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ABSTRACT

Global Existence and Asymptotic Behaviors For Some Nonlinear Partial
Differential Equations.

Ismahan Binshati

We study global existence and asymptotic behavior of the solutions for two-fluid
compressible isentropic Euler-Maxwell equations by the Fourier transform and en-
ergy method. We discuss the case when the pressure for two fluids is not identical
and we also add the friction between two fluids. In addition, we discuss the rates of
decay of Lp−Lq norms for a linear system. Moreover, we use the result for Lp−Lq

estimates to prove the decay rates for the nonlinear systems. In addition, we prove
existence of heteroclinic orbits for the nonlinear Vlasov and the one-dimensional
Vlasov-Poisson systems. In the nonlinear Vlasov case with sufficiently regular and
periodic potential we show that there is at least one orbit emanating from a maxi-
mum point of the potential and at least one terminating at it. The Vlasov-Poisson
case is more delicate due to the singularity of the potential, and our existence result
is limited to one spatial dimension and to weak solutions in the space of probability
measures on the torus endowed with the periodic Wasserstein distance.
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Part I

Global Existence And Asymptotic
Behavior Of Solutions For

Compressible Two Fluids Euler
Maxwell Equation
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Chapter 1

Introduction

We consider the Cauchy problem for first-order nonlinear two-fluid compressible
isentropic Euler-Maxwell equations in three dimensions, written as

∂tn±+∇.(n±u±) = 0,

∂tu±+u±.∇u±+ 1
n±

∇p±(n±) =±(E +u±×B)−ν±u±−α±(u±−u∓),

∂tE−∇×B = n−u−−n+u+,

∂tB+∇×E = 0,

∇.E = n+−n−, ∇.B = 0,
(1.1)

where n± = n±(t,x) ∈ R3 denotes the density of electrons (n−) and ions (n+), u± =
u±(t,x) ∈ R3 denotes the velocity of electrons (u−) and ions (u+), E = E(t,x) ∈ R3

the electric field, and B= B(t,x)∈R3 the magnetic field for t > 0, x∈R3. The initial
data are given by

[n±,u±,E,B]|t=0 = [n±0,u±0,E0,B0], x ∈ R3, (1.2)

with the compatibility conditions

∇.E0 = n+0−n−0, ∇.B0 = 0, x ∈ R3. (1.3)

The Euler-Maxwell system (1.1) is a symmetrizable hyperbolic system for n > 0
and the initial value problem (1.1), (1.2) has a local smooth solution when the ini-
tial data are smooth. The global existence of smooth solutions to the initial bound-
ary value problem has been given in [7] by the compensated compactness method.
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The authors of [1],[10] studied the existence of global smooth solutions for the
three-dimensional isentropic Euler-Maxwell system with small amplitude and the
periodic problem is discussed by Ueda [8]. For the special case where the solu-
tion to the Euler-Maxwell equation has asymptotic limits with small parameters, see
[11],[12]. The special case of the diffusive relaxation limit of the three-dimenisonal
non-isentropic Euler-Maxwell equation is considered in [13],[15]. Two hierarchies
of models of the ionospheric plasma for two-fluid Euler-Maxwell equations were
presented in [3]. The Fourier transform method was considered by Duan [1],[2] and
Ueda [9]. Jerome [14] adapted the classical semigroup-resolvent approach of Kato
[5] to Cauchy problem in R3 and established a local smooth solution. In [1] the Duan
considered the case when the pressure functions p±(·) depend only on density, hav-
ing the expression p±(n±) = A±nγ

± with constants A+ = A− > 0 and the adiabatic
exponent γ > 1.

In this paper, we consider the global existence of smooth solutions for two-fluid
compressible isentropic Euler-Maxwell equation extending the results of Duan [1].
In contrast to Duan, we suppose A+ 6= A−, and we add the friction α±(u±− u∓)
where α+ = α

n+
> 0, α− = α

n−
> 0, and α is the constant. We obtain the decay rates

of smooth solutions by the Fourier transform. The main results are stated as follows:

Theorem 1.1. Let N ≥ 4 and (1.3) hold. There are δ0 > 0,C0 such that if

‖[n±0−1,u±0,E0,B0]‖N ≤ δ0,

then the Cauchy problem (1.1)-(1.2) of the Euler-Maxwell system admits a unique
global solution [n±(t,x),u±(t,x),E(t,x),B(t,x)] with

[n±(t,x)−1,u±(t,x),E(t,x),B(t,x)] ∈C([0,∞);HN(R3))∩Lip([0,∞);HN−1(R3)),

and
sup
t≥0
‖[n±(t)−1,u±(t),E(t),B(t)]‖N ≤C0‖[n±0−1,u±0,E0,B0]‖N .

Moreover, there exist δ2 > 0,C1 such that if

‖[n±0−1,u±0,E0,B0]‖13 +‖[n±0−1,u±0,E0,B0]‖L1 ≤ δ1,

then the solution [n±(t,x),u±(t,x),E(t,x),B(t,x)] satisfies that for any t ≥ 0,

‖n±(t)‖Lq ≤C1(1+ t)−
11
4 , (1.4)

‖u±(t),E(t)‖Lq ≤C1(1+ t)−2+ 3
2q , (1.5)

‖B(t)‖Lq ≤C1(1+ t)−
3
2+

3
2q , (1.6)
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with 2≤ q≤ ∞. Forthermore,

‖U±(t)−G(t)∗U±0‖Lp ≤Cε13(V0)(1+ t)−2+ 3
2q , (1.7)

where G(t,x) is Green’s matrix for the linearized system.

The proof of Theorem 1.1 is based on the energy method, and the Fourier trans-
form, as in [1]. There are three key steps: the first key is the priori estimate to
establish the global solution and has the form

EN(V (t))+
∫ t

0
DN(V (s))ds≤ EN(V0),

where V (t) is the perturbation of solution (1.1) and EN(.),DN(.) denote the energy
functional and energy dissipation rate functional as in [1]. This differs from [2] and
[8] because the two fluids system has a more complex structure than one fluid, so
obtaining energy estimates for the density, the velocity and electric magnetic fields
for Euler-Maxwell, requires a different strategy. The time-decay property of solutions
to the nonlinear system requires the construction of functionals capturing the optimal
energy dissipation rate. The second key step is linearizing the homogeneous form of
(1.1) and using the Fourier transform to obtain the Lp−Lq time decay rate and the
explicit representation of the solution. The third step is combining the previous two
steps and applying the Fourier transform to obtain the time decay rate of solution
to the reformulated non-linear system to finish the proof of Theorem 1.1. Thus the
solutions can be represented by the solution of the linearized system and the refined
energy estimates using the Duhamel’s principle.
We introduce some notations that we will use later in this paper. For any integer
N ≥ 0,HN , ḢN denote the Sobolev space HN(R3) and the Nth-order homogeneous
Sobolev space, respectively. Set L2 = H0. The norm of HN is denoted by ‖·‖N with
‖·‖= ‖·‖0. C denotes some positive constant. The inner product in L2(R3) denoted
by 〈· , · 〉, i.e.,

〈 f ,g〉=
∫
R3

f (x)g(x)dx, f = f (x), g = g(x) ∈ L2(R3).

We denote ∂ α = ∂
α1
x1 ∂

α2
x2 ∂

α3
x3 = ∂

α1
1 ∂

α2
2 ∂

α3
3 for multi-index α = [α1,α2,α3] and the

length of α is |α| = α1 +α2 +α3. In addition, C and λ denote some positive con-
stants, where both C and λ may take different values in different places.
We organize this paper as follows. In section 2, we reformulate the Cauchy problem
and consider the proof of global existence and uniqueness of solutions. From this,
we obtain the linearized system for 9× 9. In section 3, we discuss the time rate of
decay for linearized systems. Finally, in section 4, we discuss the time decay rate of
solutions of the non-linear system (2.2) and complete the proof of Theorem 1.1.
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Chapter 2

Global solution for the nonlinear
system

2.1 Reformulation of the problem
Denote by [n±,u±,E,B] a smooth solution to system (1.1) with initial data (1.2)
satisfying (1.3). Let

σ±(t,x) =
√

A± 2
γ−1

(
[n±( t√

γ
,x)]

γ−1
2 −1

)
, υ± = 1√

γ
u±

(
t√
γ
,x
)
,

Ẽ = 1√
γ
E
(

t√
γ
,x
)
, B̃ = 1√

γ
B
(

t√
γ
,x
)
.

