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Abstract: 

Thermal Performance of Growth at Consumption Maximum (C-Max) and Routine 

Metabolic Rate (RMR) in Brook Trout (Salvelinus fontinalis) from four Populations 

in Central Appalachia 

Cory M. Hartman 

 

Growth of an individual is the end result of many physiological processes stemming from 

the consumption of food items.  These processes can be influenced by many variables 

including temperature.  Current bioenergetics models for Brook Trout Salvelinus 

fontinalis suggest growth increases with temperature until an inflection point of 20.2°C.  

With a warming climate, and water temperatures expected to rise, the ability of a 

population to adapt to the warming environment is crucial to the survival of the species.  

For this study we sought to see how spatial variation would influence the specific 

consumption, conversion efficiency, and specific growth at consumption maximum (C-

Max), as well as the routine metabolic rate (RMR) of four source populations of Brook 

Trout in West Virginia’s Central Appalachian Mountains.  To accomplish this, we 

subjected individual fish to identical experimental regimes at three temperatures (12, 16, 

and 20°C).  Experiments included 12 days of maximum consumption (C-Max) 

experiments followed by routine metabolic rates being measured.  The effects of source 

population and temperature differences were determined using a general linear model and 

significant differences in model coefficients (p≤0.05).  By the end of the study we found 

that the low elevation stream, which also experiences higher summer mean temperatures, 

significantly converted the energy of prey items more efficiently and in turn grew 

significantly faster at elevated water temperatures.  Routine metabolic rates were found to 

be significantly (p≤0.05) different with two populations having a higher intercept but a 

lower slope coefficient than the other two populations.  These findings give hope that a 

population of cold-water fish can survive climate change if temperatures rise at a slow 

enough pace to allow for adaptation. 
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Foreword 

 

This thesis contains three chapters. The first Chapter, “Literature Review and will not be 

published and is used to introduce the broader understanding of the subject matter in the 

research.  This Chapter was written following the American Fisheries Society’s Guidelines to 

Authors. 

 

The second chapter “Thermal Performance of Brook Trout in Consumption, Conversion 

Efficiency and Growth of four Central Appalachian Streams in West Virginia” is written in the 

“North American Journal of Fisheries Management” style as I hope to publish this chapter with 

this journal.  This research plays an important part in both the management and ecology of 

Appalachian Brook Trout, lending itself to be a useful tool for fisheries management. 

 

The third chapter has already been written following “Transactions of the American Fisheries 

Society” journal guidelines for authors.  This Chapter is entitled “Thermal Performance of 

Routine Metabolic Rates from four Populations of Brook Trout in West Virginia’s Central 

Appalachian Mountains.”  I hope to publish this article in Transactions of the American Fisheries 

Society to get my research to as many people as possible and to broaden my horizons and 

publish in several journals. 
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Chapter 1 –Literature Review and Introduction 

Literature Review 

Bioenergetics- The term bioenergetics refers to the ways in which animals dispose of the 

energy they acquire (Ney 1993).  Bioenergetics models are essentially an energy budget dealing 

with energy gained with energy spent using mathematical equations.  Winberg (1956) was one of 

the first to produce the energy budget for fish.  The equation representing the energy budget of a 

fish can be described as simply: Consumption = Respiration + Waste Losses + Growth.  Though 

the previous model is the simplest description of a fish’s metabolism, most terms can be broken 

down further to better explain the appropriations of the energy budget.  The respiration value can 

be further divided to include standard metabolism (RS), activity (RA), and digestion of food 

(RD).  The waste losses term encompasses egestion (F), and excretion (U).  Adding these values 

to the simple equation above along with consumption (C) and growth (G), provides a more 

detailed energy budget equation of: C = RS +RA +RD + F + U + G. 

Initial bioenergetics models were bolstered by Kitchell et al. (1977) producing the 

Wisconsin Model, which allows investigators to estimate consumption as a proportion of a 

temperature and size driven maximum.  The Wisconsin model was the foundation for 

bioenergetics software packages produced by Hewett and Johnson (1987, 1992), as well as a 

more recent version of the software package titled Fish Bioenergetics 4.0 (Deslauriers et al. 

2017).  The energy budget used in Fish Bioenergetics 4.0 is similar to the detailed energy budget 

above and can be written as: C = (R + A + SDA) + (F + U) + (SG + GG).  For this equation, 

consumption (C) is equal to the sum of respiration (R), active metabolism (A), and specific 

dynamic action (SDA), plus the sum of egestion (F) and excretion (U), plus the sum of somatic 

growth (SG) and gonadal growth (GG).  Consumption and respiration of fish species are both 
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temperature and size dependent, while waste losses can be thought of as either a constant 

proportion of consumption, or temperature, size, and ration dependent (Hanson et al. 1997). 

Hartman and Sweka (2003) were the first to create a bioenergetics model parameterized 

specifically for Brook trout Salvelinus fontinalis.  Using laboratory studies, they were able to 

determine which equations commonly used in the Fish Bioenergetics 3.0 (Hanson et al. 1997) 

program accurately represented consumption and respiration for Brook Trout.  Egestion and 

excretion parameters were assumed similar to those used for Brown Trout Salmo trutta, and the 

Elliot (1976) equation for waste losses was used in the model.  As Brook Trout size increased, 

the specific consumption rate decreased.  The satiation level of a Brook Trout increased with 

temperature until approximately 20.2ᵒC before sharply decreasing.  Consumption data were best 

described by the temperature dependent equation for coldwater species (Thornton and Lessem 

1987).  Specific metabolic rates of Brook Trout also decreased with increasing size.  

Interestingly, the specific metabolic rate peaked at 12.6ᵒC, then unexpectedly decreased at 

16.5ᵒC, and reached another peak at 21ᵒC.  In the end, the temperature-dependent equation 

including an activity term (Kitchell et al. 1977) provided the best fit for Brook Trout respiration.  

In addition to calculating specific parameters for consumption and respiration, Hartman and 

Sweka (2003) attempted to validate their estimates using laboratory experiments.  The 

bioenergetics model fitted with their parameters underestimated final weight of Brook Trout by 

1.0% and growth rate by 1.4%.  Consumption was underestimated by 19.7% on average.  In 

trying to understand the unusual dip at 16.5°C Sweka et al. (2004) determined that Brook Trout 

gastric evacuation rates were lower than expected compared to those of other trout species. The 

higher than expected metabolism measures at lower temperatures could be related to an 

incomplete evacuation of stomach contents causing specific dynamic action to raise the value.  
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The unexpected decrease in specific metabolic rate at 16.5°C noted by Hartman and Sweka 

(2003), and the knowledge of varying gastric evacuation times, prompted a new study by 

Hartman and Cox (2008) to re-evaluate Brook Trout metabolism over a range of temperatures.  

Their goal was to improve the metabolic parameters of the model by estimating a new activity 

rate multiplier for the respiration equation (Kitchell et al. 1977), which they hypothesized 

yielded the low consumption estimates noted by Hartman and Sweka (2003).  Hartman and Cox 

(2008) replicated metabolic studies on Brook Trout in the laboratory and found a consistent 

increase in specific metabolic rate until it peaked at approximately 21°C, rather than the 

depression at 16.5°C that was observed by Hartman and Sweka (2003).  They subsequently 

changed the activity rate multiplier from 1 to 2.89 and developed new estimates for the rest of 

the parameters in the respiration equation of the model.  The new parameter estimates improved 

model accuracy to predict final weight, growth, and consumption all within 2.3%. 

As suggested above, bioenergetics models are not without their faults.  Chipps and Wahl 

(2008) compared growth and food consumption estimates of 17 species, including Chinook 

Oncorhynchus tshawytscha and Sockeye Salmon Oncorhynchus nerka as well as Lake Trout 

Salvelinus namaycush, derived from bioenergetics models with those from experimentally 

derived estimates of growth and food consumption published since 1980.  They found a wide 

range of disagreement between bioenergetics and experimental estimates for these two model 

outputs ranging from -84 to 770% in laboratory and field studies.  It was also surmised that 

uncertainty can vary considerably both between and within species, and that model error usually 

increases when trying to account for variation across seasons and at different consumption rates.  

The authors summarize three potential sources of error in bioenergetics estimates: consumption-

dependent error, physiological adaptations and additional abiotic effects, and the influence of 
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prey dynamics.  For the purposes of this literature review, the focus will be on the two sources of 

error associated with my project, consumption-dependent error as well as physiological 

adaptations. 

Bajer et al. (2004) describes consumption-dependent error as error in model estimates 

attributed to variation in ration-size.  Consumption-dependent error results with the 

overestimation of consumption for fish feeding at relatively low rations, and the underestimation 

of consumption for fish feeding at relatively high rations.  This error can also occur when 

predicting growth rate.  Growth rate is underestimated for fish growing quickly and 

overestimated for fish growing slowly.  Several research articles have proposed explanations for 

this error including Madenjian and O’Connor (1999).  Madenjian and O’Connor (1999) 

suggested that underestimation of consumption for Lake Trout Salvelinus namaycush fed ad 

libitum was due to an increase in standard metabolic rate that is not accounted for in the model.  

Additionally, Chipps and Wahl (2004) described metabolic compensation; a decrease in the 

standard metabolism of Western Mosquitofish Gambusia affinis feeding at low levels, that they 

hypothesized caused the overestimation of prey consumption by the bioenergetics model.  This 

error is a result of modeling consumption dependent parameters, such as egestion, excretion and 

specific dynamic action, as constant proportions of energy consumed.  Chipps and Wahl (2008) 

suggest the parameters used for egestion, excretion and specific dynamic action should be 

modeled as a function of ration-size.   

Chipps and Wahl (2008) also discuss several cases of localized physiological adaptations.  

Two distinct groups of White Sturgeon Acipenser transmontanus in the Upper Columbia River, 

British Columbia, exhibited different mass-specific metabolic rates, temperature-dependent 

feeding rates, and seasonal growth patterns.  These variations result in different age at maturity 
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between the two groups (van Poorten and McAdam 2010).  Because the seasonal thermal regime 

was similar between the sites, the authors attributed the discrepancy to variation in prey 

availability between the two locations occupied by different groups.  In a 2002 paper by Munch 

and Conover, bioenergetics parameters were calculated for Atlantic Silverside Menidia menidia 

from localized populations in Nova Scotia, Canada and South Carolina, United States.  Munch 

and Conover (2002) reported the average bioenergetics parameters of metabolism, specific 

dynamic action, consumption, and growth differed by approximately 28%.  The largest 

discrepancy was found to be with the largest variation found with mass specific consumption, 

varying by a difference of 167%. 

Metabolism- Metabolism describes the totality of energy consuming, manipulative and 

storage chemical reactions by organisms (Nelson 2016).  In the late 18th century Antoine-

Laurent Lavoisier proclaimed that animal respiration is essentially the controlled combustion of 

foodstuffs.  “Respiration is nothing but a slow combustion of carbon and hydrogen, similar in all 

respects to that of a lamp or a lighted candle, and from this point of view, animals which breathe 

are really combustible substances burning and consuming themselves” (Lavoisier and Laplace, 

1783; translation from West, 2013).  Metabolism is measured in one of two ways, the first being 

a direct measure known as direct calorimetry which aims to account for the waste heat produced 

by all reactions of metabolism within an organism by measuring the heat produced by an 

organism in a small, sealed chamber.  By sealing the organism in the chamber and using a 

thermometer to measure the temperature increase, researchers could determine the joules, or 

energy units, needed to facilitate the temperature change.  Direct calorimetry is often very 

difficult to measure even in endothermic, terrestrial, air breathing animals because of various 

heat loss of the chamber to the environment, accuracy of the measurements devices and stress 
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levels induced to the study organism in such a small enclosure.  Factor in the ability of water to 

absorb heat and their lack of internal thermoregulation, direct calorimetry is nearly impossible 

for aquatic poikilothermic organisms such as fish.  Unlike direct calorimetry, indirect calorimetry 

calculates heat that living organisms produce by measuring either their production of carbon 

dioxide and nitrogen waste, or from their consumption of oxygen.  It is important to note that 

direct calorimetry is tracking the inefficiencies of all metabolic transformations, creating heat, 

not just those consuming O2 or producing CO2.  Direct calorimetry is considered the most 

rigorous measure of metabolic activity despite itself actually being an indirect measure of 

metabolic processes (Kaiyala and Ramsay, 2011).   

