across the six zones are:  hours 7 through 23, days Saturday 

and Sunday, and months October through March. 
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 The results show that coefficients for ZAEP, XAPS, and ZCOMED are statistically significant 

and negative. These independent variables significantly lower the dependent variable LMP being 

regressed. Of the over and underprediction variables, only XCOMED has consistently positive and 

statistically significant coefficient estimates over the six zones. Only four of the twelve possible 

over-prediction and under-prediction variables are consistently significant across the regressions. 

The results are not substantial enough to derive any formal conclusions about the overall effects 

of over-predicted and under-predicted consumption variables on LMP. The coefficients for HDD 

and CDD both show non-linear impacts on LMP from throughout the six zones.  The intercept 

term for every zone except COMED is between 22 and 28. For the COMED zone, it is much 

lower at 15.07 so that all other variables being equal, this zone had the lowest LMP.  

Table 10 and 11 display the cross-correlation data for over-predicted and under-predicted 

consumption during the pre-retirement time period. When over-predicted consumption occurs, 

the AEP zone has the highest correlation average with the five other zones at 0.419. COMED has 

the lowest correlation with other zones at 0.262. When under-predicted consumption occurs, the 

ATSI zone has the highest correlation average with the five other zones at 0.501. COMED again 

has the lowest correlation with other zones at 0.380. This correlation data displays how the six 

zones interact with each other, and how likely a zone is to have a similar forecast error as the five 

other PJM zones being measured. The AEP and ATSI are highly correlated with every zone 

measured. The COMED does not have much predicted consumption correlation with the other 

zones being measured. 

4.1.2 Post-Retirement with Over-Predicted Consumption 

Table 7 shows the coefficients from the post-retirement with over-predicted consumption 

model for the six zones. The variables with statistically significant coefficients of at least 10% 
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across a minimum of four of the six zones are XAPS, ZAPS, XATSI, ZATSI, XCOMED, ZCOMED, CDD 

and CDD2, and the intercept term. The dummy variables that experienced, on a consistent basis, 

statistically significance coefficients across the six zones are:  hours 4 and 7 through 23, days 

Thursday through Sunday, and months September through February along with April plus May. 

The results of XAPS, ZAPS, XATSI, ZATSI, and ZCOMED show negative, statistically significant 

coefficient estimates. These independent variables significantly lower the dependent variable 

LMP being regressed. The coefficient estimates for XCOMED are positive. Six of the twelve 

possible over-predicted and under-predicted consumption errors have significant effects on LMP. 

Five of the six consumption errors decrease the LMP. These results show a trend of consumption 

error in zones outside the dependent variable zone leading to decreases in LMP of the dependent 

variable zone. For these models, only CDD has a statistically significant non-linear impact on 

LMP. Degree days do not have a very influential effect on LMP in these regressions.  The 

intercept estimates range between 17 and 20, slightly lower than pre-retirement coefficients. 

Tables 12 and 13 displays the cross-correlation data for over-predicted and under-

predicted consumption during the post-retirement time period. When over-predicted 

consumption occurs, the DAY zone has the highest correlation average with the five other zones 

at 0.394. COMED has the lowest correlation with other zones at 0.235. When under-predicted 

consumption occurs, the DAY zone has the highest correlation average with the five other zones 

at 0.360. ATSI has the lowest correlation with other zones at 0.202. These correlation data 

display how the six zones interact with each other, and how likely a zone is to have a similar 

forecast error as the five other PJM zones being measured. DUQ is highly correlated with every 

zone measured. COMED and ATSI do not have much predicted consumption correlation with 

the other zones being measured. The tables show that predicted consumption correlation 



Michael O’Conor 

42 
 

averages drop from pre-retirement time period to the post-retirement time period. The zones are 

less interconnected when measuring their over-predicted and under-predicted consumption 

variables.    

 

4.1.3 Pre-Retirement with Under-Predicted Consumption 

Table 8 shows the coefficients from the pre-retirement with under-predicted consumption 

regression models for each of the six zones being evaluated. The variables with statistically 

significant coefficients of at least 10% across a minimum of four of the six zones are ZAEP, XAPS, 

ZAPS, CDD, CDD2, and intercept term. The dummy variables that experienced, on a consistent 

basis, statistically significance coefficients across the six zones are:  hours 7 through 22, days 

Thursday and Sunday, and months October, January and February. 

The results of ZAEP and XAPS show negative, statistically significant coefficient estimates. 

These independent variables significantly lower the dependent variable LMP across most of the 

six zones.  No over-predicted or under-predicted consumption variables consistently showed a 

positive coefficient across the six zones, although the variable ZAPS has a mixed positive and 

negative statistically significant coefficient estimates. Only three over-predicted and under-

predicted consumption error variables significantly affect the LMPs in these regressions. For 

these models, like those reported in Table 7, only CDD has a statistically significant non-linear 

impact on LMP. The intercept estimates vary between 20 and 30, like Table 6 estimates. 

4.1.4 Post-Retirement with Under-Predicted Consumption 

Table 9 shows the coefficients from the post-retirement with under-predicted 

consumption regression models for the six zones. The variables with statistically significant 

coefficients of at least 10% across a minimum of four of the six zones are XAPS, ZATSI, ZDAY, and 
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intercept term. The dummy variables that experienced, on a consistent basis, statistically 

significance coefficients across the six zones are:  hours 7 through 22, days Friday through 

Sunday, and only the month of March. 

The results of XAPS, ZATSI, and ZDAY variables show negative, statistically significant 

coefficient estimates. These independent variables significantly lower the dependent variable 

LMP being regressed. There were no independent over-predicted or under-predicted 

consumption variables with significantly consistent positive coefficients. Only three of the 

twelve possible over-predicted and under-predicted consumption variables had a significant 

effect on the LMP in these regressions. Neither HDD or CDD has a consistent, statistically 

significant linear or non-linear effects across zones.  The intercept estimates vary between 15 and 

22, like the estimates in Table 7. 

4.1.5 Comparison of Models  

  

The four models represented in Tables 6, 7, 8 and 9 differ based on time-period and 

predicted consumption. One of the main differences found between the pre-retirement and post-

retirement models is in the intercept values. Pre-retirement models have much higher intercepts 

than the post-retirement models. The difference found between the over-predict and under-

predicted consumption models is the number of significant independent variables. The over-

predicted consumption models have more variables with statistically significant coefficient 

estimates affecting the LMP of each zone. There is a total of thirteen consistently negative 

independent over-predicted and underpredicted consumption coefficients decreasing LMP within 

the four regression models. Only two consistently positive independent over-predicted and 

under-predicted consumption coefficients increased LMPs within the four regression models. 

The significant independent variables of predicted consumption from external zones display 
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signs of decreasing the LMPs of the zone being regressed. In other words, when outside zones 

incorrectly predict consumption, the LMP of the zone in question decreases. Fifteen of the total 

forty-eight independent over-predicted and under-predicted consumption variables are 

significant, so it is not reasonable to immediately draw conclusions from the regression 

information given. The dummy variables for all four zones follow similar significance trends. 

Hours 7-22, the weekend days Saturday and Sunday, and the winter months January and 

February are the most significant. The significant hours maintain positive values. The days with 

statistically significant coefficients on the weekend have negative values. The months with 

significant coefficients had a mixture of positive and negative impacts on LMP.   

4.2 Analyses 

Twenty-four time-series regressions described above to are used to evaluate real-time 

locational marginal prices within the AEP, APS, COMED, ATSI, DAY, and DUQ zones. Four 

different scenario analyses are examined: (1) Early Retirement with Over-Predicted 

Consumption, (2) No Retirement with Over-Predicted Consumption, (3) Early Retirement with 

Under-Predicted Consumption, and (4) No Retirement with Under-Predicted Consumption. The 

Diff results are presented in Tables 20, 21, 22 and 23 ($/MWH) and Tables 24, 25, 26 and 27 (% 

change).  A positive Diff value is defined by the observed LMP being larger than the 

counterfactual LMP. A negative Diff value is defined by the observed LMP being smaller than 

the counterfactual LMP. Positive Diff values mean that lower projected LMP represents a more 

cost-efficient generation of electricity than the observed LMP. Negative Diff values are defined 

as projected LMP being larger than compared to observed LMP within the PJM RTO so that 

these projections represent less cost-efficient generation than the observed LMP. The results of 

the four analyses are described below. 
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4.2.1 Early Retirement with Over-Predicted Consumption 

 The average difference in LMP results exhibits positive Diff values from an early 

retirement with over-predicted consumption analysis (Tables 20 and 24). Given an early 

retirement scenario when over-prediction of consumption has occurred, the average 

counterfactual LMP is below observed LMPs. The top 5% difference of average LMP exhibit 

positive Diff values of an even greater magnitude compared to the average LMP for this analysis. 

The bottom 5% difference in LMP data experiences a negative Diff value. In these situations, 

early retirement raises projected LMP relative to the observed LMP values.    

 Results show the average price difference of all LMPs, the price difference of the top 5% 

of LMP observations, and the price differences of the bottom 5% of LMP observations for each 

of the six zones under early retirement with over-predicted consumption conditions (Tables 20 

and 24). The average price differences of this simulated early retirement show real-time LMP 

prices are, on average over the 12-month period, $5.33 to $8.35 (16.9% to 23.7%) per MWH 

lower than observed prices depending on the zone. The price decrease is amplified when 

considering the top 5% of LMPs. The average price decrease in the top 5% on observations are 

between $54.43 and $79.49 (62.5% to 69.5%) per MWH. The average and top 5% difference of 

LMP show lower prices would have existed during periods of over-prediction of consumption if 

the coal-fired capacity was retired a year earlier than its official closing date. 

Conversely, the bottom 5% difference in LMP observations showed projected higher 

prices with retirement. The average price increase for the bottom 5% in all six zones ranged from 

$12.56 to $20.48 (between 106.2% and 20,060.8%) per MWH. The COMED zone had a massive 

percent decrease, but the average observed LMP of the bottom 5% of observations was a 

negative value of -$0.10. These price increases in the bottom 5% are likely the result of less 
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baseload capacity availability making it difficult for zones to ramp down their generation to meet 

consumption levels.  

 The coal-fired capacity retirements measured in this report focus on the AEP zone’s loss 

of 5,408 MW of capacity. Compared to the surrounding zones, the AEP zone came in 5th for 

average LMP decrease (4th for %), 5th for top 5% of LMP decrease (5th for %), and 6th for bottom 

5% of LMP increase (6th for %) out of the six zones evaluated. The analysis shows the AEP 

would have experienced decreased LMPs from the retirements occurring earlier during over-

prediction conditions, but zones around the AEP receive a larger magnitude of decreased LMPs 

from retirement. The AEP was the best performer in reducing LMP increases during the bottom 

5% of observations.  

 4.2.2 No Retirement with Over-Predicted Consumption 

The average difference in LMP results exhibits negative Diff values under a no-

retirement with over-predicted consumption analysis (Tables 21 and 25). The bottom 5% 

difference in LMP observations exhibit even more negative Diff values and the average. These 

results show that when the retirement of coal-fired plants does not occur, the counterfactual LMP 

are higher than observed prices.  The top 5% of LMP observations experience a positive Diff 

value. Both early retirement and no retirement over-predicted consumption scenarios experience 

positive Diff values for the top 5%. The magnitude of Diff for the top 5% was much larger in the 

early retirement analysis than the no retirement analysis.  

Tables 21 and 25 shows each zone’s average LMP observations, top 5% of observations, 

and bottom 5% of observations under no retirement with over-predicted consumption conditions. 

The results show that average projected LMPs for the counterfactual were larger compared to the 

actual observed prices with retirement, between -$3.97 and -$7.15 (-15.0% – -26.9%) per MWH. 
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The bottom 5% experienced between price increases of $22.66 and -$37.09 (130.2% to 208.6%) 

per MWH if there was no retirement of coal-fired capacity on June 1st, 2015. For every zone, the 

average and bottom 5% showed an average LMP increase under the conditions of over-

predicting electricity consumption. Based on this scenario’s results, keeping the coal-fired 

generation capacity in the PJM would drive average LMP up. The baseload coal-fired generation 

is not helping the bottom 5% of LMP as expected either. The rise in price is arguably the result 

of electricity generation capacity that was not retired being inefficient and increasing the LMP.   

The top 5% did not show an LMP increase under the counterfactual, like the average and 

bottom 5% of observations. It had an LMP decrease of between $31.25 and $35.03 (40.6% to 

45.3%) per MWH. The top 5% of observed prices were lower than projected LMP under a no 

retirement scenario.  

The AEP zone came in 4th for average LMP increase (4th for %), 6th for top 5% of LMP 

decrease (Tied 4th for %), and 5th for bottom 5% of LMP increase (5th for %) out of the six zones 

evaluated. The consequences of not retiring the coal capacity under over-prediction conditions 

would lead to the AEP’s average LMP increasing more than some zones but less than others.  