(2.1)

Define V := [σ±,υ±, Ẽ, B̃] and

φ(σ±) :=
(

γ−1
2
√

A±
σ±+1

) 2
γ−1

− σ±√
A±
−1.

Note that V satisfies

∂tσ±+
√

A±(
γ−1

2
√

A±
σ±+1)∇.υ±+υ±.∇σ± = 0,

∂tυ±+υ±.∇υ±+
√

A±(
γ−1

2
√

A±
σ±+1)∇σ± =±( 1√

γ
Ẽ +υ±× B̃)

− 1√
γ
ν±υ±− 1√

γ
α±(υ±−υ∓),

∂t Ẽ− 1√
γ
∇× B̃ = 1√

γ
υ−+

1√
γ
[φ(σ−)+

σ−√
A−

]υ−− 1√
γ
υ+− 1√

γ
[φ(σ+)+

σ+√
A+

]υ+,

∂t B̃− 1√
γ
∇× Ẽ = 0,

∇.Ẽ = −1√
γ
[φ(σ−)+

σ−√
A−

]+ 1√
γ
[φ(σ+)+

σ+√
A+

], ∇.B̃ = 0, t > 0,x ∈ R3,

(2.2)
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with initial data

V |t=0 =V0 := [σ±0,υ±0, Ẽ0, B̃0], x ∈ R3. (2.3)

Here we have used the notation V0 = [σ±0,υ±0, Ẽ0, B̃0] for the special case where
[n±0,u±0,E0,B0] is substituted into (2.1). Note that V0 satisfies{

∇.Ẽ0 =
−1√

γ
[φ(σ+0)+

σ+0√
A+

]+ 1√
γ
[φ(σ−0)+

σ−0√
A−

],

∇.B̃0 = 0, x ∈ R3.
(2.4)

Suppose U := [n±,u±,E,B] is smooth solution to the intial value proplem of the
original Cauchy problem (1.1), (1.2), which satisfies (1.3). Now, we introduce the
another transformation by setting ρ±(t,x) = n±(t,x)− 1, then U := [ρ±,u±,E,B]
satisfies

∂tρ±+∇.u± =−∇.(ρ± u±),
∂tu±+u±∓E +A±γ ∇ρ± =−u±.∇u±−A±γ [(ρ±+1)γ−2−1]∇ρ±

±(u±×B)−α±(u±−u∓),
∂tE−∇×B−u−+u+ = ρ−u−−ρ+u+,
∂tB+∇×E = 0,
∇.E = ρ+−ρ−, ∇.B = 0, t > 0,x ∈ R3,

(2.5)

with initial data
U |t =U0 := [ρ±0,u±0,E0,B0], x ∈ R3, (2.6)

satisfying the compatibility condition

∇.E0 = ρ+0−ρ−0, ∇.B0 = 0, (2.7)

where ρ±0 = n±0−1.

We will assume N ≥ 4 is an integer. In addition to V = [σ±,υ±, Ẽ, B̃], define the
full instant energy functional EN(V (t)) and the high-order instant energy functional
Eh

N(V (t)) via
EN(V (t)) = ‖V (t)‖2

N + k1 ∑
|α|≤N−1

(〈∂ αυ+,∇∂ ασ+〉+ 〈∂ αυ−,∇∂ ασ−〉)

+k2 ∑
|α|≤N−1

〈∂ α(υ+−υ−),∇∂ α Ẽ〉− k3 ∑
|α|≤N−2

〈∇×∂ α Ẽ,∂ α B̃〉,

(2.8)
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and

Eh
N(V (t)) = ‖∇V (t)‖2

N−1 + k1 ∑
1≤|α|≤N−1

(〈∂ αυ+,∇∂ ασ+〉

+〈∂ αυ−,∇∂ ασ−〉)+ k2 ∑
1≤|α|≤N−1

〈∂ α(υ+−υ−),∇∂ α Ẽ〉

− k3 ∑
1≤|α|≤N−2

〈∇×∂ α Ẽ,∂ α B̃〉,

(2.9)

where 0 < k3� k2� k1� 1 are constants to be chosen later in the proof such that
ki,(i = 1,2,3) are small enough and satisfy

EN(V (t))∼ ‖[σ±,υ±, Ẽ, B̃]‖2
N , (2.10)

Eh
N(V (t))∼ ‖∇[σ±,υ±, Ẽ, B̃]‖2

N−1. (2.11)

Define the dissipation rates DN(V (t)),Dh
N(V (t)) by{

DN(V (t)) = ‖[υ+,υ−]‖2
N +‖∇[σ+,σ−]‖2

N−1 +‖∇[Ẽ, B̃]‖2
N−2

+‖Ẽ‖2 +‖σ+−σ−‖2,
(2.12)

and{
Dh

N(V (t)) = ‖∇[υ+,υ−]‖2
N−1 +‖∇2[σ+,σ−]‖2

N−2 +‖∇2[Ẽ, B̃]‖2
N−3

+‖∇Ẽ‖2 +‖∇(σ+−σ−)‖2.
(2.13)

Proposition 2.1. Suppose initial data V0 = [σ±0,υ±0, Ẽ0, B̃0] satisfies (2.4). Then
there exist EN(·) and DN(·) having the form (2.8) and (2.12), respectively, such that
if EN(V0) > 0 is sufficently small, the Cauchy problem (2.2), (2.3) admits a unique,
global, non-zero solution V = [σ±,υ±, Ẽ, B̃] satisfying

V ∈C([0,∞);HN(R3))∩Lip([0,∞);HN−1(R3)), (2.14)

and
EN(V (t))+λ

∫ t

0
DN(V (s))ds≤ EN(V0), (2.15)

for any t ≥ 0.

Remark 2.1. The solutions obtained in Proposition 2.1 indeed the decay rates in time
under some reguarity and integrablity conditions on initial data V0 = [σ±0,V±0, Ẽ0, B̃0]
and set

εm(V0) = ‖V0‖m +‖[υ±0, Ẽ0, B̃0]‖L1 , (2.16)

for the integer m≥ 4.

Remark 2.2. Note that the existence result in Theorem 1.1 follows from Proposition
2.1, the derivation of rates of (1.4), (1.6) in Theorem 1.1, and Proposition 4.1. The
proof of Proposition 4.1 is analogous to that of Lemmas 5.2 in [2]
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2.2 A priori estimates
In this subsection, we obtain uniform-in-time a priori estimates for smooth solutions
to the Cauchy problem (2.2), (2.3) by using the classical energy method.

Theorem 2.1. Let 0<T ≤∞ be given. Suppose that V = [σ±,υ±, Ẽ, B̃]∈C([0,T );HN(R3))
is smooth, that σ satisfies

sup
0≤t≤T

‖σ±(t)‖N ≤ 1, (2.17)

and that V solves the system (2.2) for t ∈ (0,T ). Then there exist EN(.) and DN(.)
having the form (2.8) and (2.12) such that for all 0≤ t ≤ T

d
dt
EN(V (t))+λDN(V (t))≤C[EN(V (t))1/2 +EN(V (t))]DN(V (t)). (2.18)

Proof : The proof is divided into five steps as follows.
Step(1) We want to show

1
2

d
dt
‖V‖2

N +
1
√

γ
ν±‖[υ+,υ−]‖2

N ≤C‖V‖N(‖[υ+,υ−]‖2 +‖∇[σ+,σ−,υ+,υ−]‖2
N−1).

(2.19)
Apply ∂ α to the first equation of (2.2), then multiply that equation by ∂ ασ±:

∂t́∂
α

σ±+∂
α(υ±.∇σ±)+∂

α

[√
A±

(
γ−1

2
√

A±
σ±+1

)
∇ ·υ±

]
= 0.

Then,

1
2

d
dt
‖∂ α

σ±‖2 + ∑
β<α

Cα

β
〈∂ α−β

υ± ·∇∂
β

σ±,∂
α

σ±〉+ 〈∂ α
υ± ·∇σ±,∂

α
σ±〉

+
γ−1

2 ∑
β<α

Cα

β
〈∂ α−β

σ±∇ ·∂ β
υ±,∂

α
σ±〉= 0.