While direct calorimetry has always used thermometers of one kind or another to 

measure the changes of temperature within the metabolic chamber, indirect calorimetry has 

utilized various methods.  Early indirect calorimetry relied on manometric or gravimetric 

techniques to determine the production or consumption of the gases used, such as weighing the 

CO2 absorbed by alkaline hydroxides.  It wasn’t until the late 19th century, with the advent of the 

Winkler titration method, that the methods needed to readily measure oxygen consumption of 

aquatic organisms in water became available without the need for sophisticated gas analysis 

equipment.  The Winkler method converts manganese (II) hydroxide into manganese (III) 

hydroxide by quantitatively consuming dissolved oxygen. The manganese (III) hydroxide is then 

used to oxidize iodide ion, which can then be accurately measured by titration with thiosulphate 

(Winkler, 1888). The Winkler method was the gold standard until such time that polarographic 

O2 electrode was developed (Clark 1956). The Clark electrode, an electrochemical sensor, was 

made of a silver–silver chloride anode covered with an oxygen permeable membrane and a 

noble-metal cathode. When a voltage is applied the instrument could read out real time dissolved 
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oxygen in solution.  This allowed for real time monitoring of DO changes, increased 

measurement accuracy and contributed to wider uses such as flow through respirometers.  The 

downfall of these probes was they consumed oxygen themselves, measures varied greatly with 

pressure changes, and they were easily susceptible to membrane stretching and clogging with 

biological material. The most contemporary device for measuring O2 in solution is the 

fluorescent optical oxygen sensors, or optodes (Demas et al. 1999).  Oxygen optodes are based 

on the principle of luminescence quenching by oxygen, consume no oxygen when used, and 

allow for faster response rates on measures. 

While looking at metabolic measures in fish there are four main types that can be 

measured, and each has its own time and place to be used.  Each of these metabolic measures 

occur in a metabolic chamber often referred to as a respirometer.  Basal metabolic rate (BMR) is 

the absolute minimum an individual will respire to maintain the subsistence of an organism.  

BMR constitutes things such as the base organ function doing no work, while excluding things 

such as food digestion, circulation, or movements. BMR is viewed as impossible to measure for 

a whole organism, because the circulatory and respiratory functions required to maintain an 

animal alive involve some expenditure of energy above BMR (Krogh 1914).  Standard metabolic 

rate (SMR) takes into consideration the need for more than just subsistence of an organism.  

SMR is considered to be the true minimum metabolic rate of an organism, taking into account 

things such as organ functions such as respiration, circulation and osmoregulation.  Small 

movements are not permitted to achieve these results and usually involved immobilizing the 

organism in some fashion prior to measurements being taken.  By immobilizing the individual, 

only the background, involuntary metabolic rates are being measured (Chabot et al 2016).  

Routine metabolic rate (RMR) occurs when individuals are permitted minor activity within the 
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respirometer, such as fin movements to maintain position in the respirometer or minor 

swimming.  There is no way to quantify movement so RMR may vary from near BMR to 

maximum metabolic rate (MMR), assuring the need to monitor individuals for excessive 

movement. The final measure of metabolic rates in fishes is the MMR.  MMR is defined as the 

maximum rate of oxygen consumption that a fish can achieve at a given temperature under any 

ecologically relevant circumstance (Norin and Clark 2016).  MMR measurements are taken soon 

after exhaustive exercise and can be achieved in either a swim-tunnel respirometer where a fish 

is made to swim against a current to exhaustion (Soofiani and Priede 1985) or by chasing and 

prodding a fish until it no longer responds to stimulation (Reidy et al. 1995). 

 

Introduction 

An understanding of changes in climatic trends is essential to the management of 

riverscapes.  Global climate change can modify habitable areas of aquatic ecosystems as a result 

of increasing water temperatures, and therefore geographical distribution of ectotherms (Somero 

2010).  Mean air temperatures near the surface are expected to rise 3.5-4.2⁰C over the next 50 

years (Bernstein et al. 2008).  If this trend in air temperatures closely reflects water temperatures 

as suggested by Meisner (1990), Stefan and Preud’homme (1993), and Pilgrim et. al. (1998), 

cold water salmonid species could have a 20% decrease of abundance (Casselman 2002) as a 

result of increased metabolic processes and reduced growth.  Due to their environment, Brook 

Trout (Salvelinus fontinalis) are easily susceptible to climate change because of warming waters.  

As water temperature increases, the metabolic rate of ectotherms increases until a maximum 

temperature, 20.2⁰C for Brook Trout (Hartman and Cox 2008), is exceeded.  As temperature 

continues to increase beyond 20.2°C, performance drops off sharply and metabolic rates demand 
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more energy than can be eaten resulting in a net loss of energy (Hartman and Cox 2008).  While 

Brook Trout can withstand quick spikes in temperature up to 28.7°C (Carline and Machung 

2001), a realistic sustainable short-term temperature is 25°C (Beitinger and Bennett 2000).  

Without the ability to migrate to higher latitudes or cooler riverine systems Brook Trout will be 

forced to adapt to these changing climates or die off. 

Adaptation of Brook Trout to warming water temperatures can occur at both the 

individual level and the population level (Meier et al. 2014).  At the individual level, seasonal 

acclimation to temperatures allows for a greater range of thermal tolerance (Jobling 1995).  

Population level adaptation is a result of natural selection, selecting against the lesser tolerant 

individuals who cannot thrive and reproduce under the increased temperatures.  These thermal 

tolerances have also been shown to vary between population origins (Stitt et al. 2014), 

suggesting that selective pressures have allowed past individual level characteristics to be found 

within the whole population of a given area.  Since high elevation headwater streams are fairly 

stable in their thermal patterns, with low mean temperatures, there may not be a need for 

variation of thermally tolerant individuals.  As a result of a stable temperature regimes, 

individual variation of thermal tolerances might not be present in a headwater population.  If this 

is the case, those who would carry the genes to thrive in warmer waters will not be present and 

would be unable to exploit conditions in which they would be favored, resulting in a bottleneck 

of population adaptations to a changing climate from individual variations. 

In cool water systems, temperature has the greatest effect on the growth of an individual 

Brook Trout (Hartman and Cox 2008).  As water temperatures increase metabolic rates increase, 

requiring more energy to maintain standard metabolic procedures (Hartman and Cox 2008).  

Dissolved oxygen becomes less available for aerobic metabolic processes at elevated 
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temperatures resulting in less energy available for assimilation of body mass, or growth.  Some 

individuals have faster metabolism than others (Oleksiak et. al 2005).  Current fish bioenergetics 

models are based on the average of fish sampled to make models cleaner and ignore the 

variability of individuals (Brandt and Hartman 1993, Hartman and Cox 2008).  This leads to a 

disconnect between the potential adaptation of individual populations through individual 

variation compared to the mean population in response to increased headwater stream 

temperatures.  This difference in response to rising temperatures can be compounded when food 

availability influences energy conversion efficiency.  It is suggested that fish of the same species 

in the same drainage can vary in energy conversion efficiency, which is thought to be a response 

of different levels of energy being available (Morinville and Rasmussen 2003).  As a result of 

these varying conversion efficiencies even within a stream, the source population of fish can 

influence the bioenergetics models.  Convenience drives many models today to use hatchery 

strains of fish, often times many generations removed from the wild counterparts.  Using the 

hatchery strains that have been selectively breed for optimal, fast growth in the rearing facilities 

can lead to a disconnect between what is a perceived reality and that of what is really happening 

in the wild. 

Understanding how much energy is used by a fish to survive is crucial to understanding 

how much energy in needed to promote growth of an individual. Unlike humans that have 

determinant growth potential meaning we hit a “full-sized” frame, fish can keep growing larger 

and larger due to indeterminate growth.  This indeterminate growth can only take place after 

routine metabolic costs are met.  Metabolism experiments using routine metabolic rate (RMR) 

are used to determine how much energy a fish uses in normal functional operation of the 

individual, i.e. just sustaining life for itself by circulation, osmoregulation, spontaneous 
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swimming, and routine activity (Barbieri et al. 2002).  To determine the RMR, a fish is placed 

into a closed vessel and allowed to respire for a period of time.  Total consumption of oxygen 

(MO2), defined as: oxygen initial -oxygen end, within the vessel is recorded.  The measured 

consumption of oxygen can then be converted to energy consumed by the individual by use of 

calorimetry (Nelson 2016).  Energy equivalents of oxygen consumption states that for every mg-

1 of oxygen consumed, 3.38 - 3.42 calories (14141.92-14309.28 joules) of energy are used 

(Elliott and Davison 1975).  Knowing how much energy must be consumed for day to day 

operations of the fish helps bioenergetics models simulate how much more energy than the RMR 

must be consumed to account for the growth of an individual. 

Consumption experiments are designed to allow researchers to determine the growth an 

individual can achieve over a short period of time.  These are usually carried out at differing 

temperatures (Elliot 1976, Hartman and Cox 2008, Mayfield and Cech 2004) on a known input 

of energy content (joules of energy).  To obtain the growth an average fish can achieve per 

energy consumed experimental fish are subject to a quantifiable feeding regiment for the 

duration of the experiment.  The feeding regiments usually consist of one of two ration sizes: 

satiation, or approximately half-satiation rations (Hartman 2017, Kitchell et al. 1977).  The 

satiation feeding regiment is often referred to as the growth at consumption maximum (c-max).  

Food that is offered typically consists of a readily available food with known energy content that 

is easily eaten and digested by the fish.  Meal worms Tenebrio molitor are typically chosen as the 

food source due to the ease of keeping them and the availability through bait wholesalers 

(Whitledge et al. 2006, Whitledge et al. 1998) bait shops and convenience stores.  Fish are fed on 

a schedule and consumption recorded.  Fish mass is recorded before and after the trials to 
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determine growth of the fish.  Resulting growth is then analyzed to express the conversion 

efficiency of the fish using the equation 
𝐺𝑟𝑜𝑤𝑡ℎ(𝑔)𝑑𝑎𝑦

𝐶𝑜𝑛𝑠𝑢𝑚𝑒𝑑(𝑔)𝑑𝑎𝑦
. 

To understand the potential of generational adaptation and species survival, growth and 

metabolism experiments can shed light into the resiliency of Brook Trout populations to the 

temperature effects of climate change.  By looking at four populations within the state of West 

Virginia, we can hope to gain knowledge of how thermal variations in a population’s life history 

may influence the genetic adaptation to cope in a warming climate.  Armed with this 

information, we can understand the tolerances of populations to survive climate change.  This 

will help fisheries managers to identify the more sensitive streams and populations to develop 

strategies to maintain populations in the face of climate change. To look at how temperature 

changes influence the source populations growth and metabolism, we conducted two separate 

experiments, growth at maximum consumption (C-max) and routine metabolic rate, concurrently 

on four source populations of Brook Trout from West Virginia’s Central Appalachian 

Mountains.  

 

 

 

 

 

 

 



13 
 

References 

Bajer, P. G., G. W. Whitledge, and R. S. Hayward. 2004. Widespread consumption-dependent 

systematic error in fish bioenergetics model and its implications. Canadian Journal of 

Fisheries and Aquatic Sciences 61:2158-2167. 