Based upon the results of Tables 20 and 24, an argument can be made that retiring the 

coal-fired generation capacity early results in a more stable market with over-predicted 

consumption.  Higher Diff values in the early retirement analysis of Table 20 means that early 

retirement has led to larger decreases in LMPs than the no retirement analysis. Generation in the 

early retirement scenario can meet consumption needs at a more effective rate and keep LMPs 

low compared to the no retirement analysis. The magnitude of positive Diff values for the top 

5% of LMPs is also larger in early retirement compared to no retirement. The early retirement 

analysis mitigates price spikes more effectively than the no retirement analysis. Larger positive 
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Diff values for the average and top 5% of LMP in early retirement suggests the PJM has become 

more stable from the early retirement analysis compared to the no retirement analysis when over-

predicted consumption occurs. 

 4.2.3 Early Retirement with Under-Predicted Consumption  

The average and top 5% difference in LMP results exhibit positive Diff values from an 

early retirement with under-predicted consumption analysis, while the bottom 5% difference in 

LMP exhibit negative Diff values (Tables 22 and 26).  Early retirement with under-prediction of 

consumption results in much lower projected LMP under the counterfactual than observed LMP 

during the average and top 5% of observations. All six zones experience decreased projected 

LMPs.  The top 5% has positive Diff values that are much larger in magnitude than the early 

retirement with over-predicted consumption analysis. The bottom 5% experienced Diff values 

about the same magnitude than the early retirement with over-predicted consumption analysis. 

Tables 22 and 26 results show that early retirement with the under-predicted consumption 

analysis consistently lowers LMP in all analyses across all six zones. The average LMP decrease 

with early retirement over all observations ranges from $5.41 to $12.99 (16.6% to 29.2%) per 

MWH. The top 5% of prices showed substantial reductions with early retirement of $60.54 to 

$126.31 (65.3% to 76.1%) per MWH, while the bottom 5% of prices are between -$11.90 to -

$22.78 (-71.1% to -3817.5%) per MWH lower for the observed than the counterfactual. The 

large percent change in COMED is the result of the average observed bottom 5% of observations 

being $0.46. While the DUQ zone has a large negative value for the bottom 5%, this Diff value 

is not statistically significant from zero. The reason will be explained further in the t-test section 

of the results chapter.  
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The AEP zone came in 2nd for average LMP decrease (2nd for %), 2nd for top 5% of LMP 

decrease (1st for %), and 4th for bottom 5% of LMP decrease (3rd for %) out of the six zones 

evaluated. The results from this analysis are very favorable for the AEP zone. Its LMP decrease 

outperformed most of the surrounding zones. The LMP increase in the bottom 5% of 

observations also outperformed most of the surrounding zones. 

 4.2.4 No Retirement with Under-Predicted Consumption 

The average difference in LMP results exhibits negative Diff values from a no retirement 

with under-predicted consumption analysis (Tables 23 and 27).  No retirement with under-

prediction of consumption results in projected LMP under the counterfactual being higher, on 

average, than the observed LMP. The bottom 5% of LMP data also experienced substantial 

negative Diff values. The counterfactual with no retirement of inefficient coal-fired capacity 

combined with under-predicted consumption leads to increased LMP for the average and bottom 

5% categories.  The top 5% of differences in LMP reveal positive Diff values. All four analyses 

have positive Diff values for the top 5% of LMP. The magnitude of positive Diff values for the 

top 5% is much larger in the early retirement analyses than the no retirement analyses. 

The results of the no retirement analysis with under-predicted consumption are very 

similar to the over-predicted consumption case. They showed the counterfactual average LMPs 

are higher over all six zones compared to the observed LMP averages (Table 23 and 27). The 

average LMP increase in this analysis is between -$5.16 and -$6.56 (-17.0% to -21.6%) per 

MWH. The bottom 5% of observations had six zones with -$28.51 to -$37.12 (-223.2% to -

1639.6%) per MWH increases in LMP attributed to retirement. Each zone’s result for the bottom 

5% experiences large percent changes due to their low average observed LMP values.  
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The top 5% of LMP price observations in this analysis continue to show that observed 

prices are greater than counterfactual LMP prices along with the other three analyses. The top 

5% of LMP show a $30.09 to $59.30 (35.7% to 54.9%) per MWH lower LMP projected to have 

occurred with no retirement.  Even though the no retirement and under-prediction of 

consumption scenarios are expected to cause the projected LMP under the counterfactual to be 

higher than the observed LMP, the top 5% of LMP observations consistently showed the 

opposite result.     

 The AEP zone came in 6th for average LMP increase (6th for %), 3rd for top 5% of LMP 

decrease (2nd for %), and 3rd for bottom 5% of LMP increase (3rd for %) out of the six zones 

evaluated. The results are scattered within the AEP compared to its neighboring zones. Under 

this analysis of no retirement and under-predicted consumption, the AEP’s LMP change does not 

stand out in comparison to the surrounding zones.  

4.3 t-Test Results 

Multiple t-tests are performed to compare the statistical significance of different datasets 

for price, over-predicted consumption, and under-predicted consumption. The initial set of t-tests 

were performed to compare the Diff values against the zero for each of the four analyses. If the 

results of the t-test are not significantly different from zero, the Diff values are not experiencing 

a measurable change in LMPs from the pre-retirement period to the post-retirement period. If the 

results are significant, the pre-retirement LMPs are measurably different than the post-retirement 

counterfactual LMPs. (Table 17) The results show that for each zone’s average, top 5%, and 

bottom 5%. Diff values are statistically different from zero. The results of this t-test verify that 

the projected LMPs from the counterfactuals are different than the observed LMPs.  

Another t-test was performed to determine how each zone’s observed price behaves 

compared to other U.S. electricity market wholesale prices. The six zones daily price averages 
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were compared to the daily price average of following markets: ICE, ERCOT, INDIANA, 

MID_COLUMBIA, NEPOOL, NP 15, PALO VERDE, PJM and SP 15 (Table 18). The results 

of the t-test offer further insight into the behavior of these zones in their pre-retirement and post-

retirement periods. When the zones are compared to the ICE, Intercontinental Exchange, the 

results show that all zones except COMED had significantly different averages than ICE in the 

pre-retirement period. The post-retirement period did not have significantly different price 

averages. After the capacity was retired, the PJM wholesale prices were more resembling of the 

U.S. averages. A two-year t-test of each zone against the ICE prices displays the wholesale 

prices of electricity in five zones were significantly different from ICE prices. The PJM portion 

of Table 18 shows the zones price averages were all significantly different from the PJM price 

averages in both the pre-retirement and post-retirement periods. The six PJM zones measured are 

not following the price averages of the RTO they reside in. This observation is likely the result of 

zones within the eastern portion of the PJM having higher demand and LMPs than the western 

portion of the PJM.  

The final t-test was performed to determine if consumption of electricity was statistically 

different in between the pre-retirement time period and the post-retirement time period. Table 19 

shows the two time periods experience significantly different amounts of electricity 

consumption. The pre-retirement time period has a larger average consumption of electricity than 

the post-retirement time period in every zone (Tables 4 and 5). This consumption difference is 

likely the result of the pre-retirement time period having less favorable weather conditions than 

the post-retirement time period.   
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Chapter 5: Conclusions 

 The PJM Interconnect is a regional transmission organization (RTO) which manages and 

transmits electricity across 13 states within the mid-Atlantic, Midwest, and Northeast regions of 

the U.S. On June 1, 2015, 5,408 MW of coal-fired electrical generation capacity was retired 

within the AEP zone of this RTO (Figure 9).  The objective of this research was to analyze 

impacts on wholesale electricity prices based on locational marginal price (LMP) from this 

retirement using demand-side analyses within the AEP and five surrounding zones within the 

PJM.  

 Regression models were utilized to evaluate the effects of over-predicted and under-

predicted consumption on observed LMP within six zones over two-time periods. Four models 

were examined: (1) pre-retirement with over-predicted consumption (Table 6), (2) post-

retirement with over-predicted consumption (Table 7), (3) pre-retirement with under-predicted 

consumption (Table 8), and (4) post-retirement with under-predicted consumption (Table 9). The 

results of these regression analyses show the pre-retirement LMPs are higher than the post-

retirement LMPs. The models display signs of downward trending LMPs within the six zones. 

Both pre-retirement models’ intercept values are smaller than the post-retirement models’ 

intercept values. This discovery coincides with the downward national trend of the U.S. 

wholesale electricity market. The results also exhibit more significant independent variables 

affecting LMP in the over-predicted consumption analyses compared to the under-predicted 

consumption analyses. 

 Research results illustrate the effects of coal-fired capacity retirement and predicted 

consumption error on LMP. Four analyses were created to examine differences between 

observed LMP versus a counterfactual LMP based upon either early retirement of coal-fired 
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electrical generation capacity or no retirement of this capacity. The analyses results were: (a) 

early retirement with over-predicted consumption (Tables 20 and 24), (b) no retirement with 

over-predicted consumption (Tables 21 and 25), (c) early retirement with under-predicted 

consumption (Tables 22 and 26), and (d) no retirement with under-predicted consumption 

(Tables 23 and 27). In the early retirement analyses, the counterfactual LMP was lower than 

observed LMP over all six zones for both under-predicted and over-predicted consumption. For 

the no retirement analyses, average LMP from the counterfactual was higher than observed LMP 

in each of the six zones for both under-predicted and over-predicted consumption conditions. 

When differences were computed for the top 5% and bottom 5% of observed LMP, the results 

did not behave in the same manner as the average LMP.  The top 5% difference of LMP showed 

lower counterfactual prices compared to observed prices under all four analyses. The bottom 5% 

difference of LMP showed higher counterfactual prices compared to observed prices in every 

analysis. 

 Both the early retirement and no retirement scenarios procured favorable results 

compared to the observed retirement in 2015 when examining the top 5% results. When 

compared, the LMP decreases in the early retirement analyses was greater in magnitude than the 

decreases for the no retirement analyses. Thus, retiring the coal-fired capacity early leads to more 

stable LMPs within the PJM. Explanation of these results is likely the product of the entire U.S. 

electricity industry experiencing decreasing wholesale prices from 2014 to 2016. The 

independent variables affect the top 5% of observations results but are not influential enough to 

counteract the downward national price trend.  

The bottom 5% of LMP experience the opposite results of the top 5%. The no retirement 

scenario has increased prices for every zone in all four analyses. The analyses with no retirement 
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of coal-fired capacity resulted in larger LMP increases than the early retirement analyses. 

Keeping the inefficient baseload power stations increased LMP for the bottom 5% of data. While 

both the early and no retirement scenarios increase the bottom 5% difference of LMP, the early 

retirement scenario has LMP increases in lower magnitude and is more stable than the increases 

occurring in the no retirement scenario. 

The results of this thesis differ from similar research described in the literature review. 

Rahmani et al. (2016) argue the coal retirements would lead to increased LMP and congestion 

within the PJM. Their findings are based on a forecasting model of the PJM. Woo et al. (2014) 

describe how baseload nuclear generation retirements would also lead to LMP increases. This 

capacity generation was retired due to the nuclear plant experiencing wear in its tubing and other 

safety concerns. The research finding here demonstrate no signs that coal-fired capacity 

retirement leads to increasing LMPs. The analysis used historical data where coal generation was 

retired from the PJM for its inability to compete within a competitive market for wholesale 

electricity. While Rahmani et al. (2016) and Woo et al. (2014) are similar in nature to this 

research, these research findings show price increases because their analysis or reason for 

generation retirement differ from this report. In addition to the lack of increasing LMP, the LMP 

in each of the six zones became more stable after the coal-fired capacity retirement. The coal-

fired capacity retirement does not change the PJM’s downward trending wholesale prices. The 

RTO maintains a similar downward trend in wholesale price averages as the U.S. wholesale price 

average from June 1st, 2014 through June 1st, 2016.  

 The results of this research demonstrate how the PJM electricity market effectively 

adapted to planned closures of power stations. Aging and inefficient coal-fired power stations 

were no longer capable of producing energy at a competitive price within the PJM; therefore, 
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they were retired. Upon the retirement of over 5,000 MW of coal-fired capacity, the PJM system 

demonstrated enough electricity generation from other energy producers to continue meeting the 

consumption of its electricity consumers. There is no evidence of wholesale electricity price 

increases as a result of retiring the coal-fired capacity for the average LMP or top 5% of 

observations within the six zones measured. Since the national price of electricity was trending 

downward during this period, it cannot be stated that the coal-fired capacity retirements have 

caused a significant decrease in LMP either. There has been no measurable shift in wholesale 

electricity prices from the loss of generation capacity. 

 The following research is limited in scope. Only two years of hourly data are used to 

analyze the effects of the coal-fired capacity retirements. Measuring one year before and one 

year after the retirement does not consider all possible weather and demand scenarios within the 

electricity industry that should be accounted for. If the time period analyzed was increased, there 

may be different long-term effects. This research also fails to include all zones within the PJM. 

The PJM does not offer hourly LMP data to the public for every zone, therefore only six zones 

were included within this report.  

 Future research on this topic to better understand the effects of capacity retirement in 

regulated markets should continue. Predictive models such as Vector Autoregressive (VAR) and 

Spatial Vector Autoregressive (SpVAR) are possible approaches we can use to gain a better 

understanding as to why some zones LMPs decrease more than others from the coal retirement. 

