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Abstract

Enabling Robust State Estimation through Covariance Adaptation

Ryan M. Watson

Several robust state estimation frameworks have been proposed over the previous decades. Un-
derpinning all of these robust frameworks is one dubious assumption. Specifically, the assumption
that an accurate a priori measurement uncertainty model can be provided. As systems become
more autonomous, this assumption becomes less valid (i.e., as systems start operating in novel en-
vironments, there is no guarantee that the assumed a priorimeasurement uncertainty model char-
acterizes the sensors current observation uncertainty).

In an attempt to relax this assumption, a novel robust state estimation framework is proposed.
The proposed framework enables robust state estimation through the iterative adaptation of the
measurementuncertaintymodel. Theadaptationof themeasurementuncertaintymodel is granted
through non-parametric clustering of the estimator’ s residuals, which enables the characterization
of themeasurement uncertainty via aGaussianmixturemodel. ThisGaussianmixturemodel based
measurement uncertainty characterization can be incorporated into any non-linear least square
optimization routine.

Within this dissertation, the proposed framework is instantiated into three novel robust state
estimation algorithms: batch covariance estimation (BCE), batch covariance estimation over an
augmented data space (BCE-AD), and incremental covariance estimation (ICE). To verify the pro-
posed framework, three global navigation satellite system(GNSS)data setswere collected. Thecol-
lected data sets provide varying levels of observation degradation to enable the characterization of
the proposed algorithmon a diverse data set. Utilizing these data sets, it is shown that the proposed
framework exhibits improved state estimation accuracywhen compared to other robust estimation
techniques when confronted with degraded data quality.
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1
Introduction



1.1 ProblemDescription

The applicability of robotic platforms to an ever increasing number of applications (e.g., disaster

recovery [3], scientific investigations [4], health care [5]) has been realized in recent years. A core

component that enables the operation of these platforms is the ability to localize (i.e., estimate the

position states within a given coordinate frame) given a priori information and a set of measure-

ments. Thus, a considerable amount of research has been afforded to the problem of accurate and

robust localization of a robotic platform.

To facilitate the localization of a platform, a state estimation [6] scheme must be implemented.

These state estimation frameworks can take two forms: either a batch estimator, or an incremental

estimator. The batch variant of state estimation is generally facilitated through the utilization of a

nonlinear least squares (NLLS) algorithm (e.g., line-search method [7], or a trust-region method

[8]). On the other hand, incremental state estimators are usually implemented as a variant of the

Kalman filter [9] (e.g., the extended Kalman filter [10], or the unscented Kalman filter [11]).

The cost function underlying all of the state estimation techniques mentioned above is the l2-

norm of the estimation errors. This cost function enables accurate and efficient estimation when

the assumed models accurately characterize the observations. However, when the utilized model

does not accurately characterize the provided measurements, the estimation framework can pro-

vide an arbitrarily poor state estimate. Specifically, as discussed in [12], the l2-norm cost func-

tion has an asymptotic breakdown of zero (i.e., if any single observation deviates from the utilized

model, the estimated solution can be biased by an arbitrarily large quantity [13]).

To combat the poor breakdown properties of the l2-norm cost function, several robust estima-

tion frameworks have been proposed. These frameworks can be broadly partitioned into two cat-
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egories: data weighting methods, and data exclusion methods. The data weighting methods work

by iteratively calculating a measurement weighting vector such that observations which most sub-

stantially deviated form the utilized model have a reduced influence on the estimated result. Sev-

eral commonly utilized data weight techniques include: robust maximum likelihood type estima-

tors (m-estimators) [14], switchable constraints [15], dynamic covariance scaling (DCS) [16],

and max mixtures [17]. On the other hand, the data exclusion methods work by finding a trusted

subset of the provided observations. Several commonly utilized data exclusion techniques include:

random sample consensus (RANSAC) [18], realizing, reversing, recovering (RRR) [19], l1 relax-

ation [20], and receiver autonomous integrity monitoring (RAIM) (e.g., solution separation [21]

or residual-based [22] techniques ).

Both estimation paradigms have certain undesirable properties. For example, in many applica-

tions, it is undesirable to completely remove observations that do not adhere to the definedmodel

(e.g., the utilization of global navigation satellite system (GNSS) in an urban environment where

it may not be possible to estimate the desired states if observations are removed). Instead, it can be

more informative to accurately characterize the measurement uncertainty model and accordingly

reduce the observation’s influence on the estimate. This concept of data uncertainty model charac-

terization naturally conforms to the data weighting class of robust techniques (as discussed more

thoroughly in Chapter 3). However, the currently utilized weighting techniques have the undesir-

able property that they assume an accurate characterization of the true measurement uncertainty

model can be provided a priori, which may not be a valid assumption if the robotic platform is

operating in an environment that has not been previsouly experienced.

Within this dissertation, a novel robust dataweightingmethodology is developed, which relaxes

For a thorough comparison between the two commonly utilized RAIM implementations, the reader is referred to
[23].
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the assumption that an accurateapriorimeasurementuncertainty characterization canbeprovided.

This assumption is relaxed by iteratively estimating a Gaussian mixture model (GMM) based on

the state estimation residuals that characterizes themeasurementuncertaintymodel. Theapproach

provided in this dissertation is evaluated on several collected GNSS data sets. Utilizing these data

sets, it is shown that the proposedmethodology exhibits improved state estimation accuracy when

compared to other robust estimation techniques when confronted with degraded data quality.

1.2 DissertationContributions

The work detailed within this dissertation, can be summarized through three primary contribu-

tions;

Contribution 1: A novel GNSS signal processing technique is developed. Specifically, a

GNSS signal processing strategy that exploits the smoothing and mapping (SAM) frame-

work commonly utilized within the robotic community is developed. The developed strat-

egy leverages a connection made, within this dissertation, between the carrier-phase ambi-

guity states forGNSS signal processing and the loop-closure constraints which are common

to the SAM formulation.

Contribution 2: A novel robust state estimation framework is developed. Specifically, a

novel robust state estimation framework that works through the iterative adaptation of the

measurement uncertainty model is developed. The adaptation of the measurement uncer-

taintymodel is achieved through non-parametric clustering, which enables the characteriza-

tion of themeasurement uncertainty via a Gaussianmixturemodel. The providedGaussian

mixturemodel can be utilizedwithin any non-linear least squares optimization algorithmby
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approximately characterizing each observation with the sufficient statistics of the assigned

cluster (i.e., eachobservation’s uncertaintymodel is updatedbasedupon the assignment pro-

vided by the non-parametric clustering algorithm). Within this dissertation, both a batch

(i.e., the batch covariance estimation (BCE), as detailed in Chapter 5) and incremental (i.e.,

the incremental covariance estimation (ICE), as detailed in Chapter 7) version of the pro-

posed methodology is developed.

Contribution3: Anovelmethodology for the incorporationofmetadata into the state-estimation

framework is developed. Specifically, it is argued that the uncertainty estimation process

should be augmented to include metadata (e.g., the signal strength of the associated GNSS

observation). Themodification of the uncertainty estimation process to an augmented data

space is significant because it increases the likelihood of a unique partitioning in the mea-

surement residual domain and thus provides the ability to more accurately characterize the

measurement uncertainty model.

1.3 DissertationOutline

To enable a more thorough discussion of the contributions discussed in the previous section (i.e.,

Section 1.2), the remainder of this dissertation is organized in the following manner.

Chapter 2: Within this chapter, a literature review for the subject discussed within this dis-

sertation is provided. This review begins with an overview traditional state estimation and

its robust variants. Then, the focus of the review turns to an overview of GMM fitting tech-

niques.

Chapter 3: Within this chapter, a succinct overview of state estimation is provided. This
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review begins with an overview of traditional state estimation (i.e., non-robust estimation).

Then, a review of robust state estimation methodologies, with the primary objective of the

reviewbeing toprovide aunifying viewof robust state estimationmethodologies as enabling

robustness by adapting the a priori covariance model is provided.

Chapter 4: Within this chapter, a thorough review of the GNSS sensor model which will

be utilized throughout this dissertation is provided. This review will begin with a succinct

review of the GNSS observations, and their primary error sources. Then, a novel GNSS

estimation formulation which details the parallels between GNSS signal processing and

simultaneous localizationandmapping(SLAM)optimizationwith loop-closure constraints

is detailed.

Chapter 5: Within this chapter, a batch covariance estimation technique, which enables

robust state estimation through the iterative adaptation of the measurement uncertainty

model is developed. The proposed algorithm is verified on three GNSS collected data sets,

where it is shown that the proposed technique exhibits some advantages when compared to

other robust estimation techniques when confronted with degraded data quality.

Chapter 6: Within this chapter, a batch covariance estimation technique over an augmented

data space is presented. This approach extends the work proposed in Chapter 5 by arguing

that the uncertainty estimation process should be augmented to include metadata (e.g., the

signal strength of the associated GNSS observation). The proposed algorithm is evaluated

against the several state-of-the-art robust estimators, where it is shown that a significant in-

crease in state estimation accuracy can be granted.

Chapter 7: Within this chapter, an incremental extension of the previously developed batch
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covariance estimation technique is presented. Specifically, an efficient, incremental exten-

sion of the methodology is proposed. The incremental covariance estimation approach, as

detailed within this chapter, is evaluated on three collected data sets, where it is shown to

provide a significant increase in localization accuracy, when compared to other robust esti-

mators.

Chapter 8: Within this chapter, the dissertation concludes. This chapter begins with an

overview of the topics covered within this work, and concludes with proposed future re-

search directions.
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2
Literature Review



The ability to precisely localize a platform is of paramount importance to amyriad of fields (e.g.,

augmented reality [24], autonomous navigation [25], and natural hazard monitoring [26]). As

these systems become fully autonomous (i.e., without human intervention), there is a need to de-

velop robust localization algorithms. As a step toward enabling this, as discussed within this disser-

tation, a novel robust estimation framework is developed.

To enable a discussion of the proposed robust estimation framework, first, the foundation is

laid for the framework through a literature review. This review will begin with a discussion on

traditional state estimation. Then, the discussion turns to a brief overview of the current robust

variants of traditional state estimation.

2.1 State Estimation

To begin the literature review, a succinct review of state estimation is provided. This review will

commence with an overview of the advances made within the traditional (i.e., based upon the

l2-norm cost function) state estimation community. This review of traditional state estimation will

cover both the filtering paradigm [6], and the SAM paradigm [27]. Next, the review will turn to

the field of robust state estimationwhere a concise overview of the recent advances within the field,

with specific emphasis placed on robust state estimation contributions commonly adopted within

the robotics community, is detailed.

2.1.1 Traditional State Estimation

Traditional state estimation is concerned with estimating a set of states (i.e., a set of parameters

which define the system of interest) through the minimization of a cost function that is entirely

constructed via the l2-norm. Techniques to enable this type of estimation can broadly be parti-
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tioned based upon the about of information they marginalize at each time-step. Specifically, there

is the filtering paradigm, which generally marginalizes out all prior information after each update.

And, there is the smoothing paradigm, which retains prior information (i.e., does not marginalize

out all prior information), to allow for re-linearization of prior state estimates as new information

is obtained.

The Filtering Paradigm

The filtering paradigm builds upon a rich history of state estimation that dates to Karl Friedrich

Gauss. Specifically, the filtering paradigm builds upon the concept of finding an optimal set of

states through the minimization of the mean squared error, as introduced by Gauss. This process

of minimizing the mean squared error in a batch setting is generally termed least-squares, and has

a thoroughly studied since it’s inception. For a review of this incremental development, the reader

is referred to [28].

In modern times (i.e., since it’s inception in the early 1960’s), problems that fall within the

domain of filtering are generally addressed through the application of a variant of the traditional

Kalman filter [9]. The Kalman filter works by finding an optimal – where optimality is quantified

by minimizing the mean squared error[6] – combination of the predicted and observed values in

an incremental nature.

However, this framework is only valid under a set of restrictive assumptions. The primary as-

sumptions that restricts the applicability of the traditional Kalman filter is the assumption that the

systems adheres to a linear model; however, additional assumptions are also enforced, such as, the

noise on the observations and the system dynamics are independent. For a review of the theory

and implementation of the Kalman filter, the reader is referred to [29, 30].
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To extend this work to the non-linear regime, Smith introduced the extended Kalman filter

(EKF) [31]. TheEKFworks by linearizing the non-linear system about it’s nominal trajectory (i.e.,

taking a first order Taylor series expansion of the systems about the trajectory [6]). It should be

noted that other non-linear filter techniques have been proposed (i.e., the unscented Kalman filter

[32], or the particle filter [33]); however, in practice, the EKF seems to be themost widely utilized

filter technique, with applications spanning domains from aerospace navigation [34] to ecological

modelling [35].

The Smoothing and Mapping Paradigm

While the filtering paradigm works well for many applications, the marginalization of all prior in-

formation is not advantageous to all applications (e.g., SLAMwhere re-linearization of prior states

is desired when new loop-closure information is available [36]). To enable the re-linearlization of

prior states when new information is present, the smoothing [37] framework is utilized. Since the

seminal paper on the subject, [38], research on smoothing has been dominated by probabilistic

graphical methodologies [39].

When [38] was published, graph-based smoothing was not widely utilized due to computation

complexity of solving the initial formulation. However, quickly thereafter, methodswere proposed

to greatly reduce complexity through the utilization of factor graphs [27, 40]. The
√
SAM formu-

lation as presented in [41] was particularly influential as it drew connections between the factor

graph formulation and sparse linear algebra (i.e., they were able to show that the factor graph di-

rectly encodes themeasurement Jacobianmatrix [41] and thus, can efficiently be solved via aNLLS

algorithm [27].).

This factor graph formulation of smoothing was later extended to enable incremental updates
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(i.e., incremental SAM(iSAM)) in [42]. The iSAMformulationenables incremental updates through

appending the previously factorized system (i.e., the QR-factorization [43] of the information ma-

trix) when new information is present. Then, Givens rotations were utilized to ensure that the

factorization maintained its structure (i.e., an upper-triangular system).

The iSAM formulation required batch re-linerization of the entirematrix factorization to ensure

sparsity [42]. To mitigate this batch re-computation, the Bayes tree [44] was introduced. This

directed graphical model directly represents the square root information matrix and can be easily

computed from the associated factor graph in a two-step process, as detailed in [45]. Due to the

structure of theBayes tree graphicalmodel, thismethodology removes the requirement to re-factor

the entire system when new information is added. Instead, only the affected section of the Bayes

tree is re-factored, as detailed within [45].

2.1.2 The Limitations

One major disadvantages of a traditional state estimator – indifferent to the utilized framework

(i.e., a filter of a SAM methodology) – is the undesirable asymptotic breakdown property [13]

as a result of utilizing a l2-norm cost function exclusively. Any estimator that exclusively utilizes

the l2-norm to construct the cost function will have an asymptotic breakdown point of zero. As

discussed in [12], this property can be intuitively understood by letting any arbitrary observation,

yn, significantly deviate from themodel (i.e., ||yn−hn(X)||Λn → ∞), which, in turn, will arbitrarily

bias the provided state estimate (i.e., ||X|| → ∞). To mitigate this issue, the discuss will next

progress to an overview of several robust estimation techniques.
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2.1.3 Robust State Estimation

As discussed, the traditional state estimation methodologies provide optimal results when the col-

lected observations adhere to the a priorimodels. However, in many robotic applications of inter-

est, the observations can be degraded (e.g., GNSS observations in an urban environment, or RGB

observations in a low-light setting), which cause a deviation between the collected observations

and the assumed models. When this deviation is present, the traditional state estimation schemes

(i.e., estimators that utilize the l2-norm exclusively to construct the cost-function) can breakdown

[13].

To overcome the breakdown of traditional state estimators in data degraded scenarios, several

robust estimation schemes have been developed. These robust estimation schemes reduce the ef-

fect that erroneous observations have on the estimation process by scaling the associated covari-

ance matrix [46]. To enable this covariance scaling in practice, several implementations have been

developed (i.e., m-estimators [14], switchable constraints [47], and DCS [16]).

To extend robust state estimation from the traditional uni-modal uncertainty model paradigm

to a multi-modal implementation, the max-mixtures (MM) [17] approach was developed. The

MM approach mitigates increased computation complexity generally assumed to accompany the

incorporation ofmulti-modal uncertaintymodels by first assuming that the uncertaintymodel can

be represented by a GMM, then selecting the single Gaussian component from the GMM that

maximizes the likelihood of the individual observation given the current state estimate.

For a more thorough discussion on implementation of the above discussed robust estimators,

the reader is referred toChapter 3 of this dissertation. Within this chapter, a discussionof the above

mentioned robust estimators, from the unifying view of enabling robust state estimation through

covariance adaptation, is provided.

13



2.1.4 The Limitations

As discussed, several robust state estimation frameworks have been proposed. Each of the dis-

cussed estimators work under the assumption that an accurate a priorimeasurement error covari-

ance is available. However, in practice, the requirement to supply an accurate a priori characteriza-

tion of the measurement uncertainty model is not always feasible when considering that the plat-

form could be operating in a novel environment, a non-cooperative environment, or both. To relax

this assumption, a novel robust estimation framework is developed within this dissertation that at-

tempts to learn the covariance model in conjunction with the desired states. The novel framework

is proposed within Chapter 5, and extended within Chapters 6 and 7.
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3
State Estimation



Within this chapter, an understanding of the traditional state estimation paradigmwill be devel-

oped. Specifically, this understanding will be developed from the SAM point-of-view, as it is what

will be utilized through this dissertation. To foster this understanding, this Chapter will begin an

overview of the batch estimation framework, as detailed in Section 3.1. Then, an overview of in-

cremental state estimation is provided in Section 3.2. Finally, a review of robust state estimation is

provided in Section 3.3.

3.1 Batch State Estimation

Theproblem generally termed state estimation is primarily concerned with finding the set of states

X (i.e., a set of parameters that describe the system of interest) that is in accordance with the set

of provided information Y. To evaluate the level of accordance between the set of states and the

provided information, it is common to utilize the conditional distribution presented in Eq. 3.1

(i.e., the optimal state estimate X̂ is the state vector that maximizes the probability of the set of

states conditioned on the provided information).