(2.20)

Apply ∂ α to the second equation of (2.2), then multiply that equation by ∂ αυ±:

∂t́∂
α

υ±+∂
α

[√
A±

(
γ−1

2
√

A±
σ±+1

)
∇σ±

]
+∂

α(υ± ·∇υ±)

= ∂
α

[
±
(

1
√

γ
Ẽ +υ±× B̃

)]
− 1
√

γ
ν±∂

α
υ±−

1
√

γ
α±∂

α(υ±−υ∓).

8



Then,

1
2

d
dt
‖∂ α

υ±‖2 +
γ−1

2 ∑
β<α

Cα

β
〈∂ α−β

σ± ·∇∂
β

σ±,∂
α

υ±〉

+
γ−1

2
〈∂ α

σ± ·∇σ±,∂
α

υ±〉+ ∑
β<α

Cα

β
〈∂ α−β

υ± ·∇∂
β

υ±,∂
α

υ±〉

+ 〈∂ α
υ± ·∇υ±,∂

α
υ±〉=±

1
√

γ
〈∂ α Ẽ,∂ α

υ±〉

±〈υ±×∂
α B̃,∂ α

υ±〉± ∑
β<α

Cα

β
〈∂ α−β

υ±×∂
β B̃,∂ α

υ±〉

− 1
√

γ
ν±〈∂ α

υ±,∂
α

υ±〉−
1
√

γ
α±〈∂ α(υ±−υ∓),∂

α
υ∓〉.

(2.21)

Next, taking the sum of equations (2.20) and (2.21) we find

1
2

d
dt
‖∂ α [σ+,σ−,υ+,υ−]‖2 +

1
√

γ
ν±‖∂ α [υ+,υ−]‖−

1
√

γ
〈∂ α Ẽ,∂ α

υ+〉

+
1
√

γ
〈∂ α Ẽ,∂ α

υ−〉+
1
√

γ
α±〈∂ α(υ±−υ∓),∂

α
υ∓〉

=− ∑
β<α

Cα

β
〈∂ α−β

υ± ·∇∂
β

σ±,∂
α

σ±〉−
γ−1

2 ∑
β<α

Cα

β
〈∂ α−β

σ±∇ ·∂ β
υ±,∂

α
σ±〉

− γ−1
2 ∑

β<α

Cα

β
〈∂ α−β

σ± ·∇∂
β

σ±,∂
α

υ±〉

− ∑
β<α

Cα

β
〈∂ α−β

υ± ·∇∂
β

υ±,∂
α

υ±〉± ∑
β<α

Cα

β
〈∂ α−β

υ±×∂
β B̃,∂ α

υ±〉

±〈υ±×∂
α B̃,∂ α

υ±〉−
γ−1

2
〈∂ α

σ± ·∇σ±,∂
α

υ±〉−
1
2
〈∇ ·υ±, |∂ α

σ±|2 + |∂ α
υ±|2〉,
(2.22)
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where

I+
αβ

(t) = 〈∂ α−β
υ+ ·∇∂

β
σ+,∂

α
σ+〉+

γ−1
2
〈∂ α−β

σ+∇ ·∂ β
υ+,∂

α
σ+〉

− γ−1
2
〈∂ α−β

σ+ ·∇∂
β

σ+,∂
α

υ+〉−〈∂ α−β
υ+ ·∇∂

β
υ+,∂

α
υ+〉 (2.23)

+ 〈∂ α−β
υ+×∂

β B̃,∂ α
υ+〉

I−
αβ

(t) = 〈∂ α−β
υ− ·∇∂

β
σ−,∂

α
σ−〉+

γ−1
2
〈∂ α−β

σ−∇ ·∂ β
υ−,∂

α
σ−〉

− γ−1
2
〈∂ α−β

σ−∇∂
β

σ−,∂
α

υ−〉−〈∂ α−β
υ− ·∇∂

β
υ−,∂

α
υ−〉 (2.24)

−〈∂ α−β
υ−×∂

β B̃,∂ α
υ−〉

Iαβ (t) = I+
αβ

(t)+ I−
αβ

(t)

Note that we used integration by parts. When |α|= 0 it suffices to estimate I+(t) and
I−(t) by

I+1 (t) =
1
2
〈∇ ·υ+, |∂ α

σ+|2 + |∂ α
υ+|2〉+

γ−1
2
〈∂ α

σ+ ·∇σ+,∂
α

υ+〉

+ 〈υ+×∂
α B̃,∂ α

υ+〉+
1
√

γ
α+〈∂ α(υ+−υ−),∂

α
υ+〉 (2.25)

I−1 (t) =
1
2
〈∇ ·υ−, |∂ α

σ−|2 + |∂ α
υ−|2〉+

γ−1
2
〈∂ α

σ− ·∇σ−,∂
α

υ−〉

−〈υ−×∂
α B̃,∂ α

υ−〉+
1
√

γ
α−〈∂ α(υ−−υ+),∂

α
υ−〉, (2.26)

where
I1(t) = I+1 (t)+ I−1 (t)

so that

I1(t)≤C‖[σ+,υ+]‖H1‖∇[σ+,υ+]‖2 +C‖∇B̃‖H1‖υ+‖2

+C‖[σ−,υ−]‖H1‖∇[σ−,υ−]‖2 +C‖∇B̃‖H1‖υ−‖2

≤C‖[σ+,σ−,υ+,υ−]‖H1‖∇[σ+,σ−,υ+,υ−]‖2 +C‖∇B̃‖H1‖υ+,υ−‖2.

Furthermore, I(t) is bounded by the right-hand side term of (2.19). When |α| ≥ 1
each term in Iα,β (t) and I1(t) is an integral of a product of three terms in which there
is at least one term containing the derivative. Thus

Iα,β (t)+ I1(t)≤C‖[σ+,σ−,υ+,υ−, B̃]‖N +‖∇[σ+,σ−,υ+,υ−]‖2
N−1.

10



Now, multiply the third equation of (2.2) by ∂ αE, with |α| ≤ N:

∂t ′∂
α Ẽ− 1

√
γ

∇×∂
α B̃ =

1
√

γ
∂

α
υ−+

1
√

γ
∂

α

([
φ(σ−)+

σ−√
A−

]
υ−

)
− 1
√

γ
∂

α
υ+−

1
√

γ
∂

α

([
φ(σ+)−

σ+√
A+

]
υ+

)
.

Then

d
dt
〈∂ α Ẽ,∂ α Ẽ〉− 1

√
γ
〈∇×∂

α B̃,∂ α Ẽ〉= 1
√

γ
〈∂ α

υ−,∂
α Ẽ〉

+
1
√

γ

〈
∂

α

[
φ(σ−)υ−+

σ−√
A−

υ−

]
,∂ α Ẽ

〉
− 1
√

γ
〈∂ α

υ+,∂
α Ẽ〉

(2.27)

− 1
√

γ

〈
∂

α

[
φ(σ+)υ++

σ+√
A+

υ+

]
,∂ α Ẽ

〉
Now, multiply the fourth equation of (2.2) by ∂ α B̃ with |α| ≤ N:

∂t ′∂
α B̃+

1
√

γ
∇×∂

α Ẽ = 0.

Then
d
dt
〈∂ α B̃,∂ α B̃〉+ 1

√
γ
〈∇×∂

α Ẽ,∂ α B̃〉. (2.28)

Taking the sum of equations (2.27) and (2.28), we find

1
2

d
dt
‖∂ α [Ẽ, B̃]‖2− 1

√
γ
〈∂ α

υ−,∂
α Ẽ〉+ 1

√
γ
〈∂ α

υ+,∂
α Ẽ〉

=+
1
√

γ

〈
∂

α

[
φ(σ−)υ−+

σ−√
A−

υ−

]
,∂ α Ẽ

〉
− 1
√

γ

〈
∂

α

[
φ(σ+)υ++

σ+√
A+

υ+

]
,∂ α Ẽ

〉
,

(2.29)

where

I+2 (t) =− 1
√

γ

〈
∂

α

[
φ(σ+)υ++

σ+√
A+

υ+

]
,∂ α Ẽ

〉
and

I−2 (t) = +
1
√

γ

〈
∂

α

[
φ(σ−)υ−+

σ−√
A−

υ−

]
,∂ α Ẽ

〉
.
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Define
I2(t) := I+2 (t)+ I−2 (t).