Other independent variables such as hourly congestion and marginal loss data can also be added 

to the current research to improve the research quality. 

  5.1 Policy Implications  

 These research findings imply that retiring older and inefficient coal power stations 

results in lower locational marginal prices within the PJM RTO. While the results do not clearly 
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show that the analyzed zones were better off in comparison to the national average, the zones did 

not experience any observed adverse effects on LMP when the coal-fired capacity was retired. 

The results also displayed more favorable results for the top 5% of LMP observations when the 

capacity was retired. The six zones’ wholesale prices were more stable as a result of the capacity 

retirement.  

The PJM should continue evolving as an RTO by retiring cost inefficient power stations 

to make room in the market for newer more efficient electricity generators. State and Federal 

environmental policies as well as state-run regulated monopolies can be utilized to accelerate or 

slow down the PJM’s transition from aging power stations to newer more efficient forms of 

electricity generation. The Department of Energy’s argument for subsidies on resilient forms of 

electricity generation is not substantiated by the findings of this thesis. Retaining coal-fired 

capacity was not stabilizing LMP prices within the PJM. The only advantage of keeping non-

economically efficient resilient forms of energy in the RTO is in case of national emergencies. 

These research findings validate the Federal Energy Regulatory Commission’s stance that grid 

resiliency was not threatened by the retirement of 5,408 MW of coal-fired electricity generation 

capacity in the AEP zone of the PJM region.  
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Figures 
 

 

Figure 1: United States Electric Power Energy Consumption (U.S. Energy Information 

Administration, 2018) 
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Figure 2: U.S. Electricity Generation by Fuel, All Sectors (U.S. Energy Information 

Administration, 2019) 
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Figure 3: Electricity Generation from Coal and the Delivered Prices of Coal and Natural 

Gas (monthly for the United States) (Alexopoulos, 2017) 
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Figure 4: U.S. Utility-Scale Generating Capacity by Initial Opening Year (as of Dec 2016) 

(Jell, 2017) 
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Figure 5: United States  

Figure 5.  Wholesale Electric Power Markets Map (United States Environmental 

Protection Agency, 2018) 
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Figure 6: Competitive Market Daily Wholesale Electricity Price (Per MW) (U.S. Energy 

Information Administration, 2018) 
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Figure 7: 10-Year United States Competitive Market Average Electricity Price (Per MW) 

(U.S. Energy Information Administration, 2018) 
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Figure 8: Marcellus Shale Formation (U.S. Energy Information Administration, 2018) 
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Figure 9: PJM Zones (Current, 2018) 
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Figure 10: PJM Backbone Transmission System (TEAC, 2018) 
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Figure 11: PJM Wholesale Average Daily Price 2007-2017 (PJM, 2018) 
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Figure 12: Hourly Price Average Pre-Retirement (PJM, 2018) 
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Figure 13: Hourly Price Average Post- Retirement (PJM, 2018)   
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Figure 14: Daily Price Average Pre-Retirement (PJM, 2018) 
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Figure 15: Daily Price Average Post-Retirement (PJM, 2018) 
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Figure 16: Monthly Price Average Pre-Retirement (PJM, 2018) 
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Figure 17: Monthly Price Average Post-Retirement (PJM, 2018) 
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 Tables  
 

Table 1: Fuel Mix over the Entire PJM Region (Capacity, 2017) 

 January 1st, 2014 June 1st, 2014 January 1st, 2015 June 1st, 2015 January 1st, 2016 June 1st, 2016 

 MW Percent MW Percent MW Percent MW Percent MW Percent MW Percent 

Coal 75,544.6 41.3% 74,785.5 40.6% 72,741.3 39.6% 66,878.1 37.8% 66,674.8 37.5% 66,619.9 36.6% 

Gas 53,395.0 29.2% 55,041.7 29.9% 59,662.6 32.5% 59,460.1 33.6% 60,487.4 34.0% 64,721.7 35.5% 

Hydroelectric 8,106.7 4.4% 8,463.8 4.6% 8,765.3 4.8% 8,698.8 4.9% 8,787.5 4.9% 8,850.4 4.9% 

Nuclear 33,076.7 18.1% 32,891.0 17.9% 32,947.1 17.9% 33,071.5 18.7% 33,071.5 18.6% 33,050.6 18.2% 

Oil 11,314.2 6.2% 11,155.7 6.1% 7,907.6 4.3% 6,853.4 3.9% 6,851.8 3.9% 6,779.8 3.7% 

Solar 84.2 0.0% 94.7 0.1% 97.5 0.1% 128.0 0.1% 128.0 0.1% 252.4 0.1% 

Solid Waste 701.4 0.4% 780.0 0.4% 781.9 0.4% 771.3 0.4% 769.4 0.4% 767.5 0.4% 

Wind 873.4 0.5% 796.7 0.4% 822.7 0.4% 876.2 0.5% 912.4 0.5% 1,019.1 0.6% 

Total 183,095.2 184,009.1 183,726.0 176,737.4 177,682.8 182,061.4 
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Table 2: Coal Consumption and Capacity Retired 2014-2016 (PJM, 2019) 

 

 AEP APS ATSI COMED DAY DUQ 

 

Average Load Consumed (MWH) June 1st, 

2014 – June 1st, 2015 

 

 

15,100 

 

5,699 

 

7,874 

 

11,278 

 

2,002 

 

1,643 

Average Load Consumed (MWH) June 

2nd, 2015 – June 1st, 2016 

 

14,467 5,425 7,566 11,033 1,954 1,576 

Capacity Retired (MWH) June 1st, 2015 

 

5,408 0 986 251 277 125 
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Table 3: Metropolitan Locations (U.S. Census Bureau, 2017) 

 

METROPOLITAN LOCATION ZONE POPULATION 

 

CHARLESTON, WEST VIRGINIA 

 

AEP 

 

227,071 

 

COLUMBUS, OHIO 

 

AEP 

 

1,907,965 

 

ROANOKE, VIRGINIA 

 

AEP 

 

308,665 

 

WHEELING, WEST VIRGINIA 

 

AEP 

 

147,951 

 

CANTON, OHIO 

 

AEP 

 

404,428 

 

FORT WAYNE, INDIANA 

 

AEP 

 

416,254 

 

MORGANTOWN, WEST VIRGINIA 

 

APS 

 

129,709 

 

BECKLEY, WEST VIRGINIA 

 

APS 

 

124,913 

 

HAGERSTOWN/MARTINSBURG, MARYLAND 

 

APS 

 

251,602 

 

TOLEDO, OHIO 

 

ATSI 

 

610,002 

 

CLEVELAND/ ELYRIA, OHIO 

 

ATSI 

 

2,077,271 

 

YOUNGSTOWN/WARREN/BOARDMAN, OHIO 

 

ATSI 

 

565,799 

 

AKRON, OHIO 

 

ATSI 

 

703,203 

 

CHICAGO, ILLINOIS 

 

COMED 

 

9,461,541 

 

DAYTON/MIAMISBURG, OHIO 

 

DAY 

 

799,251 

 

PITTSBURGH, PENNSYLVANIA 

 

DUQ 

 

2,356,291 
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Table 4: Pre-Retirement Variables Summary 
 

VARIABLE OBS MEAN STD. DEV. MIN                        MAX 
CAEP 8784 15100.42362 2542.417116 9661.64 24738.7 

CAPS 8784 5699.839747 1065.001914 3356.56 9593.56 

CATSI 8784 7874.969657 1267.302998 4941.59 12362.1 

CCOMED 8784 11278.49093 2012.842568 7431.99 19721.2 

CDAY 8784 2002.800717 369.0610391 1186 3192 

CDUQ 8784 1643.449064 369.0610391 1186 3192 

PAEP 8784 35.45769 23.26487 -232.429 396.397 

PAPS 8784 38.36392 29.20088 -229.843 489.441 
PATSI 8784 36.05598 23.33224 -230.566 390.484 
PCOMED 8784 31.60538 20.99765 -227.702 362.906 
PDAY 8784 35.56128 22.37035 -238.794 378.299 
PDUQ 8784 33.95292 22.65688 -227.122 377.646 
XAEP 8784 188.9325 298.4434 0 2924.7 
ZAEP 8784 -150.5075 288.4576 -14111.5 0 
XAPS 8784 112.7276 140.0121 0 1021.11 
ZAPS 8784 -45.94407 112.4718 -5411.67 0 
XATSI 8784 121.5986 173.6496 0 1384.53 
ZATSI 8784 -62.30827 144.3686 -6719.76 0 
XCOMED 8784 189.7327 348.7463 0 4706.7 
ZCOMED 8784 -96.40035 223.7273 -9507.77 0 
XDAY 8784 47.44666 61.66826 0 431 
ZDAY 8784 -16.09312 38.97655 -1689 0 
XDUQ 8784 29.22963 41.43178 0 310.31 
ZDUQ 8784 -17.24541 34.6383 -1411.44 0 
HDDAEP 8784 2.885982 4.594865 0 16.60336 
CDDAEP 8784 -15.04967 16.27964 -60.73278 0 
HDDAPS 8784 2.619713 4.18181 0 15.00704 
CDDAPS 8784 -14.28724 15.55181 -59.00488 0 
HDDATSI 8784 1.965156 3.695134 0 16.24206 
CDDATSI 8784 -17.67304 17.75399 -66.47915 0 
HDDCOMED 8784 2.161202 4.055683 0 19 
CDDCOMED 8784 -18.47541 18.44764 -67 0 
HDDDAY 8784 2.308743 4.005727 0 14 
CDDDAY 8784 -16.42896 17.23179 -63 0 
HDDDUQ 8784 2.122951 3.742406 0 16 
CDDDUQ 8784 -16.44809 17.29786 -65 0 
HDD2

AEP 8784 29.43927 56.48161 0 275.6715 
HDD2

APS 8784 24.34844 48.08024 0 225.2112 
HDD2

ATSI 8784 17.5143 41.36566 0 263.8045 
HDD2

COMED 8784 21.11749 49.51475 0 361 
HDD2

DAY 8784 21.37432 44.55078 0 196 
HDD2

DUQ 8784 18.51093 40.375 0 256 
CDD2

AEP 8784 -491.4894 742.7098 -3688.471 0 
CDD2

APS 8784 -445.9567 675.3296 -3481.576 0 
CDD2

ATSI 8784 -627.5047 888.9267 -4419.477 0 
CDD2

COMED 8784 -681.6175 960.5125 -4489 0 
CDD2

DAY 8784 -566.8115 839.281 -3969 0 
CDD2

DUQ 8784 -569.7213 839.7445 -4225 0 



Michael O’Conor 

79 
 

Table 5: Post-Retirement Variables Summary 
 

VARIABLE OBS MEAN STD. DEV. MIN MAX 
CAEP 8784 14465.30442 2402.461084 9708.29 22255.7 

CAPS 8784 5424.88442 974.5882237 3507.47 8665.93 

CATSI 8784 7564.53378 1239.464005 4914.95 12356.4 

CCOMED 8784 11030.84203 2093.808668 7289.79 20162.3 

CDAY 8784 1953.939373 358.374171 1199 3269 

CDUQ 8784 1576.196599 308.2982831 1027.81 2804.02 

PAEP 8784 27.46282 16.53671 -108.558 396.509 
PAPS 8784 28.15862 17.88457 -107.67 452.131 
PATSI 8784 27.53278 16.56675 -108.849 409.527 
PCOMED 8784 25.09165 14.97082 -107.615 309.063 
PDAY 8784 27.90809 16.95533 -110.904 356.619 
PDUQ 8784 26.86976 16.40035 -106.155 409.372 
XAEP 8784 274.6992 350.9818 0 5925 
ZAEP 8784 -113.6995 244.3614 -10314.1 0 
XAPS 8784 153.5864 163.8648 0 1009.62 
ZAPS 8784 -29.418 85.72878 -3899.64 0 
XATSI 8784 63.74838 139.6792 0 1843.84 
ZATSI 8784 -179.8229 210.2097 -5704.41 0 
XCOMED 8784 161.7304 275.0782 0 3171 
ZCOMED 8784 -118.8896 273.58 -8324.65 0 
XDAY 8784 40.96645 57.47029 0 514 
ZDAY 8784 -17.91803 54.86237 -3589 0 
XDUQ 8784 49.62666 47.68899 0 370.72 
ZDUQ 8784 -10.49915 50.63043 -3811 0 
HDDAEP 8784 2.730713 4.473963 0 15.82226 
CDDAEP 8784 -11.77966 13.33259 -53.08191 0 
HDDAPS 8784 2.928461 4.765366 0 17.00704 
CDDAPS 8784 -11.5287 13.15386 -50.75813 0 
HDDATSI 8784 2.29862 4.101536 0 17.13497 
CDDATSI 8784 -13.34989 14.00954 -55.14301 0 
HDDCOMED 8784 2.275956 4.267006 0 17 
CDDCOMED 8784 -14.86885 15.20258 -63 0 
HDDDAY 8784 2.377049 4.084043 0 16 
CDDDAY 8784 -12.76503 14.11333 -57 0 
HDDDUQ 8784 2.169399 3.903947 0 15 
CDDDUQ 8784 -12.39344 13.67311 -55 0 
HDD2