Barbieri, E., I.R. Oliveira, and P. Serralheiro. 2002, The use of metabolism to evaluate the 

toxicity of dodecy benzen sodium sulfonate on the Mugil platanus. Journal of 

Experimental Marine Biology and Ecology 277: 109-127. 

Beitinger, T.L. and W.A. Bennett. 2000. Quantification of the role of acclimation temperature in 

temperature tolerance of fishes. Environmental. Biology of Fishes. 58(3):277-288. 

Bernstein, L., P. Bosch, O. Canziani, Z. Chen, R. Christ, and K. Riahi. 2008. IPCC, 2007: 

Climate Change 2007. Synthesis Report. 

Brandt, S. B., and K.J. Hartman. 1993. Innovative approaches with bioenergetics models: future 

applications to fish ecology and management. Transactions of the American Fisheries 

Society, 122(5), 731-735. 

Carline, R.F. and J. F. Machung. 2001. Critical Thermal Maxima of Wild and Domestic Strains 

of Trout. Transactions of the American Fisheries Society. 130:6. 

Casselman, J.M. 2002. Effects of temperature, global extremes, and climate change on year-class 

production of warmwater, coolwater, and coldwater fishes in the Great Lakes Basin. 

American Fisheries Society, Symposium 32:39-60. Bethesda, Maryland 

Chabot, D., J.F. Steffensen and A.P. Farrell. 2016. The determination of standard metabolic rate 

in fishes. Journal of Fish Biology 88(1):81-121. 

Chipps, S. R., and D. H. Wahl. 2004. Development and evaluation of a Western Mosquitofish 

bioenergetics model. Transactions of the American Fisheries Society 133:1150-1162. 

Chipps, S. R., and D. H. Wahl. 2008. Bioenergetics modeling in the 21st century: reviewing new 

insights and revisiting old constraints. Transactions of the American Fisheries Society 

137:298-313. 

Clark, L. C. Jr. 1956. Monitor and control of blood and tissue O2 tensions. Transactions of the 

American Society for Artificial Internal Organs 2:41–48. 

Deslauriers, D., S. R. Chipps, J. E. Breck, J. A. Rice and C. P. Madenjian. 2017 Fish 

Bioenergetics 4.0: An R-Based Modeling Application. Fisheries 42(11):586-596. 

Demas, J. N., B.A. Degraff and P.B. Coleman. 1999. Oxygen sensors based on luminescence 

quenching. Analytical Chemistry 71:793–800. 



14 
 

Elliott, J. M., and W. Davison. 1975. Energy equivalents of oxygen consumption in animal 

energetics. Oecologia 19(3):195-201. 

Elliott, J. M..1976. The energetics of feeding, metabolism and growth of brown trout (Salmo 

trutta) in relation to body weight, water temperature and ration size. The Journal of 

Animal Ecology 923-948. 

Hanson, P. C., T. B. Johsnon, D. E., Schindler, and J. F. Kitchell. 1997. Fish Bioenergetics 3.0. 

University of Wisconsin. Sea Grant Institute, Madison, Wisconsin. 

Hartman, K. J., and M. K. Cox. 2008. Refinement and Testing of a Brook Trout Bioenergetics 

Model.  Transactions of the American Fisheries Society 137(1):357-363. 

Hartman, K. J., and J. A. Sweka. 2003. Development of a bioenergetics model for Appalachian 

brook trout. Proceedings of the Annual Conference Southeastern Association of Fish and 

Wildlife Agencies 55(2001):38-51. 

Hartman, K. J. 2017. Bioenergetics of Brown Bullhead in a Changing Climate. Transactions of 

the American Fisheries Society 146(4), 634-644. 

Hewett, S. J., and B. L. Johnson. 1987. A generalized bioenergetics model of fish growth for 

microcomputers. University of Wisconsin, Sea Grant Institute, Technical Report WIS-

SG87-245, Madison. 

Hewett, S. J., and B. L. Johnson. 1992. Fish bioenergetics model 2. University of Wisconsin, Sea 

Grant Institute, Technical Report WIS-SG-92_250, Madison. 

Jobling, M. 1995. Environmental biology of fishes. Chapman and Hall. 

Kitchell, J. F., D. J. Stewart, and D. Weininger. 1977. Applications of a bioenergetics model to 

yellow perch (Perca flavescens) and walleye (Stizostedion vitreum vitreum). Journal of 

the Fisheries Board of Canada 34(10):1922-1935. 

Kaiyala, K. J. and D. S. Ramsay. 2011. Direct animal calorimetry, the underused gold standard 

for quantifying the fire of life. Comparative Biochemistry and Physiology 158:252–264. 

Krogh, A. 1914. The quantitative relation between temperature and standard metabolism in 

animals. Internationale Zeitschrift für Physikalisch‐Chemische Biologie 1:491–508. 

Lavoisier, A. L. and P.S. Laplace. 1783. Mémoire sur la chaleur 1783. In Oeuvres de Lavoisier 

1862–1893, Vol. 2, pp. 283–333. Paris: Imprimerie Impériale. 

Madenjian, C. P., and D. V. O’Connor. 1999. Laboratory evaluation of lake trout bioenergetics 

model. Transactions of the American Fisheries Society 128:802-814 



15 
 

Mayfield, R. B., and J. J. Cech Jr. 2004. Temperature effects on green sturgeon bioenergetics. 

Transactions of the American Fisheries Society 133(4):961-970. 

Meisner, J. D. 1990. Effect of climatic warming on the southern margin of the native range of 

Brook Trout, Salvelinus fontinalis. Canadian Journal of Fisheries and Aquatic Sciences 

47:1065–1070. 

Meier, K., M.M. Hansen, E. Normandeau, K.D. Mensberg, J. Frydenberg, P.F. Larsen, and L. 

Bernatchez. 2014. Local Adaptation at the Transcriptome Level in Brown Trout: 

Evidence from Early Life History Temperature Genomic Reaction Norms. Plos ONE 

9(1):1-13 

Morinville, G. R., and J.B. Rasmussen. 2003. Early juvenile bioenergetic differences between 

anadromous and resident Brook Trout (Salvelinus fontinalis). Canadian Journal of 

Fisheries and Aquatic Sciences 60(4):401-410. 

Munch, S. B., and D.O Conover. 2002. Accounting for local physiological adaptation in 

bioenergetic models: testing hypotheses for growth rate evolution by virtual transplant 

experiments. Canadian Journal of Fisheries and Aquatic Sciences 59(2):393-403. 

Nelson, J. A. 2016 Oxygen consumption rate v. rate of energy utilization of fishes: a comparison 

and brief history of the two measurements. Journal of Fish Biology 88:10–25 

Ney, J. J. 1993. Bioenergetics modeling today: growing pains on the cutting edge. Transactions 

of the American Fisheries Society 122:736-748. 

Norin, T. and T.D. Clark.  2016. Measurement and relevance of maximum metabolic rate in 

fishes. Journal of Fish Biology 88:122–151 

Oleksiak, M. F., J.L. Roach, and D.L. Crawford. 2005 Natural variation in cardiac metabolism 

and gene expression in Fundulus heteroclitus. Nature genetics. 37(1):67. 

Pilgrim, J. M., X. Fang, and H. G. Stefan. 1998. Stream temperature correlations with air 

temperatures in Minnesota: implications for climate warming. Journal of the American 

Water Resources Association 34:1109–1121. 

Reidy, S. P., J.A. Nelson, Y. Tang, and S.R. Kerr. 1995. Post‐exercise metabolic rate in Atlantic 

cod and its dependence upon the method of exhaustion. Journal of Fish Biology 47:377–

386. 

Somero G.N. 2010. The physiology of climate change: how potentials for acclimatization and 

genetic adaptation will determine “winners” and “losers.” Journal of Experimental 

Biology 213:912–920. 

Soofiani, N. M., and I.G. Priede. 1985. Aerobic metabolic scope and swimming performance in 

juvenile cod, Gadus morhua L. Journal of Fish Biology 26:127–138. 



16 
 

Stefan, H. G., and E. B. Preud’homme. 1993. Stream temperature estimation from air 

temperature. Water Resources Bulletin 29:27–45. 

Stewart, D. J., D. Weininger, D. V. Rottiers, and T. A. Edsall. 1983. An energetics model for 

lake trout Salvelinus namaycush: application to the Lake Michigan population. Canadian 

Journal of Fisheries and Aquatic Sciences 40:681-698. 

Stitt, B. C., G. Burness, K.A. Burgomaster, S Currie, J.L. McDermid, and C.C. Wilson. 2014. 

Intraspecific Variation in Thermal Tolerance and Acclimation Capacity in Brook Trout 

(Salvelinus fontinalis): Physiological Implications for Climate Change. Physiological and 

Biochemical Zoology 87(1):15-29. 

Sweka, J. A., M.K. Cox. and K.J. Hartman. 2004. Gastric evacuation rates of brook trout. 

Transactions of the American Fisheries Society 133(1):204-210. 

Thornton, K. W., and A. S. Lessem. 1978. A temperature algorithm for modifying biological 

rates. Transactions of the American Fisheries Society 107:284-287. 

West, J. B. 2013. The collaboration of Antoine and Marie-Anne Lavoisier and the first 

measurements of human oxygen consumption. American Journal of Physiology. Lung 

Cellular and Molecular Physiology 305:775–785. 

Whitledge, G. W., P. G. Bajer, and R. S. Hayward. 2006. Improvement of bioenergetics model 

predictions for fish undergoing compensatory growth. Transactions of the American 

Fisheries Society 135(1):49-54. 

Whitledge, G. W., R. S. Hayward, D. B. Noltie, and N. Wang. 1998. Testing bioenergetics 

models under feeding regimes that elicit compensatory growth. Transactions of the 

American Fisheries Society 127(5):740-746. 

Winberg, G. G. 1956. Rate of metabolism and food requirements of fishes. Belorussian 

University, Minsk. Translated from Russian, 1960: Fisheries Research Board of Canada 

Translation Series 194, Ottawa. 

Winkler, L. 1888. Die Bestimmung des in Wasser Gelösten Sauerstoffes. Berichte der Deutschen 

Chemischen Gesellschaft 21:2843–2855. 

van Poorten, B. T., and S. O. McAdam. 2010. Estimating differences in growth and metabolism 

in two spatially segregated groups of Columbia River white sturgeon using a field-based 

bioenergetics model. The Open Fish Science Journal 3:132-141. 

 

 

 



17 
 

Chapter 2- Thermal Performance of Brook Trout in Consumption, Conversion Efficiency 

and Growth of four Central Appalachian Streams in West Virginia 

 

Abstract 

Growth of an individual is the end result of many physiological processes stemming from 

the consumption of food items.  These processes can be influenced by many variables including 

temperature.  Current bioenergetics models for Brook Trout Salvelinus fontinalis suggest growth 

increases with temperature until an inflection point of 20.2°C.  With a warming climate, and 

water temperatures expected to rise, the ability of a population to adapt to the warming 

environment is crucial to the survival of the species.  For this study we sought to see how spatial 

variation would influence the specific consumption, conversion efficiency, and specific growth 

at consumption maximum (C-Max) of four source populations of Brook Trout in West Virginia’s 

Central Appalachian Mountains.  To accomplish this, we subjected the individual fish to 

identical experiments regimes of 12 days of maximum consumption (C-Max) at three 

temperatures (12, 16, and 20°C).  Parameters of specific consumption, conversion efficiency and 

specific daily growth were calculated.  The effects of source population and temperature 

differences were determined using a general linear model and significant differences in model 

coefficients (p≤0.05).  By the end of the study we found that the low elevation stream, which 

also experiences higher summer mean temperatures, significantly converted prey items energy 

more efficiently and in turn grew significantly faster at elevated water temperatures.  These 

findings give hope that a population of cold-water fish can survive climate change if 

temperatures rise at a slow enough pace to allow for adaptation. 
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Introduction 

Brook Trout Salvelinus fontinalis are an important species in West Virginia, not only as 

the state fish, but also due to the high socioeconomic value the angling industry brings to rural 

parts of the state.  Brook Trout have endured reductions in numbers and distribution in the 

central Appalachian Mountains.  Factors such as high harvest rates, habitat degradation, 

reductions in water quality, and nonnative salmonid introductions have been reported as 

responsible for these declines (Larson and Moore 1985; Flebbe 1994; Marschall and Crowder 

1996; Galbreath et al. 2001).  The most remarkable disruption in the central Appalachian region 

is the negative effect of acid precipitation (Wigington et al. 1996).  West Virginia generally has a 

sandstone dominated geology resulting in an estimated 25% of all streams being impaired 

because of a high rate of acid deposition and the sandstones poor buffering capacity (Sharpe et 

al. 1987; Welsh and Perry 1997; Clayton et al. 1998).   