X̂ = argmax
X

p(X | Y) (3.1)

To enable the efficient representation of this estimation problem, the factor graph [27] has

been extensively utilized. This representation is utilized because it enables the factorization of the

complex a posteriori distribution into the product of simplified functions, as presented in Eq. 3.2.
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Where, within Eq. 3.2, ψn is a factor, An ⊆ {X1,X2 . . . ,XN}, and Bn ⊆ {Y1, Y2 . . . YN}.

p(X | Y) ∝
N∏
n=1

ψn(An,Bn), (3.2)

With the factorization of the a posterioridistribution, as presented inEq. 3.2, the state estimation

problem simplifies to the canonical least squares (LS) form [27], as presented in Eq. 3.3, where

hn is the measurement function (i.e., a function that maps the state estimate to the measurement

domain), Λ is the assumed uncertaintymodel, and∥∗∥ is the l2-norm. However, it should be noted

that this simplification is only true if it is assumed that all of the factors within the factorization

adhere to a Gaussian model.

X̂ = argmin
X

N∑
n=1

|| rn(X) ||Λn s.t. rn(X) ≜ yn − hn(X), (3.3)

In general, for the non-linear case, there is no direct solution to the problem presented in Eq.

3.3. Thus, an incremental methodology of the form Xt = Xt−1 + Δ̂X must be employed. To find

an incremental update to the state estimate, it is common to linearize the measurement function

about the current state estimation, as presented in Eq. 3.4. The linearized representation of the

estimation problem presented in Eq. 3.4 can be simplified by pulling the covariance matrix inside

the norm, as presented in Eq. 3.5, where an and bn are the whitened measurement Jacobian and

state estimation residual vectors (i.e., an ≜ Λ−1/2
n

∂hn(Xt−1)
∂X , and bn ≜ Λ−1/2

n rn), respectively.
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Δ̂X = argmin
ΔX

N∑
n=1

∥∥∥∥∂hn(Xt−1)

∂X
ΔX − rn

∥∥∥∥
Λn

(3.4)

= argmin
ΔX

N∑
n=1

∥anΔX − bn∥ , (3.5)

The cost function presented in Eq. 3.5, can be more compactly defined as presented within Eq.

3.6, where thematricesA andB are defined by stacking vertically their respective whitened compo-

nents (i.e.,A is amatrix formed by vertically stacking the set {a1, . . . , aN}, andB is amatrix formed

by vertically stacking the set {b1, . . . , bN}).

Δ̂X = argmin
ΔX

∥AΔX − B∥ , (3.6)

To solve the system presented in Eq. 3.6, it is common to utilize a matrix factorization of the

measurement Jacobain matrix [49]. For this discussion, the QR-decomposition [30] is utilized,

which provides a factorization as presented in Eq. 3.7, where Q ∈ RN×N is an orthogonal matrix

and R ∈ RM×M is an upper-triangular matrix.

A = Q

R
0

 , (3.7)

Utilizing the factorization presented in Eq. 3.7, the cost function presented in Eq. 3.6 can equiv-

Tomakea connectionback to thegraphicalmodel (i.e., the factor graph), itwas shown in [45] that variable elimination
[48] on the factor graph (i.e., converting a factor graph to a Bayes net) is equivalent to QR-decomposition.
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alently be expressed as provided in Eq. 3.8, which simplifies to the expression provided in Eq. 3.9.

The expression provided in Eq. 3.9 is computational efficient due to the upper triangular nature of

the matrix R (i.e., the system RΔ̂X = c can simply be solved via back substitution).

Δ̂X = argmin
ΔX

∥∥QT(AΔX − B)
∥∥ (3.8)

= argmin
ΔX

∥RΔX − c∥+ ∥d∥ s.t. QTB ≜

c
d

 (3.9)

3.2 Incremental State Estimation

The estimation framework discussed previously provides an efficient and numerically stable so-

lution when all of the information is provided beforehand. However, for many applications, the

information is provided incrementally. When this is the case, the estimation framework discussed

previously is inefficient due to the need to recompute the QR-decomposition of the entire mea-

surement Jacobian matrix every time a new information is provided.

Toovercome this computation limitation, the conceptof incrementally updating theQR-decomposition

was studiedwithin [50]. Within [50], incremental updatingof thematrix factorizationwas enabled

by first augmenting the previous factorization (i.e., incorporating new rows in theR and cmatrices),

then, restoring the upper triangular form of the factorization using Givens rotations .

The cost functions presented in Eq. 3.6 and Eq. 3.8 are equivalent due to the orthogonality of the matrix Q (i.e.,
∥Qv∥ = ∥v∥ given thatQ is orthogonal).

See section 5.1.8 of [43] for a thorough review of Givens rotations with applications to LS

19



The approach proposed within [50] does have one key limitation, which is the requirement to

conduct periodic batch re-computation of the QR-decomposition for the entire measurement Ja-

cobianmatrix to enable variable re-ordering. This batch re-computation is utilized to maintain the

sparsity of the upper-triangular system. To mitigate this batch re-computation the Bayes tree [44]

was introduced. This directed graphical model directly represents the square root information ma-

trix and can be easily computed from the associated factor graph in a two-step process, as detailed

in [45]. Due to the structure of the Bayes tree graphical model, this methodology removes the re-

quirement to re-factor the entire systemwhen new information is added. Instead, only the affected

section of the Bayes tree is re-factored, as detailed within [45]. This approach to state estimation is

titled incremental smoothing andmapping (iSAM2), and is the approach utilized within this work

(e.g., see Section 4.3.2 for an application to GNSS signal processing).

3.3 Robust State Estimation

One of themajor disadvantages of utilizing the l2-norm cost function is the undesirable asymptotic

breakdown property [13]. This undesirable property of the l2-norm cost function has spurred sig-

nificant research interest in the direction of robust state estimation [14–17]. Within this Chapter,

several of themajor advanceswithin the fieldwill be discussed from thepoint-of-viewof covariance

adaptation; however, it should be noted that this is not an exhaustive compilation of all robust state

estimation techniques. Rather, the purpose of this discussion is to provide a concise overview of

the recent advances within the field, with specific emphasis placed on robust state estimation con-

tributions now commonly adopted within the robotics community.
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3.3.1 M-Estimators

One of the initial frameworks developed to enable robust state estimation is through a class of m-

estimators, as introduced byHuber [14, 51], that are less sensitive to erroneous observations than

the l2-norm. Specifically, this framework aims to replace the l2-norm cost function, with amodified

cost function that is more robust (i.e., increases more slowly when compared to the l2-norm cost

function, as depicted in Fig. 3.3.1). This class of modified cost functions, generically, take a form

as presented in Eq. 3.10, where ρ(∗) is the modified cost function.

X̂ = argmin
X

N∑
n=1

ρ
(
||rn(X)||Λn

)
= argmin

X

N∑
n=1

ρ(en) s.t. en ≜ ||rn(X)||Λn (3.10)

While numerous robust cost functions exist, this discussion will focus on two commonly uti-

lized functions: the Huber and Cauchy cost functions. (For additional m-estimators, the reader is

referred to [52].) Associatedwith each robust cost function is an influence andweighting function

that can be used to enable these cost functions to be solved with the same NLLS approaches used

for a quadratic cost function. A summary of the cost, influence and weight function is shown in

Table 3.3.1.

As discussed at the outset of this Chapter, our objective is to view robust state estimation as a

type of covariance adaptation. To view m-estimators as a type of covariance adaptation, this exer-

Erroneous observations are simply observations that do not adhere to the defined observation model.
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Figure 3.3.1: The cost function response for two commonly utilized robust maximum like-
lihood estimators. Robust in this sense implies that the cost functions increases more slowly
than the l2-norm for large values of x. The specific form of the robust maximum likelihood
estimators is presented in Table 3.3.1.

M-Estimator ρ(x) ψ(x) w(x)

l2-norm x2 / 2 x 1

Huber

if |x| ≤ k

if |x| > k

 1
2x

2

k(|x| − k
2)

x

k sgn(x)

1

k / |x|

Cauchy k2
2 log(1 +

x2
k2 ) x /

[
1 + x2/k2

]
1 /
[
1 + x2/k2

]
Table 3.3.1: Functions utilized to implement the l2-norm, Cauchy, and Huber cost functions,
where, where ρ(x) is the robust cost function, ψ(x) ≜ ∂ρ(x)

∂x is the influence function, w(x) ≜
ψ(x)
x is the weighting function, and k is the user defined kernel width.

cise will begin by taking the gradient of the modified cost function (see Eq. 3.10), as presented in

Eq. 3.11.
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∂J
∂X

=
N∑
n=1

∂ρ
∂en

∂en
∂rn

∂rn
∂X

= rn(X)T
[

1
en

∂ρ
∂e

∣∣∣∣
en(X)

Λ−1
n

]
∂rn
∂X

. (3.11)

The expression for the gradient of the modified cost function can be further reduced by noting

that 1
en

∂ρ
∂en

, is equivalent to the m-estimator weighting function, by definition. This simplifies the

gradient expression for the m-estimator cost function as presented in Eq. 3.12, which is equivalent

to the traditional l2-norm cost function, but with an adaptive covariance. Themodified covariance,

Λ̂n, is provided in Eq. 3.13, where the specific weighting function is dependent upon the utilized

m-estimator.

∂J
∂X

= rn(X)T
[
w
(
en
)
Λ−1
n

]
∂rn
∂X

, (3.12)

Λ̂n =
[
w(en)Λ−1

j

]−1
=

1
w(en)

Λj, (3.13)

Fromthisdiscussion, it shouldbenoted that the robust state estimationproblemwhenm-estimators

are utilized is equivalent to an iteratively re-weighted least squares (IRLS) problem [53, 54]. In

IRLS, the effect of an erroneous observation is minimized by covariance adaptation based on the

previous optimization iteration’s residuals, as presented in Eq. 3.14. The equivalence between m-

estimators and IRLS has been previously noted in the literature [55, 56].

X̂ = argmin
X

N∑
n=1

wn(en) || rn(X) ||Λn (3.14)
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3.3.2 Switch Constraints

A more recent advancement within the robotics community, switch constraints (as introduced in

[47]) is a specific realization of a lifted state estimation scheme [57]. Switch constraints augment

the optimization problem by concurrently solving for the desired states and a set of measurement

weighting values, as provided in Eq. 3.15

X̂, Ŝ = argmin
X,S

N∑
n=1

[
|| ψ(sn)rn(X) ||Λn + || γn − sn ||Ξn

]
, (3.15)

whereS is the setof estimatedmeasurementweights, ψ() is a real-valued function such thatψ(∗) →

[0, 1], γ is a prior on the switch constraint, and Ξ is the switch constraint uncertainty model.

To explicitly view the switch constraint technique as a covariance adaptationmethod, the effect

that switchable constraintswill have onmeasurement constraint in themodified cost function (e.g.,

Eq. 3.15) is evaluated, as depicted in Eq. 3.16 where wn ≜ ψ(sn). This relation can be further

reduced to the expression presented in Eq. 3.17, where Λ̂−1
n = w2

nΛ−1
n , by noting that wn is a scalar.

|| ψ(sn)rn(X) ||Λn =
[
wnrn(X)

]TΛ−1
n

[
wnrn(X)

]
(3.16)

= rn(X)TΛ̂
−1
n rn(X) (3.17)

The relation presented in Eq. 3.17 directly shows a relation between the estimated observation

weighting — as implemented in the switchable constraint framework — and the scaling of the a

priorimeasurement covariance matrix.

Within [15] it is recommended to utilize a piece-wise linear function.
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3.3.3 Dynamic Covariance Scaling

One potential disadvantage of the switchable constraint framework is the possibility for an in-

creased convergence time due to the augmentation of the optimization space [16]. To combat

this issue, the DCS [16] approach was proposed as a closed-form solution to the switch constraint

weighting optimization. Them-estimator equivalent weighting function, as derived within [58], is

provided as

w
(
x
)
=


1, if x2 ≤ k.

4k2
(x2+k)2 , otherwise,

(3.18)

where k is the user defined kernel width, which dictates the residual threshold for observations to

be considered erroneous. From this expression, it is noted that DCS is equivalent to the standard

least-squares estimatorwhen the residuals are less than the kernelwidth k; however, when residuals

lie outside of the kernel width, the corresponding observations are de-weighted according to the

provided expression.

From the provided weighting expression, the equivalent DCS robust m-estimator can be con-

structed, as presented in Table 3.3.2. This is performed by utilizing the definitions provided within

[55], (i.e., assuming a weighting function is provided, then the influence function is calculated as

ψ(x) = x w(x) and the robust cost function is ρ(x) =
∫
ψ(x)dx).

With the DCS equivalent m-estimator, and the discussion provided in section 3.3.1, it can seen

that DCS based state estimation enables robustness through the adaptation of the a priorimeasure-

ment error covariance. The specific relation between the a priori andmodified covariancematrices

is provided in Eq. 3.13 with a weighting function implementation as provided in Eq. 3.18.
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M-Estimator ρ(x) ψ(x) w(x)

DCS

if x2 ≤ k

if x2 > k


1
2x

2

k
(
3x2−k

)
2
(
x2+k
)

x
4k2x

(x2+k)2

1
4k2

(x2+k)2

Table 3.3.2: Equivalent dynamic covariance scaling m-estimator, w(x) is the weighting func-
tion – as specified in Eq. 3.18, ψ(X) ≜ x w(x) is the influence function, ρ(X) =

∫
ψ(x)dx is the

robust cost function, and k is the user defined kernel width.

3.3.4 Max Mixtures

While the previously discussed estimation frameworks do enable robust inference, they still have

the undesirable property that the measurement uncertainty model must adhere to a uni-modal

Gaussian model. To relax this assumption, a GMM [59] can be utilized to represent the measure-

ment uncertainty model. The GMM characterizes the uncertainty model as a weighted sum of

Gaussian components, as depicted in Eq. 3.19, where rn ≜ yn − hn(X) is an observation residual,

w = {w1,w2, . . . ,wm} is the set of mixture weights with the constraint that
∑M

m=1 wm = 1, and μm,

Λm are the mixture component mean and covariance, respectively.

rn ∼
M∑

m=1

wmN(rn | μm, Λm) (3.19)

Utilizing aGMMrepresentation of themeasurement uncertaintymodel can greatly increase the

accuracy of themeasurement error characterization; however, it also greatly increases the complex-

ity of the optimization problem. This increase in complexity is caused by the inability to reduce the

factorization presented in Eq. 3.2 to a NLLS formulation, as was possible when a uni-modal Gaus-

sian model was assumed.

To enable the utilization of aGMMwhileminimizing the computational complexity of the opti-
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mization process, the max-mixtures approach [17] was proposed. This approach circumvents the

increased computational complexity by replacing the summation operation in the GMM with the

maximum operation, as depicted in Eq. 3.20, where ∼̇ depicts that rn is approximately distributed

according to the right-hand side.

rn ∼̇ max
m

wmN(rn | μm, Λm) (3.20)

Within Eq. 3.20, the maximum operator acts as a selector (i.e., for each observation, the max-

imum operator selects the single Gaussian component from the GMM that maximizes the likeli-

hood of the individual observation given the current state estimate). Through this process, each

observation is only utilizing the single Gaussian component from the model, which allows for the

simplification of the optimization process to the weighted sum of squared residuals [27, 49] (i.e., a

NLLS optimization problem).

Similar to the previously discussed robust state estimation formulations, the max-mixtures im-

plementationcanalsobe interpretedas enabling robustness throughcovariance adaptation. Where,

the covariance adaptation is enabled through the maximum operator. Specifically, each observa-

tion initially belongs to a single component from theGMMmodel, then through the iterative opti-

mization process, the measurement error covariance for each observation is updated to one of the

components from within the predefined GMM.

3.4 Key Takeaways

Utilizing the state estimation approach developed within Section 3.2 (i.e., the iSAM2 approach)

provides an efficient estimation framework when the provided information adheres to the a pri-
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orimodels. However, when the provided information does not adhere to the a priorimodels, the

estimator can breakdown [13]. This property is not exclusive to the iSAM2 framework, instead,

it is a fundamental property of any estimation framework that exclusively utilizes the l2-norm to

construct it’s cost function.

To overcome this limitation, several robust estimation frameworks have been proposed (e.g.,

m-estimators [14], lifted estimation [47], and MM [17]). Linking all of these estimation frame-

works is the concept of enabling robust estimation through appropriately weighting (i.e., scaling

the assumed covariance model) the contribution of each information source based upon the level

of adherence between the information and the a priori model. To implement this concept, the

IRLS formation [55], as provided in Eq. 3.14, can be utilized, where the weighting function w(∗)

is dependent upon the utilized robust estimation framework (i.e., DCS [16]).

At the core of all of these robust frameworks is the assumption that an accurate a priorimeasure-

ment uncertainty model can be provided. As systems becomemore autonomous, this assumption

becomes less valid (i.e., as systems start operating in novel environments, there is no guarantee that

the assumedapriorimeasurement uncertaintymodel characterizes the sensors current observation

uncertainty). In an attempt to relax this assumption, a novel robust state estimation framework is

developed within Chapter 5, and extended within Chapters 6 and 7.
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4
GPS Sensor Model



4.1 Chapter Abstract

Within this dissertation, GNSS observations will be the primary information source utilized to val-

idate the proposed robust estimation techniques. Thus, within this chapter, an overview of the

utilized GNSS model is provided. To begin the discussion of the utilized GNSS model, it is noted

that estimation techniques toprecisely localize a kinematic platformwithGNSSobservables canbe

broadly partitioned into two categories: differential, or undifferenced. The differential techniques

(e.g., real-time kinematic (RTK)) have several attractive properties, such as correlated errormitiga-

tion and fast convergence; however, to support a differential processing scheme, an infrastructure

of reference stations within a proximity of the platform must be in place to construct observation

corrections. This infrastructure requirement makes differential processing techniques infeasible in

many locations. Tomitigate the need for additional receivers within proximity of the platform, the

precisepointpositioning (PPP)methodutilizes accurateorbit andclockmodels to localize theplat-

form. The autonomy of PPP from local reference stations make it an attractive processing scheme

for several applications; however, a current disadvantage of PPP is the slow positioning conver-

gence when compared to differential techniques. In this dissertation, the convergence properties

of PPP with an incremental graph optimization scheme (Incremental Smoothing and Mapping

(iSAM2)), which allows for real-time filtering and smoothing, is evaluated. The characterization

is first conducted through a Monte Carlo analysis within a simulation environment, which allows

for the variations of parameters, such as atmospheric conditions, satellite geometry, and intensity

of multipath. Then, an example collected data set is utilized to validate the trends presented in the

simulation study.