AEP 8784 27.47086 54.31487 0 250.3439 
HDD2

APS 8784 31.28201 60.65058 0 289.2394 
HDD2

ATSI 8784 22.10434 49.7689 0 293.6072 
HDD2

COMED 8784 23.38525 54.67613 0 289 
HDD2

DAY 8784 22.32787 47.90212 0 256 
HDD2

DUQ 8784 19.94536 44.17465 0 225 
CDD2

AEP 8784 -316.4983 531.4418 -2817.689 0 
CDD2

APS 8784 -305.9151 519.1038 -2576.388 0 
CDD2

ATSI 8784 -374.4647 577.0633 -3040.751 0 
CDD2

COMED 8784 -452.1749 680.3602 -3969 0 
CDD2

DAY 8784 -362.1093 594.8962 -3249 0 
CDD2

DUQ 8784 -340.5301 573.0701 -3025 0 
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Table 6: Pre-Retirement with Over-Predicted Consumption Regression Model  

 
AEP APS ATSI COMED DAY DUQ 

XAEP -0.002 0.001 -0.001 -0.00216* -0.002 0.001  
(-0.001) (-0.001) (-0.001) (-0.001) (-0.001) (-0.001) 

ZAEP . -0.0118*** -0.0187*** -0.0123*** -0.0161*** -0.00477***  
(.) (-0.002) (-0.002) (-0.001) (-0.001) (-0.001) 

XAPS -0.00750*** -0.00884*** -0.0112*** -0.004 -0.00929*** -0.00621***  
(-0.002) (-0.002) (-0.002) (-0.002) (-0.002) (-0.002) 

ZAPS -0.007 . 0.000 0.003 -0.0159*** -0.0290***  
(-0.004) (.) (-0.004) (-0.003) (-0.004) (-0.004) 

XATSI -0.001 -0.001 0.001 0.000 0.000 -0.003  
(-0.002) (-0.002) (-0.002) (-0.002) (-0.002) (-0.002) 

ZATSI -0.004 -0.00747* . -0.00790** 0.0116*** -0.003  
(-0.003) (-0.003) (.) (-0.003) (-0.003) (-0.003) 

XCOMED 0.00311*** 0.00427*** 0.00736*** 0.00263*** 0.00499*** 0.00423***  
(-0.001) (-0.001) (-0.001) (-0.001) (-0.001) (-0.001) 

ZCOMED -0.00399** -0.001 -0.00627** . -0.00565** -0.00570***  
(-0.002) (-0.002) (-0.002) (.) (-0.002) (-0.001) 

XDAY -0.007 -0.008 -0.0169** -0.0145** -0.008 -0.006  
(-0.004) (-0.006) (-0.006) (-0.005) (-0.005) (-0.005) 

ZDAY -0.006 0.001 0.0688*** 0.0479*** . 0.004  
(-0.011) (-0.011) (-0.013) (-0.011) (.) (-0.01) 

XDUQ 0.010 0.008 -0.002 0.000 0.003 -0.002  
(-0.006) (-0.007) (-0.008) (-0.007) (-0.007) (-0.006) 

ZDUQ -0.015 -0.021 -0.0474*** -0.0389*** -0.0546*** .  
(-0.01) (-0.014) (-0.013) (-0.01) (-0.011) (.) 

HDDi -0.089 -1.744*** -1.543*** -0.451 -0.441 -0.588*  
(-0.261) (-0.323) (-0.329) (-0.291) (-0.322) (-0.246) 

CDDi 0.755*** 1.797*** 1.097*** 0.341*** 0.796*** 0.339***  
(-0.094) (-0.099) (-0.097) (-0.084) (-0.087) (-0.074) 

HDDi
2 

0.0574*** 0.168*** 0.198*** 0.0758*** 0.0870*** 0.116***  
(-0.017) (-0.024) (-0.026) (-0.021) (-0.026) (-0.02) 

CDDi
2 -0.0238*** -0.0559*** -0.0283*** -0.0139*** -0.0227*** -0.00968***  

(-0.002) (-0.002) (-0.002) (-0.001) (-0.001) (-0.001) 

h1 . . . . . .  
(.) (.) (.) (.) (.) (.) 

h2 -0.825 0.152 0.245 -0.663 -0.428 -0.433  
(-1.592) (-1.653) (-1.886) (-1.684) (-1.601) (-1.393) 

h3 -2.198 -1.271 -1.941 -2.730 -2.551 -2.314  
(-1.584) (-1.675) (-1.852) (-1.69) (-1.608) (-1.396) 

h4 -3.186* -2.543 -2.376 -4.101* -3.743* -3.142*  
(-1.586) (-1.672) (-1.866) (-1.696) (-1.612) (-1.42) 

h5 -1.758 -1.011 -0.613 -3.576* -1.725 -1.732 
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(-1.618) (-1.662) (-1.874) (-1.703) (-1.613) (-1.44) 

h6 2.065 2.769 2.396 -0.526 1.065 0.316  
(-1.604) (-1.675) (-1.874) (-1.704) (-1.622) (-1.437) 

h7 8.816*** 11.46*** 12.55*** 9.965*** 9.326*** 9.032***  
(-1.604) (-1.721) (-1.886) (-1.722) (-1.642) (-1.465) 

h8 10.60*** 13.02*** 12.62*** 9.966*** 9.683*** 9.689***  
(-1.584) (-1.714) (-1.847) (-1.733) (-1.631) (-1.454) 

h9 9.218*** 11.15*** 9.694*** 9.599*** 8.342*** 8.272***  
(-1.555) (-1.708) (-1.822) (-1.702) (-1.618) (-1.427) 

h10 12.37*** 12.98*** 11.61*** 12.35*** 11.33*** 11.02***  
(-1.546) (-1.706) (-1.819) (-1.679) (-1.624) (-1.442) 

h11 10.87*** 12.21*** 12.37*** 12.54*** 11.38*** 9.272***  
(-1.555) (-1.69) (-1.822) (-1.686) (-1.619) (-1.427) 

h12 10.64*** 12.29*** 12.61*** 12.99*** 11.78*** 10.83***  
(-1.541) (-1.702) (-1.815) (-1.7) (-1.63) (-1.418) 

h13 11.33*** 13.07*** 11.10*** 12.52*** 9.391*** 10.00***  
(-1.549) (-1.714) (-1.819) (-1.707) (-1.638) (-1.439) 

h14 12.46*** 10.37*** 13.90*** 12.75*** 11.02*** 11.93***  
(-1.553) (-1.725) (-1.842) (-1.708) (-1.663) (-1.441) 

h15 9.745*** 7.116*** 11.55*** 9.488*** 8.215*** 7.703***  
(-1.555) (-1.73) (-1.856) (-1.714) (-1.681) (-1.423) 

h16 10.36*** 7.354*** 11.46*** 9.332*** 8.054*** 8.864***  
(-1.559) (-1.731) (-1.867) (-1.745) (-1.686) (-1.445) 

h17 16.52*** 12.64*** 15.53*** 13.40*** 14.80*** 13.89***  
(-1.577) (-1.76) (-1.888) (-1.757) (-1.704) (-1.45) 

h18 16.43*** 16.96*** 16.58*** 13.59*** 15.70*** 14.32***  
(-1.593) (-1.768) (-1.909) (-1.738) (-1.695) (-1.444) 

h19 14.84*** 15.89*** 15.81*** 14.59*** 14.56*** 12.39***  
(-1.567) (-1.749) (-1.899) (-1.737) (-1.683) (-1.444) 

h20 17.58*** 20.40*** 19.64*** 16.77*** 16.85*** 15.46***  
(-1.559) (-1.757) (-1.885) (-1.744) (-1.685) (-1.433) 

h21 17.51*** 20.07*** 19.02*** 17.95*** 17.80*** 15.17***  
(-1.535) (-1.713) (-1.838) (-1.699) (-1.665) (-1.398) 

h22 11.58*** 11.75*** 12.16*** 13.95*** 12.58*** 8.201***  
(-1.531) (-1.699) (-1.835) (-1.69) (-1.638) (-1.39) 

h23 4.497** 3.688* 4.259* 6.195*** 3.899* 2.327  
(-1.517) (-1.686) (-1.838) (-1.685) (-1.627) (-1.373) 

h24 0.987 0.689 0.730 2.160 -0.252 -0.705  
(-1.515) (-1.686) (-1.831) (-1.678) (-1.625) (-1.367) 

d1 -0.248 1.618 -0.468 1.579 -0.901 1.739*  
(-0.81) (-0.94) (-1) (-0.941) (-0.925) (-0.808) 

d2 -2.071* -1.652 -1.894 -0.604 -2.799** -1.627*  
(-0.807) (-0.945) (-1.029) (-0.973) (-0.915) (-0.802) 

d3 . . . . . .  
(.) (.) (.) (.) (.) (.) 
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d4 0.906 1.144 -0.538 1.539 -0.774 -2.329**  
(-0.826) (-0.955) (-1) (-0.929) (-0.923) (-0.814) 

d5 -1.386 -1.970* -1.508 1.866* -1.159 -0.614  
(-0.869) (-0.971) (-1.014) (-0.922) (-0.934) (-0.836) 

d6 -3.087*** -4.056*** -2.285* -0.064 -2.705** -1.568*  
(-0.861) (-0.957) (-1.027) (-0.963) (-0.902) (-0.799) 

d7 -3.753*** -2.007* -4.406*** -4.994*** -5.275*** -3.480***  
(-0.818) (-0.929) (-0.998) (-0.954) (-0.887) (-0.772) 

m1 -5.868*** -8.031*** -7.157*** -4.896*** -1.997 0.431  
(-1.235) (-1.349) (-1.434) (-1.197) (-1.225) (-1.203) 

m2 -0.956 4.363** -5.296** 1.557 6.850*** -0.086  
(-1.321) (-1.465) (-1.689) (-1.402) (-1.423) (-1.309) 

m3 5.819*** 8.849*** 7.204*** 4.394*** 5.290*** 6.987***  
(-1.2) (-1.289) (-1.273) (-1.187) (-1.182) (-1.103) 

m4 2.205 6.660*** 3.646* 2.453 2.997* 4.199***  
(-1.378) (-1.458) (-1.459) (-1.377) (-1.385) (-1.234) 

m5 0.959 -0.471 -3.209 1.145 1.728 1.316  
(-1.752) (-1.799) (-1.814) (-1.659) (-1.656) (-1.602) 

m6 0.523 -1.239 0.763 7.840*** 1.704 2.726  
(-1.91) (-2.112) (-2.065) (-1.959) (-1.85) (-1.606) 

m7 -3.769* -2.242 -3.260 5.889** -0.980 -1.630  
(-1.843) (-1.976) (-2.063) (-1.974) (-1.795) (-1.572) 

m8 -3.293 -1.365 -4.495* 2.027 -1.412 0.166  
(-2.001) (-2.058) (-2.162) (-2.121) (-1.933) (-1.61) 

m9 1.143 1.475 0.029 7.839*** 4.068* 2.679  
(-1.707) (-1.821) (-1.864) (-1.733) (-1.642) (-1.472) 

m10 9.562*** 9.705*** 6.334*** 10.06*** 9.125*** 6.077***  
(-1.448) (-1.539) (-1.484) (-1.489) (-1.393) (-1.323) 

m11 5.047*** 6.790*** 6.204*** 3.503** 5.495*** 6.672***  
(-1.196) (-1.247) (-1.357) (-1.323) (-1.185) (-1.131) 

m12 . . . . . .  
(.) (.) (.) (.) (.) (.) 

intercept 23.92*** 26.39*** 27.55*** 15.07*** 24.29*** 22.16***  
(-2.167) (-2.278) (-2.492) (-2.304) (-2.193) (-1.865) 

R-SQ 0.316 0.410 0.302 0.276 0.303 0.232 

ADJ R-SQ 0.308 0.404 0.295 0.269 0.296 0.223 

AIC 38560.000 50884.900 47263.400 46558.900 51128.800 41604.700 

BIC 38921.200 51258.400 47632.500 46928.200 51503.100 41970.300 

F-TEST 38.780 72.850 41.940 36.920 46.250 27.450 

N 4677 5818 5386 5395 5903 5051 

* P < 0.1     ** P < 0.05     *** P < 0.01 

F-CRITICAL AT 1% = 1.49, 5% = 1.33, 10% = 1.25 
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Table 7: Post-Retirement with Over-Predicted Consumption Regression Model  

 
AEP APS ATSI COMED DAY DUQ 

XAEP 0.000 0.000 0.000 0.001 0.001 -0.001  

(-0.001) (-0.001) (-0.001) (-0.001) (-0.001) (-0.001) 
ZAEP . -0.00526*** -0.001 -0.002 -0.00517*** -0.00435***  

. (-0.001) (-0.001) (-0.001) (-0.001) (-0.001) 
XAPS -0.00622*** -0.00892*** -0.0106*** -0.00515*** -0.00917*** -0.00601***  

(-0.001) (-0.001) (-0.002) (-0.001) (-0.001) (-0.001) 
ZAPS -0.0193*** . -0.005 -0.0121*** -0.0191*** -0.0134***  

(-0.003) . (-0.005) (-0.003) (-0.003) (-0.003) 
XATSI -0.00404** -0.00370* -0.00437** -0.00469** -0.00329* -0.00280*  

(-0.001) (-0.001) (-0.002) (-0.001) (-0.001) (-0.001) 
ZATSI -0.00434*** -0.00722*** . -0.00848*** 0.000 -0.00574***  

(-0.001) (-0.001) . (-0.001) (-0.001) (-0.001) 
XCOMED 0.00358*** 0.00431*** 0.00487*** 0.00227*** 0.00410*** 0.00528***  

(-0.001) (-0.001) (-0.001) (-0.001) (-0.001) (-0.001) 
ZCOMED -0.001 -0.00321*** -0.00514*** . -0.00773*** -0.00334***  

(-0.001) (-0.001) (-0.001) . (-0.001) (-0.001) 
XDAY -0.002 0.006 0.000 -0.0103** 0.001 -0.003  

(-0.003) (-0.004) (-0.005) (-0.004) (-0.004) (-0.004) 
ZDAY 0.001 -0.0160** -0.001 -0.0153** . -0.0139*  

(-0.006) (-0.006) (-0.008) (-0.005) . (-0.005) 
XDUQ -0.001 0.005 -0.002 -0.002 -0.004 0.004  

(-0.004) (-0.004) (-0.006) (-0.005) (-0.004) (-0.004) 
ZDUQ 0.003 -0.011 0.004 0.0162** 0.009 .  