Brook Trout are considered an indicator species because of their intolerance to 

anthropogenic impacts and habitat degradation.  Life history strategies and basic biological 

demands have become critical factors for biologists to measure in the light of habitat changes.  

Further, because of their reliance on cold water temperatures to fulfill their life history, Brook 

Trout may be especially vulnerable to climate change (Eaton and Scheller 1996).  Mean air 

temperatures near the surface are expected to rise 3.5-4.2⁰C over the next 50 years (Bernstein et 

al. 2008).  As air temperatures continue to rise as a result of global climate change, the same can 

be expected for water temperatures within the streams holding Brook Trout in central Appalachia 

as suggested by Meisner (1990), Stefan and Preud’homme (1993), and Pilgrim et. al. (1998).  

This could lead to cold water salmonid species such as Brook Trout having a 20% decrease in 

abundance (Casselman 2002) as a result of increased metabolic processes and reduced growth in 
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a warming environment.  While Brook Trout can withstand quick spikes in temperature up to 

28.7°C (Carline and Machung 2001), a realistic sustainable short-term temperature is 25°C 

(Beitinger and Bennett 2000).  As water temperatures rise, so does the metabolic rate of the 

individual fish.  Metabolic costs are the largest uncontrollable energy loss a fish will endure.  

Current bioenergetics models suggest that the metabolic rate of Brook Trout continues to 

increase until the inflection point of 20.2C at which point the rate quickly drops (Hartman and 

Cox 2008).  Unless the fish experiencing warm temperature extremes (<20˚C) can find thermal 

refugia, the species will likely perish. 

Bioenergetics models are useful tools for fisheries management and research because 

they can predict consumption, growth, and production of fish in response to changes in factors 

such as water temperature, diet, and fish size or growth (Ney 1993, Chipps and Wahl 2008).  

Bioenergetics models have been developed for over 70 species of fish (Hartman and Kitchell 

2008), and they can offer a low cost, simplified approach for addressing specific management 

questions and evaluating options.  A fully parameterized bioenergetics model for Brook Trout 

currently exists (Hartman and Cox 2008) and has been beneficial to estimating energy flows in 

the systems and addressing many issues facing this species.   

Though there are many advantages to utilizing the published bioenergetics model for 

Brook Trout (Hartman and Cox 2008), it comes with limitations.  The current model was 

developed using the average fish from the West Virginia Division of Natural Resources trout 

hatchery program.  While many other species models rely on hatchery strains (Madenjian and 

O’Connor 1999, Madenjian et al. 2000, Tyler and Bolduc 2008), hatchery fish may not be an 

actual representation of wild fishes (McDermid et al 2010).  These fish are many generations 

removed from wild fish and have been artificially selected for fast growth with optimal 
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conversion efficiencies while maintaining a physical appearance considered desirable by the 

hatchery staff.  While having a validated bioenergetics model is important, when using a model 

based on non-representative individuals it begs to question whether it is appropriate to use.  

Researchers understand using parameters from other species could produce results that are 

unreliable or biased, particularly when the behavior or physiology of the species varies (Ney 

1993, Trudel and Welch 2005, Chipps and Wahl 2008, Keskinen et al. 2008) such is the case in 

wild versus hatchery fish.  Models based on hatchery fish do not include any form of spatial 

variation.  Since Brook Trout exhibit differences in growth and metabolic rate in higher latitudes 

than those found in lower latitudes (McDermid et al. 2012), the same might be assumed for 

varying elevations or thermal regimes a stream undergoes.   

For this study, we set out to determine if there was a discernable difference in the 

consumption, conversion efficiencies and specific growth between populations of Brook Trout in 

the Central Appalachian Mountains of West Virginia in the face of a warming climate.  By 

detecting a difference, we hope to allow for a better understanding of the spatial variation of 

Brook Trout consumption, growth and conversion efficiencies, as well as consideration to 

account for such variation.   

Methods 

Overall Experimental Design- This experiment was part of a larger project looking at 

both the maximum consumption rate (C-max) and routine metabolic rate (RMR) of the same 

individuals. Each set of RMR measurements were separated by a period of 3 weeks. Experiments 

were conducted at 3 temperatures starting at 20°C, reducing to 16°C and 12°C, respectively.  

Each temperature consisted of a fasting period, measurement for size before growth experiments, 

a 12-day growth period during which time fish were fed ad libitum (C-max), followed by fasting 
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periods, end growth measurements (same used for metabolic calculations), metabolic 

measurements, and temperature adjustments also acting as a fasting period for the next 

temperature (Table 1).  All temperature changes were from warmer to cooler to reduce stress on 

the organism and reduce acclimation time.  Space limitations did not allow all fish to be run 

simultaneously, necessitating a second series of experiments at each temperature for both growth 

at C-max and RMR.    

Study area- We selected four streams; three from the Ohio River drainage (North Fork 

Red Run, Panther Run and Poca Run) and one from the Potomac River drainage (Little Low 

Place) (Figures 1,2) as our source populations (Table 2).  Little Low Place (LLP) and Poca Run 

are very close geographically, with only a few kilometers and the eastern continental divide 

separating them.  Poca and LLP are both high elevation, high gradient, well connected streams in 

the Monongahela National Forest.  North Fork Red Run is also located in the Monongahela 

National Forest and is a poorly connected, high gradient, high elevation stream.  Panther Run is a 

moderately connected stream with a low slope and low elevation.  Panther run is located on 

private property, with gated access limiting fishing pressure.  Little Low Place, North Fork Red 

Run, and Poca Run all have open access and either a road or logging road paralleling the stream 

for angling access. 

Fish Collection- In July of 2018, approximately 24 juvenile Brook Trout were collected 

from each of 4 source population streams, (Panther, North Fork Red Run, Poca, Little Low Place 

(LLP)) using backpack elecrofishers (Figure 1,2).  Specimens were collected at a rate of no more 

than one individual per habitat unit (pool, riffle, run), typically small back water eddy areas 

behind a rock in a riffle to limit the potential for sibling captures and increase genetic diversity.  

Fish were transported back to the Aquatic Ecophysiology Laboratory of West Virginia 
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University.  Upon returning to the laboratory, fish were marked with elastomer in the jaw, the 

fleshy cheek near the operculum, and caudal peduncle to denote source stream (Adams et al. 

2000).   

Quarantine and acclimation- Once fish were marked by source stream, they were then 

placed into self-contained cold-water recirculating tank units in quarantine, where fish were fed 

every third day to satiation as a maintenance ration.  While in quarantine fish were monitored for 

any signs of infection or illness.  Fish were kept in stream source isolation for a period of 28 

days.  Following the 28-day quarantine period, fish were placed into a common tank and fed ad 

libitum a diet of fly larvae every third day as a maintenance ration for >60 days. 

For each of the two series of thermal regimes, a subsample of 24 individuals were 

removed and placed into individual 37L aquariums.  Aquariums had the sides painted black to 

avoid external stimuli from other fish.  Aquariums were covered with hardware cloth and mesh 

screen to prevent escape of subject fish and prey items and housed within a larger 1.2x2.4m steel 

tank to act as a thermal buffer (Figure 3).  Water was controlled to each tank by ball valves.  

Each tank was equipped with an air stone.  The experimental set up was part of a larger 8,000-

liter recirculating system equipped with physical and biological filters, UV sterilizer and 

commercial chilling unit allowing for temperature control of +/- 0.2°C.  Water quality was 

measured daily, and water changes made as necessary to maintain acceptable safe water quality 

parameters (pH, NH3-N, NO3-N).  After being placed into the aquariums, fish were acclimated to 

the isolation of an individual aquarium for 30 days, again being fed to satiation every third day 

while adjusting to the individual aquariums. 

Growth at C-Max- Following the individual acclimation period to the aquariums, fish 

were fasted for one week, anesthetized in a buffered tricaine methanesulfonate (MS-222, 
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Western Chemical Inc, Ferndale, WA) solution of 1 g per 9 L of water, weighed for wet weight 

(WW) (nearest 0.1g), total length (TL), fork length (FL) and a modified standard length (SL).  

The modified SL used in this experiment was the point in which the caudal flesh transitioned 

from translucent to opaque, a measurement change used to reduce handling time.  After 

measurement, fish were returned to the aquariums and allowed to recover for 24h.   

At each of the three experimental temperatures (20, 16, 12°C), fish were fed fly larvae 

(Diptera sp.) ad libitum daily for 12 consecutive days.  Prior to feeding each day, larvae were 

batch weighed, and the average mass of prey was calculated.  Prey was offered at a rate of 1.5 

times the consumed count from the day prior and offered for 24h.  Uneaten prey was recovered, 

counted and recorded the following day.  Daily consumption was recorded as number of prey 

offered minus prey recovered multiplied by the average mass of the larvae offered.  On the 13th 

day, prey were removed, and the fish allowed to egest for 48-54 hours.  Fish were again 

anesthetized and measured for WW, SL, TL, and FL.  Growth was calculated as final weight 

minus initial weight.  Total consumption was quantified as the total mass of larvae consumed.  

Specific consumption was calculated as the mass consumed divided by the starting mass of the 

individual.  Daily specific consumption was calculated by dividing the specific consumption by 

the 12 days the experiment lasted.  Specific growth was calculated by the growth of the 

individual fish divided by the average weight of the fish at a temperature from both the starting 

and ending wet weight.  The resulting total growth was then divided by the 12 days of the 

experiment to represent the specific daily growth of an individual fish.  

Statistical analysis- Consumption data were expressed as specific consumption (g 

consumed/ g fish/ day) where the mass of the fish is the initial weight of the fish at the start of C-

max for a given temperature.  Food conversion efficiency was expressed as g growth/ g 
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consumed.  Percent growth was calculated as 
𝐺𝑟𝑜𝑤𝑡ℎ( 𝑔)

𝐴𝑣𝑒𝑟𝑎𝑔𝑒 𝑜𝑓 𝐼𝑛𝑖𝑡𝑖𝑎𝑙 𝑎𝑛𝑑 𝐹𝑖𝑛𝑎𝑙 𝑀𝑎𝑠𝑠 (𝑔)
.  Growth data 

were expressed as specific growth (percent growth/day).  We utilized R 3.6.1 (R Core Team 

2019) for all statistical analyses.  The natural log of each parameter evaluated (specific 

consumption and growth) and the mass of the individuals was calculated and used for the 

analysis.  For the conversion efficiency values which contained negative values, we use the 

natural log plus one (ln + 1).  Outliers were detected and removed using the Bonferroni outlier 

test.  To test for differences between streams and temperatures an ANCOVA was ran for each of 

conversion efficiency, specific consumption and growth with stream population and temperature 

as covariates.  A general linear model was ran to determine differences among streams and to 

determine if the effect of temperature differed among streams as  indicated by significant 

differences in model coefficients (p≤0.05).  The model form was form ln(Y)= Sream + 

Temperature +ln(Mass) + Stream*Temperature  where Y equaled specific consumption, specific 

growth, or conversion efficiency. The residuals were then calculated for each model and a 

Shapiro- Wilk test then ran to test for normality.  Differences in fish size were also tested for 

each of the three temperatures utilizing the ANOVA (fish mass ~ stream population).  A Tukey 

multiple comparison of means test was then run on each significant ANOVA model to determine 

where the differences occur and determine the extent of differences with 95% family-wise 

confidence levels. 