The software developed for this study can be obtained from the following link: https://github.com/wvu-
navLab/PPP-BayesTree

30

https://github.com/wvu-navLab/PPP-BayesTree
https://github.com/wvu-navLab/PPP-BayesTree


4.2 Literature Review

As previously mentioned, one commonly used methodology for processing GNSS data is the Pre-

cise Point Positioning (PPP) approach [60]. The precise point positioning (PPP) algorithm uti-

lizes the dual-frequency undifferenced GNSS observables, which allows the technique to operate

without theneedof external reference stations. Theundifferencedobservations are used alongwith

precise GNSS orbit and clock bias products to mitigate the errors removed through observation

differencing [61]. The orbit and clock products that enable the PPP method to achieve decime-

ter level positioning can be broadcast to an end-user in real-time (e.g., L-band [62] and Iridium

modem link [63]).

Real-time kinematic-PPP (kPPP) provides similar positioning performance when compared to

traditional differential GPS (DGPS) (i.e., Real Time Kinematic) for dynamic platforms [64]. The

comparable positioning accuracy without the need for a nearby static GPS reference stationmakes

it an attractive processing formulation. However, it has been noted in several studies that the PPP

formulation has a longer convergence period than comparable differential techniques [65, 66].

In an attempt to decrease the initial convergence period, there has been a plethora of research

into augmenting the PPP approach with additional information sources. One of the most com-

monly utilized augmentation sources for traditional single constellation PPP is additional GNSS

observables. One example of this type of augmentation is the incorporation of multiple constella-

tion observations [67, 68]. Another example of this type of augmentation is the PPP-RTK formu-

lation [69] which provides faster convergence by enabling integer ambiguity resolution [70]. An-

other well studied form of PPP augmentation is the tightly coupled PPP inertial navigation (INS)

formulation [71], which has also been shown to decrease the initial convergence period of PPP
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[72]. However, all PPP augmented methods require additional infrastructure (e.g., a network of

reference stations, or additional sensors on-board), which can be prohibitive formany applications.

Another method to decrease the convergence period of PPP is to utilize a novel optimization

framework. This has the potential to provide a benefit over the previously discussed PPPmethods

because all the previously provided methods utilize the same underlying optimization framework

(i.e., a variant of the Kalman filter [9, 11, 30]). The Kalman filter framework estimates the desired

states bymarginalizing all prior information andpropagatingwith dynamicmodels to the next time

step. For PPP, where a subset of the desired states are not observable over a single epoch (i.e., the

carrier-phase ambiguity states), this may not be the best framework.

In this Chapter an evaluation of the PPP model utilizing an incremental graph optimization

framework is presented. To enable this evaluation, the advances made within the robotics commu-

nity on efficient, real-time smoothing are utilized. Research into smoothing, within the robotics

community, has been dominated by graph based methodologies since the seminal paper on the

subject was published in 1997 [38]. When [38] was published, graph-based smoothing was not

widely utilized due to computation complexity of solving the initial formulation. However, quickly

thereafter, methods were proposed to greatly reduce complexity through the utilization of factor

graphs [73]. The
√
SAM formulation as presented in [41]was particularly influential as it provided

connections between the factor graph formulation and sparse linear algebra. The idea of batch fac-

tor graph optimization was later extended to an incremental inference framework in [42, 74]. The

work presented in [74] provides a frame-work to conduct real-time [75], non-linear graph based

filter and smoothing.
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4.3 GPS Based State Estimation

4.3.1 Constructing the Factor Graph Constraints

To allow autonomy of the PPP approach from local reference stations, the undifferenced dual-

frequency GNSS observables are utilized. Due to the undifferenced nature of the observations,

the PPP processing technique must incorporate GNSS error mitigation models — these models

provide corrections for the corrupting sources that would bemitigated through observation differ-

encing — to provide an accurate positioning solution. The sources that corrupt a GNSS observa-

tion can be segregated into three partitions: the error contributed by the propagationmedium, the

error contributed by the control segment, and the error contributed by the user.

To begin constructing ourmeasurementmodel, themethod implemented tomitigate the propa-

gationmedium errors are discussed. The error attributed to the propagationmedium is composed

of delay due to the ionosphere and the delay due to the troposphere. To mitigate the ionospheric

delay, it is common to leverage the dispersive nature of themedium, and a linear combinationof the

GPS L1 and L2 frequencies (1575.42 MHz and 1227.60 MHz, respectively) is formed to produce

ionospheric-free (IF) pseudorange and carrier phase measurements [61]. The IF combination of

an observable,Oj, can be seen in Eq. 4.1. However, if only single frequency observations are avail-

able, an ionospheric model (i.e., the Klobuchar model [76]) can be utilized to reduce the error

attributed to the medium. To see the affect that the selected ionosphere model can have on the

localization performance, Fig 4.3.1 is provided.

Oj
IF = Oj

L1

[
f21

f21 − f22

]
− Oj

L2

[
f22

f21 − f22

]
(4.1)
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(a) Horizontal localization error as a function
of the ionosphere model.

(b) Total localization (i.e., 3D) error as a func-
tion of the ionosphere model.

Figure 4.3.1: GNSS based localization error as a function of the utilized ionosphere model.

To mitigate the error attributed to the troposphere, both the wet and the dry component of the

troposphere must be modeled, as shown in Eq. 4.2. One commonly utilized model for the dry

component of the troposphere is the Hopfield approach [77]. To compensate for the wet delay

— the wet component only accounts for approximately 10% of the total troposphere error — and

the residual error of the dry delay model, a stochastic random variable is added to the state vector.

Additionally, there are also higher fidelity empirical models (i.e,. the JPL model [77]) that can be

broadcast to the user. To evaluate the affect that the selected troposphere model can have on the

localization performance, Fig 4.3.2 is provided.

T(el) = Tz,dMd(el) + Tz,wMw(el) (4.2)
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(a) Horizontal localization error as a function
of the troposphere model.

(b) Total localization (i.e., 3D) error as a func-
tion of the troposphere model.

Figure 4.3.2: GNSS based localization error as a function of the utilized troposphere model.

Tomitigate the error attributed to the control segment, thePPPapproachutilizes orbit and clock

corrections. These global corrections are generated through a network of reference stations that

are at a set of known locations, and thus can be utilized to accurately estimate the satellites states.

The orbit and clock products that enable the PPP method to achieve decimeter level positioning

can be broadcast to an end-user in real-time (e.g., L-band [62] and Iridium modem link [63]). To

evaluate the affect that the selected orbit and clockmodel can have on the localization performance,

Fig 4.3.3 is provided. For amore thorough reviewof the affect that the quality of the orbit and clock

models can have on the localization performance of GNSS based estimation, the reader is referred

to [34, 72].
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(a) Horizontal localization error as a function
of the orbit and clock model.

(b) Total localization (i.e., 3D) error as a func-
tion of the orbit and clock model

Figure 4.3.3: GNSS based localization error as a function of the utilized satellite orbit and
clock model.

Finally, a discussion on the user error segment is provided. The user error segment is composed

of two sources: multipath error, and receiver thermal noise error. For this study, no methods were

implemented to explicitly model the user segment error; however, as noted in [78], the magni-

tude or the user error is proportional to the elevation angle between the platform and the satellite

so, within this evaluation, the uncertainty in the observation is scaled by the elevation angle. It

should be noted that PPP observationalmodels formoving platforms typically include corrections

for relativistic effects (i.e., from theGPS broadcast correction), receiver and satellite antenna phase

center variation, and carrier-phasewind-up; however, these effectswere neglectedwithin this simu-

lation study. Additionally, dynamic platform generally couple inertial information with the GNSS

observables to mitigate uncertainty in the platforms dynamic model [72].

Utilizing theprovidederrormitigation techniques, thePPPobservationmodel canbeconstructed.

The pseudorange and carrier-phasemeasurements aremodeled as shown in Eq. 4.3 and Eq. 4.4, re-
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spectively: where, δtu is the receiver’s clock bias, δts is the satellite’s clock bias,Tz is the tropospheric

delay in the zenith direction,Md(elj) is a user to satellite elevation angle dependent mapping func-

tion, δRel. is the correction attributed to relativistic effect [79], δP.C. is the correction attributed to

the offset between the satellite’s center of mass and the phase center of the antenna [80], δD.C.B is

the differential code bias correction [77], δW.U. is the correction attributed to the windup effect on

the phase observables [81], λIF is the wavelength corresponding to the IF combination, andNIF is

phase ambiguity. In Eqs. 4.3 and 4.4 the remaining unmodelled error sources are indicated with ε.

To implement the provided observationmodel in software, the open-source library GPSTk [82] is

utilized.

ρjIF = ||Xj
s(te)− Xj

u(tr)||+ c(δtu − δts)

+ Tz,dMd(elj) + δRel. + δP.C. + δD.C.B + εjρ
(4.3)

φjIF = ||Xj
s(te)− Xj

u(tr)||+ c(δtu − δts)

+ Tz,dMd(elj) + δRel. + δP.C. + δW.U. + λIFN
j
IF + εjφ

(4.4)

Using the PPP observation model, a GNSS constraint for the factor graph [83] can be con-

structed. To begin, it is noted that the GNSS observations are providing a set of likelihood con-

straints, L(O|X), on the optimization process. If the assumption is made that the state and mea-

surement noise models are Gaussian, then this constraint can be incorporated into factor graph

through the mahalanobis distance, as provided in Eq. 4.5, where z is the observed measurement, ẑ

is the estimated measurement — calculated using Eq’s 4.3 and 4.4 — and Λ represents the uncer-
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tainty of the observation.

ψ l = ||z− ẑ||Λ

= (z− ẑ)TΛ−1(z− ẑ)
(4.5)

Incorporating the Carrier-Phase Ambiguity State

There are several ways in which the carrier-phase ambiguity states can be incorporated into the

factor graph. One such way is to incorporate a new carrier-phase ambiguity state for each epoch.

Consecutive carrier-phase ambiguity states can be constrained by a process noise update. Themea-

surement Jacobian associated with this graph construction is represented in Fig. 4.3.4.A. From Fig

4.3.4.A, it can be seen that the measurement Jacobian is more densely populated than desired.

To construct less densely populated measurement Jacobian (i.e., a more efficient optimization

scheme), the knowledge that the true carrier-phase ambiguity value for a given satellite within a

continually tracked phase-arc is a constant value can be leveraged. Due to this property of the true

ambiguity value, the carrier-phase ambiguity factor can be represented as a random constant vari-

able. Where, initially, a single factor is added for each satellite, and a new factor is added only if the

there is a cycle-slip or if a new satellite is tracked. By treating the carrier-phase bias factor in this

manner (i.e., like a “landmark” variable in traditional pose-graph SLAM [36]), and utilizing the

Bayes tree based optimizer, an efficient real-time smoothing formulation for GNSS signal process-

ing is presented. Themeasurement Jacobian associatedwith this graph construction is represented

in Fig. 4.3.4.B. FromFig. 4.3.4.B, a less densely populatedmeasurement Jacobian is seen, as desired.
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N.Z. = 216273

(A)

N.Z. = 176940

(B)

Figure 4.3.4: Example sparse measurement Jacobian for the PPP processing strategy. Figure
(A) shows the measurement Jacobian when a new carrier-phase ambiguity state is added for
each epoch, where N.Z. represents the number of non-zero elements. Figure (B) shows the
measurement Jacobian when a new carrier-phase ambiguity is added only when a new satel-
lite is tracked or if a carrier-phase cycle-slip occurs, where N.Z. is the number of non-zero
elements.

4.3.2 Incremental Factor Graph Inference

The formulation presented in the previous sections provides an efficient estimation of X̂ when all

of the information is provided a priori . However, it is generally the case that information is arriv-

ing sequentially, and it is desired to incrementally provide state estimates. The ability to provide

an incremental estimator lies in the capability of the optimizer to reuse prior computations. A well

studied technique of computation reuse, for state estimation, is to employ QR-factorization to up-

date the previous matrix factorization [30, 42]; however, this technique only works for linearized

systems.

To overcome this limitation, the Incremental Smoothing and Mapping (iSAM2) formulation

was developed [74]. The iSAM2 formulation allows for incremental inference over linear or non-

linear objective functions through the utilization of a novel graphical model, the Bayes tree [84].
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To provide insight into this formulation, specifically for GNSS applications, a simple GNSS exam-

ple will be presented. Where it will be shown how to convert the GNSS factor graph into a Bayes

tree. Additionally, a discussion will be provided on how the Bayes tree graphical models allows for

efficient inference.

To begin our discussion, a factor graph that represents theGNSS inference problem is presented

in Fig. 4.3.5. With this factor graph, it is desired to estimate the states {X,B}. In this formulation,

X represents the position, troposphere, and receiver clock bias states, as provided in Eq. 4.6. Addi-

tionally, the vertices B represents the carrier-phase bias states.

X =


δP

Tz,w

Cb

 (4.6)

X1

L1

X2 X3

L2

Prior Factors
Inertial Factors
Lidar Factors

Figure 4.3.5: GNSS factor graph construction where the carrier-phase ambiguity states are
treated as “land-mark” observations.

Utilizing the factor graph presented in Fig. 4.3.5, the process of converting a factor graph into

a Bayes tree can commence. To enable this, an intermediate step an interment step is taken to

construct a Bayes net. The Bayes net can be constructed from the factor graph using a variable
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elimination game [85]. For our specific example, the Bayes net is provided in Fig. 4.3.6, if the bias

states are eliminated first then the positing states (i.e., the variable elimination is B1,B2,X1,X2,X3

). It should be noted that if the elimination ordering is varied, the resultant Bayes net will change

and this can have a substantial impact on the run-time of the optimizer [86].

X1

B1

X2 X3

B2

Figure 4.3.6: Generating a Bayes Net from the original factor graph, as presented within Fig.
4.3.5, using the elimination ordering, {B1, B2, X1, X2, X3}

Utilizing the previously constructedBayes net, theBayes tree can be constructed. TheBayes tree

is constructed to take advantage of the clique structure within the Bayes net. That is, by re-writing

the Bayes net the resulting structure is a directed tree, where the vertices in the graph represent

cliques in the original Bayes net. For our GNSS example, the constructed Bayes tree is provided in

Fig. 4.3.7.
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X2, X3

X1, B1; X2 B2; X3

Figure 4.3.7: Generating the Bayes tree from cliques in the chordal Bayes net, as constructed
within Fig. 4.3.6.

The tree structure present in the Bayes tree plays a pivotal role in the ability of the data structure

to provide an efficient incremental inference engine. The primary advantage of the tree structure

is in the idea that only local sections (i.e., a branch in the Bayes tree structure) of the data structure

needs to be re-linearized when new constraints are added to the graph. Where re-linearization

can be conducted by converting a subset of the Bayes tree back into a factor graph adding the new

constraint [27].
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4.4 Experimental Evaluation

To conduct an evaluation of the proposed GNSS processing strategy, two data sets will be utilized.

First, the evaluation is conducted within a simulation environment. Then, to provide a more di-

verse evaluation, the proposed approach is tested on GNSS data collected on-board a UAV.

4.4.1 Evaluation on Simulated Data

To conduct an analysis of PPP convergence, a simulation environment was constructed. For syn-

thetic observations generation, the SatNav-3.04 Toolbox [87] is utilized, which provides a Mat-

lab environment for generating dual-frequency pseudorange and carrier-phase observations for a

specified trajectory. For this evaluation, four trajectories of varying dynamic were created — an

example flight trajectory is provided in Fig. 4.4.1. To tailor the toolbox for an evaluation of kine-

matic PPP airborne positioning, several minor modifications were made, as discussed in [34]. For

example, toolbox was modified to include attitude dependent satellite masking and carrier-phase

breaks. That is, when a satellite is obscured or nearly obscured due to a change in platform attitude,

it is masked from view and the the potential of a carrier-phase breaks is increased. Additionally,

for a PPP analysis, a methodology of constructing an orbit and clock model is required. This error

model is constructed by differencing JPL’s International GNSS Service (IGS) submission with Eu-

ropean Center for Orbit Determination (CODE) submission. For a more detailed discussion on

the simulation environment, the reader is directed to [34].

Toevaluate thepositioningperformanceof thePPP incremental graphoptimizer, aMonteCarlo

style experiment was implemented. Specifically, one hundred datasets were generated where sev-

eral parameters, which are known to adversely affect GNSS positioning performance, were ran-
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Figure 4.4.1: Example flight trajectory utilized for simulated GNSS observation generation.

domly initialized for each flight— see Table 4.4.1 for additional information on varied parameters.

Table 4.4.1: Description of randomly initialized parameters within the Monte-Carlo evalua-
tion.

Varied parameters Parameter description
Thermal noise σρ = 0.32m , σφ = 0.16λ
Multipath σ = 0.4m, τ = 15sec
Tropospheric delay Modified Hopfield with linear scale
Ionospheric delay OIF used to mitigate error to 1st order
Receiver clock bias σ = 30ns, δτb = 100ns
Phase ambiguity Random initialization with attitude dependent phase breaks
Orbits Orbits σ = 5cmwith linear scale

To provide a reference positioning solution, a traditional extended Kalman filter (EKF) was

utilized, where the specific EKF formulation details are provided in [34]. To provide a fair com-

parison, the same stochasticmodels were implemented for both estimators. The specific stochastic

models utilized for the comparison are provided in Table 4.4.2.
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Table 4.4.2: Stochastic model parameters for estimators.