(-0.006) (-0.009) (-0.007) (-0.005) (-0.008) . 
HDDi -0.019 0.273 0.691** 0.835*** 0.262 -0.119  

(-0.21) (-0.199) (-0.256) (-0.18) (-0.203) (-0.205) 
CDDi 0.121* 0.215*** 0.290** 0.068 0.122* 0.151***  

(-0.048) (-0.054) (-0.095) (-0.056) (-0.051) (-0.042) 
HDDi

2 0.0381* 0.023 0.005 -0.024 0.024 0.0538**  

(-0.016) (-0.013) (-0.018) (-0.013) (-0.015) (-0.016) 
CDDi

2 -0.00714*** -0.0125*** -0.0135*** -0.00378*** -0.00738*** -0.00753***  

(-0.001) (-0.001) (-0.002) (-0.001) (-0.001) (-0.001) 
h1 . . . . . .  

. . . . . . 
h2 -0.919 -0.643 -1.256 -1.058 -1.188 -0.896  

(-1.029) (-1.053) (-1.612) (-1.105) (-1.073) (-0.943) 
h3 -1.734 -1.851 -2.767 -3.100** -2.349* -1.962*  

(-1.035) (-1.062) (-1.589) (-1.116) (-1.076) (-0.938) 
h4 -2.419* -2.373* -3.742* -3.564** -3.353** -2.496**  

(-1.047) (-1.058) (-1.589) (-1.111) (-1.074) (-0.945) 
h5 -1.364 -0.974 -1.962 -3.220** -2.288* -1.321 
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(-1.039) (-1.067) (-1.615) (-1.121) (-1.072) (-0.948) 
h6 2.172* 1.951 0.389 -0.158 1.417 1.889*  

(-1.043) (-1.063) (-1.591) (-1.115) (-1.072) (-0.951) 
h7 9.474*** 9.219*** 8.402*** 4.610*** 7.008*** 10.42***  

(-1.03) (-1.073) (-1.62) (-1.138) (-1.094) (-0.957) 
h8 9.582*** 9.194*** 8.622*** 6.119*** 7.250*** 9.016***  

(-1.039) (-1.064) (-1.628) (-1.15) (-1.075) (-0.962) 
h9 8.659*** 7.873*** 7.660*** 7.035*** 7.181*** 7.901***  

(-1.025) (-1.056) (-1.571) (-1.144) (-1.063) (-0.952) 
h10 8.778*** 9.132*** 8.238*** 7.319*** 7.310*** 8.908***  

(-1.019) (-1.054) (-1.554) (-1.121) (-1.061) (-0.952) 
h11 8.373*** 10.10*** 10.27*** 8.241*** 8.454*** 9.696***  

(-1.013) (-1.053) (-1.543) (-1.118) (-1.066) (-0.958) 
h12 8.683*** 11.05*** 11.02*** 9.120*** 9.823*** 9.559***  

(-1.014) (-1.064) (-1.546) (-1.121) (-1.073) (-0.959) 
h13 8.408*** 10.71*** 11.30*** 8.389*** 8.994*** 9.067***  

(-1.029) (-1.066) (-1.542) (-1.113) (-1.084) (-0.957) 
h14 8.233*** 9.986*** 10.33*** 8.640*** 8.517*** 8.461***  

(-1.032) (-1.071) (-1.553) (-1.125) (-1.102) (-0.965) 
h15 7.490*** 11.08*** 11.97*** 9.996*** 8.956*** 8.894***  

(-1.036) (-1.07) (-1.568) (-1.132) (-1.095) (-0.961) 
h16 7.355*** 10.24*** 11.98*** 8.260*** 8.912*** 8.393***  

(-1.033) (-1.079) (-1.552) (-1.141) (-1.102) (-0.969) 
h17 9.600*** 12.14*** 13.71*** 11.82*** 10.48*** 10.44***  

(-1.037) (-1.092) (-1.553) (-1.149) (-1.102) (-0.975) 
h18 12.41*** 15.56*** 16.73*** 11.68*** 14.38*** 13.19***  

(-1.042) (-1.102) (-1.569) (-1.158) (-1.112) (-0.987) 
h19 10.23*** 11.65*** 13.65*** 11.75*** 11.74*** 10.78***  

(-1.032) (-1.091) (-1.583) (-1.156) (-1.101) (-0.98) 
h20 9.622*** 10.87*** 11.03*** 9.618*** 9.710*** 10.22***  

(-1.026) (-1.086) (-1.585) (-1.148) (-1.099) (-0.975) 
h21 10.88*** 11.77*** 12.47*** 11.17*** 11.12*** 10.93***  

(-1.011) (-1.074) (-1.557) (-1.12) (-1.077) (-0.967) 
h22 7.937*** 8.113*** 7.566*** 8.681*** 7.688*** 7.575***  

(-1.012) (-1.06) (-1.532) (-1.11) (-1.065) (-0.955) 
h23 3.494*** 3.637*** 3.649* 4.511*** 3.335** 3.170***  

(-1.013) (-1.053) (-1.555) (-1.096) (-1.059) (-0.951) 
h24 0.997 1.176 0.916 1.669 0.947 0.841  

(-1.018) (-1.047) (-1.551) (-1.093) (-1.065) (-0.943) 
d1 0.225 -0.051 -1.079 0.245 0.627 0.111  

(-0.578) (-0.61) (-0.861) (-0.629) (-0.601) (-0.525) 
d2 0.205 1.431* 1.131 -0.859 2.019*** 0.772  

(-0.562) (-0.587) (-0.845) (-0.624) (-0.597) (-0.516) 
d3 . . . . . .  

. . . . . . 
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d4 -1.099* -0.331 -2.412** -2.010** -1.252* -0.652  

(-0.558) (-0.579) (-0.822) (-0.613) (-0.595) (-0.516) 
d5 -2.990*** -2.203*** -4.368*** -2.573*** -2.828*** -1.666**  

(-0.573) (-0.59) (-0.84) (-0.61) (-0.605) (-0.522) 
d6 -3.222*** -2.955*** -4.403*** -3.342*** -2.385*** -2.654***  

(-0.536) (-0.585) (-0.834) (-0.608) (-0.569) (-0.536) 
d7 -4.948*** -5.395*** -6.097*** -6.345*** -4.657*** -4.777***  

(-0.558) (-0.597) (-0.888) (-0.641) (-0.595) (-0.537) 
m1 -1.615 -3.857*** -4.551** -2.072* 0.896 -1.574*  

(-0.872) (-0.936) (-1.57) (-0.937) (-0.91) (-0.802) 
m2 -3.341*** -6.085*** -4.542* -5.685*** -1.782 -3.555***  

(-0.904) (-0.979) (-2.043) (-0.98) (-0.937) (-0.82) 
m3 -1.900* -2.026* -2.422 -3.534*** -0.377 -0.951  

(-0.827) (-0.909) (-2.654) (-0.927) (-0.868) (-0.766) 
m4 5.385*** 4.686*** -3.908 0.318 7.440*** 4.241***  

(-0.867) (-0.938) (-4.689) (-1.045) (-0.966) (-0.781) 
m5 -2.126* -2.027* -6.159** -3.287** 0.492 -1.691*  

(-0.839) (-0.923) (-2.024) (-1.044) (-0.938) (-0.763) 
m6 1.871 0.264 2.674 0.252 2.460* 2.349*  

(-1.079) (-1.12) (-1.431) (-1.177) (-1.025) (-0.944) 
m7 1.839 0.552 -1.070 0.345 2.332* 2.424*  

(-1.15) (-1.179) (-1.441) (-1.176) (-1.08) (-1.026) 
m8 -1.201 -1.713 -2.100 -2.148 -0.666 -0.513  

(-1.132) (-1.127) (-1.441) (-1.174) (-1.031) (-0.886) 
m9 4.609*** 4.140*** 2.608 3.150** 4.703*** 3.576***  

(-0.971) (-0.991) (-1.361) (-1.169) (-0.959) (-0.826) 
m10 4.396*** 5.592*** 6.002*** 3.591*** 7.349*** 5.499***  

(-0.791) (-0.831) (-0.972) (-0.951) (-0.776) (-0.667) 
m11 3.718*** 4.314*** 4.581*** 4.152*** 6.216*** 3.777***  

(-0.752) (-0.774) (-0.878) (-0.872) (-0.723) (-0.708) 
m12 . . . . . . 
 . . . . . . 
intercept 19.17*** 17.00*** 19.67*** 18.70*** 17.23*** 17.04***  

(-1.13) (-1.163) (-1.735) (-1.402) (-1.168) (-0.998) 

R-SQ 0.242 0.281 0.308 0.254 0.293 0.265 

ADJ R-SQ 0.235 0.275 0.295 0.246 0.286 0.259 

AIC 43072.900 52248.200 23650.900 39295.900 43669.900 52905.000 

BIC 43444.400 52628.700 23987.500 39661.500 44041.500 53287.500 

F-TEST 32.310 46.450 23.920 30.980 41.980 44.540 

N 5623 6599 3015 5060 5627 6843 

* P < 0.1     ** P < 0.05     *** P < 0.01 

F-CRITICAL AT 1% = 1.49, 5% = 1.33, 10% = 1.25 
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Table 8: Pre-Retirement with Under-Predicted Consumption Regression Model  

 
AEP APS ATSI COMED DAY DUQ 

XAEP . -0.004 -0.004 -0.00345* -0.003 -0.00878***  
. (-0.003) (-0.002) (-0.002) (-0.002) (-0.002) 

ZAEP -0.0105*** -0.0107*** -0.00407** -0.002 -0.00543*** -0.0119***  
(-0.002) (-0.002) (-0.001) (-0.001) (-0.001) (-0.002) 

XAPS -0.0151*** . -0.0183*** -0.0174*** -0.0182*** -0.005  
(-0.004) . (-0.004) (-0.003) (-0.004) (-0.004) 

ZAPS 0.004 -0.0139** -0.00783* -0.001 0.00750* 0.0122**  
(-0.004) (-0.005) (-0.003) (-0.003) (-0.004) (-0.004) 

XATSI -0.004 -0.006 . 0.000 -0.003 0.00696*  
(-0.004) (-0.005) . (-0.003) (-0.004) (-0.004) 

ZATSI 0.000 0.000 -0.003 -0.00630* -0.00942*** 0.002  
(-0.003) (-0.004) (-0.003) (-0.002) (-0.003) (-0.003) 

XCOMED 0.002 -0.003 -0.001 . 0.000 0.00524**  
(-0.002) (-0.002) (-0.001) . (-0.001) (-0.002) 

ZCOMED 0.00470** 0.000 0.002 -0.001 0.00415* 0.000  
(-0.002) (-0.003) (-0.002) (-0.001) (-0.002) (-0.002) 

XDAY -0.003 0.021 0.014 0.014 . -0.017  
(-0.011) (-0.013) (-0.01) (-0.008) . (-0.01) 

ZDAY 0.0279* 0.0469** -0.009 -0.002 0.012 0.0437***  
(-0.011) (-0.016) (-0.01) (-0.009) (-0.01) (-0.012) 

XDUQ 0.020 0.001 0.007 0.009 0.0297* .  
(-0.013) (-0.021) (-0.013) (-0.01) (-0.012) . 