In a similar way as [10], for |α| ≤ N

I+2 (t)≤C‖Ẽ‖N(‖∇[σ+,υ+]‖2
N +‖υ+‖2)

and
I−2 (t)≤C‖Ẽ‖N(‖∇[σ−,υ−]‖2

N +‖υ−‖2).

Thus, for |α| ≤ N

I+2 (t)+ I−2 (t)≤C‖Ẽ‖N(‖∇[σ+,σ−,υ+,υ−]‖2
N +‖[υ+,υ−]‖2),

and we therefore have

1
2

d
dt
‖V‖2

N+
1
√

γ
ν±‖∂ α [υ+,υ−]‖2

N ≤‖V‖N(‖∇[σ+,σ−,υ+,υ−]‖2
N−1+‖[υ+,υ−]‖2).

Step (2) We want to show that

d
dt
Eint

N,1(V )+λ

(
‖∇[σ+,σ−]‖2

N−1 +

∥∥∥∥ σ+√
A+
− σ−√

A−

∥∥∥∥2

N

)
≤C‖[υ+,υ−]‖2

N +C‖[σ+,σ−,υ+,υ−, B̃]‖2
N‖∇[σ+,σ−,υ+,υ−]‖2

N−1

(2.30)

where Eint
N,1(·) is defined by

Eint
N,1(V ) = ∑

|α|≤N−1
(〈∂ α

υ+,∇∂
α

σ+〉+ 〈∂ α
υ−,∇∂

α
σ−〉).

First, rewrite the first and second equations of (2.2) by putting the linear terms on the
left-hand sides and the nonlinear terms on right-hand sides:

∂tσ++
√

A+∇ ·υ+ =−υ+ ·∇σ+−
γ−1

2
σ+∇ ·υ+ := f+1 , (2.31)

∂tσ−+
√

A−∇ ·υ− =−υ− ·∇σ−−
γ−1

2
σ−∇ ·υ− := f−1 , (2.32)

∂tυ++
√

A+∇σ+−
1
√

γ
Ẽ +

ν+√
γ

υ++
α+√

γ
(υ+−υ−)

=−υ+ ·∇υ+−
γ−1

2
σ+∇σ++υ+× B̃ := f+2 ,

(2.33)
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∂tυ−+
√

A−∇σ−+
1
√

γ
Ẽ +

ν−√
γ

υ−+
α−√

γ
(υ−−υ+)

=−υ− ·∇υ−−
γ−1

2
σ−∇σ−−υ−× B̃ := f−2 .

(2.34)

Let |α| ≤ N−1. Applying ∂ α to (2.33), multiplying by ∇∂ ασ+, and integrating in x
we find

〈∇∂
α

σ+,∂t∂
α

υ+〉+
√

A+〈∇∂
α

σ+,∇∂
α

σ+〉−
1
√

γ
〈∇∂

α
σ+,∂

α Ẽ〉

+
ν+√

γ
〈∇∂

α
σ+,∂

α
υ+〉+

α+√
γ
〈∇∂

α
σ+,∂

α(υ+−υ−)〉=−〈∇∂
α

σ+,∂
α

υ+ ·∇υ+〉

−〈∇∂
α

σ+,υ+ ·∇∂
α

υ+〉−
γ−1

2
〈∇∂

α
σ+,∂

α
σ+∇σ+〉−

γ−1
2
〈∇∂

α
σ+,σ+∇∂

α
σ+〉

+ 〈∇∂
α

σ+,∂
α

υ+× B̃〉+ 〈∇∂
α

σ+,υ+×∂
α B̃〉 := f+2 .

(2.35)

Since

〈∂t∂
α

υ+,∇∂
α

σ+〉=
∂

∂t
〈∇∂

α
σ+,∂

α
υ+〉−

〈
∂

α
υ+,∇∂

α ∂

∂t
σ+

〉
,

if we multiply (2.35) by 1√
A+

, then we obtain

∂

∂t

1√
A+
〈∇∂

α
σ+,∂

α
υ+〉+‖∇∂

α
σ+‖2− 1

γ

〈
∂ ασ+√

A+
,
∂ ασ+√

A+
− ∂ ασ−√

A−

〉
− 1

γ
√

A+
〈∂ α

σ+,∂
α

φ(σ+)−∂
α

φ(σ−)〉+
ν+√

γ
√

A+
〈∇∂

α
σ+,∂

α
υ+〉

+
α+√
γ
√

A+
〈∇∂

α
σ+,∂

α(υ+−υ−)〉=−
1√
A+
〈∇∂

α
σ+,∂

α
υ+ ·∇υ+〉

− 1√
A+
〈∇∂

α
σ+,υ+ ·∇∂

α
υ+〉−

γ−1
2
√

A+
〈∇∂

α
σ+,∂

α
σ+∇σ−〉

− γ−1
2
√

A+
〈∇∂

α
σ+,σ+∇∂

α
σ+〉+

1√
A+
〈∇∂

α
σ+,∂

α
υ+× B̃〉

+
1√
A+
〈∇∂

α
σ+,υ−×∂

α B̃〉+ 1√
A+
〈∇ ·∂ α

υ+,∂
α(υ+ ·∇σ+)〉

+
γ−1

2
√

A+
〈∇ ·∂ α

υ+,∂
α(σ+∇ ·υ+)〉+

1√
A+
〈∇ ·∂ α

υ+,∇ ·∂ α
υ+〉.

(2.36)
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Now, applying ∂ α to (2.34), multipling by ∇∂ ασ−, and integrating in x we get

〈∇∂
α

σ−,∂t∂
α

υ−〉+
√

A−〈∇∂
α

σ−,∇∂
α

σ−〉−
1
√

γ
〈∇∂

α
σ−,∂

α Ẽ〉

+
ν−√

γ
〈∇∂

α
σ−,∂

α
υ−〉+

α−√
γ
〈∇∂

α
σ−,∂

α(υ−−υ+)〉=−〈∇∂
α

σ−,∂
α

υ− ·∇υ−〉

−〈∇∂
α

σ−,υ− ·∇∂
α

υ−〉−
γ−1

2
〈∇∂

α
σ−,∂

α
σ−∇σ−〉−

γ−1
2
〈∇∂

α
σ−,σ−∇∂

α
σ−〉

+ 〈∇∂
α

σ−,∂
α

υ−× B̃〉+ 〈∇∂
α

σ−,υ−×∂
α B̃〉 := f−2 .

(2.37)

Since

〈∂t∂
α

υ−,∇∂
α

σ−〉=
∂

∂t
〈∇∂

α
σ−,∂

α
υ−〉−

〈
∂

α
υ−,∇∂

α ∂

∂t
σ−

〉
,

if we multiply (2.37) by 1√
A−

then we obtain

∂

∂t

1√
A−
〈∇∂

α
σ−,∂

α
υ−〉+‖∇∂

α
σ−‖2− 1

γ

〈
∂ ασ−√

A−
,
∂ ασ+√

A+
− ∂ ασ−√

A−

〉
− 1

γ
√

A−
〈∂ α

σ−,∂
α

φ(σ+)−∂
α

φ(σ−)〉+
ν−√

γ
√

A−
〈∇∂

α
σ−,∂

α
υ−〉

+
α−√
γ
√

A−
〈∇∂

α
σ−,∂

α(υ−−υ+)〉=−
1√
A−
〈∇∂

α
σ−,∂

α
υ− ·∇υ−〉

− 1√
A−
〈∇∂

α
σ−,υ− ·∇∂

α
υ−〉−

γ−1
2
√

A−
〈∇∂

α
σ−,∂

α
σ−∇σ−〉

− γ−1
2
√

A−
〈∇∂

α
σ−,σ−∇∂

α
σ−〉+

1√
A+
〈∇∂

α
σ−,∂

α
υ−× B̃〉

+
1√
A+
〈∇∂

α
σ−,υ−×∂

α B̃〉+ 1√
A−
〈∇ ·∂ α

υ−,∂
α(υ− ·∇σ−)〉

+
γ−1

2
√

A−
〈∇ ·∂ α

υ−,∂
α(σ−∇ ·υ−)〉+

1√
A−
〈∇ ·∂ α

υ−,∇ ·∂ α
υ−〉.