Results 

Our initial experimental design was to have 12 individuals from each stream population 

tested for routine metabolic rates from the original collection of 24 individuals per stream.  

However, due to mortality and losses beyond our control within the system we were unable to 

obtain this array.  We were limited to a total of 47 fish from the four populations of Brook Trout 
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that were tested for their specific daily consumption rates and conversion efficiencies (Panther 

n=15, LLP n=13, NF Red = 12, Poca n=7) (Table 3).  These 47 Brook Trout ranged from 6.0- 

25.4g and 72-121mm in modified standard length at the start of the trials. 

Specific Consumption- The general linear model for conversion efficiency (ln(conversion 

efficiency)= Stream + Temperature +ln(Mass) + Stream*Temperature)  revealed there was a 

significant effect of temperature on the conversion efficiency of an individual Brook Trout 

(Table 4).  The model also indicated there was a significant stream by temperature interaction 

suggesting that the temperature had a different effect on conversion efficiency across streams.  

The coefficients from the global model indicated that Poca Run fish had a significantly higher 

intercept and a significantly lower slope than the other streams (Figure 4, Table 5).  Our Shapiro- 

Wilks normality test indicated that the data were not normal (Figure 5). 

Conversion efficiency- The general linear model for conversion efficiency (ln(conversion 

efficiency)= Stream + Temperature +ln(Mass) + Stream*Temperature)  revealed there was a 

significant effect of temperature on the conversion efficiency of an individual Brook Trout 

(Table 6).  The ANCOVA also indicated there is a significant stream by temperature interaction 

suggesting that the temperature had a different effect on conversion efficiency across streams.  

Our coefficients from the global model indicated that Panther Run fish had a significantly higher 

slope than the other streams (Figure 6, Table 7).  Our Shapiro- Wilks normality test indicated 

that our data were not normal (Figure 7). 

Specific growth- The general linear model for specific growth (ln(specific growth)= 

Stream + Temperature +ln(Mass) + Stream*Temperature) revealed there was a significant 

effect of temperature on the specific growth of an individual Brook Trout (Table 8).  The 

ANCOVA also indicated there was a significant stream by temperature interaction suggesting 
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that the temperature has a different effect on conversion efficiency across streams.  Our 

coefficients from the global model indicated that Panther Run fish had a significantly higher 

slope than the other streams (Figure 8, Table 9).  Our Shapiro- Wilks normality test indicated 

that our data were not normal (Figure 9). 

Size variation- All individual fish added mass during growth experiments at both 12 and 

16-degrees.  At 20 C, 4 individual fish lost mass (North Ford Red Run n=1, Poca n=1, Little Low 

Place n=2), while the rest exhibited increases in body mass to some extent over the 12-day 

growth experiments.  Stream populations were found to have significant differences in initial size 

of the fish utilized in this experiment at 12 (DF= 3, F=4.284, P-Value= 0.01) and 16°C (DF= 3, 

F=3.247, P-Value= 0.0309).  At 20-degrees no significant difference occurred between stream 

populations (Figure 10).  Tukey’s HSD indicated that size differences occur at 12°C with Panther 

Run being larger than both Poca Run and Little Low Place fish (Figure 11).  At 16°C, Panther 

Run again appeared to be larger than Poca Run and Little Low Place fish (Figure 12). 

 

 Discussion 

The results of this study indicate there are significant differences in the conversion 

efficiency, specific daily consumption, and specific daily growth between populations of Brook 

Trout.  Poca Run individuals had a lower specific daily consumption slope coefficient while 

Panther Run individuals had a higher slope on the conversion efficiency coefficient.  This 

increased conversion efficiency for Panther Run individuals related to higher growth rates as 

indicated by the higher slope coefficient for specific daily growth.  As a result, Panther Run 

individuals were larger than the three other streams at the remaining temperatures (12 and 16°C).  
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This size discrepancy could compound differences in streams if the smaller fish have a lower 

optimal temperature that increases as they grow which couldn’t be accounted for in taking the 

natural log of the parameters and covariates.  Despite the potential size biases, Panther Run fish 

maintained a higher slope indicating they were still able to grow efficiently at temperatures 

above what is considered the optimal range of Brook Trout.  There may be several explanations 

as to why this is happening. 

First of all, the stream temperatures, which roughly relate to elevation, maybe a factor.  

Historical temperature profiles on these three streams indicate Panther Run experiences an 

average of 2-4°C warmer summer mean stream temperature than Poca Run and Little Low Place 

(Figure 13).  Based on the five-month period of July through November 2011, North Fork Red 

Run experiences similar annual temperature regimes as Poca Run and Little Low Place (Figure 

14).  This warmer temperature profile suggests that a population of Brook Trout is capable of 

thermal acclimation and adaptation to a warming climate as it relates to both conversion 

efficiency and specific consumption.  McDermid et al. (2012) found Brook Trout from different 

hatchery populations exhibited variations in thermal performance.  Brook Trout from southern 

hatchery origins had higher heat tolerances than those of more northern strain (McDermid et al 

2012).  Ours is the first study to document differences in C-max and conversion efficiency 

among wild populations of Brook Trout.  While our four-study streams are of the same relative 

latitudinal degree, elevation is known to impact thermal regimes of water temperature (Pepin and 

Lundquist 2008). 

While temperature profile of the streams is one possible explanation for this increased 

thermal performance of Panther Run fish, stream productivity may also play a role as well.  Our 

four study streams lack a common dominant geological formation.  The underlying bedrock 
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formation can significantly influence the alkalinity of a stream.  Streams found in a geology with 

a higher buffering capacity tend to be more productive.  Almodóvar et al. (2006) looked at 10 

streams containing Brown Trout Salmo trutta and found a significant positive correlation 

between production and alkalinity.  Welsh and Perry (1997) also found a positive relationship 

between alkalinity and total species present in a given stream, with streams on the low end of 

alkalinity most likely being below the biological threshold of acid sensitive fish.  Welsh and 

Perry (1997) looked at the same four bedrock types as present in our stream populations.  

Panther Run falls under the Pottsville bedrock type which is associated with the lowest pH and 

alkalinity.  Since alkalinity is assumed lowest in Panther Run, we might infer that productivity is 

lowest as well based on Almodóvar et al. (2006).  Being from a stream where productivity is 

lower, it is possible that the Panther Run individuals were predisposed to have a higher 

conversion efficiency. 

 Size differences were found to be significant after the initial 20-degree growth 

experiment as a result of Panther Run fish growing significantly better at 20°C than the other 

streams.  We began the temperature sequence at 20-degrees to minimize the potential of 

mortality at the most stressful temperature since we wanted to get measures on individuals at all 

3 temperatures.  However, by performing better at 20°C than the other streams, fish from Panther 

Run were generally larger than the others at 16 and 12°C.  Thus, at 16 and 12-degrees we cannot 

rule out the fact that differences across streams were as a result of differences in size.  Although 

specific rates (C-max and growth) would be expected to be higher in small fish than larger 

(Panther Run) fish (Hartman and Brandt 1995), differences in optimal temperature could differ 

between smaller and larger fish and this could also account for differences between streams at 12 

and 16 C°.  Hartman and Brandt (1995) found that small Weakfish Cynoscion regalis had a 
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smaller scope of growth than larger Weakfish.  These size discrepancies could help explain our 

lack of normality in our data if there is a variation in RMR depending on size.  Future 

experiments should either start at the lower temperatures and work to the warmer temperatures 

where differences were detected, or simply look at the warmer thermal tolerances to avoid any 

size inconsistencies.  Despite the shortcomings of the experimental design, we were still able to 

determine that the lower elevation stream that experiences warmer summer water temperatures 

performed better at higher temperatures than the streams that don’t experience these more 

extreme temperatures.  This finding lends itself to support our hypothesis that the current Brook 

Trout bioenergetics model fails to encompass the full breadth of the population when looking at 

small size classes of Brook Trout from wild populations. 

The variation of specific consumption, conversion efficiency and ultimately specific 

growth observed by individuals from within each population might suggest plasticity of a 

population.  Having this plasticity may allow for some individuals to be better suited in warmer 

waters, while others for cooler water.  These individuals could be ready to exploit the new 

conditions since they are genetically predisposed to help the population persist in warming 

waters (Schneider and Meyer 2017).  While every effort was made to collect fish for this study 

before environmental pressures acted on the young of year in the wild, it is possible that the fish 

collected may have already been selective for or against by environmental pressures relating to 

water temperatures.  We captured these fish and brought them back to our lab in early summer, 

hopefully limiting potential selective pressures as they relate to thermal tolerances.   

In closing, our experiment only covered a small sampling of the native range of Brook 

Trout, even in the scale of the state of West Virginia.  Despite the size bias in our sample at the 

cooler temperature trials and a less than ideal, uneven sample size, we still believe that these 
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significant results should help researchers and managers when trying to account for energetic 

budgets of young Brook Trout.  Consideration of the effect that latitudinal and elevational 

variation may have on a Brook Trout population’s thermal acclimation and tolerances can allow 

for a better application of the published bioenergetics models.  Lower elevations streams and 

those who may experience warmer seasonal waters tend to be less stressed and consume more 

prey and they can better convert the energy they consume.  While variation within and between 

populations in specific consumption, conversion efficiency and specific growth rates may appear 

to complicate our results, in the larger picture such variation is good for the population and the 

species as a whole as these variations are the foundation of generational thermal adaptation. 
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Figures and Tables 

 

Figure 1. Statewide extent map of West Virginia showing the location of the four source streams 

used for the populations used in this experiment. 
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Figure 2. Regional extent map showing the location of the four source populations used in this 

experiment. 
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Figure 3. Graphical representation of the tank set up of the aquariums housed within the larger 

steel tanks used for the consumption experiments.  Arrow indicate flow direction of water. 
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Figure 4. Specific consumption estimates for each of the for streams across the three 

experimental temperatures utilizing the general linear model ln(specific consumption)= Stream + 

Temperature +ln(Mass) + Stream*Temperature.  95% confidence intervals are indicated by the 

dashed lines. 
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Figure 5. QQ plot representing the residuals of the specific consumption general linear model for 

the Brook Trout used in the consumption experiments.  Here we see the lower tails are outside 

the 95% confidence intervals. 
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Figure 6. Specific consumption estimates for each of the for streams across the three 

experimental temperatures utilizing the general linear model ln(conversion efficiency)= Stream 

+ Temperature +ln(Mass) + Stream*Temperature.  95% confidence intervals are indicated by 

the dashed lines. 
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Figure 7. QQ plot representing the residuals of the conversion efficiency general linear model for 

the Brook Trout used in the consumption experiments.  Here we see the lower tails are outside 

the 95% confidence intervals. 
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Figure 8. Specific consumption estimates for each of the for streams across the three 

experimental temperatures utilizing the general linear model ln(specific daily growth)= Stream + 

Temperature +ln(Mass) + Stream*Temperature.  95% confidence intervals are indicated by the 

dashed lines. 
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Figure 9. QQ plot representing the residuals of the specific growth general linear model for the 

Brook Trout used in the consumption experiments.  Here we see the lower tails are outside the 