ZDUQ -0.0307* 0.027 0.007 0.009 -0.014 -0.0330**  
(-0.013) (-0.016) (-0.011) (-0.01) (-0.012) (-0.012) 

HDDi -0.298 0.831 0.782 1.284*** 0.940* 0.860  
(-0.438) (-0.723) (-0.437) (-0.286) (-0.464) (-0.446) 

CDDi 1.467*** 1.278*** 0.235 -0.080 0.629*** 0.556***  
(-0.145) (-0.284) (-0.145) (-0.105) (-0.161) (-0.148) 

HDDi
2 0.0744* 0.016 0.016 -0.025 0.007 0.044  

(-0.03) (-0.048) (-0.033) (-0.019) (-0.034) (-0.035) 

CDDi
2 -0.0392*** -0.0441*** -0.00847*** -0.002 -0.0190*** -0.0173***  

(-0.002) (-0.004) (-0.002) (-0.002) (-0.002) (-0.002) 

h1 . . . . . .  
. . . . . . 

h2 -0.039 -1.569 -2.426 -1.443 -1.302 -2.288  
(-2.322) (-4.011) (-2.216) (-1.913) (-2.603) (-2.835) 

h3 -1.575 -1.767 -3.060 -3.491 -2.519 -3.377  
(-2.334) (-3.896) (-2.267) (-1.902) (-2.589) (-2.825) 

h4 -2.234 0.062 -4.103 -4.449* -3.095 -4.147  
(-2.332) (-3.916) (-2.248) (-1.893) (-2.577) (-2.773) 

h5 -0.050 1.747 -2.850 -3.125 -1.594 -2.299 
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(-2.295) (-3.967) (-2.24) (-1.885) (-2.561) (-2.736) 

h6 3.585 5.123 0.654 -0.440 3.775 2.174  
(-2.313) (-3.91) (-2.24) (-1.884) (-2.541) (-2.748) 

h7 18.74*** 26.59*** 14.59*** 5.791** 18.53*** 17.61***  
(-2.323) (-3.772) (-2.234) (-1.867) (-2.497) (-2.712) 

h8 14.91*** 18.93*** 11.88*** 8.233*** 14.69*** 14.78***  
(-2.354) (-3.789) (-2.3) (-1.859) (-2.538) (-2.727) 

h9 9.388*** 8.622* 7.503** 7.543*** 7.998** 11.23***  
(-2.401) (-3.801) (-2.35) (-1.9) (-2.561) (-2.77) 

h10 11.51*** 12.91*** 12.31*** 11.45*** 11.39*** 11.31***  
(-2.416) (-3.811) (-2.352) (-1.94) (-2.55) (-2.743) 

h11 13.18*** 14.53*** 13.72*** 11.15*** 12.27*** 14.22***  
(-2.403) (-3.874) (-2.353) (-1.927) (-2.568) (-2.776) 

h12 15.30*** 18.81*** 14.86*** 12.08*** 13.70*** 14.67***  
(-2.441) (-3.844) (-2.385) (-1.908) (-2.558) (-2.807) 

h13 14.76*** 17.12*** 17.18*** 12.29*** 17.62*** 15.14***  
(-2.437) (-3.83) (-2.39) (-1.91) (-2.54) (-2.772) 

h14 16.67*** 23.97*** 18.07*** 14.12*** 19.29*** 16.09***  
(-2.443) (-3.816) (-2.35) (-1.923) (-2.498) (-2.784) 

h15 13.00*** 18.10*** 12.84*** 10.63*** 14.68*** 15.44***  
(-2.449) (-3.819) (-2.338) (-1.924) (-2.469) (-2.836) 

h16 13.27*** 20.29*** 14.05*** 11.92*** 16.16*** 13.70***  
(-2.457) (-3.85) (-2.334) (-1.887) (-2.486) (-2.805) 

h17 17.60*** 26.55*** 22.08*** 17.68*** 19.65*** 20.38***  
(-2.436) (-3.782) (-2.31) (-1.879) (-2.467) (-2.815) 

h18 20.89*** 30.56*** 26.38*** 20.34*** 22.76*** 27.35***  
(-2.417) (-3.784) (-2.289) (-1.913) (-2.495) (-2.844) 

h19 17.34*** 22.43*** 18.51*** 14.99*** 16.92*** 21.08***  
(-2.451) (-3.806) (-2.291) (-1.905) (-2.488) (-2.833) 

h20 18.98*** 20.02*** 17.65*** 17.12*** 18.63*** 22.17***  
(-2.442) (-3.754) (-2.289) (-1.882) (-2.464) (-2.827) 

h21 18.47*** 20.76*** 17.25*** 16.35*** 17.79*** 20.73***  
(-2.479) (-3.848) (-2.359) (-1.936) (-2.491) (-2.895) 

h22 14.56*** 17.21*** 13.72*** 12.20*** 12.95*** 18.40***  
(-2.487) (-3.892) (-2.356) (-1.947) (-2.552) (-2.912) 

h23 3.339 5.553 3.397 4.416* 3.600 3.786  
(-2.514) (-3.924) (-2.34) (-1.947) (-2.575) (-2.965) 

h24 0.257 0.626 -0.226 0.230 0.911 -0.536  
(-2.51) (-3.898) (-2.341) (-1.952) (-2.574) (-2.974) 

d1 2.386 1.313 0.943 -0.644 2.069 -2.268  
(-1.403) (-2.058) (-1.311) (-1.081) (-1.319) (-1.47) 

d2 -1.478 -3.010 -1.289 -3.676*** -1.191 -2.273  
(-1.422) (-2.01) (-1.243) (-1.004) (-1.33) (-1.467) 

d3 . . . . . .  
. . . . . . 
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d4 2.887* 1.514 1.107 2.701** 4.686*** 6.878***  
(-1.406) (-2.051) (-1.327) (-1.04) (-1.311) (-1.444) 

d5 1.585 0.650 0.727 -0.010 2.655* 2.052  
(-1.332) (-2.006) (-1.288) (-1.068) (-1.305) (-1.422) 

d6 1.232 3.268 -1.183 -0.069 1.061 -4.740**  
(-1.329) (-1.993) (-1.253) (-1.021) (-1.386) (-1.488) 

d7 -2.830* -5.101* -6.743*** -5.159*** -2.761 -8.430***  
(-1.385) (-2.105) (-1.303) (-1.037) (-1.453) (-1.607) 

m1 -11.31*** -11.93*** -8.847*** -7.565*** -13.82*** -2.427  
(-1.73) (-2.591) (-1.8) (-1.698) (-1.861) (-1.912) 

m2 7.181*** 19.88*** 8.221*** 7.960*** -3.312 -10.38***  
(-2.181) (-3.218) (-2.393) (-1.795) (-1.994) (-2.383) 

m3 2.411 13.04*** 3.919* 1.313 0.765 5.136**  
(-1.617) (-2.443) (-1.749) (-1.43) (-1.793) (-1.873) 

m4 -2.396 4.141 0.222 -2.950 -1.710 -2.357  
(-2.126) (-3.815) (-1.988) (-1.659) (-2.378) (-2.505) 

m5 -7.182** -0.564 -2.546 -3.660 -10.47*** -2.426  
(-2.68) (-5.34) (-2.663) (-1.957) (-3.063) (-2.751) 

m6 -4.632 3.560 2.234 3.030 0.639 1.942  
(-2.987) (-5.407) (-2.873) (-2.278) (-3.188) (-3.207) 

m7 -10.54*** -5.278 -2.886 -0.726 -6.702* -7.144*  
(-3.136) (-5.531) (-2.927) (-2.316) (-3.264) (-3.246) 

m8 -14.64*** -7.801 -5.823* -5.515* -12.17*** -8.841**  
(-3.041) (-5.565) (-2.964) (-2.37) (-3.271) (-3.306) 

m9 -7.453* -2.657 0.508 1.663 -3.087 -3.111  
(-3.09) (-5.302) (-2.799) (-2.285) (-3.27) (-3.065) 

m10 6.588** 8.430* 5.998* 6.077*** 2.107 5.798*  
(-2.076) (-3.874) (-2.343) (-1.597) (-2.267) (-2.286) 

m11 1.432 -4.225 2.346 4.731*** 1.001 5.328**  
(-1.687) (-3.015) (-1.674) (-1.297) (-1.895) (-1.957) 

m12 . . . . . .  
. . . . . . 

intercept 30.43*** 20.82*** 25.41*** 20.25*** 26.11*** 22.63***  
(-3.372) (-5.965) (-3.512) (-2.683) (-3.846) (-3.822) 

R-SQ 0.314 0.358 0.268 0.275 0.283 0.241 

ADJ R-SQ 0.305 0.346 0.260 0.263 0.269 0.229 

AIC 37355.800 28263.800 29851.400 28380.600 24605.600 34258.200 

BIC 37709.800 28599.500 30194.700 28723.700 24938.600 34606.800 

F-TEST 33.720 29.440 22.240 22.980 19.910 21.200 

N 4106 2966 3398 3389 2829 3732 

* P < 0.1     ** P < 0.05     *** P < 0.01 

F-CRITICAL AT 1% = 1.49, 5% = 1.33, 10% = 1.25 
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Table 9: Post-Retirement with Under-Predicted Consumption Regression Model  

 
AEP APS ATSI COMED DAY DUQ 

XAEP . 0.002 0.001 0.000 -0.001 0.00486*  
. (-0.003) (-0.001) (-0.001) (-0.002) (-0.002) 

ZAEP -0.002 -0.003 -0.00323** -0.002 -0.001 -0.003  
(-0.001) (-0.002) (-0.001) (-0.001) (-0.001) (-0.002) 

XAPS -0.00757* . -0.00940*** -0.0109*** -0.0133*** -0.00911*  
(-0.004) . (-0.002) (-0.002) (-0.003) (-0.005) 

ZAPS -0.004 -0.0111* -0.00640* 0.001 0.007 -0.001  
(-0.004) (-0.005) (-0.003) (-0.003) (-0.004) (-0.005) 

XATSI 0.002 -0.002 . 0.00806** -0.003 -0.009  
(-0.005) (-0.006) . (-0.003) (-0.005) (-0.006) 

ZATSI -0.0121*** -0.005 -0.00515*** -0.001 -0.0131*** -0.00867**  
(-0.003) (-0.003) (-0.001) (-0.002) (-0.002) (-0.003) 

XCOMED -0.001 -0.003 0.001 . 0.000 -0.003  
(-0.001) (-0.002) (-0.001) . (-0.002) (-0.001) 

ZCOMED 0.001 0.003 0.002 -0.00206* 0.001 0.00367*  
(-0.001) (-0.002) (-0.001) (-0.001) (-0.001) (-0.002) 

XDAY 0.000 -0.021 -0.010 -0.009 . -0.0193*  
(-0.011) (-0.012) (-0.006) (-0.006) . (-0.01) 

ZDAY -0.0206* -0.019 -0.0277*** -0.0264*** -0.0176* -0.0269**  
(-0.008) (-0.011) (-0.006) (-0.006) (-0.008) (-0.009) 

XDUQ -0.018 -0.018 -0.002 -0.005 -0.001 .  
(-0.011) (-0.018) (-0.006) (-0.007) (-0.011) . 

ZDUQ 0.014 0.018 0.003 -0.007 0.006 0.0261**  
(-0.012) (-0.012) (-0.009) (-0.01) (-0.009) (-0.009) 

HDDi 0.659 -0.283 0.485 0.755** 0.461 1.492**  
(-0.39) (-0.491) (-0.273) (-0.241) (-0.416) (-0.535) 

CDDi -0.134 0.229 0.119 -0.081 -0.050 0.101  
(-0.147) (-0.181) (-0.069) (-0.075) (-0.113) (-0.255) 

HDDi
2 -0.003 0.0957** 0.030 -0.014 0.052 -0.025  

(-0.024) (-0.031) (-0.019) (-0.015) (-0.028) (-0.036) 

CDDi
2 0.001 -0.0125*** -0.00609*** 0.000 -0.003 -0.010  

(-0.003) (-0.004) (-0.001) (-0.001) (-0.002) (-0.006) 

h1 . . . . . .  
. . . . . . 