(2.38)
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Taking the sum of equatiosn (2.36) and (2.38) we obtain

∂

∂t

(
1√
A+
〈∇∂

α
σ+,∂

α
υ+〉+

1√
A−
〈∇∂

α
σ−,∂

α
υ−〉

)
+‖∇∂

α [σ−,σ−]‖2

+
1
γ

〈
∂ ασ+√

A+
− ∂ ασ−√

A−
,
∂ ασ+√

A+
− ∂ ασ−√

A−

〉
+

1
γ
√

A−
〈∂ α

σ−,∂
α

φ(σ+)−∂
α

φ(σ−)〉

+
1

γ
√

A+
〈∂ α

σ+,∂
α

φ(σ+)−∂
α

φ(σ−)〉+
ν+√

γ
√

A+
〈∇∂

α
σ+,∂

α
υ+〉

+
ν−√

γ
√

A−
〈∇∂

α
σ−,∂

α
υ−〉+

α+√
γ
√

A+
〈∇∂

α
σ+,∂

α(υ+−υ−)〉

+
α−√
γ
√

A−
〈∇∂

α
σ−,∂

α(υ−−υ+)〉=
1√
A+
‖∇ ·∂ α

υ+‖2 +
1√
A−
‖∇ ·∂ α

υ−‖2

+ 〈∇∂
α

σ+,∂
α f+2 〉+ 〈∇∂

α
σ−,∂

α f−2 〉−〈∇ ·∂
α

υ+,∂
α f+1 〉−〈∇∂

α
υ−,∂

α f−1 〉.

Applying the Cauchy-Schwarz inequality we obtain

d
dt

(
〈∂ α

υ+,∇∂
α

σ+〉+ 〈∂ α
υ−,∇∂

α
σ−〉

)
+λ

(
‖∇[σ+,σ−]‖2

N−1 +

∥∥∥∥ σ+√
A+
− σ−√

A−

∥∥∥∥2

N

)
≤C‖[υ+,υ−]‖2

N +C‖[σ+,σ−]‖2
N−1C‖[υ+,υ−]‖N‖∇B̃‖N−2

+C‖[σ+,σ−,υ+,υ−, B̃]‖2
N‖∇[σ+,σ−,υ+,υ−]‖2

N−1.

Step (3) We want to show that

d
dt
Eint

N,2(V )+λ‖Ẽ‖2
N−1 ≤C‖[υ+,υ−]‖2

N +C‖[σ+,σ−]‖2
N−1 +C‖[υ+,υ−]‖N‖∇B̃‖N−2

+C‖[σ+,σ−,υ+,υ−, B̃]‖2
N‖∇[σ+,σ−,υ+,υ−]‖2

N−1
(2.39)

with
Eint

N,2(υ) = ∑
|α|≤N−1

〈∂ α(υ+−υ−),∂
α Ẽ〉 for |α| ≤ N−1.

To do so, we subtract equation (2.34) from equation (2.33) to get

∂t(υ+−υ−)+(
√

A+∇σ+−
√

A−∇σ−)−
2
√

γ
Ẽ =−(υ+ ·∇υ+)+(υ− ·∇υ−)

− γ−1
2

(σ+∇σ+)+
γ−1

2
(σ−∇σ−)+(υ+× B̃)+(υ−× B̃)

− 1
√

γ
(ν+υ+−ν−υ−)−

1
√

γ
[α+(υ+−υ−)−α−(υ−−υ+)].

(2.40)
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Now apply ∂ α to (2.40), multiply by ∂ α Ẽ, integrate by parts in x, and replace ∂ α Ẽ
with the third equation of (2.2). Then we get

〈∂ α Ẽ, ∂t∂
α(υ+−υ−)〉−

2
√

γ
‖∂ α Ẽ‖2 =−〈∂ α(

√
A+∇σ+−

√
A−∇σ−),∂

α Ẽ〉

−〈∂ α(υ+ ·∇υ+),∂
α Ẽ〉+ 〈∂ α(υ− ·∇υ−),∂

α Ẽ〉− γ−1
2
〈∂ α(σ+∇σ+),∂

α Ẽ〉

+
γ−1

2
〈∂ α(σ−∇σ−),∂

α Ẽ〉+ 〈∂ α(υ+× B̃),∂ α Ẽ〉+ 〈∂ α(υ−× B̃),∂ α Ẽ〉

− 1
√

γ
〈∂ α(ν+υ+−ν−υ−),∂

α Ẽ〉− 1
√

γ
〈∂ α [α+(υ+−υ−)−α−(υ−−υ+)],∂

α Ẽ〉.

Since

〈∂ α Ẽ,∂t∂
α(υ+−υ−)〉=

d
dt
〈∂ α Ẽ,∂ α(υ+−υ−)〉−〈∂ α

∂t Ẽ,∂ α(υ+−υ−)〉,

we have

d
dt
〈∂ α Ẽ,∂ α(υ+−υ−)〉−

2
√

γ
‖∂ α Ẽ‖2 =

1
√

γ
‖∂ α(υ+−υ−)‖2

+
1
√

γ
〈∇×∂

α B̃,∂ α(υ+−υ−)〉−
1
√

γ

〈
∂

α

[
φ(σ+)+

σ+√
A+

]
υ+,∂

α(υ+−υ−)

〉
+

1
√

γ

〈
∂

α

[
φ(σ−)+

σ−√
A−

]
υ−,∂

α(υ−−υ+)

〉
− 1
√

γ
〈∂ α(ν+υ+−ν−υ−),∂

α Ẽ〉

− 1
√

γ
〈∂ α [α+(υ+−υ−)−α−(υ−−υ+)],∂

α Ẽ〉−〈∂ α(
√

A+∇σ+−
√

A−∇σ−),∂
α Ẽ〉

−〈∂ α( f+2 − f−2 ),∂ α Ẽ〉.

Applying the Cauchy-Schwarz inequality we obtain

d
dt
〈∂ α Ẽ,∂ α(υ+−υ−)〉+λ‖∂ α Ẽ‖2 ≤C‖∂ α(υ+−υ−)‖2 +‖[υ+,υ−]‖2‖∇B̃‖N−2

+C‖∇[∂ α
σ+−∂

α
σ−]‖2 +C‖[σ+,σ−,υ+,υ−, B̃]‖2

N‖∇[σ+,σ−,υ+,υ−]‖2
N−1.

Step (4) We want to show that

d
dt
Eint

N,3(V )+λ‖∇B̃‖2
N−2 ≤C‖[υ+,υ−, Ẽ]‖2

N−1 +C‖[σ+,σ−]‖2
N‖∇[υ+,υ−]‖2

N−1,

(2.41)
with

Eint
N,3(υ) =− ∑

|α|≤N−2
〈∇×∂

α Ẽ,∂ α B̃〉 for all |α| ≤ N−2.
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Now apply ∂ α to the third equation of (2.2), multiply by ∇× ∂ α B̃, and integrate by
parts in x. We obtain

〈∂t∂
α Ẽ,∇×∂

α B̃〉− 1
√

γ
‖∇×∂

α B̃‖2 =− 1
√

γ
〈∂ α

υ+,∇×∂
α B̃〉

+
1
√

γ
〈∂ α

υ−,∇×∂
α B̃〉− 1

√
γ

〈
∂

α

[
φ(σ+)+

σ+√
A+

]
υ+,∇×∂

α B̃
〉

+
1
√

γ

〈
∂

α

[
φ(σ−)+

σ−√
A−

]
υ−,∇×∂

α B̃
〉
.

Since
〈∇×∂

α B̃,∂t∂
α Ẽ〉= d

dt
〈∇×∂

α B̃,∂ α Ẽ〉−〈∇×∂
α

∂t B̃,∂ α Ẽ〉,

we have
d
dt
〈∇×∂

α B̃,∂ α Ẽ〉−〈∇×∂
α

∂t B̃,∂ α Ẽ〉− 1
√

γ
‖∇×∂

α B̃‖2 =− 1
√

γ
〈∂ α

υ+,∇×∂
α B̃〉

+
1
√

γ
〈∂ α

υ−,∇×∂
α B̃〉− 1

√
γ

〈
∂

α

[
φ(σ+)+

σ+√
A+

]
υ+,∇×∂

α

〉
+

1
√

γ

〈
∂

α

[
φ(σ−)+

σ−√
A−

]
υ−,∇×∂

α B̃
〉
.