Parameter a priori σ Process noise Correlation time
Position 1.0m 5 m√

s ∞
Trop. wet zenith delay 0.3m 3e-5 m√

s ∞
Receiver clock 3e6m 2000 m√

s 0
Phase biases 100m 0 m√

s ∞

10 20 30 40

Time (Minutes)

0.5

1

1.5

2

2.5

3

3.5

4

R
S

O
S

 P
o

si
ti

o
n

in
g

 E
r
r
o

r
 (

m
)

Kalman filter

Incremental graph optimizer

Figure 4.4.2: Example RSOS positioning error profile
for a typical simulated data set

Table 4.4.3: Positioning statistics
for a single flight

(cm.) Incremental graph Kalman filter
Median 20.09 21.40
Mean 20.56 45.68

Variance 5.13 72.23
Max. 126.7 407.26

Estimation Performance

To begin an evaluation of the PPP incremental graph optimizer, a single data set, which is represen-

tative of all datasets simulated for this study, will be analyzed. As a starting point, the residual sum

of squares (RSOS) positioning error is utilized to evaluated the performance of both estimators,

as shown in Fig. 4.4.2. From Fig. 4.4.2, it can be readily seen that the incremental graph optimizer

more quickly converges — when compared to the EKF — to a steady-state value. Additionally, it

should be noted that both estimators converge to approximately the same value.

The RSOS positioning error statistics for both estimators are provided in Table 4.4.3. From Ta-

ble 4.4.3 it should benoted that the incremental graphoptimizer outperforms theEKFwith respect

to allmetrics provided (e.g., the incremental graphoptimizer provides a 25 cmerror reductionwith
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Figure 4.4.3: Example phase bias convergence rate for a typical simulated data set

respect to the mean RSOS positioning error).

To continue an analysis of this example data set, it can be seen in Fig. 4.4.2 that the most sub-

stantial positioning error reduction attributed to the incremental graph optimizer occurs during

the first several minutes of the flight (i.e., during the PPP convergence period). To provide insight

into the accelerated convergence rate of the incremental optimizer, next, an evaluation of both es-

timators ability to correctly resolve the phase bias states is provided in Fig. 4.4.3. Where it can

be seen that the incremental graph optimizer provides a substantial decrease in carrier-phase bias

estimation error when compared to the EKF.

Now, the evaluation shifts from a single flight to the performance of both estimators over all

simulated data sets. As with the previous evaluation of a single flight, the RSOS positioning error

will be utilized as the metric of comparison.

To begin our evaluation, the cumulative distribution function (CDF) of the RSOS positioning

error for both estimators is evaluated, as provided in Fig. 4.4.4. FromFig. 4.4.4 it can be noted that

there is a considerable shift to the left for theCDFof theRSOSpositioning error of the incremental
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Figure 4.4.4: CDF of the RSOS positioning error for all
epochs over the 100 simulated datasets.

Table 4.4.4: Positioning statistics
for all epochs.

(cm.) Incremental graph Kalman filter
Median 40.01 39.7
Mean 97.50 256.27

Variance 149.46 641.40
Max. 2318.43 10,152.28

graphoptimizer for large error values. Onepossible explanation for this trend—as indicatedbyour

evaluation of a single flight — is that the incremental graph optimizer is more quickly converging

to a steady-state value.

To confirm that RSOS positioning error seen in Fig. 4.4.4 for the incremental graph optimizer

is occurring during the initial convergence period, a CDF of the RSOS positioning error for both

optimizers during the first 15minutes of each data set is provided in Fig. 4.4.5. As indicated by the

right shift in Fig. 4.4.5 of the EKF RSOS positioning error line, the incremental graph optimizer

provides a more accurate positioning solution during the initial convergence period. The specific

RSOS positioning error reduction during the initial convergence period can be seen in Table 4.4.5.

4.4.2 Evaluation on Collected Data

Experimental Setup

Finally, to verify the positioning performance benefits noted in the simulation study, a similar anal-

ysis is conducted on an example collected dataset. The dataset to be evaluated was collected on-
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Figure 4.4.5: CDF of the RSOS positioning error for
epochs within the convergence period over the 100 simu-
lated datasets.

Table 4.4.5: Positioning statistics
for epochs within the convergence
period.

(cm.) Incremental Graph Kalman filter
Median 117.76 295.15
Mean 188.79 665.35
Variance 217.16 984.01
Max. 2,318.43 10,152.28

Figure 4.4.6: Phastball research platform [1] in flight over the West Virginia University Jack-
son’s Mill airfield.

board a small, fixed-wing Unmanned Aerial Vehicle (UAV). This UAV testbed (Phastball) — as

depicted in Fig. 4.4.6 — was developed at West Virginia University as a research platform [1].

The Phastball is equipped with a NovAtel OEM-615 dual-frequency GNSS receiver, which pro-

vides 10HzGNSS observables over the duration of the flight. The flight profile is depicted in Fig.

4.4.7. A second OEM-615 NovAtel GNSS receiver was placed near the runway to allow for a post-

processed RTK solution, where RTKLIB [88] was utilized to generated the reference solution.
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Figure 4.4.7: Flight profile for collected data set.

Estimation Performance

Utilizing this dataset, the PPP incremental graph optimizer is evaluated against a Kalman filter

based PPP approach, where both estimators are given the same inital conditions (i.e., both esti-

mators are provided the same initial error covariance, the same measurement noise model, and

the same process noise model). In Fig. 4.4.8 the 3D RSOS positioning error for both estimators

is provided. The result presented in Fig. 4.4.8 follow the trend provided by the simulation study

(i.e., the incremental graph optimizer provides faster positioning error convergence than that pro-

vided by the Kalman filter). This is further validated by looking at Table 4.4.6, where a substantial

median 3D RSOS positioning error reduction is granted by the PPP incremental graph optimizer

when compared to the Kalman filter.
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Figure 4.4.8: RSOS positioning error comparison for a
Kalman filter and the incremental graph optimizer when
a Phastball collected dataset is utilized.

Table 4.4.6: RSOS localization
statistics for collected dataset.

(cm.) Incremental graph Kalman filter
Median 180.23 373.56
Mean 260.76 349.08
Variance 127.82 84.06
Max. 508.32 494.07

4.5 Key Takeaway

The desire to precisely localize a platform is of paramount importance to a myriad of fields. This

desire has lead to a plethora of research into precise GNSS localization due to its ability to provide

a precise and globally consistent solution. One of themost commonly utilizedGNSS formulations

is the precise point positioning (PPP) technique due to its autonomy from local reference stations.

However, it has been noted in several studies that PPP has a relatively long initial convergence

period when compared to differential techniques.

To reduce the convergence time of PPP, this chapter proposes the use of recent advances in real-

time smoothingmadewithin the robotics community. Specifically, this chaptermakes connections

between GNSS localization and incremental pose-graph optimization. The connection between

the two fields lies in the ability to treat phase bias states as “landmark” nodes in the graph. By

treating the phase bias state in this manner, and utilizing a Bayes tree based optimizer, efficient

smoothing of the position states can be conducted in real-time.

To the quantify the benefit of this formulation, a Monte-Carlo style experiment was conducted
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within a simulation environment. Utilizing the simulated data, the incremental graph optimization

was evaluated alongwith a traditional EKF-PPP formulation. Through this evaluation, it was found

that the incremental graph optimization technique provided a substantial RSOS positioning error

reduction during the initial PPP convergence period when compared to a traditional EKF formu-

lation. This finding was also validated with an evaluation of a short duration dataset collected with

a fixed-wing UAV.
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5
Batch Covariance Estimation (BCE)



5.1 Chapter Abstract

As robotic systems become more ubiquitous, it is necessary to develop robust state estimation al-

gorithms that are able to withstand novel and non-cooperative environments. When dealing with

novel and non-cooperative environments, little is known a priori about the measurement error un-

certainty, thus, there is a requirement that the uncertainty models of the localization algorithm be

adaptive. Within this chapter, the batch covariance estimation technique, which enables robust

state estimation through the iterative adaptation of the measurement uncertainty model, is pro-

posed. The adaptation of the measurement uncertainty model is granted through non-parametric

clustering of the residuals, which enables the characterization of the measurement uncertainty via

a Gaussian mixture model. The provided Gaussian mixture model can be utilized within any non-

linear least squares optimization algorithm by approximately characterizing each observation with

the sufficient statistics of the assigned cluster (i.e., each observation’s uncertaintymodel is updated

based upon the assignment provided by the non-parametric clustering algorithm). The proposed

algorithm is verified on several GNSS collected data sets, where it is shown that the proposed tech-

nique exhibits some advantages when compared to other robust estimation techniques when con-

fronted with degraded data quality.

5.2 BCE Algorithm Formulation

As shownby the discussion inChapter 3, several robust state estimation frameworks have beenpro-

posed. Each of these methodologies work under the assumption that an accurate a priorimeasure-

All developed software and data utilized within this chapter is publicly available at https://bit.ly/2V4QuB0.
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ment error covariance is available. However, in practice, the requirement to supply an accurate a

priori characterization of themeasurement uncertaintymodel is not always feasible when consider-

ing that the platform could be operating in a novel environment , a non-cooperative environment ,

or both.

Within this chapter, a novel framework is proposed that addresses the issue of robust state esti-

mation where, the framework is not only robust to erroneous observations, but also erroneous a

priori measurement uncertainty estimates. To elaborate on the proposed framework, the remain-

der of this chapter proceeds in the following manner: first, the assumed data model is discussed;

then, a method for learning the measurement error uncertainty model from residuals is provided;

finally, the proposed robust estimation framework is described.

5.2.1 Data Model

Given a set of residuals R = {r1, r2, . . . , rn} with rn = yn − hn(X) ∈ Rd. It is assumed that

the set can be partitioned into groupings of similar residuals (i.e.,
∪M

m=1 Cm = R), where each

group, Ck, can be fully characterized by a Gaussian distribution (i.e., Ck ∼ N(μk, Λk)). Given this

assumptions, the set of residuals are fully characterized as aweighted sumofGaussian distributions

(i.e., a GMM), as depicted in Eq. 5.1

rn ∼
M∑

m=1

wmN(rn | θm) s.t. θm ≜ {μm, Λm}, (5.1)

where, w is the set of mixture weights with the constraint that
∑

m wm = 1, and θm, is the mixture

A novel environment is simply one that has not before been previously experienced.

A non-cooperative environment is one that emits characteristics that inhibit the sensors ability to provide accurate
observations.
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components sufficient statistics (i.e.,the mixture component mean and covariance).

To enable the explicit assignment of each data point to aGaussian component within theGMM,

an additional latent parameter, Z = {z1, z2, . . . , zn} with zn ∈ RM, is incorporated. The assign-

ment variables Z are characterized according to a categorical distribution, as depicted in Eq. 5.2,

where wm is the component weight, and I[∗] is the indicator function which evaluates to 1 if the

equality within the brackets is true and 0 otherwise.

p(zn | w) =
M∏

m=1

wm I[zn=m] (5.2)

Through the incorporationof the categoricallydistributedassignmentparameters into theGMM,

every data instance rn ∈ R can be characterized throughEq. 5.3. Where, this equation explicitly en-

codes that each data instance is characterized by a single Gaussian component from the full GMM.

p(rn | θm, zm) =
M∑

m=1

wmN(rn | θm) I[zn=m] (5.3)

As a Bayesian framework will be utilized for model fitting (as described in section 5.2.2), a prior

distribution must be defined for the GMM mixture weights w, and the sufficient statistics, θ. To

define the prior over themixture weights,w, a Dirichlet distribution [89] is utilized, as it is a conju-

gate prior to the categorical distribution [91]. The specific form of the Dirichlet prior is provided

in Eq. 5.4, where α = (α1, . . . , αk) is a set of hyper-parameters such that αi > 0, and S is the

Conjugate priors are commonly utilized because theymake the calculation of posterior distribution tractable through
the a priori knowledge of the posterior distribution family [90].

For the analysis presented within this study, a symmetric Dirichlet prior was utilized (i.e., αk = 1 ∀ k ).
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probability simplex .

p(w|α) =
Γ(
∑M

m=1(αM))∏M
m=1(Γ(αm))

M∏
m=1

wαi−1
m I[wm∈S] (5.4)

To define a prior over the GMM sufficient statistics, θ, the normal inverse Wishart (NIW) is uti-

lized due to the conjugate relation with the multivariate Gaussian that has unknown mean and

covariance [92]. TheNIW distribution is defined in Eq. 5.5, where β = {mo, κo, νo, So} is the set

of hyper-parameters, and W−1 is the inverse Wishart distribution, as discussed within [93], where

Γd(∗) is the multivariate gamma function, Tr(∗) is the matrix trace, and d is the dimension of So.

p(θ | β) = N(μ|mo,
1
κo

Λ)W−1(Λ|So, νo) (5.5)

s.t. W−1(Λ | So, νo) =
|Λ| νo−d−1

2

2νo
d
2 Γd
( νo

2

)
|So|

νo
2
e−

1
2 Tr
(
S−1
o Λ
)

Utilizing the data model defined earlier, the joint probability distribution that characterizes the

system is defined in Eq. 5.6. Additionally, a visual representation of the underlyingmodel is graph-

ically represented in Fig. 5.2.1.

A simplex is simply a generalization of the triangle to n-dimensional space (i.e., S = {w ∈ Rm : wi ≥ 0 :
∑M

m wm =
1} ).

The NIW hyper-parameters can be intuitively understood as follows: mo is the expected prior on the mean vector μ
with uncertainty κo, and νo is the expected prior on the covariance matrix Λ with uncertainty So
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Figure 5.2.1: Graphical representation of the utilized data model which visually encodes the
joint probability distribution presented in Eq. 5.6. Each red node represents a latent parame-
ter, and the blue node represents the provided observations. The plate notation [2] is utilized
to represent the replication of a random variable.

p(R, θ,Z) = p(w | α)·
N∏
n=1

p(zn | wn) p(rn | zn, θ)·

M∏
m=1

p(θm | β) (5.6)
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5.2.2 Gaussian Mixture Model Fitting

Providedwith the joint distribution, as depicted in Eq. 5.6, the ultimate goal of aGMMfitting algo-

rithm is to estimate themodel parameters thatmaximize the log marginal likelihood, as provided in

Eq. 7.3, of the observations [59, 94]. Due to the dimensionality of the space, the integral presented

in Eq. 7.3 is not computational tractable in general [95]. Thus, techniques for approximating the

integral need to be utilized.

log p(R) = log
∫

p(R, θ,Z)dZdθ (5.7)

In practice, two broad classes of integral approximation algorithms are utilized: Monte Carlo

methods [96], and variational methods [97]. The Monte Carlo methods approximate the integral

by averaging the response of the integrand for a finite number of samples . In contrast, the varia-

tional approaches convert from an integration into an optimization problem, by defining a family

of simplified functions (i.e., the family of exponential probability distributions) and optimizing the

function within that family that most closely matches the original function [97].

Within this work, it was elected to utilize a variational model fitting approach, as this class of

algorithms dramatically reduce the computational complexity of the problem when compared to

Monte Carlo techniques [95]. To implement this approach, for the proposed data model, the as-

sumption is made that the joint distribution defined in Eq. 5.6 can be represented as, p(R, θ,Z) ≈

q(θ) q(Z), which is commonly referred to as the mean-field approximation [97]. Utilizing the

Considerable research is dedicated to efficient and intelligent ways to sample a space. For a succinct review ofMonte
Carlo sampling approaches, the reader is directed to [96].

Closeness in this context is usually measured with the Kullback-Leibler divergence [95, 97] or free-energy [94].
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mean-field approximation, the log marginal likelihood is represented as Eq. 5.8. Through the ap-

plication of Jensens’s inequality [98], the equality in Eq. 5.8 can be converted into a lower bound

on the log marginal likelihood , as presented in Eq. 5.9.

log p(R) = log
∫

q(Z) q(θ)
p(R, θ,Z)
q(Z) q(θ)

dZdθ (5.8)

≥
∫

q(Z) q(θ) log
p(R,Z | θ)

q(Z)
dZdθ+∫

q(θ) log
p(θ)
q(θ)

dθ
(5.9)

The right hand side of the inequality presented inEq. 5.9 is commonly referred as the free energy

functional [94], as depicted in Eq. 5.10. As it is a lower bound on the log marginal likelihood, an

optimal set of model parameters can be found through iterative optimization.

log p(R) ≥ F
[
q(Z), q(θ)

]
(5.10)

To find the set of equations necessary for iterative parameter optimization, the partial derivative

of the free energy function can be takenwith respect to q(Z), and q(θ). When the partial derivative

of the free energy functional is taken with respect to q(Z), as presented in Eq. 5.11, the latent

parameters, Z, can be updated by holding the model parameters, θ, fixed and optimizing for Z.

Likewise, when the partial derivative of the free energy functional is taken with respect to q(θ), as

presented in Eq. 5.12, the model parameters, θ, can be updated by holding the latent parameters,

Z, fixed and optimizing for θ. Within Eq. 5.11 and Eq. 5.12 the terms Cz and Cθ are normalizing

For a thorough review on the lower bound maximization for mixture model fitting, the reader is referred to [99].
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constants for q(Z) and q(θ), respectively.

q(z)t+1 = Cz

∫
q(θ)t log p(R,Z | θ)dθ (5.11)

q(θ)t+1 = Cθ p(θ)
∫

q(Z)t+1 log p(R,Z | θ)dZ (5.12)

When the variantional inference framework, as summarized inEq. 5.11 andEq. 5.12, is provided

with a data set, R, which conforms to the models discussed in section 5.2.1, the output is a GMM

which characterizes the underlying probability distribution. Within this chapter, theGMMwill be

utilized to provide an adaptive characterization of the measurement uncertainty model.