h2 -1.134 -3.033 -0.961 -1.589 -0.872 -1.685  
(-2.279) (-3.413) (-1.331) (-1.613) (-2.326) (-3.388) 

h3 -2.237 -3.230 -1.805 -2.619 -1.865 -3.747  
(-2.255) (-3.321) (-1.339) (-1.589) (-2.314) (-3.462) 

h4 -2.738 -4.838 -2.454 -3.224* -2.205 -4.923  
(-2.224) (-3.358) (-1.339) (-1.599) (-2.316) (-3.363) 

h5 -1.722 -4.217 -1.921 -2.264 -1.603 -4.561 
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(-2.247) (-3.29) (-1.33) (-1.583) (-2.358) (-3.323) 

h6 1.800 0.951 1.716 -0.724 1.457 -1.915  
(-2.242) (-3.322) (-1.34) (-1.596) (-2.335) (-3.307) 

h7 10.18*** 12.58*** 9.217*** 6.541*** 13.58*** 1.479  
(-2.29) (-3.269) (-1.333) (-1.567) (-2.273) (-3.26) 

h8 6.747** 6.964* 7.708*** 6.915*** 8.502*** 3.021  
(-2.267) (-3.342) (-1.331) (-1.555) (-2.338) (-3.21) 

h9 7.331** 8.408* 7.453*** 6.627*** 7.205** 4.316  
(-2.312) (-3.4) (-1.351) (-1.56) (-2.4) (-3.312) 

h10 9.956*** 8.207* 9.212*** 10.25*** 9.998*** 7.079*  
(-2.334) (-3.422) (-1.359) (-1.591) (-2.393) (-3.292) 

h11 10.83*** 9.665** 9.549*** 9.965*** 10.57*** 10.19**  
(-2.363) (-3.444) (-1.367) (-1.596) (-2.363) (-3.241) 

h12 13.26*** 9.894** 10.49*** 11.54*** 10.74*** 11.41***  
(-2.36) (-3.347) (-1.365) (-1.593) (-2.34) (-3.248) 

h13 13.82*** 11.75*** 10.78*** 12.48*** 12.39*** 15.78***  
(-2.311) (-3.356) (-1.372) (-1.615) (-2.311) (-3.292) 

h14 14.74*** 16.07*** 11.61*** 12.29*** 13.30*** 18.83***  
(-2.309) (-3.338) (-1.367) (-1.598) (-2.261) (-3.225) 

h15 18.14*** 16.64*** 12.49*** 10.41*** 14.76*** 22.78***  
(-2.303) (-3.356) (-1.361) (-1.591) (-2.305) (-3.282) 

h16 19.74*** 16.92*** 11.89*** 13.63*** 15.41*** 21.19***  
(-2.326) (-3.303) (-1.374) (-1.582) (-2.288) (-3.234) 

h17 23.53*** 25.69*** 15.57*** 14.69*** 21.19*** 27.24***  
(-2.327) (-3.256) (-1.379) (-1.579) (-2.291) (-3.211) 

h18 22.97*** 22.78*** 16.44*** 18.09*** 19.90*** 25.42***  
(-2.328) (-3.225) (-1.376) (-1.571) (-2.273) (-3.154) 

h19 17.61*** 17.60*** 12.47*** 12.25*** 14.25*** 17.22***  
(-2.364) (-3.264) (-1.367) (-1.572) (-2.306) (-3.179) 

h20 17.37*** 19.06*** 13.29*** 14.13*** 15.64*** 18.12***  
(-2.358) (-3.27) (-1.359) (-1.572) (-2.299) (-3.182) 

h21 14.30*** 14.63*** 12.10*** 13.00*** 13.17*** 14.48***  
(-2.415) (-3.332) (-1.369) (-1.614) (-2.364) (-3.223) 

h22 10.90*** 12.19*** 9.239*** 9.562*** 9.532*** 11.25***  
(-2.397) (-3.426) (-1.38) (-1.626) (-2.408) (-3.323) 

h23 4.657 4.354 3.469* 4.379** 3.584 4.253  
(-2.384) (-3.487) (-1.365) (-1.653) (-2.415) (-3.36) 

h24 1.987 0.891 0.993 1.365 0.770 1.178  
(-2.349) (-3.52) (-1.363) (-1.655) (-2.376) (-3.45) 

d1 1.606 1.006 1.671* -0.163 0.593 2.350  
(-1.245) (-1.679) (-0.755) (-0.867) (-1.278) (-1.891) 

d2 1.087 -0.555 0.562 1.084 -2.051 1.403  
(-1.238) (-1.712) (-0.744) (-0.84) (-1.223) (-1.811) 

d3 . . . . . .  
. . . . . . 
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d4 -2.204 -4.497* -0.309 0.832 -1.636 -2.471  
(-1.28) (-1.829) (-0.761) (-0.872) (-1.249) (-1.876) 

d5 -4.241*** -5.816** -1.609* -1.499 -2.836* -5.526**  
(-1.278) (-1.813) (-0.76) (-0.901) (-1.254) (-1.862) 

d6 -5.522*** -6.005** -3.298*** -2.267* -6.521*** -5.635**  
(-1.494) (-1.909) (-0.79) (-0.911) (-1.491) (-1.815) 

d7 -8.787*** -7.954*** -5.830*** -5.074*** -7.202*** -7.537***  
(-1.33) (-1.715) (-0.743) (-0.843) (-1.304) (-1.847) 

m1 1.572 -1.887 -2.564* -2.061 -9.189*** -11.44**  
(-2.259) (-3.383) (-1.23) (-1.432) (-2.105) (-3.612) 

m2 -2.514 -3.165 -4.681*** -0.692 -11.05*** -16.59**  
(-2.441) (-3.087) (-1.26) (-1.458) (-2.214) (-6.352) 

m3 -6.427* -2.908 -3.247** -2.596 -9.236*** -12.26**  
(-2.537) (-2.709) (-1.161) (-1.404) (-2.115) (-3.876) 

m4 -1.916 5.231 3.267** -0.758 -2.060 -6.449  
(-2.37) (-2.886) (-1.164) (-1.285) (-1.944) (-4.593) 

m5 -5.754 -1.999 -3.839** -3.174* -8.452*** -3.869  
(-3.184) (-2.927) (-1.191) (-1.379) (-2.053) (-4.3) 

m6 1.713 1.587 -0.244 0.789 -2.043 1.682  
(-2.629) (-2.986) (-1.515) (-1.538) (-2.578) (-3.814) 

m7 4.225 2.823 2.345 2.524 -2.517 0.952  
(-2.719) (-3.174) (-1.599) (-1.677) (-2.537) (-3.824) 

m8 1.081 -2.211 -3.019 0.792 -2.020 -2.193  
(-2.614) (-3.172) (-1.543) (-1.659) (-2.458) (-4.004) 

m9 4.206 6.779* 2.346 3.992** -0.986 9.087*  
(-2.397) (-3.083) (-1.464) (-1.46) (-2.382) (-3.744) 

m10 6.475*** 6.935** 3.248* 1.168 0.116 4.749  
(-1.883) (-2.298) (-1.316) (-1.245) (-2.116) (-3.787) 

m11 2.081 0.879 0.503 2.088 -4.467* 1.897  
(-1.732) (-2.616) (-1.335) (-1.116) (-2.096) (-2.467) 

m12 . . . . . .  
. . . . . . 

α 15.82*** 18.55*** 19.14*** 16.38*** 21.57*** 16.43***  
(-2.799) (-3.848) (-1.604) (-1.815) (-2.775) (-4.614) 

R-SQ 0.235 0.232 0.257 0.285 0.235 0.292 

ADJ R-SQ 0.221 0.212 0.250 0.274 0.221 0.271 

AIC 27483.000 19587.300 47628.000 30023.000 26927.200 17114.600 

BIC 27822.200 19905.900 48000.900 30371.400 27265.400 17426.500 

F-TEST 17.380 11.700 35.870 26.620 17.010 14.100 

N 3161 2185 5769 3723 3101 1939 

* P < 0.10 ** p < 0.05 *** p < 0.01 
    

F-CRITICAL AT 1% = 1.49, 5% = 1.33, 10% = 1.25 
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Table 10: Pre-Retirement with Over-Predicted Consumption Correlation 

 AEP APS ATSI COMED DAY DUQ Average 

AEP 1.000 0.457 0.504 0.304 0.550 0.301 0.432 

APS  1.000 0.367 0.153 0.360 0.395 0.346 

ATSI   1.000 0.294 0.538 0.392 0.419 

COMED    1.000 0.361 0.197 0.262 

DAY     1.000 0.284 0.419 

DUQ      1.000 0.314 

 

Table 11: Pre-Retirement with Under-Predicted Consumption Correlation 

 AEP APS ATSI COMED DAY DUQ Average 

AEP 1.000 0.563 0.518 0.365 0.510 0.448 0.481 

APS  1.000 0.456 0.295 0.446 0.505 0.453 

ATSI   1.000 0.459 0.564 0.506 0.501 

COMED    1.000 0.432 0.351 0.380 

DAY     1.000 0.450 0.480 

DUQ      1.000 0.452 

 

 

Table 12: Post-Retirement with Over-Predicted Consumption Correlation 

 AEP APS ATSI COMED DAY DUQ Average 

AEP 1.000 0.478 0.292 0.244 0.472 0.392 0.376 

APS  1.000 0.322 0.155 0.381 0.450 0.357 

ATSI   1.000 0.316 0.525 0.275 0.346 

COMED    1.000 0.317 0.143 0.235 

DAY     1.000 0.276 0.394 

DUQ      1.000 0.307 

 

Table 13: Post-Retirement with Under-Predicted Consumption Correlation 

 AEP APS ATSI COMED DAY DUQ Average 

AEP 1.000 0.466 0.205 0.403 0.300 0.246 0.324 

APS  1.000 0.249 0.207 0.292 0.346 0.312 

ATSI   1.000 0.227 0.243 0.088 0.202 

COMED    1.000 0.267 0.167 0.254 

DAY     1.000 0.697 0.360 

DUQ      1.000 0.309 
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Table 14: Structural Break Chow Test Caused by Capacity Retirement 

 

 AEP APS ATSI COMED DAY DUQ 

RSSP 5545697.88 7383710.09 5582167.77 4599496.13 5386662.79 5559016.32 

RSS1 3370733.72 4730727.30 3541527.60 2912172.70 3230878.42 3594620.77 

RSS2 1865012.06 2092201.61 1791994.06 1474580.50 1910876.88 1774784.42 

k 57 57 57 57 57 57 

n 17568 17568 17568 17568 17568 17568 

       

 F-test 18.13 25.17 14.28 14.85 14.59 10.81 
F-Critical at 1% = 1.49, 5% = 1.33, 10% = 1.25 
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Table 15: Structural Break Chow Test Caused by Predicted Consumption 

 

Over-Predicting Consumption during Pre-Retirement 

 AEP APS ATSI COMED DAY DUQ 

RSSP 3197002.13 4558086.66 3368245.70 2638665.70 3052150.25 3286498.96 

RSSpos 1017836.1 2100543.47 1998923.43 1731689.57 1958841.26 1092762.93 

RSSnonpos 2090546.39 2300409.85 1258073.06 832078.35 984883.80 2056241.17 

K 57 57 57 57 57 57 

N 8784 8784 8784 8784 8784 8784 

       

 F-Test 4.33 10.93 5.19 4.44 5.6 6.64 
F-Critical at 1% = 1.49, 5% = 1.33, 10% = 1.25 

Over-Predicting Consumption during Post-Retirement 

 AEP APS ATSI COMED DAY DUQ 

RSSP 1809439.95 2038277.62 1730512.74 1385309.74 1851004.60 1716817.38 

RSSpos 684846.80 1042791.50 433975.40 683579.47 757918.69 898064.87 

RSSnonpos 1066320.16 950428.94 1275445.32 672374.61 1038327.40 730185.81 

K 57 57 57 57 57 57 

N 8784 8784 8784 8784 8784 8784 

       

F-Test 5.06 3.44 1.88 3.29 4.64 8.27 
F-Critical at 1% = 1.49, 5% = 1.33, 10% = 1.25 

Under-Predicting Consumption during Pre-Retirement 

 AEP APS ATSI COMED DAY DUQ 

RSSP 3197002.13 4558086.66 3368245.70 2638665.70 3052150.82 3286498.96 

RSSneg 2090504.19 2300409.85 1258073.06 832078.35 953442.32 2056239.52 

RSSnonneg 1017837.99 2100543.47 1998923.43 1731689.57 1992901.56 1092763.01 

K 57 57 57 57 57 57 

N 8784 8784 8784 8784 8784 8784 

       

F-Test 4.33 5.43 5.19 4.44 5.46 6.64 
F-Critical at 1% = 1.49, 5% = 1.33, 10% = 1.25 

Under-Predicting Consumption during Pre-Retirement 

 AEP APS ATSI COMED DAY DUQ 

RSSP 1809439.95 2038277.62 1730512.74 1385309.74 1851004.60 1716817.38 

RSSneg 1066320.16 950428.94 1275445.32 672338.67 1033940.66 729993.10 

RSSnonneg 684846.80 1042791.50 433975.40 683660.15 761735.87 898093.77 

K 57 57 57 57 57 57 

N 8784 8784 8784 8784 8784 8784 

       

F-Test 5.06 3.44 1.88 3.29 4.69 8.29 
F-Critical at 1% = 1.49, 5% = 1.33, 10% = 1.25 

 



Michael O’Conor 

95 
 

Table 16: LR-Test to Split Predicted Consumption 

 

Likelihood Ratio Single Predicted Consumption 

   AEP APS ATSI COMED DAY DUQ 

Chi-Squared pre-retirement 41.47 38.69 47.65 48.46 44.33 42.64 

post-retirement 44.45 35 39.87 38.54 52.5 37.46 

two years 50.2 76.97 50.96 55.61 45.98 41.17 

F-Test pre-retirement 6.88 6.42 7.91 8.05 7.36 7.08 

 post-retirement 7.38 5.81 6.62 6.40 7.65 6.22 

 two years 8.35 12.82 8.48 9.25 8.72 6.85 
F-Critical at 1% = 1.49, 5% = 1.33, 10% = 1.25 