From the fourth equation of (2.2) substituting ∇× Ẽ for ∂t B̃ we get
d
dt
〈∇×∂

α B̃,∂ α Ẽ〉− 1
√

γ
〈∇×∂

α(∇× Ẽ),∂ α Ẽ〉− 1
√

γ
‖∇×∂

α B̃‖2

=− 1
√

γ
〈∂ α

υ+,∇×∂
α B̃〉+ 1

√
γ
〈∂ α

υ−,∇×∂
α B̃〉

− 1
√

γ

〈
∂

α

[
φ(σ+)+

σ+√
A+

]
υ+,∇×∂

α B̃
〉

+
1
√

γ

〈
∂

α

[
φ(σ−)+

σ−√
A−

]
υ−,∇×∂

α B̃
〉
.

Multiplying this result by -1 we obtain

− d
dt
〈∇×∂

α B̃,∂ α Ẽ〉+ 1
√

γ
‖∇×∂

α B̃‖2 =
1
√

γ
‖∇×∂

α Ẽ‖2

+
1
√

γ
〈∂ α

υ+,∇×∂
α B̃〉− 1

√
γ
〈∂ α

υ−,∇×∂
α B̃〉

+
1
√

γ

〈
∂

α

[
φ(σ+)+

σ+√
A+

]
υ+,∇×∂

α B̃
〉

− 1
√

γ

〈
∂

α

[
φ(σ−)+

σ−√
A−

]
υ−,∇×∂

α B̃
〉
.
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Applying the Cauchy-Schwarz inequality and summing over |α| ≤ N− 2, also we
use the relation

‖∂ α
∂xiB̃‖= ‖∂xi∆

−1
∇× (∇×∂

α B̃)‖ ≤ ‖∇×∂
α B̃‖

for each 1≤ i≤ 3. Then we obtain

− d
dt
〈∇×∂

α B̃,∂ α Ẽ〉+λ‖∇×∂
α B̃‖2

N−2 ≤C‖[υ+,υ−, Ẽ]‖2
N−1

+C‖[σ+,σ−]‖2
N‖∇[υ+,υ−]‖2

N−1.

Step(5) Utilizing steps (1)–(4) above we can now prove (2.18). Define

EN(V (t)) = ‖∇V (t)‖2
N +

3

∑
i=1

Eint
N (V (t)),

and note that constants 0 < k3 � k2 � k1 � 1 are to be determined. We observe
that if 0 < ki � 1 for i = 1,2,3, are sufficiently small then EN(V ) ∼ ‖V‖2

N holds.
Furthermore, by letting 0� k3� k2� k1� 1 be sufficiently small, taking k3/2

2 � k3,
and taking the sum of (2.19), k1× (2.30), k2× (2.39), and k1× (2.41) we find there
exists λ > 0,C > 0 such that (2.18) is satisfied:

1
2

d
dt
‖V‖2

N +
ν±√

γ
‖[υ+,υ−]‖2

N + k1
d
dt ∑
|α|≤N

(〈∂ α
υ+,∇∂

α
σ+〉+ 〈∂ α

υ−,∇∂
α

σ−〉)

+ k1λ

(
‖∇[σ+,σ−]‖2

N−1 +

∥∥∥∥ σ+√
A+
− σ−√

A−

∥∥∥∥2

N

)
+ k2

d
dt ∑
|α|≤N−1

〈∂ α(υ+−υ−),∂
α Ẽ〉

+ k2λ‖Ẽ‖2
N−1− k3

d
dt ∑
|α|≤N−2

〈∇×∂
α Ẽ,∂ α B̃〉+ k3λ‖∇B̃‖2

N−2

≤C‖V‖N(‖[υ+,υ−]‖2 +‖∇[σ+,σ−,υ+,υ−]‖2
N−1)+ k1C‖[υ+,υ−]‖2

N

+ k1C‖[σ+,σ−,υ+,υ−, B̃]‖2
N‖∇[σ+,σ−,υ+,υ−]‖2

N−1

+ k2C‖[υ+,υ−]‖2
N + k2C‖[σ+,σ−]‖2

N−1 + k2C‖[υ+,υ−]‖N‖∇B̃‖N−2

+ k2C‖[σ+,σ−,υ+,υ−, B̃]‖2
N‖∇[σ+,σ−,υ+,υ−]‖2

N−1

+ k3C‖[υ+,υ−, Ẽ]‖2
N−1 + k3C‖[σ+,σ−]‖2

N‖∇[υ+,υ−]‖2
N−1.

(2.42)

If we now let

‖V‖ ≤ E
1
2 , ‖[σ+,σ−,υ+,υ−, B̃]‖2

N = EN , ‖∇[σ+,σ−,υ+,υ−]‖2
N−1 =DN ,
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then

d
dt

[
‖V‖2

N + k1 ∑
|α|≤N

(〈∂ α
υ+,∇∂

α
σ+〉+ 〈∂ α

υ−,∇∂
α

σ−〉)

+ k2 ∑
|α|≤N−1

〈∂ α(υ+−υ−),∂
αE〉− k3

d
dt ∑
|α|≤N−2

〈∇×∂
α Ẽ,∂ α B̃〉

]
+

ν±√
γ
‖[υ+,υ−]‖2

N + k2 λ‖∇[σ+,σ−]‖2
N−1 + k3 λ‖∇B̃‖2

N−2 + k2 λ‖∇Ẽ‖2
N−2

+ k1λ

∥∥∥∥ σ+√
A+
− σ−√

A−

∥∥∥∥2

N
≤C

[
‖V‖N‖∇[σ+,σ−,υ+,υ−]‖2

N−1

+ k1C‖[σ+,σ−,υ+,υ−, B̃]‖2
N‖∇[σ+,σ−,υ+,υ−]‖2

N−1
]
.

(2.43)

It follows that

d
dt
EN(V (t))+

ν±√
γ
‖[υ+,υ−]‖2

N + k2 λ‖∇[σ+,σ−]‖2
N−1 + k3 λ‖∇B̃‖2

N−2

+ k2 λ‖∇Ẽ‖2
N−2 + k2 λ‖Ẽ‖2 + k1λ

∥∥∥∥ σ+√
A+
− σ−√

A−

∥∥∥∥2

N
≤C

[(
‖V‖N

+‖∇[σ+,σ−,υ+,υ−]‖2
N−1
)
‖∇[σ+,σ−,υ+,υ−]‖2

N−1
]
.

Thus

d
dt
EN(V (t))+λDN(V (t))≤C[EN(V (t))1/2 +EN(V (t))]DN(V (t)),

and this concludes the proof.

2.3 Proof of global existence
We consider the global existence of the smooth solution to the isentropic Euler-
Maxwell system for quasi-linear symmetric hyperbolic system (2.2). Therefore, we
combine those a priori estimates with the local existence of solutions to extend the
local solution up to infinite time by using of the continuity of EN(V (t)). �

Lemma 2.2. (Local existence of smooth solution [1],[5],[6]). Asume V0 ∈ HN(R3)
satisfies (2.4). Then there exists T0 > 0 such that the Cauchy problem (2.2), (2.3)
admits a unique solution on [0,T0) with

V ∈C([0,T0);HN(R3))∩Lip([0,T0);HN−1(R3)).
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Proof of Proposition 2.1
Since (2.2) is a quasi-linear symmetric hyperbolic system, the global existence of
smooth solutions follows from the local existence result in Lemma 2.2, (see also
Section 16 of [6]). In addition, the a priori estimate (2.18) in Theorem 2.1 and the
continuity argument show that EN(V (t)) is bounded uniformly in time under the as-
sumption that EN(V0)> 0 is sufficiently small. Therefore, global solutions satisfying
(2.14) and (2.15) exist. This concludes the proof of Proposition 2.1. �
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Chapter 3

Linearized Homogeneous System

3.1 Linearized equations
To obtain the time-decay rates of solution to the nonlinear system (2.2) or (2.5), we
consider the linearized homogeneous equations of system (2.5).