5.2.3 Algorithm Overview

Multiple robust state estimation frameworks have been developed, as discussed inChapter 3. How-

ever, it was noted that all of the discussed approaches fall short on at least one front. The primary

shortcoming shared by all the approaches is the inability to provide an accurate state estimatewhen

provided with an inaccurate a priorimeasurement error uncertainty model. To confront this con-

cern, a novel IRLS formulation is proposed within this section.

The proposed batch covariance estimation (BCE) approach is graphically depicted in Fig. 5.2.2,

where it is shown that the algorithm is composed of two sections: the initialization, and the ro-

bust iteration. To initialize the algorithm, a factor graph is constructed given the a priori state and

uncertainty information and the set of measurements. Utilizing the constructed factor graph, an

initial iteration of the NLLS optimizer is used to update the state estimate and calculate a set of

measurement residuals.
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With the residuals from the initial iteration of the NLLS optimizer, the algorithm proceeds into

the first robust iteration step. Each robust iteration step commenceswith the generation of aGMM

that characterizes the measurement uncertainty through the variational inference framework dis-

cussed in section 5.2.2, operating on the most recently calculated set of residuals. With the pro-

vided GMM, the measurement uncertainty model of the factor graph is updated (i.e., each mea-

surement’s uncertainty model is updated based upon the sufficient statistics of the assigned cluster

from the GMM). Finally, the state estimate is updated by feeding the modified factor graph into

the NLLS optimization algorithm. This robust iteration scheme is iterated until a measure of con-

vergence – or the maximum number of iterations – has been reached.

Because this framework iteratively updates a GMMbasedmeasurement uncertainty model, the

proposedapproach is notonly robust to erroneousmeasurements, but also robust topoor estimates

of the a priorimeasurement uncertainty model.

To provide a measure of convergence, several criteria could be utilized. For this analysis the change in total error
between consecutive iterations was utilized (i.e., the solution has converged to a minimum if the error between con-
secutive iterations is less than a predefined defined threshold).

The maximum number of iterations can be selected based upon a number of criteria (e.g., run-time consideration).
For the analysis presented within this article, the maximum number of iterations was selected to equal 100.
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Construct Factor Graph

NLLSOptimization

Calculate Residuals
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NLLSOptimization

Convergence

Write Results

No

Yes

Initialization

Robust Iteration

Figure 5.2.2: Schematical overview of the batch covariance estimation algorithm. The pro-
posed approach enables robust estimation through the iterative calculation of the measure-
ment error covariance model, where the measurement error covariance model is characterized
by a Gaussian mixture model that is fit to the state estimation residuals.
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5.3 Experimental Validation

5.3.1 Data Collection

To demonstrate the capabilities of the proposed robust optimization framework, an evaluation of

the systemusing global positioning system(GPS) signals fromavariety of environments, including

open-air, and urban terrain. Due to the varying environments, the measurement uncertainty for

each GPS measurements is unknown a priori and differs over time. Furthermore, using different

qualities of GPS receivers also leads to differing measurement uncertainties.

To test the proposed estimation approach using actual degraded GPS observables, binary in-

phase andquadrature (IQ)data in theL1-bandwas recordedusing aLabSat-3GPS record andplay-

backdevice [100]during three kinematic driving tests, as depicted inFig. 7.3.1, in theMorgantown,

WV area. These IQ data were then played back into both a geodetic-gradeGNSS receiver (Novatel

OEM-638) and an open-source GPS software defined radio (SDR), the GNSS-SDR library [101].

With this experimental setup, the geodetic-gradeGNSS receiver was treated as a baseline reference

for the best achievable GPS observable quality, and the GPS SDR was used to tune the quality of

the observables to two different levels of performance ranging from low-grade to high-grade (i.e,

(a) Data collect 1. (b) Data collect 2. (c) Data collect 3.

Figure 5.3.1: Ground trace of three kinematic driving data sets collected in the Morgantown,
WV area.
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close to matching the reference receiver).

By altering the trackingparameters of theGPSSDR, it is possible to vary the accuracyof theGPS

pseudorange and carrier-phase observables reported by the receiver. In particular, by changing the

tracking loop noise bandwidths and the spacing of the early and late correlators, both the level of

thermal noise errors [77] and the susceptibility tomultipath errors canbe varied [102]. As detailed

in [77], the thermal noise of the Phase Lock Loop (PLL) is directly proportional to the square root

of the selected noise loop bandwidth, Bφ

σPLL =
λL1
2π

√
Bφ

C/N0

(
1 +

1
2TC/N0

)
(5.13)

where λL1 is the GPS L1 wavelength, Bφ is the carrier loop bandwidth in units of Hz, C/N0 is the

carrier-to-noise ratio in Hz, and T is the integration time.

Likewise, the code tracking jitter of the delay lock loop (DLL) is dependent on both the se-

lected noise bandwidth, Bρ, and the spacing of the early and late correlators, DEL, however, this

error model is also dependent on the bandwidth of the radio frequency frond-end, Bfe, of the re-

ceiver and the chiprate of the signal being tracked. That is, ifDEL is selected to be at or larger than

π multiplied by the ratio of the GPS C/A chipping rate, RC/A, and Bfe, then the approximation of

the code tracking noise jitter (in units of chips) is given as [77]

σDLL =

√
Bρ

2C/N0
DEL

(
1 +

2
TC/N0(2 − DEL)

)
(5.14)
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if
(RC/A

Bfe
< DEL <

πRC/A
Bfe

)
, then the code tracking jitter is approximated as [77]

σDLL =

[
Bρ

2C/N0

(
1
Bfe

+
BfeTc

π − 1

(
DEL −

1
BfeTc

)2
)

×

(
1 +

2
TC/N0(2 − DEL)

)]1/2

.

Otherwise, if
(
DEL <

RC/A
Bfe

)
, there is no additional benefit of further reducing DEL, and the code

noise error model reduces to a dependence on the front end and noise bandwidths[77].

σDLL =

√
Bρ

2C/N0

(
1

BfeTc

)(
1 +

1
TC/N0

)
(5.15)

For the experimental setup used in this study, the LabSat-3 has a Bfe equal to 9.66 MHz and the

GPS L1 C/A signal has a chiprate of 1.023 MHz, leading to a critical range of DEL ≈ [0.11 .33].

An additional parameter that can be intuitively tuned in the GPS SDR configuration to provide an

impact the observable quality is the rate at which the IQ data was sampled, fs. In this setup, the

LabSat-3 has a pre-defined sampling rate of 16.368 Mhz, but the data is down sampled to simulate

reduced sampling quality in lower-cost receivers. Using these parameters, we are able to simulate a

high-grade and low-grade quality GPS receiver using the parameters shown in Table 5.3.1.

To quantify the accuracy of the generated observations, the zero-baseline test [61] was imple-

mented. A zero-baseline test, as its name suggests, performs a doubled-differenceddifferentialGPS

baseline estimation between two sets of GPS receiver data that are known to have an a baseline of

exactly zero. That is, in this set-up, the non-zero estimated baseline magnitude is known to be due

to discrepancies in the GPS observables reported by the two different receivers. Using the high

quality geodetic-grade GPS receiver observables as a reference, the zero-baseline tests provides a
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Table 5.3.1: GPS SDR observation tracking configurations utilized within this study.

GPS
Quality

fs (MHz) DEL (chips) Bρ (Hz) Bφ (Hz)

Low 4.092 0.5 2 50
High 16.368 0.2 1 25

Table 5.3.2: Zero-baseline observation comparison for kinematic data sets – see Fig. 7.3.1 –
with varied GPS SDR tracking configurations, as specified in Table 5.3.1.

Zero-Baseline Comparison
Mean 3D Error (m.)

Collect 1 Collect 2 Collect 3

Low 16.20 37.44 29.43
High 0.59 18.03 17.48

metric to assess the quality of the SDR receiver observables.

The zero-baseline test was implemented by first estimating the reference receiver solution and

thenconfiguring theRTKLIBDGPSsoftware [88] toestimate amovingbaselinedouble-differenced

GPS solution between the observables reported by the reference receiver and the observables re-

ported by the particular GPS SDR tracking configuration. Because the observables are generated

from the same RF front end (i.e., the LabSat-3) and connected to the same antenna, the zero-

baseline test results should provided zero difference, in an ideal scenario. The zero-baseline test

results for the two resulting GPS SDR cases, which are utilized to experimentally validate the pro-

posed approach within this chapter, are shown in Table 5.3.2, where a large discrepancy can be see

between the low-grade and high-grade observations.

The raw IQ recordings, GNSS-SDR processing configurations, and resulting observables in the

receiver independent exchange format (RINEX) [103], that are used in this study have all been

made publicly available at https://bit.ly/2vybpgA.
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5.3.2 GPS Factor Graph Model

To enable a self-contained reviewwithin the current Chapter, a succinct review of the utilized PPP

observation model is provided. However, for a more through review, the reader is referred to the

discussion provided in Chapter 4.

To utilize the collectedGPS data within the factor graph framework, a likelihood factormust be

constructed for the observations. To facilitate the construction of such a factor, the measurement

model for the GPS L1-band pseudorange and carrier-phase observations will be discussed, as pro-

vided inEq. 5.16 andEq. 5.17, respectively. Within the pseudorange and carrier-phase observation

models, the Xs term is the known satellites location, Xu is the estimated user location, and || ∗ || is

the l2-norm.

ρiL1
= ||Xs − Xu||+ c(δtu − δts) + Tz,dMd(elj)

+ IL1 + δRel. + δP.C. + δD.C.B + εjρ
(5.16)

φiL1
= ||Xs − Xu||+ c(δtu − δts) + Tz,dMd(elj)

− IL1 + δRel. + δP.C. + δW.U. + λIFN
j
IF + εjφ

(5.17)

Contained within the models for the pseudorange and carrier-phase observations are several

mutual terms, which canbedecomposed into three categories. Thefirst category is the propagation

medium specific terms (i.e., the troposphere delay Tz,dMd(elj) [104] and the ionospheric delay IL1

[76]). The second category is theGPS receiver specific terms (i.e., the receiver clock bias δtu, which

must be incorporated into the state vector and estimated, and the observation uncertainty models
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ε). The final category is the GPS satellite specific terms (i.e., the satellite receiver clock bias δts, the

differential code bias correction δD.C.B [77], the relativistic satellite correction δRel. [79], and the

satellite phase center offset correction δP.C [80]).

Containedwithin the carrier-phase observationmodel (i.e., Eq. 5.17) are two terms that are not

present in the pseudorange observation model. The first term is the carrier-phase windup [81],

which can easily be modeled to mitigate its effect. The second term is the carrier-phase ambiguity

[105], which can not be easily modeled, and thus, must be incorporated into the state vector and

estimated.

Utilizing the provided observation model, the GPS factor graph constraint can be constructed.

To begin, it is assumed that theGPS observation uncertaintymodel is a uni-modal Gaussian. With

this assumption, theGPSobservations can be incorporated into the factor graph formulation using

themahalanobis distance [83, 106], as provided in Eq. 5.18, where y is the observedGPSmeasure-

ment, ŷ is the modeled observation (calculated using Eq. 5.16 or Eq. 5.17 for a pseudorange or

carrier-phase observation, respectively), and Λ is the measurement uncertainty model.

ψ(i) =||y− ŷ||Λ (5.18)

With the GPS observation factor, the desired states can be estimated using anyNLLS algorithm

[83], as discussed in Chapter 3. For this application, the state vector is defined in Eq. 5.19, where

δP is the 3-Duser position state,Tz,w is a state used to compensate for tropospheremodeling errors,

δtu is the receiver clock bias, andN∗ are the carrier-phase ambiguity terms for all observed satellites.

For a thorough discussiochapter2n on the resolution of carrier-phase ambiguity terms within the
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factor graph formulation, the reader is referred to [106].

X =



δP

Tz,w

δtu

N1

...

Nn


(5.19)

To implement the provided model, this chapter benefited from several open-source software

packages. Specifically, to enable the implementation of theGPSobservationmodeling, theGPSTk

software package [82] is utilized. For the factor graph construction and optimization, the Georgia

Tech Smoothing and Mapping (GTSAM) library [107] is leveraged.

5.3.3 Results

Utilizing the three kinematic data sets — as depicted in Fig. 7.3.1 — with varied receiver tracking

metrics (i.e., the low quality and high quality receiver metrics, as discussed in Section 5.3.1, the

proposed algorithm was tested with three state estimation techniques. The first algorithm used as

a baseline comparison is a batch estimation strategy with an l2-norm cost function. The second

comparison algorithm is a batch estimator with the dynamic covariance scaling [16] robust ker-

nel. This specific algorithm was selected because it is both a closed-form solution to the switch

constraints technique [15], and a specific realization of the robust m-estimator. The final state

estimation technique used to for this analysis is the max-mixtures [17] approach with a static mea-

surement uncertainty model.
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To generate the reference position solution which is utilized to enable a positioning error com-

parison, the GNSS observables reported by the reference GNSS receiver (i.e., a NovAtel OEM

638 Receiver) were used. Utilizing the baseline reference GPS measurements, the reference truth

solution was generated through an iterative filter-smoother framework implemented within the

open-source package RTKLIB [88].

Low Quality Observations

Tobegin an analysis, the discussed robust estimation techniques are evaluatedwhen the algorithms

are provided with low quality observations. As a metric to enable state estimation performance

comparisons, the horizontal residual-sum-of-squares (RSOS) positioning error is utilized. Uti-

lizing the horizontal RSOS positioning metric, a solution comparison is provided in the form of

a box-plot, as depicted in Fig. 5.3.2. From Fig. 5.3.2, it can be seen that the proposed algorithm

significantly reduces the median horizontal positioning error when compared to the reference ro-

bust estimation techniques on the three collect data sets – see Table 5.3.3 for specific statistics. In

addition to the median RSOS positioning error minimization, it is also noted that the proposed

approach either outperforms or performs comparably to the three comparison approaches with

respect to positioning solution variance and maximum error, as provided in Table 5.3.3.

To depict the adaptive nature of the measurement uncertainty model within the proposed ap-

proach, the estimated pseudorange and carrier-phase uncertainty models (for data collect 1 with

low-quality observation) as a function of optimization iteration are depicted in Figures 5.3.3a, and

5.3.3b, respectively. From Fig. 5.3.3b a large change in the structure of the assumed carrier-phase

Thehorizontal RSOS positioning error is utilized in place of the full 3-DRSOS positioning error due to the inability
to accurately model the ionospheric delay with single frequency GPS observations, which imposes a constant bias
for all estimations on the vertical positioning error.
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Table 5.3.3: Horizontal RSOS
positioning error results when low
quality observations are utilized.
The green and red cell entries
correspond to the minimum and
maximum statistic, respectively.

(a) Horizontal RSOS position-
ing error results for data collect
1 when low quality – see Table
5.3.1 for receiver configuration –
observations are utilized.

(m.) L2 DCS MM BCE
median 9.84 10.82 9.13 6.70
variance 0.33 0.21 0.37 0.09
max 14.84 16.10 14.11 11.75

(b) Horizontal RSOS position-
ing error results for data collect
2 when low quality – see Table
5.3.1 for receiver configuration –
observations are utilized.

(m.) L2 DCS MM BCE
median 5.09 5.02 4.11 3.58
variance 613.13 342.92 673.50 393.32
max 127.29 98.05 132.49 103.64

(c) Horizontal RSOS position-
ing error results for data collect
3 when low quality – see Table
5.3.1 for receiver configuration –
observations are utilized.

(m.) L2 DCS MM BCE
median 10.98 9.88 8.02 7.31
variance 3.06 1.49 3.36 2.55
max 17.26 17.30 15.06 15.35

Figure 5.3.2: Box plot of RSOS positioning error for
collected kinematic GNSS data sets with low quality –
see Table 5.3.1 for GNSS receiver configuration – gen-
erated observations. The specific estimator statistics
are provided in Table 5.3.3. Within this figure, L2, is
a batch estimator with l2 cost function, DCS is the dy-
namic covariance scaling robust estimator, MM is the
max-mixtures approach with a static measurement co-
variance model, and BCE is the proposed batch covari-
ance estimation technique.
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(a) The adaptation of the pseudorange un-
certainty model.

(b) The adaptation of the carrier-phase
uncertainty model.

Figure 5.3.3: Evolution of the GNSS observation Gaussian mixture model based uncertainty
model for data collect 1 with low-quality observation as a function of optimizer iteration.

measurement uncertainty model can be seen. Specifically, the carrier-phase uncertainty model

adapts from the assumed model (i.e, y ∼ N(0, 2.5cm)) to a highly multimodal GMM at the final

iteration, as depicted in Fig. 5.3.3b.

(a) First Iteration (b) Third Iteration (c) Fifth (Final) Iteration

Figure 5.3.4: Progression of GNSS observation residuals with multimodal measurement error
covariance – as estimated by the proposed approach which utilizes variational inference to
generate a Gaussian mixture model uncertainty representation from the estimators residuals –
for data collect 1 with low-quality observations.
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High Quality Observation

The high quality observations were also evaluated with the same four state estimation techniques.

The horizontal RSOS positioning errors are depicted in box plot format in Figure 5.3.5. From Fig.

5.3.5 it is shown that all four estimators provide similar horizontal positioning accuracy – seeTable

5.3.4 for complete statistics.

The comparable horizontal RSOS positioning performance of all four estimation on the pro-

vided high quality observations is to be expected. This comparability, when provided with high

quality observations, is because the a priori assumedmodel closely resembles the observedmodel.

This means that no benefit is granted by having a robust or adaptive state estimation framework in

place.

To verify that the assumed measurement model closely resembles the observed model, the esti-

mated covariance of the proposed approach can be examined for a specific data set (i.e., data collect

1, as depicted in Fig. 5.3.6). For data collect 1 with high quality observations, themeasurement un-

certaintymodel estimated by the proposed approach has twomodes, as depicted in Fig. 5.3.6. One

of the modes — specifically, the mode that characterizes approximately 90% of the measurements

— closely resembles the assumed a priori measurement uncertainty model. For comparison, the

specific values of the a priorimeasurement uncertaintymodel (Λ), and the estimatedmeasurement

uncertainty model (Λ̂) as provided by the proposed approach, are provided below.