95% confidence intervals. 
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Figure 10. Boxplot representing the 20-degree size differences of the Brook Trout used in the 

consumption experiments.  Here LLP represents Little Low Place, NF Red is North Fork Red 

Run, Panther is Panther Run and Poca is Poca Run.  Little Low Place and North Fork Red Run 

have outliers. 
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Figure 11. Boxplot representing the 12-degree size differences of the Brook Trout used in the 

consumption experiments.  Here LLP represents Little Low Place, NF Red is North Fork Red 

Run, Panther is Panther Run and Poca is Poca Run.  Little Low Place has a high outlier here in 

this plot. 
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Figure 12. Boxplot representing the 16-degree size differences of the Brook Trout used in the 

consumption experiments.  Here LLP represents Little Low Place, NF Red is North Fork Red 

Run, Panther is Panther Run and Poca is Poca Run.  Little Low Place and Panther Run have 

outliers. 
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Figure 13.  Plot of the mean stream temperatures profiles of Little Low Place, Panther Run, and 

Poca Run from July 2013 through March 2018. 
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Figure 14. Plot of stream thermal profiles comparing Little Low Place, North Fork Red Run, 

Panther Run and Poca Run from 2011.  Data trends show North Fork Red Run following similar 

temperature profiles as Little Low Place and Poca Run and being lower than Panther Run. 
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Table 1. Depiction of the overall experimental design encompassing both consumption and 

routine metabolic experiments.  Red boxes indicate fasting days for C-max experiments, green 

boxes are C-max experimental days, yellow boxes are measurement and thermal acclimation 

days, grey boxes indicate acclimation days to the metabolic chambers, blue boxes are days in 

which routine metabolic rates were measured.
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Table 2.  Indicates the stream name, abbreviation used in models, stream elevation at sample 

location, stream slope, bedrock geological type and drainage area for the four streams used as 

source populations of fish in this experiment. 

 
Abbreviation Elevation(m) Slope % Bedrock 

geological type 

Drainage area 

(km2) 

Little Low 

Place 

LLP 970 13.2 Hampshire 5.5107 

North Fork 

Red Run 

NF Red 942 13.1 Mauch chunk 13.8924 

Panther Run Panther 755 8.2 Pottsville 5.5098 

Poca Run Poca 1055 13.6 Hampshire 2.5308 
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Table 3. Represents the breakdown of sample sizes of fish by temperature from the four 

populations tested for specific daily consumption and conversion efficiencies.  Between the 16°C 

and 12°C experiment, a North Fork Red Run fish perished resulting in a decrease in sample size.  

The deceased fish was included in the analysis at 16 and 20-degrees. 

 20° C 16° C 12° C 

Little Low Place 13 13 13 

North Fork Red Run 12 12 11 

Panther Run 15 15 15 

Poca Run 7 7 7 
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Table 4. ANCOVA table from the model looking at specific daily consumption as an interactive 

function of ln(specific daily consumption)= Stream + Temperature +ln(Mass) + 

Stream*Temperature indicating that specific consumption rate is significantly influenced by the 

source population of the fish, the temperature at which it is experiencing, the size of the fish and 

the interaction of temperature by stream. 

 Degrees of 

Freedom 

Sum of 

Squares 

Mean Square F Value P-Value 

Population 3 2.229 0.7430 12.203 4.48e-07 

Temperature 1 0.401 0.4008 6.583 0.011450 

lnMass 1 0.743 0.7434 12.209 0.000654 

Stream * Temperature 3 0.883 0.2945 4.836 0.003195 

Residuals 128 7.794 0.0609   
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Table 5. ANCOVA coefficients table from the model looking at specific daily consumption as an 

interactive function of ln(specific daily consumption)= Stream + Temperature +ln(Mass) + 

Stream*Temperature indicating Poca Run has a significantly higher intercept and a significantly 

lower slope coefficients as it related to the temperature interaction. 

 Estimate Standard 

Error 

T Value P- Value 

Intercept (LLP) -4.58035 0.31910 -14.354 <2e-16 

North Fork Red Run 0.45723 0.29671 1.541 0.125784 

Panther -0.16568 0.27770 -0.597 0.551823 

Poca 0.80139 0.33738 2.375 0.019016 

Temperature 0.03591 0.01297 2.769 0.006452 

Natural log of Mass 0.29298 0.08007 3.659 0.000369 

North Fork Red Run * Temperature -0.01893 0.01824 -1.038 0.301450 

Panther Run * Temperature 0.01934 0.01695 1.141 0.255864 

Poca Run * Temperature  -0.05347 0.02076 2.575 0.011149 
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Table 6. ANCOVA table from the model looking at the conversion efficiency as an interactive 

function of ln(conversion efficiency)= Stream + Temperature +ln(Mass) + Stream*Temperature 

indicating that the conversion efficiency is significantly influenced by the source population of 

the fish, the temperature at which it is experiencing, the size of the fish and the interaction of 

temperature by stream. 

 Degrees of 

Freedom 

Sum of 

Squares 

Mean 

Square 

F Value P-Value 

Population 3 0.0570 0.01902 5.110 0.0026 

Temperature 1 0.2889 0.28891 77.629 7.54e-15 

lnMass 1 0.0133 0.01327 3.565 0.06127 

Stream * Temperature 3 0.0387 0.01289 3.463 0.01832 

Residuals 128 0.4764 0.00372   
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Table 7. ANCOVA table from the model looking at the conversion efficiency as an interactive 

function of ln(conversion efficiency)= Stream + Temperature +ln(Mass) + Stream*Temperature 

indicating Panther Run has a significantly higher slope coefficient meaning that it will convert 

energy better as temperature increases. 

 

 Estimate Standard Error T Value P- Value 

Intercept (LLP) 0.684435 0.074991 9.127 1.30e-15 

North Fork Red Run -0.055410 0.073057 -0.758 .04496 

Panther -0.102701 0.068454 -1.500 0.1360 

Poca 0.086341 0.084387 1.023 0.3082 

Temperature -0.019192 0.003098 -6.195 7.37e-09 

Natural log of Mass -0.029574 0.019107 -1.548 0.1241 

North Fork Red Run * Temperature 0.004337 0.004473 0.970 0.3340 

Panther Run * Temperature 0.010179 0.004152 2.451 0.0156 

Poca Run * Temperature  -0.004323 0.005223 -0.828 0.4093 
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Table 8. ANCOVA table from the general linear model looking at the specific daily growth as an 

interactive function of ln(specific daily growth)= Stream + Temperature +ln(Mass) + 

Stream*Temperature indicating that the specific daily growth is significantly influenced by the 

source population of the fish, the temperature at which it is experiencing, the size of the fish and 

the interaction of temperature by stream. 

 Degrees of 

Freedom 

Sum of 

Squares 

Mean Square F Value P-Value 

Population 3 0.001163 0.0003878 12.731 2.39e-07 

Temperature 1 0.000309 0.0003089 10.141 0.00182 

lnMass 1 0.000112 0.0001123 3.685 0.05709 

Stream * Temperature 3 0.000367 0.0001224 4.016 0.00902 

Residuals 130 0.003960 0.0000305   
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Table 9. ANCOVA coefficients table from the model looking at the specific daily growth as an 

interactive function of ln(specific daily growth)= Stream + Temperature +ln(Mass) + 

Stream*Temperature indicating Panther Run has a significantly higher slope coefficient meaning 

that it will grow more as temperature increases. 

 

 Estimate Standard 

Error 

T Value P- Value 

Intercept (LLP) 1.177e-02 6.771e-03 1.738 0.0845 

North Fork Red Run 3.328e-03 

 

6.510e-03 0.511 0.6101 

Panther -7.569e-03 6.165e-03 -1.228 0.2217 

Poca 1.128e-02 7.470e-03 1.510 0.1335 

Temperature -4.778e-04 2.761e-04 -1.731 0.0859 

Natural log of Mass 3.655e-03 1.708 e-03 2.140 0.0342 

North Fork Red Run * 

Temperature 

2.506e-05 3.960e-04 0.063 0.9469 

Panther Run * Temperature 8.358e-04 3.741e-04 2.235 0.0271 

Poca Run * Temperature  -6.300e-04 4.575e-04 -1.377 0.1708 
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Chapter 3- Thermal Performance of Routine Metabolic Rates from four Populations of 

Brook Trout in West Virginia’s Central Appalachian Mountains. 

 

Abstract 

Growth of an individual is the end result of many physiological processes stemming from 

the consumption of food items.  These processes can be influenced by many variables including 

temperature.  Energy budgets of an individual fish can vary based on genetics and acclimation.    

Only energy consumed in excess of metabolic costs can be assimilated as new growth of the 

individual.  Current bioenergetics models for Brook Trout Salvelinus fontinalis suggest growth 

increases with temperature until an inflection point of 20.2°C.  With a warming climate, and 

water temperatures expected to rise, the ability of a population to adapt to the warming 

environment is crucial to the survival of the species.  For this study we sought to see how spatial 

variation would influence the routine metabolic rate (RMR) of four source populations of Brook 

Trout in West Virginia’s Central Appalachian Mountains.  RMR measurements were taken on 47 

individuals at three temperatures (12, 16, and 20°C).  The effects of source population and 

temperature differences were determined using a general linear model and significant differences 

in model coefficients (p≤0.05).  Routine metabolic rates were found to be significantly different 

with two populations having a higher intercept but a lower slope coefficient than the other two 

populations.  These findings give hope that a population of cold-water fish can survive climate 

change if temperatures rise at a slow enough pace to allow for adaptation. 
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Introduction 

Brook Trout Salvelinus fontinalis have endured reductions in numbers and distribution in 

the central Appalachian Mountains.  Factors such as high harvest rates, habitat degradation, 

reductions in water quality, and nonnative salmonid introductions have been suggested as the 

causation (Larson and Moore 1985, Flebbe 1994, Marschall and Crowder 1996, Galbreath et al. 

2001).  The most remarkable disruption in the central Appalachian region is the negative effect 

of acid precipitation (Wigington et al. 1996).  West Virginia generally has a sandstone dominated 

geology resulting in an estimated 25% of all streams being impaired because of a high rate of 

acid deposition and the sandstones poor buffering capacity (Sharpe et al. 1987, Welsh and Perry 

1997, Clayton et al. 1998).  Brook Trout are an important species in West Virginia, not only as 

the state fish, but also due to the high socioeconomic value the angling industry brings to rural 

parts of the state. 

Mean air temperatures near the earth’s surface are expected to rise 3.5-4.2⁰C over the 

next 50 years (Bernstein et al. 2008).  As air temperatures continue to rise as a result of global 

climate change, the same can be expected for water temperatures within the streams holding 

Brook Trout in central Appalachia as suggested by Meisner (1990), Stefan and Preud’homme 

(1993), and Pilgrim et. al. (1998).  This could lead to cold water salmonid species such as Brook 

Trout having a 20% decrease of abundance (Casselman 2002) as a result of increased metabolic 

processes and reduced growth in a warming environment.  While Brook Trout can withstand 

quick spikes in temperature up to 28.7°C (Carline and Machung 2001), a realistic sustainable 

short-term temperature is 25°C (Beitinger and Bennett 2000).  As water temperatures rise, so 

does the metabolic rate of the individual fish.  Metabolic costs are the largest uncontrollable 

energy loss a fish will endure.  Current bioenergetics models suggest that the metabolic rate of 
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Brook Trout continues to increase until the inflection point of 20.2C at which point the rate 

quickly drops (Hartman and Cox 2008).  Unless the fish experiencing warm temperature 

extremes (<20˚C) can find thermal refugia, the species will likely perish. 

Adaptation of Brook Trout to warming water temperatures can occur at both the 

individual level and the population level (Meier et al. 2014).  At the individual level, seasonal 

acclimation to temperatures allow for a greater range of thermal tolerance (Jobling 1995).  