∂tρ±+∇ ·u± = 0,
∂tu±+u±+α±u±−α±u∓∓E +A±γ∇ρ± = 0,
∂tE−∇×B−u−+u+ = 0,
∂tB+∇×E = 0,
∇.E = ρ+−ρ−, ∇.B = 0. t > 0, x ∈ R3,

(3.1)

with given initial data

U|t=0 = U0 := [ρ±0,u±0,E0,B0], x ∈ R3, (3.2)

which satisfies the compatibility conditions

∇.E0 = ρ+0−ρ−0, ∇.B0 = 0, x ∈ R3. (3.3)

Throughout this section, we let U = [ρ±,u±,E,B] be the solution to system (3.1).
Moreover, in this section, we introduce some notation about Fourier transform f :
R3→ R, defined by

f̂ (k) =
∫
R3

e−ix·k f (x)dx, x · k :=
3

∑
j=1

x jk j, k ∈ R3,

where i is complex number, and we use the energy mothd to the initial problem (3.1),
(3.3) in Fourier space to show that there is a time-frequency Lyapunov inequality,
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which leads to the pointwise time-frequency upper-bound of the solution.
We will use the energy method to the initial value problem (3.1), (3.3) in the Fourier
transform to show that there is a time-frequency Lyapunov functional which is equiv-
alent with |Û(t,k)|2 and morethen its dissipation rate can be represented by itself. The
main result of this section state as follows.

Theorem 3.1. Let U, t > 0,x ∈ R3, be a well-defined solution to the system (3.1).
There is a time-frequency Lyapunov functional E(Û(t,k)) with

E(Û)∼ |Û|2 := |[ρ̂+, ρ̂−]|2 + |ρ̂+− ρ̂−|2 + |[û+, û−]|2 + |Ê|2 + |B̂|2 (3.4)

satisfying that there is λ > 0 such that the Lyapunove inequality

d
dt
E(Û(t,k))+λ‖[ρ̂+, ρ̂−,(ρ̂+− ρ̂−), û+, û−]‖2 +

λ |k|2‖[Ê, B̂]‖2

(1+ |k|2)2 ≤ 0 (3.5)

holds for any t > 0 and k ∈ R3

Proof : We consider the linearized homogeneous system (3.1) in Fourier space. For
this purpose by taking Fourier transform in x for linearized homogeneous system
(3.1), Û = [ρ̂±, û±, Ê, B̂] satisfies.

∂t ρ̂±+ ik · û± = 0,
∂t û±+ û±+α±û±−α±û∓∓ Ê +A±γikρ̂± = 0,
∂t Ê− ik× B̂− û−+ û+ = 0,
∂t B̂+ ik× Ê = 0,
ik.Ê = ρ̂+− ρ̂−, ik.B̂ = 0. t > 0, x ∈ R3.

(3.6)

First, multiply the first equation by ρ̂± and A±γ, the second equation by û±, the
third equation by Ê and the fourth equation by B̂ and taking the summation of all
equations.

A+γ∂t〈ρ̂+, ρ̂+〉+A+γ〈ik · û+, ρ̂+〉= 0
A−γ∂t〈ρ̂−, ρ̂−〉+A−γ〈ik · û−, ρ̂−〉= 0

∂t〈û+, û+〉+ 〈û+, û+〉+α+〈û+, û+〉−α+〈û−, û+〉−〈Ê, û+〉+A+γ〈ikρ̂+, û+〉= 0

∂t〈û−, û−〉+ 〈û−, û−〉+α−〈û−, û−〉−α−〈û+, û−〉+ 〈Ê, û−〉+A−γ〈ikρ̂−, û−〉= 0

∂t〈Ê, Ê〉−〈ik× B̂, Ê〉−〈û+, Ê〉+ 〈û−, Ê〉= 0

∂t〈B̂, B̂〉+ 〈ik× Ê, B̂〉= 0.

Thus,
1
2

d
dt
‖[
√

A+γρ̂+,
√

A−γρ̂−, û+, û−, Ê, B̂]‖2 +‖[û+, û−]‖2 +‖[α+û+,α−û−]‖2

= α+〈û−, û+〉+α−〈û+, û−〉.
(3.7)
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By Cauchy-Schwarz inequality implies

1
2

d
dt
‖[
√

A+γρ̂+,
√

A−γρ̂−, û+, û−, Ê, B̂]‖2 +C‖[û+, û−]‖2 ≤ 0. (3.8)

Then, we multiply the second equation of (3.6) by ikρ̂± using integration by parts in
t and replacing ∂t ρ̂± by the first equation of (3.6).

〈∂t · û±, ikρ̂±〉+〈û±, ikρ̂±〉+α±〈û±, ikρ̂±〉−α±〈û∓, ikρ̂±〉∓〈Ê, ikρ̂±〉+A±γ〈ikρ̂±, ikρ̂±〉,

since
〈∂t · û±, ikρ̂±〉=

d
dt
〈û±, ikρ̂±〉−〈∂t ikρ̂±, û±〉,

we get

d
dt
〈û±, ikρ̂±〉−〈∂t ikρ̂±, û±〉+ 〈û±, ikρ̂±〉+α±〈û±, ikρ̂±〉−α±〈û∓, ikρ̂±〉

∓〈Ê, ikρ̂±〉+A±γ〈ikρ̂±, ikρ̂±〉.

Now, we split the solution to tow equations.

d
dt
〈û+, ikρ̂+〉−〈∂t ikρ̂+, û+〉+ 〈û+, ikρ̂+〉+α+〈û+, ikρ̂+〉−α+〈û−, ikρ̂+〉

−〈Ê, ikρ̂+〉+A+γ〈ikρ̂+, ikρ̂+〉,
(3.9)

and

d
dt
〈û−, ikρ̂−〉−〈∂t ikρ̂−, û−〉+ 〈û−, ikρ̂−〉+α−〈û−, ikρ̂−〉−α−〈û+, ikρ̂−〉

+ 〈Ê, ikρ̂−〉−A−γ〈ikρ̂−, ikρ̂−〉.
(3.10)

Taking the sum of equations (3.9) and (3.10)

d
dt
〈û+, ikρ̂+〉+

d
dt
〈û−, ikρ̂−〉− |k|2‖[û+, û−]‖2 + 〈û+, ikρ̂+〉+ 〈û−, ikρ̂−〉

−〈û−, ik(α+ρ̂+−α−ρ̂−)〉+ 〈û+, ik(α+ρ̂+−α−ρ̂−)〉+ 〈ρ̂−− ρ̂+, ρ̂−− ρ̂+〉
+A+γ|k|2‖ρ̂+‖2 +A−γ|k|2‖ρ̂−‖2 = 0.

Thus, we obtain

d
dt
〈û+, ikρ̂+〉+

d
dt
〈û−, ikρ̂−〉+A+γ|k|2‖ρ̂+‖2 +A−γ|k|2‖ρ̂−‖2 +‖ρ̂−− ρ̂+‖2

= |k|2‖[û+, û−]‖2−〈û+, ikρ̂+〉−〈û−, ikρ̂−〉+ 〈û−, ik(α+ρ̂+−α−ρ̂−)〉
−〈û+, ik(α+ρ̂+−α−ρ̂−)〉.
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Moreover, taking the real part and using the Cauchy-Schwarz inequality implies

d
dt

R〈û+, ikρ̂+〉+
d
dt

R〈û−, ikρ̂−〉+λ |k|2‖ρ̂+‖2 +λ |k|2‖ρ̂−‖2 +λ‖ρ̂−− ρ̂+‖2

≤C|k|2‖[û+, û−]‖2.

Now, dividing by (1+ |k|2)

d
dt

R〈û+, ikρ̂+〉
1+ |k|2

+
d
dt

R〈û−, ikρ̂−〉
1+ |k|2

+
λ |k|2(‖ρ̂+‖2 +‖ρ̂−‖2)

1+ |k|2

+
λ |k|2‖ρ̂−‖2

1+ |k|2
+

λ‖ρ̂−− ρ̂+‖2

1+ |k|2
≤ C|k|2‖[û+, û−]‖2

1+ |k|2
.

(3.11)

Similarly, taking the second equation of (3.6) and multiply by Ê, then using integra-
tion by parts in t.