Likelihood Ratio Over-Predicted Consumption 

   AEP APS ATSI COMED DAY DUQ 

Chi-Squared pre-retirement 23.17 57.73 116.91 56.17 104.03 78.31 

post-retirement 21.21 97.34 35.25 20.33 114.40 89.48 

two years 39.39 116.42 124.37 59.02 187.56 144.07 

F-Test pre-retirement 4.59 11.49 23.39 11.18 20.79 15.61 

 post-retirement 4.21 19.45 6.96 4.03 22.88 17.87 

 two years 7.85 23.29 24.89 11.77 37.63 28.85 
F-Critical at 1% = 1.49, 5% = 1.33, 10% = 1.25 

Likelihood Ratio Under-Predicted Consumption 

   AEP APS ATSI COMED DAY DUQ 

Chi-Squared pre-retirement 21.64 6.90 6.92 16.54 23.81 21.69 

post-retirement 11.53 7.12 13.99 19.25 16.40 13.74 

two years 14.02 20.55 8.04 23.55 37.38 20.63 

F-Test pre-retirement 4.28 1.36 1.36 3.26 4.69 4.29 

 post-retirement 2.27 1.39 1.60 3.80 3.23 2.68 

 two years 2.79 4.07 2.77 4.68 7.43 4.09 
F-Critical at 1% = 1.49, 5% = 1.33, 10% = 1.25 
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Table 17: Hourly T-Test of Diff Against Zero 

       
  AEP APS ATSI COMED DAY DUQ 

t-value 

Early Retirement with Over-

Predicted Consumption 

Top 5% 27.349 23.833 23.357 22.335 24.684 26.662 

Bottom 5% 10.751 10.016 13.205 23.417 11.683 16.599 

Average 25.064 28.011 25.945 25.013 23.318 24.042 

t-test significance 

Early Retirement with Over-

Predicted Consumption 

Top 5% 0.000 0.000 0.000 0.000 0.000 0.000 

Bottom 5% 0.000 0.000 0.000 0.000 0.000 0.000 

Average 0.000 0.000 0.000 0.000 0.000 0.000 

        

t-value 

No Retirement with Over-

Predicted Consumption 

Top 5% 22.357 23.607 18.784 18.092 22.120 23.580 

Bottom 5% 39.951 45.789 49.419 65.132 37.722 45.943 

Average 33.245 37.729 24.295 23.760 22.116 37.947 

t-test significance 

No Retirement with Over-

Predicted Consumption 

Top 5% 0.000 0.000 0.000 0.000 0.000 0.000 

Bottom 5% 0.000 0.000 0.000 0.000 0.000 0.000 

Average 0.000 0.000 0.000 0.000 0.000 0.000 

        

t-value 

Early Retirement with Under-

Predicted Consumption 

Top 5% 23.168 26.608 27.820 29.193 22.653 23.569 

Bottom 5% 11.918 27.536 18.440 10.025 27.608 13.175 

Average 25.435 21.924 22.501 17.582 20.468 22.316 

t-test significance 

Early Retirement with Under-

Predicted Consumption 

Top 5% 0.000 0.000 0.000 0.000 0.000 0.000 

Bottom 5% 0.000 0.000 0.000 0.000 0.000 0.000 

Average 0.000 0.000 0.000 0.000 0.000 0.000 

        

t-value 

No Retirement with Under-

Predicted Consumption 

Top 5% 14.907 9.020 10.322 12.946 9.699 11.575 

Bottom 5% 28.966 50.407 22.527 21.847 49.958 26.142 

Average 13.087 10.747 17.626 18.244 11.098 12.028 

t-test significance 

No Retirement with Under-

Predicted Consumption 

Top 5% 0.000 0.000 0.000 0.000 0.000 0.000 

Bottom 5% 0.000 0.000 0.000 0.000 0.000 0.000 

Average 0.000 0.000 0.000 0.000 0.000 0.000 
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Table 18: Daily T-Test of Zones’ Observed LMP Against Market Prices 

        
  AEP APS ATSI COMED DAY DUQ 

 pre-retirement 4.028 4.944 4.317 0.720 4.667 3.284 

t-value ICE post-retirement 0.039 2.037 0.705 4.264 0.023 1.586 

 two years 1.948 3.790 2.686 2.808 2.377 0.643 

 post-retirement 0.000 0.000 0.000 0.473 0.000 0.000 

t-test significance ICE pre-retirement 0.923 0.014 0.388 0.000 0.982 0.052 

two years 0.009 0.000 0.000 0.000 0.001 0.400 

        

 post-retirement 1.761 2.486 1.966 0.532 2.149 1.297 

t-value ERCOT pre-retirement 0.941 2.704 1.714 2.962 1.066 0.161 

 two years 1.738 3.439 2.416 2.420 2.079 0.725 

 post-retirement 0.069 0.010 0.043 0.580 0.026 0.181 

t-test significance 

ERCOT 
pre-retirement 0.331 0.007 0.070 0.001 0.265 0.861 

two years 0.056 0.000 0.007 0.006 0.021 0.413 

        

 post-retirement 2.230 0.650 1.942 6.834 1.829 3.074 

t-value INDIANA pre-retirement 1.265 1.023 0.594 5.605 1.220 3.153 

 two years 1.851 0.713 1.194 7.150 1.667 3.777 

 post-retirement 0.048 0.558 0.082 0.000 0.102 0.006 

t-test significance 

INDIANA 
pre-retirement 0.076 0.181 0.409 0.000 0.082 0.000 

two years 0.010 0.345 0.097 0.000 0.018 0.000 

        

 post-retirement 5.117 5.840 5.343 2.587 5.653 4.536 

t-value MID 

COLUMBIA 
pre-retirement 6.011 6.742 7.055 2.696 6.582 5.648 

two years 7.528 8.456 8.362 3.572 8.255 6.865 

 post-retirement 0.000 0.000 0.000 0.007 0.000 0.000 

t-test significance MID 

COLUMBIA 
pre-retirement 0.000 0.000 0.000 0.006 0.000 0.000 

two years 0.000 0.000 0.000 0.000 0.000 0.000 

        

 post-retirement 5.391 4.489 5.235 7.954 5.129 5.919 

t-value NEPOOL pre-retirement 7.912 6.137 7.703 9.971 8.035 8.873 

 two years 8.778 6.929 8.523 11.502 8.764 9.792 

 post-retirement 0.000 0.000 0.000 0.000 0.000 0.000 

t-test significance 

NEPOOL 
pre-retirement 0.000 0.000 0.000 0.000 0.000 0.000 

two years 0.000 0.000 0.000 0.000 0.000 0.000 

        

 post-retirement 4.428 3.268 4.086 6.942 3.822 4.827 

t-value NP15 pre-retirement 4.589 2.172 3.894 8.154 4.702 7.083 

 two years 5.738 3.170 4.989 9.737 5.532 7.746 

 post-retirement 0.000 0.000 0.000 0.000 0.000 0.000 
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t-test significance NP 15 pre-retirement 0.000 0.039 0.000 0.000 0.000 0.000 

two years 0.000 0.001 0.000 0.000 0.000 0.000 

        

 post-retirement 4.975 5.852 5.268 1.643 5.708 4.214 

t-value PALO VERDE pre-retirement 2.837 4.259 3.775 1.081 3.156 1.945 

two years 4.713 6.092 5.576 0.050 5.375 3.765 

 post-retirement 0.000 0.000 0.000 0.072 0.000 0.000 

t-test significance PALO 

VERDE 
pre-retirement 0.005 0.000 0.000 0.249 0.002 0.051 

two years 0.000 0.000 0.000 0.954 0.000 0.000 

        

 post-retirement 8.311 6.939 8.045 12.158 7.991 8.979 

t-value PJM pre-retirement 6.576 4.302 6.227 9.439 6.745 7.889 

 two years 8.914 6.324 8.505 12.852 8.930 10.386 

 post-retirement 0.000 0.000 0.000 0.000 0.000 0.000 

t-test significance PJM pre-retirement 0.000 0.000 0.000 0.000 0.000 0.000 

two years 0.000 0.000 0.000 0.000 0.000 0.000 

        

 post-retirement 3.284 2.142 3.005 6.826 2.788 3.948 

t-value SP15 pre-retirement 4.679 1.805 4.199 9.309 5.049 6.685 

 two years 5.215 2.432 4.668 10.454 5.186 6.946 

 post-retirement 0.000 0.017 0.001 0.000 0.003 0.000 

t-test significance SP 15 pre-retirement 0.000 0.086 0.000 0.000 0.000 0.000 

two years 0.000 0.010 0.000 0.000 0.000 0.000 

        
 

 

Table 19: Hourly T-Test of Zones’ Electricity Consumption Between Time Periods 

  AEP APS ATSI COMED DAY DUQ 

T-Value 17.017 17.851 16.413 7.991 8.902 13.107 

T-Test 0.000 0.000 0.000 0.000 0.000 0.000 
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Table 20: Early Retirement with Over-Predicted Consumption Model 

Measured in $/MWh Observed - projected price (early retirement) 
 

AEP APS ATSI COMED DAY DUQ 

Top 5% $59.59 $79.49 $72.17 $67.19 $69.77 $54.43 
Bottom 5% -$12.56 -$12.85 -$17.65 -$20.48 -$15.10 -$17.41 

Observations (234) (291) (269) (270) (295) (253) 

Average $6.05 $8.35 $7.47 $6.83 $6.16 $5.33 
Observations (4677) (5818) (5386) (5395) (5903) (5051) 

 

Table 21: No Retirement with Over-Predicted Consumption Model 

Measured in $/MWh Observed - projected price (no retirement) 
 

AEP APS ATSI COMED DAY DUQ 

Top 5% $31.25 $35.03 $33.99 $31.81 $33.63 $31.98 

Bottom 5% -$24.36 -$37.09 -$30.76 -$26.98 -$26.93 -$22.66 

Observations (281) (330) (151) (253) (281) (342) 

Average -$5.51 -$7.15 -$6.07 -$4.39 -$3.97 -$5.62 

Observations (5623) (6599) (3015) (5060) (5627) (6843) 

 

 

Table 22: Early Retirement with Under-Predicted Consumption Model 

Measured in $/MWh  Observed - projected price (early retirement)  
AEP APS ATSI COMED DAY DUQ 

Top 5% 98.64 126.31 76.66 60.54 73.58 94.25 

Bottom 5% -13.89 -14.51 -11.90 -18.13 -13.19 -22.78 

Observations (205) (148) (170) (169) (141) (187) 

Average 10.68 12.99 7.81 5.41 7.65 9.86 

Observations (4106) (2966) (3398) (3389) (2829) (3732) 

 

Table 23: No Retirement with Under-Predicted Consumption Model 

Measured in $/MWh Observed - projected price (no retirement) 
 

AEP APS ATSI COMED DAY DUQ 

Top 5% $53.60 $55.82 $30.09 $31.98 $43.53 $59.30 

Bottom 5% -$31.31 -$37.12 -$29.30 -$30.54 -$28.51 -$35.99 

Observations (136) (83) (146) (131) (98) (88) 

Average 
-$5.16 -$6.56 -$6.04 -$5.58 -$5.26 -$6.52 

Observations 
(2723) (1660) (2926) (2610) (1950) (1769) 
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Table 24: Early Retirement with Over-Predicted Consumption Model 

Percent change      

 AEP APS ATSI COMED DAY DUQ 

Top 5% 64.1% 69.2% 65.3% 69.5% 65.9% 62.5% 

Bottom 5% -106.2% -117.3% -166.5% 20060.8% -135.9% -209.8% 

Observations (234) (291) (269) (270) (295) (253) 

Average 18.1% 23.7% 21.4% 22.1% 18.0% 16.9% 

Observations (4677) (5818) (5386) (5395) (5903) (5051) 

 

Table 25: No Retirement with Over-Predicted Consumption Model 

Percent change      

 AEP APS ATSI COMED DAY DUQ 

Top 5% 43.7% 43.7% 40.6% 45.3% 44.4% 43.8% 

Bottom 5% -131.4% -208.6% -141.8% -157.5% -143.5% -130.2% 

Observations (281) (330) (151) (253) (281) (342) 

Average -21.4% -26.9% -22.6% -18.0% -15.0% -21.9% 

Observations (5623) (6599) (3015) (5060) (5627) (6843) 

 

Table 26: Early Retirement with Under-Predicted Consumption Model 

Percent change      

 AEP APS ATSI COMED DAY DUQ 

Top 5% 76.1% 75.8% 67.2% 65.3% 65.9% 73.7% 

Bottom 5% -90.6% -77.9% -72.1% -3817.5% -71.1% -398.0% 

Observations (205) (148) (170) (169) (141) (187) 

Average 28.3% 29.2% 20.6% 16.6% 20.1% 26.5% 

Observations (4106) (2966) (3398) (3389) (2829) (3732) 

 

Table 27: No Retirement with Under-Predicted Consumption Model 

Percent change      

 AEP APS ATSI COMED DAY DUQ 

Top 5% 53.1% 50.3% 35.7% 41.0% 43.5% 54.9% 

Bottom 5% -308.8% -274.0% -297.5% -1639.6% -223.2% -312.9% 

Observations (136) (83) (146) (131) (98) (88) 

Average -17.0% -20.0% -21.6% -21.4% -17.2% -20.9% 

Observations (2723) (1660) (2926) (2610) (1950) (1769) 
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