Population level adaptation is a result of natural selection, selecting against the lesser tolerant 

individuals who cannot thrive and reproduce under the increased temperatures.  These thermal 

tolerances have also been shown to vary between population origins (Stitt et al. 2014), 

suggesting that selective pressures have allowed past individual level characteristics to be found 

within the whole population of a given area.  Since headwater streams are fairly stable in their 

thermal patterns, with low mean temperatures, the fish inhabiting them should be adapted to 

perform within those temperature regimes. 

Understanding how much energy is used by a fish to survive is crucial to understanding 

how much energy in needed to promote growth of an individual.  Unlike humans that have 

determinant growth potential, meaning we hit a “full-sized” frame, fish can keep growing larger 

and larger due to indeterminate growth.  This indeterminate growth can only take place after 

routine metabolic costs are met.  Metabolism experiments using routine metabolic rate (RMR) 

are used to determine how much energy a fish uses in normal functional operation of the 

individual, i.e. just sustaining life for itself by circulation, osmoregulation, spontaneous 

swimming, and routine activity (Barbieri et al. 2002).  To determine the RMR, a fish is placed 

into a closed vessel and allowed to respire for a period of time (Atkins and Benfey 2008, 

Lefrançois et al. 2001, Powell et al. 2005).  Total consumption of oxygen (MO2), defined as: 
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oxygen initial -oxygen end, is recorded within the vessel.  The measured consumption of oxygen 

can then be converted to energy consumed by the individual by use of calorimetry (Nelson 

2016).  Energy equivalents of oxygen consumption states that for every 1.0 mg of oxygen 

consumed, 3.38 - 3.42 calories (14,141.92-14,309.28 joules) of energy are used (Elliott and 

Davison 1975).  Knowing how much energy must be consumed for day to day operations of the 

fish help bioenergetics models simulate how much more energy than the RMR must be 

consumed to account for the growth of an individual. 

Fish bioenergetics models can be very complex, using anywhere from 12 to more than 30 

parameters (Beauchamp et. al 1989, Stockwell and Johnson 1997, Madenjian and Connor 1999).  

Each of these parameter estimates brings its own level of uncertainty with it.  The current model 

for Brook Trout (Hartman and Cox 2008), as with many other species (Madenjian and Connor 

1999, Madenjian et al. 2000, Tyler and Bolduc 2008), take advantage of hatchery fish to develop 

the estimates of parameters used.  While hatchery fish are a good source population to start with 

because of their cheap, readily available nature, they don’t encompass the breadth of the wild 

population’s genetics and therefore potential variation.  Hatchery fish, like those used in 

Hartman and Cox (2008), are the result of selective breeding to do well in the hatcheries.  

Hatchery fish are not a true representation of wild fishes (McDermid et al 2010).  An 

understanding of spatial variation of metabolic rates for Brook Trout is thought necessary to 

accurately predict the metabolic costs associated with different populations.  These costs can 

then be used to solve for unknown parameters specific to the population in question. 

The objective of this study was to determine if we could detect a population level 

difference in Routine Metabolic Rate (RMR) between four headwater streams in the central 

Appalachian Mountains of West Virginia.  RMR was conducted over a range of temperatures to 
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account for the influence temperature plays on Brook Trout metabolic rates in a warming 

climate.  By detecting a difference, we hope to allow for a better understanding of the spatial 

variation of Brook Trout routine metabolic rate, as well as consideration to account for such 

variation.   

 

Methods 

Fish Collection- To evaluate whether differences in thermal performance exist among 

Brook Trout populations we selected 4 streams of varying elevation for source populations.  

Elevation can influence stream characteristics in several ways including gradient, energy inputs 

and thermal regime.  In July of 2018, approximately 24 juvenile Brook Trout were collected 

from each of the streams: Panther Run, North Fork Red Run, Poca Run, Little Low Place (LLP), 

using backpack elecrofishers (Table 1; Figure 1,2).  Fish were collected at a rate of no more than 

one individual per habitat unit (riffle, run or pool), typically small back water eddy areas behind 

a rock in a riffle to increase our chances of genetic variation.  Fish were transported back to the 

Aquatic Ecophysiology Laboratory of West Virginia University.  Upon returning to the 

laboratory fish were marked with elastomer in the jaw, the fleshy cheek near the operculum, and 

caudal peduncle to denote source stream (Adams et al. 2000). 

Quarantine and Acclimation- Once fish were marked by source stream, they were then 

placed into self-contained cold-water recirculating tank units in quarantine, where fish were fed 

every third day to satiation as a maintenance ration.  While in quarantine fish were monitored for 

any signs of infection or illness.  Fish were kept in stream source isolation for a period of 28 
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days.  Following the 28-day quarantine period, fish were placed into a common tank and fed to 

satiation every third day as a maintenance ration.   

The physical design of the experimental tank units allowed for a maximum of 24 

individuals to be tested simultaneously.  To attain a higher sample size, experiments were run in 

two separate series of trials, with each series experiencing the same thermal sequence (20, 16, 

12°C).  For each of the two series of thermal sequence experiments, a subsample of 24 

individuals were removed and placed into individual 37L aquariums.  Aquariums had the sides 

painted black to avoid external stimuli of other fish.  Aquariums were covered with hardware 

cloth and mesh screen to prevent escape of subject fish and prey items and housed within a larger 

1.2x2.4m steel tank to act as a thermal buffer (Figure 3).  Water was controlled to each aquarium 

by ball valves.  Each aquarium was equipped with an air stone.  The experimental set up was part 

of a larger 8,000-liter recirculating system equipped with physical and biological filters, UV 

sterilizer and commercial chilling unit allowing for temperature control of +/- 0.2°C.  Water 

quality was measured daily, and water changes made as necessary to maintain acceptable safe 

water quality parameters (pH, NH3-N, NO3-N).  After being placed into the aquariums, fish were 

acclimated to the isolation of an individual aquarium for 30 days, again being fed to satiation 

every third day while adjusting to the individual aquariums. 

Routine Metabolic Chambers- Chambers used to conduct routine metabolic rates were 

constructed using commercially available 6” (152.4mm) schedule 40 PVC pipe, fitted with a 

solid ¼” (6.35mm) plexiglass bottom and a plexiglass top flange and removable top cover to 

place and recover the fish (Figure 4). A neoprene gasket was placed between the flange and top 

cover to make the fit watertight.  The top cover is equipped with a portal to allow for the 

dissolved oxygen (DO) probe to be inserted into the chamber, plugged with a rubber stopper 
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when not in use.  Each chamber was fitted with inflow and outflow tubing, each equipped with 

valves to control flow to and from the chamber.  An electric pump was inserted into each 

chamber to allow for even mixing of the water following each respiration period.  Chamber 

volume was approximately 1,649ml with 75 ml displaced by the electric pump.  Chambers were 

immersed in 37.5L aquariums to allow for thermal buffering. To further aid in thermal buffering 

the aquarium were kept within the larger 1.2x2.4m steel tank.   

Overall Experimental Design- This experiment was part of a larger project looking at 

both the c-max and routine metabolic rate of the same individuals, a period of 3 weeks occurred 

between each set of RMR measurements.  Experiments were conducted at 3 temperatures 

starting at 20°C, reducing to 16°C and 12°C, respectively.  Each temperature consisted of a 

fasting period, measurement for size before growth experiments, a 12-day growth period during 

which time fish were fed ad libitum (C-max), followed by fasting periods, end growth 

measurements (same used for metabolic calculations), metabolic measurements, and temperature 

adjustments also acting as a fasting period for the next temperature (Table 2).  All temperature 

changes were from warmer to cooler to reduce stress on the organism and reduce acclimation 

time. 

Experimentation- Following the individual acclimation period, and the initial 20°C 

maximum consumption rate (C-max) experiment (as part of the larger experimental design), fish 

were fasted for 48 hours to allow for near complete evacuation of the digestive tract.  After 

fasting fish were anesthetized in a buffered tricaine methanesulfonate (MS-222) solution of 1 g 

per 9 L of water, weighed for wet weight (WW) (nearest 0.1g), total length (TL), fork length 

(FL) and a modified standard length (SL).  The modified SL used in this experiment was the 

point in which the caudal flesh transitioned from translucent to opaque, a measurement change 
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used to reduce handling time.  After measurement, 12 fish were placed into the metabolic 

chambers and allowed to acclimate for >36 hours. 

Dissolved oxygen (DO) measurements were taken on routinely active fish using YSI Pro 

ODO (calibrated to zero [Na2SO3] and 100% saturation at the beginning of each day) following 

acclimation to the metabolic chamber.  Fish were fasted for a period of 96-144 h before RMR 

measurements were taken.  Initial dissolved oxygen and the start time was recorded, the flow 

turned off to individual chambers and fish allowed to respire.  Fish were allowed to freely move 

within the chamber at all times, with or without flow.  Flow was turned off for a period of 0.30 to 

1.25 h depending on the temperature and size of fish to achieve a change in oxygen 

concentrations of 1mg/l, with more time required for smaller fish.  After allowing the fish to 

respire, the pump was turned on to allow for adequate mixing of the water within the chamber.  

The end dissolved oxygen and time was recorded after mixing occurred.  Flow was resumed and 

allowed to flow through the chamber for a period of at least 2 times the elapsed time the flow 

was ceased to the chambers before beginning the next respiration measure (>0.60 to 2.50 h).  A 

total of 3 metabolic measurements were taken for each individual Brook Trout and the average 

was considered the rate of oxygen consumption for that observation (Hartman and Cox 2008).  

Background bacterial respirations were also accounted for in an empty chamber for the same 

time periods as the Brook Trout metabolic rate measures.  After completion of the first 12 fish 

metabolic rates, fish were returned to their respective aquarium, and the other 12 fish were 

acclimated (>36 h), and respiration measured.  After completion of the second set of fish’s 

metabolic rates measured, they were returned to their aquarium and the temperature reduced to 

the next test temperature.  Temperatures were decreased at a rate of 0.25°C/hr, allowing the next 

temperature profile to be achieved in 16 hours. In doing so we were able to allow the individuals 
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to acclimate for a period of 48 hours at each temperature before beginning the next round of C-

max and routine metabolic rate experiments. 

Statistical analysis- Metabolism data were formatted into a standardized (g O2/ g 

fish/day) format.  The average of the three metabolic measurements was used for analysis.  We 

utilized R 3.6.1 (R Core Team 2019) for all analyses.  The natural log of the mean routine 

metabolic rate and mass of the individuals was calculated and used for the analysis.  Outliers 

were detected and removed using the Bonferroni outlier test.  To test for differences between 

streams and temperatures an ANCOVA using the model (mean metabolic rate ~ temperature * 

stream population) was used.  The residuals were then calculated for the ANCOVA model and a 

Shapiro- Wilk test was then run to test for normality of the data.  Differences in fish size were 

also tested for each of the three temperatures utilizing the ANOVA (fish mass ~ stream 

population).  A general linear model was ran to determine differences among streams and to 

determine if the effect of temperature differed among streams as indicated by significant 

differences in model coefficients (p≤0.05). 

   

Results 

We collected ~24 individuals from each stream.  Our initial experimental design was to 

have 12 individuals from each stream population tested for routine metabolic rates.  However, 

due to mortality, escapees, and losses beyond our control within the system we were unable to 

obtain this array.  We were limited to a total of 47 Brook Trout from the four populations tested 

for routine metabolic rate (Panther Run n=15, LLP n=13, NF Red Run n= 12, Poca Run n=7) 
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(Table 3).  These 47 Brook Trout ranged from 6.0- 25.4g and 72-121mm in modified standard 

length at the start of the trials. 