Λ =

 2.52 0.0

0.0 0.0252

 Λ̂ =

 1.72 0.0

0.0 0.00172



73



Table 5.3.4: Horizontal RSOS
positioning error results when high
quality observations are utilized.
The green and red cell entries
correspond to the minimum and
maximum statistic, respectively.

(a) Horizontal RSOS position-
ing error results for data collect
1 when high quality – see Table
5.3.1 for receiver configuration –
observations are utilized.

(m.) L2 DCS MM BCE
median 0.68 0.67 0.75 0.69
variance 0.17 0.17 0.17 0.15
max 6.30 6.30 6.37 6.34

(b) Horizontal RSOS position-
ing error results for data collect
2 when high quality – see Table
5.3.1 for receiver configuration –
observations are utilized.

(m.) L2 DCS MM BCE
median 0.65 0.65 0.81 0.42
variance 11.27 11.27 11.94 16.60
max 18.29 18.30 18.91 21.73

(c) Horizontal RSOS position-
ing error results for data collect
3 when high quality – see Table
5.3.1 for receiver configuration –
observations are utilized.

(m.) L2 DCS MM BCE
median 1.44 1.43 1.20 1.24
variance 0.30 0.30 0.30 0.26
max 9.52 17.30 9.43 9.44

Figure 5.3.5: Box plot of RSOS positioning error for
collected kinematic GNSS data sets with high quality –
see Table 5.3.1 for GNSS receiver configuration – gen-
erated observations. The specific estimator statistics
are provided in Table 5.3.4. Within this figure, L2, is a
batch estimator with L2 cost function, DCS is the dy-
namic covariance scaling robust estimator, MM is the
max-mixtures approach with a static measurement co-
variance model, and BCE is the proposed batch covari-
ance estimation technique.
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Figure 5.3.6: Measurement residuals with associated BCE estimated measurement error co-
variance – each ellipse represents 95% confidence – for data collect 1 with high quality obser-
vations.

5.3.4 A Priori Information Sensitivity Comparison

To continue the analysis, an evaluation of each estimation framework’s sensitivity to the a priori

information is provided. Specifically, it is of interest to evaluate the sensitivity of the estimation

frameworks to the a priorimeasurement error covariance model.

To enable this estimator sensitivity evaluation, the low-quality observations generated fromdata

collect 1 are utilized. With these generated observations, the estimation framework’s sensitivity is

quantified by evaluating the response – which is quantified by the horizontal RSOS positioning

error – of each estimator as a function of the a priori covariance model. For this study, the a priori

covariance model will be a scaled version of the assumedmeasurement error covariance model, as

depicted below.
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Figure 5.3.7: Sensitivity of the estimation frameworks to the selection of an a priori measure-
ment error covariance model. Within this figure, L2 is a batch estimator with l2 cost function,
DCS is the dynamic covariance scaling robust estimator, MM is the max-mixtures approach
with a static measurement covariance model, and BCE is the proposed batch covariance esti-
mation technique.

Λ = s ·

 2.52 0.0

0.0 0.0252


This sensitivity evaluation is presented graphically within Fig. 5.3.7. From this figure, it is shown

that all the estimation frameworks show at least a slight sensitivity to the a priorimeasurement er-

ror covariance model; however, some estimation frameworks are significantly more sensitive to

perturbation in the a priori covariance model than other (e.g., the L2 and DCS estimators show-

ing the greatest sensitivity). From this figure, it is also shown that the proposed BCE approach is

significantly less sensitivity to perturbations of the a priori measurement error covariance model

when compared to the other estimators.
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5.3.5 Run-Time Comparison

To conclude the evaluation of the proposed estimation framework, a run-time comparison is pro-

vided. To quantify a run-time evaluation, the wall-clock time (i.e., the total execution time of the

utilized estimation framework) divided by the cardinality of the utilized data collect is employed as

themetric of comparison. This metric is selected because it enables a run-time comparison regard-

less of the data collect (i.e., each data collect has a different number of observations so, dividing by

the cardinality enables a fair run-time comparison across sets). To implement the run-time compar-

ison, a quad-core Intel i5-6400 central processing unit (CPU) that has a base processing frequency

of 2.7 GHz was utilized.

Utilizing the specified hardware and evaluation metric, the run-time comparison is presented

within Fig. 7.3.3 for the four estimation algorithms. FromFig. 7.3.3, it is shown that the traditional

l2 approach provides the fastest run-time, with the max-mixtures approach providing comparable

results. Additionally, it is shown that the batch covariance estimation approach is themost compu-

tationally expensive approach.

The increased computational complexity of theproposed approach is primarily due to theGMM

fitting procedure. To reduce the computation requirement of the proposed estimation framework,

several research directions could be explored. For example, rather than utilizing all calculated resid-

uals to characterize the measurement uncertainty model, a sub-sampling based approach per iter-

ation could be utilized [108]. This modification has the potential to significantly decease the run-

time of the employed variational clustering algorithmwhich, in turn, would decrease the run-time

of the associated BCE approach.
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Figure 5.3.8: Wall-clock time per utilized observation for each of the estimation frameworks,
where L2 is a batch estimator with l2 cost function, DCS is the dynamic covariance scaling
robust estimator, MM is the max-mixtures approach with a static measurement covariance
model, and BCE is the proposed batch covariance estimation technique.

5.4 Key Takeaway

Several robust state estimation frameworks have been proposed over the previous decades. Under-

pinning all of these robust frameworks is one dubious assumption. Specifically, the assumption

that an accurate a priori measurement uncertainty model can be provided. As systems become

more autonomous, this assumption becomes less valid (i.e., as systems start operating in novel en-

vironments, there is no guarantee that the assumed a priorimeasurement uncertainty model char-

acterizes the sensors current observation uncertainty).

In an attempt to relax this assumption, a novel robust state estimation framework is proposed.

The proposed framework enables robust state estimation through the iterative adaptation of the

measurementuncertaintymodel. Theadaptationof themeasurementuncertaintymodel is granted

through non-parametric clustering of the estimators residuals, which enables the characterization
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of themeasurement uncertainty via aGaussianmixturemodel. ThisGaussianmixturemodel based

measurement uncertainty characterization can be incorporated into any non-linear least square op-

timization routine by only using the single assigned — the assignment of each observation to a

single mode within the mixture model is provided by the utilized non-parametric clustering algo-

rithm—component’s sufficient statistics fromwithin themixturemodel to update the uncertainty

model for all observation (i.e., every observations uncertainty model is approximately character-

ized by the single assigned Gaussian component from within the mixture model).

To verify the proposed algorithm, several GNSS data sets were collected. The collected data sets

provide varying levels of observation degradation to enable to characterization of the proposed

algorithm on a diverse data set. Utilizing these data sets, it is shown that the proposed technique

exhibits improved state estimation accuracywhen compared to other robust estimation techniques

when confronted with degraded data quality.
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6
BCE in an Augmented Data Space

(BCE-AD)



6.1 Chapter Abstract

The requirement to generate robust robotic platforms is a critical enabling step to allow such plat-

forms to permeate safety-critical applications (i.e., the localization of autonomous platforms in

urban environments). One of the primary components of such a robotic platform is the state

estimation engine, which enables the platform to reason about itself and the environment based

upon sensor readings. When such sensor readings are degraded traditional state estimation ap-

proaches are known to breakdown. To overcome this issue, several robust state estimation frame-

works have been proposed. One such method is the batch covariance estimation (BCE) frame-

work. The BCE approach enables robust state estimation by iteratively updating the measurement

error uncertainty model through the fitting of a Gaussian mixture model (GMM) to the measure-

ment residuals. This chapter extends upon the BCE approach by arguing that the uncertainty esti-

mation process should be augmented to includemetadata (e.g., the signal strength of the associated

GNSS observation). Themodification of the uncertainty estimation process to an augmented data

space is significant because it increases the likelihood of a unique partitioning in the measurement

residual domain and thus provides the ability tomore accurately characterize themeasurement un-

certainty model. The proposed batch covariance estimation over an augmented data-space (BCE-

AD) is experimentally validated on collected data where it is shown that a significant increase in

state estimation accuracy can be granted compared to previously proposed robust estimation tech-

niques.

All developed software and data utilized within this chapter is publicly available at https://github.com/wvu-
navLab/BCE_AD.
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6.2 BCE-ADAlgorithm Formulation

The work presented within this chapter provides an extension to the BCE approach, as detailed

in Chapter 5. Specifically, this work removes the assumption that the measurement uncertainty

model can be accurately characterized exclusively utilizing information contained within the mea-

surement residuals. Instead, this work argues that the uncertainty estimation problem can effec-

tively be augmented to incorporatemetadata, leading to amore accurate characterization of the ob-

servationuncertaintymodel. As shown inSection6.3 the increase inpositioning accuracy achieved

by including metadata in the residual classification procedure can be significant.

6.2.1 The Augmented Data Space

The estimation framework proposed in this chapter is an extension of the BCE methodology as

detailed within [46]. In this section there are two primary objectives. Firstly, to expound the dif-

ferentiating factors between the two implementations. Secondly, to provide an overviewof the pro-

posed framework entitled batch covariance estimation over an augmented data-space (BCE-AD).

6.2.2 The Data Model

To initiate adiscussionof theproposedestimation framework, the assumeddatamodel is discussed.

InChapter 5, it is assumed that a given set of residualsR = {r1, r2, . . . , rn}with rn = yn−hn(X) ∈

Rd can be accurately partitioned into groupings of similar instances. To depict this visually, Fig.

6.2.1a provides the GNSS measurement residuals (i.e., the pseudorange and carrier-phase resid-

uals) for a typical localization application. As illustrated, there is no obvious partitioning of the

set.
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To increase the likelihood of a unique partitioning, the residual dataset can be projected into a

higher-dimensional space [109]. The specific projection utilized within this study is the augmen-

tation of the original dataset with a set of metadata (i.e., for each calculated residual, there is an

additional set of features F = {f1, f2, . . . , fn} with fn ∈ Rf). Where a feature considered for in-

clusion in the metadata-set is an observed quantity that is known to correlate to the quality of the

collected sensor observation . To depict the benefit granted by the incorporation of metadata, Fig.

6.2.1b provides the carrier-phase residuals augmented by two additional features (i.e., elevation

angle and signal strength of the collected observation). From this figure, it can be seen that the

inclusion of metadata provides a more obvious partitioning.

Given this set of augmented dataD = {d1, d2, . . . , dn}with dn = {rn, fn} ∈ Rd+f. It is assumed

that the augmented set can be partitioned into similar groupings (i.e.,
∪M

m=1 Cm = D), where each

group, Cm, can be characterized by a Gaussian distribution (i.e., Cm ∼ N(μm, Λm)). With this

assumed model, the augmented dataset is fully characterized as a GMM, as depicted in Eq. 6.1

D ∼
M∑

m=1

wmN(D | θm) s.t. θm ≜ {μm, Λm}, (6.1)

where,m is the number of components in the mixture model ,w is the set of mixture weights with

the constraint that
∑

m wm = 1, and θm is the mixture components sufficient statistics.

For GNSS applications, signal strength and elevation angle of a GNSS observation are commonly utilized. Other
sensor have similarly useful features (e.g., the mean illumination of an image for computer vision applications)

The number ofmixture componentsM in the estimatedmodel is not assumed to be known a priori . Instead, a trunca-
tion levelM∗ is set [110] (i.e., amaximumnumber of components,M∗ ≥ M) and the number of utilized components
is autonomously selected based upon the variational free energy of the estimated model [94].
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(a) Measurement residual data domain
(i.e., pseudorange and carrier-phase residu-
als) extracted after the initial iteration of
optimization.

(b) Augmented data domain (i.e., carrier-
phase residuals, elevation angle, and sig-
nal strength) extracted after the initial
iteration of optimization.

Figure 6.2.1: Ground trace for the three kinematic GNSS data collects. All three data col-
lected were recorded in Morgantown, Wv

6.2.3 Variational Clustering

As discussedwithin [46], to fit the aGMMto a provided dataset there are two broad classes of algo-

rithms. There are the sampling based frameworks (i.e., Monte Carlo Based approaches [96]), and

the optimization based frameworks (i.e., the variational based approaches [59]). Within this study,

the variational clustering framework [59, 94] is utilized to reduce the computational complexity of

the fitting process.

Specifically, the variational clustering approach is utilized to estimate themodel parameters that

maximize the log marginal likelihood of the data, as provided in Eq. 7.3

log p(D) = log
∫

p(D, θ,Z)dZdθ, (6.2)

where Z = {z1, z2, . . . zm} with zm ∈ RM is a set of assignment variables (i.e., Z provides the ex-

plicit assignment of each data instance to a component within the GMM). To enable the tractable
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computation of the GMM, the mean-field assumption [97] (i.e., p(D, θ,Z) ≈ q(θ) q(Z)), is uti-

lized to construct a lower-bound on the true log marginal likelihood.

With the mean-field assumption in place, the GMM parameters can be estimated with the vari-

ational framework in a iterative fashion, where the sequence of iteration is presented in Eqs. 6.3

and 6.4. The assignment parametersZ are updated by optimizing Eq. 6.3, whereCz is the normaliz-

ing constant to q(z). Then model parameters θ are updated by holding the assignment parameters

fixed andoptimizingEq. 6.4, whereCθ is the normalizing constant for q(θ). This iterative process is

continued until theKullback-Leibler divergence between the approximating and true distributions

is minimized.

q(Z)t+1 = Cz

∫
q(θ)t log p(D,Z | θ)dθ (6.3)

q(θ)t+1 = Cθ p(θ)
∫

q(Z)t+1 log p(D,Z | θ)dZ (6.4)

6.2.4 Feature Selection

The inclusion of additional features in the assumed data model have the benefit of increasing the

likelihood of a unique partitioning in the measurement domain. However, clustering over an aug-

mented dataset (i.e., a datasetwith increased dimensionality) could have the detrimental side effect

of increased computation complexity. Thus, to remain computational tractable, the set of augment-

ing data must be intelligently selected.

The enabling frameworks for intelligent feature selection can be classified as either offline, or

online. The offline approach can either be implemented algorithmically of through the utilization

of an area expert (i.e., someone with extensive experience with the utilized sensing modality). A
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primary drawback of the offline feature selection implementation is a static feature space model

(i.e., the utilized features are provided a priori and remain fixed over the duration of the estimation

process).

Due to the undesirable properties of an offline feature selection approach, an online framework

is utilized within this study. Specifically the framework developed within [111] is utilized to au-

tonomously select the most relevant features between each iteration of optimization. In brief, the

utilized feature selection algorithm can be described through three primarily steps: 1) construct a

nearest neighbor (NN)graph from theprovided augmenteddataset, 2) conduct eigenvaluedecom-

position on the NN graph to measure the importance of each feature for partitioning the dataset,

3) perform least angel regression (LARS) [112] on the calculated eigenvectors, to find the most

important features. For a more thorough discussion on the feature selection algorithm, the reader

is referred to [111].

6.2.5 Algorithm Overview

With thepreviously detailed topics, the discussion cannowproceed to anoverviewof theproposed

estimation framework. FromFig. 6.2.2, it is shown that theproposed algorithm is comprisedof two

primary segments. The first component is the initialization of the estimator. This process begins by

constructing the factor graph representation of the NLLS optimization problem – as thoroughly

detailed within [27] – from the a priori state and uncertainty information and the provided obser-

vations. Then, an initial iteration of optimization is conducted with a NLLS estimation algorithm

(e.g., for this study, the Levenberg-Marquardt [113] implementation was utilized) to update the a

priori state estimate.

The second component of the proposed framework commences with the calculation of themea-
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surement residuals given the previously estimated set of states. The set of calculated residuals are

augmented with the provided set of metadata, as discussed in section 6.2.2. Using the augmented

dataset for the current iteration of optimization, the most relevant features are selected using the

framework discussed in section 6.2.4. Using the relevant set of features, the variational cluster

framework– as disused in section6.2.3 – is utilized to assign each instance in the augmenteddataset

to a component within an estimated GMM.

Utilizing thepartitioningof the augmenteddata space, themeasurement erroruncertaintymodel

can be calculated. This is achieved by first partitioning the measurement residuals with the assign-

ment vectorZ estimated in the augmented data space. Then, the sufficient statistics for each group-

ing in themeasurement residual domain are calculated. With thism-dimensionalGMMin themea-

surement residual domain, themeasurement uncertaintymodel of the factor graph is updated (i.e.,

eachmeasurement’s uncertainty model is updated to the sufficient statistics of the assigned GMM

component). With the updated measurement uncertainty model, a new iteration of optimization

is conducted. This process is iterated until a measure of convergence (e.g., the error decrease be-

tween consecutive iterations is less than a user defined threshold) – or a limit on the number of

iterations – has been reached.
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ReadData

NLLSOptimization

Calculate Residuals

Generate AugmentedDataset

Unsupervised Feature Selection

EstimateMeasurement ErrorModel

UpdateMeasurement UncertaintyModel

NLLSOptimization

Convergence

Write Results

No

Yes

Initialization

Robust Iteration

Figure 6.2.2: Overview of the proposed robust optimized algorithm. The proposed approach
enables robust state estimation through the iterative estimation of the – possible multimodal
– measurement error covariance model, where the measurement error covariance model is esti-
mated by clustering over an augmented data space constructed from the previous iteration of
optimization.

88



6.3 Experimental Validation

6.3.1 Data Collection

To enable the validation of the proposed estimation framework, the three kinematic GNSS data

collects, as previously discussed in Chapter 5, are utilized. A discussion of the collection process

is briefly described below for the sake of completeness; however, the reader is referred to Section

5.3.1 for a more through review. The ground-trace for the three driving data collects is provided in

Fig. 6.3.1. For each of the depicted data collects, the GNSS binary IQ observations were recorded

with a LabSat-3 GPS record and playback device [100]. The collected IQ data were then played

back into twoGNSS receivers: a geodetic-grade (Novatel OEM-638)GNSS receiver, and an open-

source GPS SDR.