Routine metabolic rates increased with temperature (Figure 5) and decreased with size at 

each temperature (Figure 6).  The general linear model revealed that there was a significant 

influence of temperature, stream, and the interaction of stream* temperature on the routine 

metabolic rate of Brook Trout (Figure 7, Table 4).  Further analysis of the linear model revealed 

that North Fork of Red Run and Poca Run have significantly higher intercepts and lower slopes 

than the remaining streams than the global model (Table 5). The Shapiro-Wilks test is not 

significant indicating the data is normally distributed (Figure 8). 

Size was found to be significantly different at all three temperatures between the four 

populations.  At 20°C the ANOVA revealed there was a significant difference in size between 

populations (DF=3, F=3.433, P-Value= 0.0251), and Tukey’s test suggests that the significance 

fell in Panther Run being larger than Poca Run fish and almost significantly larger than Little 

Low Place fish (Figure 9).  At 16°C there was a significant difference (DF=3, F= 5.207, P-

Value= 0.0039) with Panther Run fish significantly larger than Little Low Place and Poca Run 

(Figure 10)  At 12°C analysis indicated a significant size difference (DF=3, F= 4.696, P-Value= 

0.00646) and Panther Run was determined to be significantly larger than Little Low Place and 

Poca Run (Figure 11). 

Discussion 

We found significant differences in the intercept and slope for the routine metabolic rate 

between two of our four populations across temperatures.  Post-hoc tests looking at size 

comparisons of the four source streams indicated that there was a significant difference in size at 
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all three temperatures of streams.  The Panther Run fish were larger than those of Poca Run at all 

three temperatures.  Panther Run fish were also larger than Little Low Place sourced fish at 12 

and 16°C.  North Fork Red Run fish were not significantly different at any temperature from any 

of the other source populations.  With size being a contributing factor of metabolic rates, as 

suggested by the current Brook Trout bioenergetics model (Hartman and Cox 2008) and other 

salmonid species (Cutts et al 2002), the larger the individual, the lower the RMR of the fish on a 

per gram scale.  The size variation we had in our sample may have more confounding results 

which we are unable to account for.  Further testing would need to be done to create a size 

dependency model for each stream so the individual fish can be standardized to a common size.  

By standardizing the fish to a common size, one could more readily draw conclusions between 

streams on a one to one ratio of fish from varying sizes. 

It was determined that as a result of the experimental design used for this project, we 

inadvertently opened up a size bias in our sample of fish used.  The fish from Panther Run grew 

faster during our 20°C consumption trials which preceded the RMR measurements, resulting in 

larger fish from Panther Run being tested for RMR for all three temperatures examined.  

Millidine et al (2009) suggest that the fish with higher standard metabolic rates have higher 

energy costs but can actually process meals faster as a result with the larger specific consumption 

leading to this discrepancy in fish size.  This would allow these individuals to eat more and grow 

more, compounding the size differences.  A size comparison of fish at the start of the 

consumption experiments that preceded the 20°C RMR experiments shows there is no 

significance difference in the initial size of the fish used (Figure 12).  With an apparent 

difference in size between the four populations for the RMR experiments, we made an effort to 

correct for size by taking the natural log of the mass of the individuals.  Further attempts to 
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correct for size, such as a size dependency model, would only add more uncertainty to the data 

with the limited range of fish sizes.  In addition to the fish mass biases, the uneven sample size 

can have a confounding effect on our results.  Disease and cannibalism greatly reduced the 

individuals available for the second set of experimental fish leading to the uneven sample size. 

Despite the setbacks, we were able to conclude that there is a discernable difference in 

RMR between populations of Brook Trout in the headwater streams in West Virginia’s Central 

Appalachian Mountains across temperatures.  Although we encompassed only a small portion of 

the native range of Brook Trout in West Virginia, our values are lower than those predicted with 

the current Brook Trout bioenergetics model (Hartman and Cox 2008) (Figure 13).  Hartman and 

Cox (2008) fish were obtained for the Bowden State hatchery thus differences could be a result 

of selective pressures in the hatchery, favoring faster growth and therefore higher metabolic costs 

as suggested by Millidine et al. (2009) or reflect differences in their original source population.  

Wild fish may also potentially exhibit wider ranges of optimal ranges.  Another reason for this 

difference with the earlier model is the longer periods of time in isolation prior to measuring 

RMR or the longer acclimation period to the chambers.  Hartman and Cox (2008) allowed fish to 

acclimate for 24 hours, while we allowed fish to acclimate for >36h, potentially reducing 

handling stress or acclimation biases and reducing the potential for attributing residual specific 

dynamic activity action to RMR.  Further testing would need to be done with wild fish to 

determine if this hold true. 

In addition to the significant differences in metabolic rates between populations, we were 

able to see a relatively large variation of routine metabolic rates.  Tyler and Bolduc (2008) 

conducted an experiment similar to ours where they investigated individual values in the 

bioenergetics models and tested hatchery fish for both variation in c-max and standard metabolic 
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rate.  They too found a high level of variation around their parameters, indicating that some 

individuals had higher rates and other had lower rates around the mean, and encompass those 

findings to help add upper and lower limits to the Wisconsin Bioenergetics Model for Rainbow 

Trout (Oncorhynchus mykiss).  In addition to this variation helping to provide confidence 

intervals to bioenergetics models, this level of variation could be beneficial to the populations if 

this variation relates to population stochasticity.  Having young of the year individuals that do 

well at a different variety of temperatures would allow for the population to better be able to 

exploit the conditions from year to year.  This exploitation could also result in the adaptation of 

the population to warming waters in the face of global climate change. 

In conclusion, this was a very small sampling of the native range of Brook Trout, even in 

the scope of the state of West Virginia.  While we found there to be a size bias in our sample and 

had a less than ideal, uneven sample size, we still believe that these results should help 

researchers and managers trying to account for energetic budgets of young Brook Trout.  

Consideration of the effect that latitudinal and elevational variation may have on a Brook Trout 

population’s RMR can allow for a better application of the published bioenergetics models.  

Variation does exist and it is good for the population and the species. 
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Figures and Tables 

 

Figure 1. Statewide extent map showing the selected streams for source populations of fish used 

in the experiments. 
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Figure 2. Regional extent map showing the selected streams for source populations of fish used 

in the experiments. 
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Figure 3. Diagram showing the tank set up used for C-Max experiments.  Water flows from the 

chiller in the PVC pipe where it is diverted, and flows altered by the ball valves.  All aquarium 

set in steel tanks to act as a thermal buffer. 
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Figure 4. Image of the metabolic chambers used to determine routine metabolic rates of Brook 

Trout.  Shown are the inflow and outflow fittings equipped with valves to alter flow, electric 

pump to mix the water following oxygen depletion experiments as well as port to allow insertion 

of the DO probe. 
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Figure 5.  Boxplot representing the routine metabolic rates for all BROOK TROUT tested at 

each temperature 
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Figure 6. Scatterplot representing the influence of size on the routine metabolic rate of all fish 

tested at all three temperatures.   
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Figure 7. Routine metabolic rate estimates for each of the for streams across the three 

experimental temperatures utilizing the general linear model ln((routine metabolic rate)= Stream 

+ Temperature +ln(Mass) + Stream*Temperature.  95% confidence intervals are indicated by 

the dashed lines. 
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Figure 8. QQ plot representing the residuals of the routine metabolic rate general linear model 

for the Brook Trout used in the consumption experiments.  Here we see the lower tails are 

outside the 95% confidence intervals  
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Figure 9. Boxplot of mass of fish from the four populations of fish used in RMR experiments at 

20°C.  Here Panther Run fish are larger than those from Poca Run.  In this figure, LLP is Little 

Low Place, NF Red is the North Fork of Red Run, Panther is Panther Run, and Poca is Poca Run.   
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Figure 10. Boxplot of mass of fish from the four populations of fish used in RMR experiments at 

16°C.  Here Panther Run fish are larger than those from Poca Run.  For this boxplot LLP is Little 

Low Place, NF Red is the North Fork of Red Run, Panther is Panther Run, and Poca is Poca Run.  
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Figure 11. Boxplot of mass of fish from the four populations of fish used in RMR experiments at 

12°C.  Here Panther Run fish are larger than those from Poca Run and Little Low Place.  For this 

boxplot LLP is Little Low Place, NF Red is the North Fork of Red Run, Panther is Panther Run, 

and Poca is Poca Run. 
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Figure 12. Boxplot of mass of fish from the four populations of fish used in RMR experiments at 

20°C before the preceding C-max experiment.  Here Panther Run fish are larger than those from 

Poca Run and Little Low Place.  For this boxplot LLP is Little Low Place, NF Red is the North 

Fork of Red Run, Panther is Panther Run, and Poca is Poca Run. 
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Figure 13. Scatter plot representing the mean RMR values from this experiment versus the 

expected values from the current bioenergetics model at 16°C. 
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Table 1.  Indicates the stream name, abbreviation used in models, stream elevation at sample 

location, stream slope, bedrock geological type and drainage area for the four streams used as 

source populations of fish in this experiment. 

 
Abbreviation Elevation(m) Slope % Bedrock 

geological type 

Drainage area 

(km2) 

Little Low 

Place 

LLP 970 13.2 Hampshire 5.5107 

North Fork 

Red Run 

NF Red 942 13.1 Mauch chunk 13.8924 

Panther Run Panther 755 8.2 Pottsville 5.5098 

Poca Run Poca 1055 13.6 Hampshire 2.5308 
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Table 2. Depiction of the overall experimental design encompassing both consumption and 

routine metabolic experiments.  Red boxes indicate fasting days for C-max experiments, green 

boxes are C-max experimental days, yellow boxes are measurement and thermal acclimation 

days, grey boxes indicate acclimation days to the metabolic chambers, blue boxes are days in 

which routine metabolic rates were measured. 
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Table 3. Sample sizes of fish from each population used for each temperature in model 

calculations prior to outliers being removed.  North Fork Red Run lost an individual between the 

20 and 16°C experiments. 

 20°C 16°C 12°C 

Little Low Place 13 13 13 

North Fork Red Run 12 11 11 

Panther Run 15 15 15 

Poca Run 7 7 7 
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Table 4. Representing the interactive ANVOCA output table on the natural log mean RMR 

values (ln(RMR)= Stream + Temperature +ln(Mass) + Stream*Temperature).  Here we see that 

all covariates are significant.  Here lnMass is the natural log of the mass (g) of an individual. 

 Degrees of 

Fredon 

Sum of 

Squares 

Mean 

Square 

F value Probability 

(>F) 

Population 3 0.868 0.289 7.642 0.00012 

Temperature 1 5.184 5.184 133.661 >2e-11 

lnMass 1 2.010 2.010 51.836 4.44e-11 

Population*Temperature 3 0.531 0.177 4.565 0.00450 

Residuals 129 5.003 0.039   
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Table 5. Representing the estimates of the coefficients used to parameterize the global ANCOVA 

model for the RMR of Brook Trout used in this study.  Here the intercept refers to the intercept 

of Little Low Place and the non-interactive value for temperature refers to the change that one 

degree of temperature changes has on the value of Little Low Place. 

 Estimate Standard 

Error 

T- Value Probability (>|t|) 

Intercept -5.59176 0.244480 -22.872 <2e-16 

North Fork Red Run 0.812152 0.232529 3.497 0.000646 

Panther Run 0.223459 0.220147 1.015 0.311985 

Poca Run 0.734907 0.266560 2.757 0.006680 

Temperature 0.057944 0.009885 5.862 3.61e-08 

lnMass -0.438546 0.059603 -7.358 1.94e-11 

North Fork Red Run:Temperature -0.044936 0.012128 -3.181 0.001840 

Panther Run: Temperature -0.004924 0.013315 -0.370 0.712112 

Poca Run: Temperature -0.033184 0.016326 -2.033 0.044149 
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