Theobservations generatedby the geodetic-graph receiver, in conjunctionwith theobservations

generated by an additional static GNSS receiver, were utilized to calculate a reference positioning

solution for each data collect. Where, the reference solution was calculated through a differential

(i.e., real time kinematic (RTK)) filter-smoother framework implemented within the open-source

package RTKLIB [88].

(a) Ground trace for data
collect 1.

(b) Ground trace for data
collect 2.

(c) Ground trace for data
collect 3.

Figure 6.3.1: Ground trace for the three kinematic GNSS data collects. All three data col-
lected were recorded in Morgantown, Wv
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The observations generated by the GPS SDR are utilized by the estimation framework to vali-

date the proposed methodology. These observations are utilized for validation because they were

intentionally degraded by altering the GNSS tracking parameters. For a more detailed discussion

on the specific GNSS tracking parameter settings, the reader is referred to Section IV of [46].

With these three datasets, the proposed approach (i.e., BCE-AD) is validated against four ad-

ditional estimators. The first comparison algorithm is a traditional (i.e., non-robust) estimation

framework that utilizes a l2-norm cost function. Additionally, the DCS robust estimation frame-

work [16] is utilized. The third comparison algorithm is theMMestimation framework [17]with a

static measurement uncertainty model. The final comparison algorithm is the BCE approach [46].

6.3.2 Results

Tobegin the evaluationof theproposedmethodology, thehorizontal residual-sum-of-squares (RSOS)

positioning error for the three data collects will be examined. This evaluation is presented visually

in Fig. 6.3.2, in the form of a box-plot. From Fig. 6.3.2 it is shown that the proposed BCE-AD

significantly reduces the median horizontal RSOS positioning error for data collects 1 and 3, and

performs comparably well to the other robust estimators on data collect 2. The specific statistics

representing the analysis presented in Fig. 6.3.2 are provided in Table 6.3.1.

To examine the reason why the BCE-AD approach provided no additional positioning perfor-

mance benefit when compared to the BCE approach for data collect 2, the measurement domain

partitioning for the two approaches can be evaluated. This evaluation is provided in Fig. 6.3.3 for

all three data collects. From the provided figure, it can be hypothesized that no additional position-

ing accuracy is granted when the measurement residuals can be easily partitioned utilizing exclu-

sively the information in themeasurement residual domain. This is depicted visually by evaluating
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Table 6.3.1: Horizontal RSOS
positioning error results when low
quality observations are utilized.
The green and red cell entries
correspond to the minimum and
maximum statistic, respectively.

(a) Horizontal RSOS position-
ing error results for data collect
1 when low quality – see Table
5.3.1 for receiver configuration –
observations are utilized.

(m.) L2 DCS MM BCE BCE-AD
median 9.84 10.82 9.13 6.70 2.14
variance 0.33 0.21 0.37 0.09 0.16
max 14.84 16.10 14.11 11.75 7.79

(b) Horizontal RSOS position-
ing error results for data collect
2 when low quality – see Table
5.3.1 for receiver configuration –
observations are utilized.

(m.) L2 DCS MM BCE BCE-AD
median 5.09 5.02 4.11 3.58 3.58
variance 613.13 342.92 673.50 393.32 393.32
max 127.29 98.05 132.49 103.64 103.64

(c) Horizontal RSOS position-
ing error results for data collect
3 when low quality – see Table
5.3.1 for receiver configuration –
observations are utilized.

(m.) L2 DCS MM BCE BCE-AD
median 10.98 9.88 8.02 7.31 3.25
variance 3.06 1.49 3.36 2.55 3.25
max 17.26 17.30 15.06 15.35 12.64

Figure 6.3.2: Horizontal RSOS positioning error for
collected GNSS data sets. The specific estimator statis-
tics are provided in Table 6.3.1. Within this figure, L2,
is a batch estimator with L2 cost function, DCS is the
dynamic covariance scaling robust estimator, MM is
the max-mixtures approach with a static measurement
covariance model, BCE is the batch covariance estima-
tion technique, and BCE-AD is the proposed batch co-
variance estimation technique over an augmented data
space.
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Fig. 6.3.3c, where it is shown that the clustering utilizing only the information in themeasurement

domain can easily partition the provided measurement residuals. However, when evaluating the

measurement residuals for data collects 1 and 3 (i.e., the datasets where the greatest positioning

performance benefit is granted by the BCE-AD approach), it is seen that clustering over the two

different domains provides significantly different partitionings.

To conclude the evaluation of the proposed approach, the selected features for each dataset are

evaluated. This evaluation is depicted visually in Table 6.3.2. From this visual, it can be noted that

the most relevant features not only vary from dataset to dataset, but also from one optimization

iteration to the next within a given dataset. Additionally, the hypothesis presented in the previous

paragraph (i.e., that the BCE-AD only grants increased positioning performance when sufficient

information is not present in the measurement residual domain to partition the residuals) is fur-

ther verified in Table 6.3.2b where it is shown that only features utilized for data collect 2 are the

measurement residuals.
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(a) Utilized features per iteration of optimization for data collect 1.
Iter 0. Iter 1. Iter 2. Iter 3. Iter 4. Iter 5. Iter 6. Iter 7. Iter 8.

ρ
Φ
El.
Az.
SS.

(b) Utilized features per iteration of optimization for data collect 2.

Iter 0. Iter 1. Iter 2. Iter 3. Iter 4. Iter 5. Iter 6.
ρ
Φ
El.
Az.
SS.

(c) Utilized features per iteration of optimization for data collect 3.

Iter 0. Iter 1. Iter 2. Iter 3. Iter 4.
ρ
Φ
El.
Az.
SS.

Table 6.3.2: Utilized features for each iteration of optimization with the BCE-AD approach.
The green and red cell entries correspond to the utilized and non-utilized features, respectively.
Within the table, ρ is the pseudorange residual, Φ is the carrier-phase residual, El. is the eleva-
tion angle, Az. is the azimuth angle, and SS. is the signal strength.
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(a) BCE based measurement residual
domain partitioning for data collect 1.

(b) BCE-AD based measurement residual
domain partitioning for data collect 1.

(c) BCE based measurement residual do-
main partitioning for data collect 2.

(d) BCE-AD based measurement residual
domain partitioning for data collect 2.

(e) BCE based measurement residual do-
main partitioning for data collect 3.

(f) BCE-AD based measurement residual
domain partitioning for data collect 3.

Figure 6.3.3: Partitioning of the measurement residual domain with the BCE approach (see
Figs. 6.3.3a, 6.3.3c, and 6.3.3e), and the BCE-AD approach (see Figs. 6.3.3b, 6.3.3d, and
6.3.3f), for the three kinematic GNSS data collects at the final iteration of optimization.
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6.4 Key Takeaway

This chapter presents an extension of the previously proposed batch covariance estimation (BCE)

technique to enable robust state estimation. The BCE approach enables robust state estimation

through the iterative estimation of a measurement error uncertainty model based upon the previ-

ous iterationsmeasurement residuals. Where, the estimatedmeasurement error uncertaintymodel

is characterized by a Gaussian mixture model (GMM) which is fit to the measurement residuals

through variational clustering. After fitting the GMM to the current optimization iterations resid-

uals, the uncertainty model of each observation is update to the sufficient statistics of the assigned

cluster within the GMM.

The approach proposed within this work extends the BCE approach on one front. Specifically,

it removes the assumption that the measurement error uncertainty model can be accurately char-

acterized utilizing information exclusively fromwithin themeasurement residual domain. Instead,

this chapter argues that the uncertainty estimation process should be augmented to include addi-

tional signal qualitymetrics (SQMs). Themodification of the uncertainty estimation process to an

augmenteddata space increases the likelihoodof a uniquepartitioning in themeasurement residual

domain and thus provides the ability tomore accurately characterize themeasurement uncertainty

model.

To verify the proposed batch covariance estimation over and augmented data space (BCE-AD)

approach, threeGNSS data sets were utilized. The utilized data sets provide varying levels of degra-

dation to quantify the robustness of the proposed algorithm against other state-of-the-art robust

estimators. Utilizing these data sets, it is shown that the proposed approach provides comparable

or improved state estimation accuracy when compared to other robust estimation techniques.
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7
Incremental Covariance Estimation (ICE)



7.1 Chapter Abstract

Recent advances in the fields of robotics and automation have spurred significant interest in robust

state estimation. To enable robust state estimation, several methodologies have been proposed.

One such technique, which has shownpromising performance, is the concept of iteratively estimat-

ing a Gaussian Mixture Model (GMM), based upon the state estimation residuals, to characterize

themeasurement uncertaintymodel. Through this iterative process, themeasurement uncertainty

model is more accurately characterized, which enables robust state estimation through the appro-

priate de-weighting of erroneous observations. This approach, however, has traditionally required

a batch estimation framework to enable the estimation of the measurement uncertainty model,

which is not advantageous to robotic applications. In this chapter, an efficient, incremental exten-

sion to the measurement uncertainty model estimation paradigm is proposed. The incremental

covariance estimation (ICE) approach, as detailed within this paper, is evaluated on several col-

lected data sets, where it is shown to provide a significant increase in localization accuracy, when

compared to other state-of-the-art robust, incremental estimation algorithms.

7.2 The ICE Algorithm Formulation

To facilitate a discussion of the proposed incremental covariance estimation (ICE) framework the

assumed data model is first explained. Then, a method for incremental measurement uncertainty

model adaptation is presented. Finally, pull the previously mentioned topics together, the discus-

All developed software and data utilized within this chapter is publicly available at https://github.com/wvu-
navLab/ICE.
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sion concludes with an overview of the proposed ICE framework.

7.2.1 Data Model

As calculated by the estimator, a set of state estimation residualsR = {r1, r2, . . . , rN | rn ≜ yn −

hn(X)} is provided. The set of state estimation residuals can be characterized by a GMM, which,

for this work, will act as the measurement uncertainty model, GMMg. As proposed within [17],

with the intent to minimize the computation complexity of the optimization problem, the GMM

can be reduced to selecting the most likely component from the mixture model to approximately

characterize each observation, as depicted in Eq. 7.1 where μm is the components mean and Λm is

the components covariance.

rn ∼ max
m

wmN(rn | θm) s.t. θm = {μm, Λm} (7.1)

For this work, it is additionally assumed that the set of residuals,R, can be partitioned into two

distinct groups. The first group is the set of all residuals which sufficiently adhere to the a priori

covariancemodel (i.e., do not deviate sufficiently from themost likely component within GMMg),

which will be indicated by the set RI. While, the second group is the set residuals which do not

sufficiently adhere to the a priori covariance model, which will be indicated by the setRO.

To quantify the level of adherence to the a priori uncertaintymodel, the z-test, as provided in Eq.

7.2, is employed. Within Eq. 7.2 μ, and σ are the mean and standard deviation of the most likely

component fromGMMg for the state estimation residual rn. Utilizing the z-test as ametric to quan-

tify the level of agreement between the set of state estimation residual and the a priori uncertainty
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model, the two groupings can more concretely define as, RI = {r | r ∈ R, Z(r, φ) < Tr} and

RO = {r | r ∈ R, r /∈ RI}.

Z(rn, φ) =
rn − μ
σ

s.t. φ ≜ {μ, σ} (7.2)

7.2.2 Uncertainty Model Adaptation

By definition, the setRO is not accurately characterized by GMMg thus, it is desired to adapt the

uncertaintymodel tomore accurately represent the new observations. To enable the adaptation of

the uncertainty model, a two step procedure is utilized. This procedure starts by estimating a new

GMM, which will be indicated by GMMn, based solely on the set RO. Then, GMMn is merged

into the prior model (i.e., GMMg) to provide a more accurate characterization the measurement

uncertainty model. This procedure is elaborated upon in Section 7.2.2 and Section 7.2.2, respec-

tively.

Variational Clustering

To estimate GMMn, the set of model parameters which maximizes the log marginal likelihood, as

depicted in Eq. 7.3, must be calculated. In Eq. 7.3, θ is the set of mean vectors and covariance

matrices which define the new GMM, andZ is an assignment variable (i.e., the variableZ assigns

each r ∈ RO to a specific component within the model).

log p(RO) = log
∫

p(RO, θ,Z)dZdθ (7.3)

Tr is a user defined parameter that encodes the acceptable amount an observation can deviation from the a priori
model in terms of multiples of the standard deviation.
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In general, the integral presented in Eq. 7.3 is computational intractable [95]. Thus, amethod of

approximate integration must be implemented. For this work, the variational inference [94, 95]

approach is utilized primarily due this class of algorithms run-time performance when compared

to sampling based approaches (i.e., Monte Carlo methods [96]).

Efficient GMM Merging

To enable the second step of the measurement uncertainty model adaptation (i.e., the merging of

GMMn into the prior model GMMg), an implementation of the algorithm presented in [114] is

utilized. To provide a description of the approach, let’s evaluate the equivalence between gn ≜

{wn, μn, Λn} ∈ GMMn (e.g., the first component in GMMn) and gg ≜ {wg, μg, Λg} ∈ GMMg

(e.g., the first component in GMMg).

To test the equivalence, first the set of observations RO,gn ⊆ RO that correspond to set of

state estimation residuals that are characterized by component gn are extracted. Utilizing RO,gn ,

it is desired to check if the set of state estimation residuals has an equivalent covariance to the hy-

pothesis covariance model (i.e., we want to see if Λn = Λg, where Λn = cov(RO,gn) and Λg is the

hypothesis covariance from gg).

To determine if the twoGMMcomponents have an equivalent covariancemodel, first the set of

observationsRO,gn are transformed with Cholesky decomposition of the hypothesis covariance .

This transformationprovides uswith anewdata set, defined asY = {y = L−1r | r ∈ RO,gn , Λg =

LLT}.

Utilizing the transformed set of state estimation residuals Y, the W-statistic [115] can be con-

To enable the implementation of the ICE approach in software, the libcluster [94] software library was utilized.

This whitening process is conducted because the covariance test is only valid for unit covariance matrices.
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structed, as provided in Eq. 7.4, to test the equivalence of covariance matrices. Within Eq. 7.4,

Λy = cov(Y), m is the cardinality of the set Y (i.e., m =|Y|), and d is the dimension the state

estimation residuals (i.e, ym ∈ Rd).

W =
1
d
Tr
(
(Λy − I)2

)
− d

m
( 1
d
Tr(Λy)

)2
+

d
m

(7.4)

The W-statistic is known to have an asymptotic χ2 distribution with degrees of freedom d(d +

1)/2, as depicted in Eq. 7.5. Thus, a Chi-square test with a user defined critical value is utilized to

test the equivalence of covariance matrices.

mWd
2

∼ χ2
d(d+1)/2 (7.5)

To test the equivalence of mean vectors, the T-statistic [116], as provided in Eq. 7.6, is utilized.

Within Eq. 7.6, μn is the mean of the component of GMMn, and μg is the mean vector of the com-

ponent of GMMg. The T-statistic is utilized to test the equivalence of mean vectors because it is

known to have an asymptotic F distribution, as depicted in Eq. 7.7. Thus, an F-test with user de-

fined critical value is utilized to test the equivalence of mean vectors.

T2 = m
∥∥∥μn − μg

∥∥∥
Λy

(7.6)

m− d
d(m− 1)

T2 ∼ Fd,m−d (7.7)

If both the mean and covariance of two components are found to be equivalent, then the new

component gn ismergedwith the prior component gg to adapt themeasurement uncertaintymodel
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GMMg. To adapt themeasurement uncertaintymodel, themean, covariance andweighting can be

updated, as presented in Eqs. 7.8, 7.9, and 7.10, respectively. Within Eqs. 7.8, 7.9, and 7.10,N is the

total number of points which are characterized by GMMg, M is the total number of points which

are characterized byGMMn, andm is the number of points which are characterized by component

gn.

μ =
Nwgμg + mμn
Nwg + m

(7.8)

Λ =
NwgΛg + mΛn

Nwg + m
+

Nwgμgμ
T
g + mμnμ

T
n

Nwg + m
− μμT (7.9)

w =
Nwg + m
N+M

(7.10)

If the new component gn does not match a component within GMMg, then the mean and co-

variance of gn is added to GMMg. When the new component is added to GMMg the weighting

vector is updating, as presented in Eq. 7.11, where N, M, and m are as defined above. When the

new component is added, theweighting for all of the remaining components inGMMg are updated

according to Eq. 7.12.

w =
m

N+M
(7.11)

w =
Nwg

N+M
(7.12)

Through the utilization of the mixture model merging approach developed within [114], and
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outlined in this section, the measurement uncertainty model can be adapted online. This adapta-

tion is conducted without the need for storing all previous state estimation residuals (i.e, only the

most recent residualsRO which do not adhere to the a priorimodel are required), which dramati-

cally reduces the computational and memory cost of the proposed approach.

7.2.3 Algorithm Overview

With thediscussionprovided in theprevious sections, the conversationcannowturn to anoverview

of the proposed robust estimation framework. To facilitate a discussion, a graphical overviewof the

ICE framework is depicted in Fig. 7.2.1.

From Fig. 7.2.1, it is shown that the ICE algorithm starts at each epoch by calculating the set of

state estimation residualsRt from the current set of observationsYt. As discussed within Section

7.2.1, this set of state estimation residualsRt can be partitioned into two distinct groups (i.e., the

set of state estimation residuals which correspond to erroneous observationsRO,t, and the set of

state estimation residuals which correspond to observations that adhere to the a priorimodelRI,t)

through the utilization of the z-test.

With the setRO,t, the previous set of state estimation residuals which correspond to erroneous

observations RO is appended. If the length of RO is greater than a user defined threshold (i.e.,

if |RO|> Tc), the set is utilized to modify the measurement uncertainty model, as described in

Section 7.2.2. After the adaptation of the uncertainty model, the set RO is cleared and the set of

observations which adhere to the a priori model RI,t are incorporated. With the incorporation

of the new observations, a new state estimate is provided, following the discussion provided in

Section 3.2.

Several factors can affect the specific realization of this threshold (e.g., the expected dynamics of the environment, or
the number of observations per epoch).
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If the length of set of state estimation residuals, which correspond to erroneous observations,

RO is less than a user defined threshold, then the uncertainty model is not adapted for the current

epoch. Instead, the previous measurement uncertainty model is utilized to incorporate the new

set of observations which adhere to the a priorimodel. With the new observations incorporated, a

new state estimated is provided, as described in Section3.2. This process is continued in an iterative

Environment
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|RO| > T Variational Clustering
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Figure 7.2.1: Graphical depiction of the proposed incremental covariance estimation (ICE)
algorithm. The proposed approach enables efficient, incremental, and robust state estimation
through the iterative adaptation of the measurement uncertainty model, based upon the state
estimation residuals that correspond to erroneous observations.
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fashion for as long as needed (e.g., until the data collection terminates).

7.3 Results

7.3.1 Data Collection

To conduct an evaluation of the proposed robust estimation framework, a collection of three kine-

matic GNSS data sets, as discussed in Section 5.3.1, is utilized. These GNSS data sets, as can be

visualized through their ground traces, which are shown in Fig. 7.3.1, weremade publicly available

and are described within [46].

For these data collects, the binary IQ data in the L1-band was recorded. By recording the IQ

data in place of theGNSS receiver dependent observations (i.e., the pseudorange and carrier-phase

observables), the same data collect can be utilized to generate several sets of observations with

varying levels of degradation after playing back through a software defined GNSS receiver [101]

with different sets of tracking parameters. Specifically, the receiver dependent observations can

be generated off-line by playing the IQ data into a GNSS receiver, where the level of degradation

is varied by changing the GNSS receiver’s tracking parameters (i.e., changing the bandwidth of

the phase lock loop (PLL), the DLL and the correlator spacing). For a detailed discussion on

the impact that the GNSS receiver tracking parameters can have on the quality of the generated

observables, the reader is referred to [77, 102], which is reviewed in [46].

For this study, two sets of observations are generated (i.e., a low-quality andhigh-quality data set)

for each of the data collects. The specific GNSS receiver tracking parameters utilized to generate

the low-quality and high-quality observations are provided within Table 5.3.1.
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Figure 7.3.1: Ground trace for the three utilized GNSS data sets. The white trace corre-
sponds to data collect 1, the green trace corresponds to data collect 2, and the blue trace
corresponds to data collect 3.

7.3.2 Evaluation

Utilizing these data collects, an evaluation of the proposed methodology can be conducted. To

provided a comparison for the proposed approach, three additional estimation frameworks will be

utilized. The first comparisonmethodology is the traditional l2-norm based estimator. The second

comparison methodology is the MM approach, which has a static measurement error covariance

model (i.e., a fixed two component measurement error covariance model). The final comparison

methodology is the DCS approach, where the DCS approach is utilized because it is both a closed

form version of switchable constraints and a specific implementation of an m-estimator [? ]. All

of the utilized estimators are built upon the iSAM2 algorithm [45], as implemented within the

Georgia Tech Smoothing and Mapping (GTSAM) library [117].
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Positioning Performance

To start an evaluation, the localization performance of the estimation frameworks will be assessed.

To enable the assessment of the localization performance, a reference ground-truth must first be

established. To generate this ground-truth, a differential GNSS solution (i.e., RTK ) is utilized,

which is known to provide centimeter level localization accuracy [77].

With the RTK generated reference ground-truth solution, the localization performance of the

four estimation frameworks, when low-quality observations are utilized, is provided inTable 7.3.1 .

From Table 7.3.1, it can be seen that all three of the robust estimation frameworks provided a sig-

nificant increase is localization accuracy, with respect to the median, when compared to the tradi-

tional l2-norm approach. Additionally, it should be noted that the ICE approach provides themost

accurate solution for all three data collects when low-quality observations are utilized.

To continue the localization performance evaluation, the localization performance of the four

estimation frameworks with the high-quality observations is evaluated, as provided in Table 7.3.2.

FromTable 7.3.2, first, it should be noted that all four estimation frameworks are providing compa-

rable localization statistics – as would be expected when the utilized observations adhere to the a

priorimeasurement error covariance model. However, it can also be noted that the ICE approach

is providing the most accurate localization statistics the majority of the time.

This solutionwas realizedwithRTKLIB[88], which is an open-source software package forGNSSbased localization.

The localization performance presented within this section is significantly improved from the batch implementations
presented within Chapters 5 and 6. This localization performance increase is primarily due to two modifications: 1)
an accurate carrier-phase cycle slip threshold was set, 2) a static position constraint is placed on the initial and final
positions within this implementation.
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Table 7.3.1: Horizontal RSOS positioning error results when low fidelity receiver tracking pa-
rameters are utilized to generate the observations. The green and red cell entries correspond
to the minimum and maximum statistic, respectively.

(a) Horizontal RSOS positioning error results for data collect 1.

(m.) L2 DCS MM ICE
median 2.57 0.64 1.63 0.56
std. dev. 1.41 0.98 1.05 0.72
max 10.78 9.71 10.06 13.19

(b) Horizontal RSOS positioning error results for data collect 2.

(m.) L2 DCS MM ICE
median 2.48 2.08 1.94 0.93
std. dev. 3.87 4.59 3.92 2.10
max 29.18 31.05 31.40 23.02

(c) Horizontal RSOS positioning error results for data collect 3.

(m.) L2 DCS MM ICE
median 4.41 2.82 3.62 1.48
std. dev. 2.97 3.54 3.33 5.23
max 29.53 30.38 28.30 26.61

Covariance Estimation Analysis

To continue the evaluation, the estimated covariance from the ICE approach is assessed. Within

this assessment, there are two primary objectives. First, it is desired to show that the incrementally

estimated covariance represents the measurement uncertainty model. Secondly, it is desired to

show that the covariance estimation process is efficiently conducted.

To enable this assessment the high-quality observations are utilized, as provided in Fig. 7.3.2.

Within Fig. 7.3.2, the black points correspond to the state estimation residuals of observations

which sufficiently adhere to the a priori measurement error uncertainty model. While, the red

points correspond to the state estimation residuals of observations which were not well defined by
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Table 7.3.2: Horizontal RSOS positioning error results when high fidelity receiver tracking pa-
rameters are utilized to generate the observations. The green and red cell entries correspond
to the minimum and maximum statistic, respectively.

(a) Horizontal RSOS positioning error results for data collect 1.

(m.) L2 DCS MM ICE
median 0.37 0.36 0.35 0.35
std. dev. 0.30 0.27 0.29 0.28
max 5.38 5.33 5.35 5.22

(b) Horizontal RSOS positioning error results for data collect 2.

(m.) L2 DCS MM ICE
median 0.82 0.81 0.84 0.83
std. dev. 0.46 0.46 0.50 0.46
max 3.97 3.93 10.77 2.95

(c) Horizontal RSOS positioning error results for data collect 3.

(m.) L2 DCS MM ICE
median 0.96 0.95 1.00 0.89
std. dev. 0.67 0.73 0.72 0.66
max 7.83 7.83 18.08 7.82

the a priorimeasurement uncertainty model, and thus not included during optimization; however,

were utilized tomodify themeasurement uncertaintymodel. Additionally, the ellipses correspond

to components of the incrementally estimated measurement error uncertainty model, with 95%

confidence.

From Fig. 7.3.2, it can be seen that the incrementally estimated measurement uncertainty mod-

els closely resemble the assumedmodel for the high quality observations (i.e., an inlier distribution

which characterizes a majority of the observations, and outlier distributions which characterize a

small percentage of erroneous observations). This is specifically evident for data collects 1 and 3,

as depicted in Fig. 7.3.2a and Fig. 7.3.2c, respectively.
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(a) Incrementally estimated measurement error covariance model for data collect 1. For this
measurement uncertainty model, approximately 91% of the observations are characterized by
component 1.

(b) Incrementally estimated measurement error covariance model for data collect 2. For this
data collect, only 249 observations did not adhere to the a priori measurement uncertainty
model.

(c) Incrementally estimated measurement error covariance model for data collect 3. For this
measurement uncertainty model, approximately 98% of the observations are characterized by
component 1.

Figure 7.3.2: Incrementally estimated measurement error covariance model when the obser-
vations are generated with high fidelity receiver tracking parameters.
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Toverify the efficiency of the covariance adaptation approach, the number of times themeasure-

ment uncertaintymodel was adapted can be evaluated. For, data collects 1 and 3, as depicted in Fig,

7.3.2a and Fig. 7.3.2c, the covariance model was only adapted once to enable the incorporation of

two outlier distributions. For data collect 2, as depicted in Fig. 7.3.2b, no covariance adaptation

step was conducted – instead, only 249 observations were rejected. In contrast, if the covariance

model was naively adapted every time the number of residuals were greater than the residual car-

dinality threshold , then data collect 1 would have required 75 adaptations, data collect 2 would

have required 57 adaptations, and data collect 3 would have required 91 adaptations. Thus, the

incorporation of the z-test to partition the set of residuals dramatically increased the efficiency of

the proposed approach.

Run-time Analysis

To conclude the evaluation of the proposed methodology, a run-time comparison is provided in

Fig 7.3.3. From Fig. 7.3.3, it is shown that l2-norm, DCS, and the MM approaches all provide

comparable run-time performance.

Additionally, it is clearly shown that the ICE methodology, provides the slowest average run-

time; however, this slower run-time – which is still on average approximately 25 Hz – could prove

to be a valid comprise when considering the significantly increase in localization accuracy granted

by the approach.

Finally, although the ICE approach does currently provide the slowest run-time, an additional

points should be made. For the current ICE implementation, the primary run-time bottle-neck

For this study, the threshold for measurement uncertainty model adaptation, was set to 1, 000 (i.e., adapt the uncer-
tainty model if |RO| > 1, 000.

This run-time comparison was conducted on a 2.8GHz Intel Core i7-7700HQ processor.
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Figure 7.3.3: Estimator update time for each of the estimation frameworks over all data col-
lects, where L2 is a batch estimator with l2-norm cost function, DCS is the dynamic covari-
ance scaling robust estimator, MM is the max-mixtures approach with a static measurement
covariance model, and ICE is the proposed incremental covariance estimation technique.

for the current evaluation is implementation based. Specifically, the ICE algorithm could be im-

plemented in such a way to dramatically decrease run-time by simply parallelizing the covariance

adaptation and state estimation steps.

7.4 Key Takeaway

Within this chapter, a novel extension to themeasurement uncertaintymodel estimation paradigm

for enabling robust state estimation is proposed. Specifically, an efficient, incremental extension

of the methodology is developed. The efficiency of the approach is granted by adapting the un-

certainty model with only a small subset of informative state estimation residuals (i.e., the state
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estimation residuals which do not adhere to the a priorimodel). The incremental nature of the ap-

proach is granted through recent advances within the probabilistics graphical model community.

Toevaluate theproposed ICEapproach, threedegradedGNSSdata sets are utilized. Basedupon

the results obtained on these data sets, the proposed approach provides promising results. Specifi-

cally, the proposed ICE approach provides significantly increased localization performance when

utilizing degraded data, when compared to other state-of-the-art robust estimation algorithms.

113



8
Concluding Remarks



8.1 Discussion

Several robust state estimation frameworks have been proposed over the previous decades. Under-

pinning all of these robust frameworks is one dubious assumption. Specifically, the assumption

that an accurate a priori measurement uncertainty model can be provided. As systems become

more autonomous, this assumption becomes less valid (i.e., as systems start operating in novel en-

vironments, there is no guarantee that the assumed a priorimeasurement uncertainty model char-

acterizes the sensors current observation uncertainty).

In an attempt to relax this assumption, a novel robust state estimation framework is proposed.

The proposed framework enables robust state estimation through the iterative adaptation of the

measurementuncertaintymodel. Theadaptationof themeasurementuncertaintymodel is granted

through non-parametric clustering of the estimators residuals, which enables the characterization

of themeasurement uncertainty via aGaussianmixturemodel. ThisGaussianmixturemodel based

measurement uncertainty characterization can be incorporated into any non-linear least square op-

timization routine by only using the single assigned — the assignment of each observation to a

single mode within the mixture model is provided by the utilized non-parametric clustering algo-

rithm—component’s sufficient statistics fromwithin themixturemodel to update the uncertainty

model for all observation (i.e., every observations uncertainty model is approximately character-

ized by the single assigned Gaussian component from within the mixture model).

Within this dissertation, the proposed framework is instantiated into three novel robust state

estimation algorithms: batch covariance estimation (BCE), batch covariance estimation over an

augmented data space (BCE-AD), and incremental covariance estimation (ICE).To verify the pro-

posed framework, several GNSS data sets were collected. The collected data sets provide varying
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levels of observation degradation to enable to characterization of the proposed algorithm on a di-

verse data set. Utilizing these data sets, it is shown that the proposed framework exhibits improved

state estimation accuracy when compared to other robust estimation techniques when confronted

with degraded data quality.

8.2 Contributions

As discussed within Chapter 1, this dissertation is formed around three primary contributions.

Now that the technical approach has been detailed and evaluated, we would like to revisit the pro-

posed contributions.

Contribution 1: As proposed within Chapter 4, we develop a novel GNSS processing strat-

egy. This processing techniques is built upon the connectionmade, within this dissertation,

between the carrier-phase ambiguity states forGNSS signal processing and the loop-closure

constraints which are common to the SAM formulation. By processing the GNSS signal in

this way, we see two primary benefits. First, by incorporating the carrier-phase ambiguity

states in this way, we can leverage the factor graph framework to exploit the sparsity of the

SLAM like system (i.e., the carrier-phase ambiguity states act similar to loop-closure con-

straints in the typical SLAM formulation). Secondly, we see reduced time to convergence

and an increase in localization accuracy, as discussed in Section 4.4.

Contribution 2: As proposed within Chapter 5 and extended within Chapter 7, a novel ro-

bust state estimation framework is developed. Specifically, we develop a novel robust state

estimation framework that works through the iterative adaptation of the measurement un-

certainty model. The adaptation of the measurement uncertainty model is granted through
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non-parametric clustering, which enables the characterization of the measurement uncer-

tainty via a Gaussian mixture model. The provided Gaussian mixture model can be utilized

within any non-linear least squares optimization algorithm by approximately characterizing

each observation with the sufficient statistics of the assigned cluster (i.e., each observation’s

uncertainty model is updated based upon the assignment provided by the non-parametric

clustering algorithm). Within this dissertation, we develop both a batch (i.e., the batch co-

variance estimation (BCE), as detailed in Chapter 5) and incremental (i.e., the incremental

covariance estimation (ICE), as detailed in Chapter 7) version of the proposed methodol-

ogy. The proposed framework is shown to provide a significant increase in localization ac-

curacy, when compared to other state-of-the-art algorithms, when degraded data is utilized.

Contribution 3: As proposed within Chapter 6, a novel methodology for the incorporation

of metadata (e.g., the signal strength of the associated GNSS observation) into the state-

estimation framework is developed. This framework (i.e., batch covariance estimation over

an augmented data-space (BCE-AD) augments the uncertainty estimation process to in-

clude metadata. The modification of the uncertainty estimation process to an augmented

data space is significant because it increases the likelihood of a unique partitioning in the

measurement residual domain and thus provides the ability to more accurately characterize

the measurement uncertainty model. The proposed batch covariance estimation over an

augmented data-space (BCE-AD) is experimentally validated on collected data where it is

shown that a significant increase in state estimation accuracy can be granted compared to

previously proposed robust estimation techniques.
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8.3 FutureWork

Theworkpresentedwithin this dissertation canbeextendedonmultiple fronts. Within this section,

we list a few such open questions, which are research directions that are of primary interest to the

author.

8.3.1 How can we most accurately estimate the uncertainty model?

The first question of interest to the author is concerned with the framework utilized to learned

uncertainty model. Specifically, what framework should be utilized to find the desired pairing be-

tween computation complexity and the accuracy of the uncertainty model?

One avenue that is currently being explored is the linear response variational approach [118].

This approach is of current interest because itmaintains the run-timeperformanceof the traditional

variational inference, while providing amore accurate characterization of the covariance . Another

possible framework, which has the potential to find a desirable comprise between computation

complexity and accuracy is a hybrid Markov Chain Monte Carlo variational inference approach

[119].

8.3.2 How general are the learned uncertainty models?

The next question of interest to the author is concerned with the generality of the learned uncer-

tainty model. Specifically, could a model be learned for one scenario and transferred to another?

Tomake this more concrete, let’s look at a specific example. Let’s assume that we have a car driv-

ing a specific trajectory through a novel environment. While on this trajectory, a new uncertainty

The covariance estimate of traditional variational methods is degraded to enable increased run-time performance.
This degradation is due to the mean field assumption.
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model is learned through the utilization of the framework proposed within this dissertation (e.g.,

the ICE formulation). Now, a new car drives the same trajectory a week later. Could the previously

learned uncertaintymodel be utilized again? If this is possible, then the computational complexity

of the proposed framework could be significantly reduced through the utilization of uncertainty

model sharing between platforms.

To take this one step further, we could lookat the applicability of transferringuncertaintymodels

between types of scenarios. Where, for example, a scenario type could be simply classifying all

operating environments into one of three categories (e.g., rural, moderate urban, and deep urban) .

If this is possible, then an a priori uncertaintymodel could be learned for each scenario type. Then,

a platform could robustly localize within a novel environment withminimal covariance adaptation.

8.3.3 What metadata is useful in other domains?

As discussed within Chapter 6, the incorporation of metadata into the uncertainty model estima-

tion process can significantly reduce the state estimation error. However, to evaluate this frame-

work, only a single sensor modality (i.e., GNSS) was utilized. Thus, another question of interest to

the author is, what metadata is useful when other sensor modalities are utilized?

To examine this question further, we would like to test several commonly used sensors (e.g.,

RGB, odometry, and inertial). Where, we hope to find that all of these sensor have metadata that

helps to partition the measurement residual domain and thus allow for the more accurate char-

acterization of the measurement uncertainty model, which in turn enables a more accurate state

estimate.

This partitioning of the operating environment was only selected due to it’s applicability to GNSS processing; how-
ever, the notation applies to any other grouping
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