〈∂t û±, Ê〉+ 〈û±, Ê〉+α±〈û±, Ê〉−α±〈û±, Ê〉∓〈Ê, Ê〉+ 〈A±γikρ̂±, Ê〉= 0.

Since
〈∂t û±, Ê〉=

d
dt
〈û±, Ê〉−〈∂t Ê, û±〉.

Thus,

〈∂t Ê, û±〉+ 〈Ê, û±〉+α±〈û±, Ê〉−α±〈û±, Ê〉∓‖Ê‖2 +A±γ〈ikρ̂±, Ê〉= 0.

Now, using third equation of (3.6) and replacing ∂t Ê.

d
dt
〈û+, Ê〉−〈ik× B̂, û±〉−〈û+, û±〉+ 〈û−, û±〉+ 〈û±, Ê〉+α±〈û±, Ê〉−α±〈û∓, Ê〉

∓‖Ê‖2 +A±γ〈−ik(ik · Ê), Ê〉= 0

d
dt
〈û±, Ê〉+A±γ‖k · Ê‖2∓‖Ê‖2 =−〈û±, Ê〉+ 〈ik× B̂, û±〉+ 〈û+, û±〉−〈û−, û±〉

+α±〈û±, Ê〉−α±〈û∓, Ê〉,
split the solution to two equations,

d
dt
〈û+, Ê〉+A+γ‖k · Ê‖2−‖Ê‖2 =−〈û+, Ê〉+ 〈ik× B̂, û+〉+ 〈û+, û+〉−〈û−, û+〉

+α+〈û+, Ê〉−α+〈û−, Ê〉,
(3.12)
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and

d
dt
〈û−, Ê〉+A−γ‖k · Ê‖2 +‖Ê‖2 =−〈û−, Ê〉+ 〈ik× B̂, û−〉+ 〈û+, û−〉−〈û−, û−〉

+α−〈û−, Ê〉−α−〈û+, Ê〉,
(3.13)

Now, taking the subtract of equation (3.13) from equation (3.12) we get

d
dt
〈û+− û−, Ê〉+(A+γ−A−γ)|k|2‖Ê‖2−2‖Ê‖2 = 〈û−− û+, Ê〉

+ 〈ik× B̂, û+− û−〉+ 〈û+, û+〉−〈û−, û+〉+‖[û+, û−]‖2−〈û−, û+〉
−〈û+, û−〉+α+〈(û+− û−), Ê〉−α−〈(û+− û−), Ê〉.

Therefore, taking the real part and using the Cauchy-Schwarz inequality implies

d
dt

R〈û+− û−, Ê〉+λ (|k|2‖Ê‖2−2‖Ê‖2)≤ c‖û−− û+‖2−R〈ik×B̂, û+− û−〉+c‖[û+, û−]‖.

Now, multiply by |k|2
(1+|k|2)2

d
dt
|k|2R〈(û+− û−), Ê〉

(1+ |k|2)2 +
λ |k|2(|k|2‖Ê‖2 +2‖Ê‖2)

(1+ |k|2)2 ≤ c‖û−− û+‖2

− R|k|2〈ik× B̂, û+− û−〉
(1+ |k|2)2 + c‖[û+, û−]‖2

(3.14)

Similarly, multiply the third equation of the system (3.6) by −ik× B̂ and using the
integration by parts.

〈−ik× B̂,∂t Ê〉−〈−ik× B̂, ik× B̂〉−〈−ik× B̂, û−〉+ 〈−ik× B̂, û+〉= 0.

Since
〈−ik× B̂,∂t Ê〉=

d
dt
〈−ik× B̂, Ê〉−〈Ê,−ik× B̂〉.

Thus,

d
dt
〈−ik× B̂, Ê〉−〈Ê,−ik×∂t B̂〉+ |k× B̂|2 + 〈ik× B̂, û−〉−〈ik× B̂, û+〉= 0,

then, replace ∂t B̂ by −ik× Ê. Thus,

d
dt
〈−ik× B̂, Ê〉+‖k× B̂‖2 = ‖k× Ê‖2−〈ik× B̂, û−− û+〉.
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Now, taking the real part and using the Cauchy-Schwarz and dividing by (1+ |k|2)2

implies

d
dt

R〈−ik× B̂, Ê〉
(1+ |k|2)2 +

λ‖k× B̂‖2

(1+ |k|2)2 ≤
‖k× Ê‖2

(1+ |k|2)2 +C‖û−− û+‖2 (3.15)

Finally, letting us define

E(Û(t,k)) = ‖[
√

A+γρ̂+,
√

A−γρ̂−, û+, û−, Ê, B̂]‖2 + k1

(
R〈û+, ikρ̂+〉

1+ |k|2
+

R〈û−, ikρ̂−〉
1+ |k|2

)
+ k2
|k|2R〈(û+− û−), Ê〉

(1+ |k|2)2 + k3
R〈−ik× B̂, Ê〉
(1+ |k|2)2 .

We chosen the constants such that 0< k3� k2� k1� 1 and let 0< k j� 1, i= 1,2,3
be small enough such that (3.4) holds. However, letting 0 < k3� k2� k1� 1 with
k3/2

2 � k3 be further small enough.
Now, taking the summation of (3.6), (3.11) ×k1, (3.14) ×k2 and (3.15) ×k3 we get

1
2

d
dt
‖[
√

A+γρ̂+,
√

A−γρ̂−, û+, û−, Ê, B̂]‖2 +C‖[û+, û−]‖2

+
d
dt

R〈û+, ikρ̂+〉
1+ |k|2

+
d
dt

R〈û−, ikρ̂−〉
1+ |k|2

+
λ |k|2(‖ρ̂+‖2 +‖ρ̂−‖2)

1+ |k|2
+

λ‖ρ̂−− ρ̂+‖2

1+ |k|2
+

d
dt
|k|2R〈(û+− û−), Ê〉

(1+ |k|2)2 +
λ |k|2(|k|2‖Ê‖2−2‖Ê‖2)

(1+ |k|2)2 +
d
dt

R〈−ik× B̂, Ê〉
(1+ |k|2)2

+
λ‖k× B̂‖2

(1+ |k|2)2 ≤
C|k|2‖[û+, û−]‖2

(1+ |k|2)2 +C‖û−− û+‖2− R|k|2〈ik× B̂, û+− û−〉
(1+ |k|2)2

+C‖[û+, û−]‖2 +
‖k× Ê‖2

(1+ |k|2)2 +C‖û−− û+‖2.

Thus,

d
dt
E(Û(t,k))+λ‖[ρ̂+, ρ̂−,(ρ̂−− ρ̂+), û+, û−]‖2 +

λ |k|2‖[Ê, B̂]‖2

(1+ |k|2)2 ≤ 0, (3.16)

where we use the identity ‖k× B̂‖2 = |k|2‖B̂‖2 due to k · B̂ = 0. In addition, by using
the Cauchy-Schwarz inequality we obtain

k2|k|2R〈ik× B̂,(û+− û−)〉
(1+ |k|2)2 ≤

k1/2
2 |k|4‖[û+, û−]‖2

2(1+ |k|2)2 +
k3/2

2 |k|2‖B̂‖2

2(1+ |k|2)2 .

Thus, from (3.16), since E(Û(t,k))∼ |Û |2 and,

‖[ρ̂+, ρ̂−,(ρ̂−− ρ̂+), û+, û−]‖2 +
|k|2‖[Ê, B̂]‖2

(1+ |k|2)2 ≥
λ |k|2|Û |2

(1+ |k|2)2 ,

we conclude (3.5), and this is the end of the proof.
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3.2 Representation of solution
Denote by U = [ρ±,u±,E,B] = etLU0 the explicit solution to the Cauchy proplem
(3.1), (3.2) satisfying (3.3). In this subsection, we study the representation of U .

First, we take the time derivative for the first equation and the divergance of the
second equation of the system (3.1) and substitute ∇ ·E = ρ+−ρ−. So,

∂ttρ±+∂t∇ ·u± = 0 (3.17)

∇ ·∂tu±+∇ ·u±+α±∇ · (u±−u∓)∓∇ ·E +A±γ∆ρ± = 0. (3.18)

From equation (3.17) we know ∂t∇ · u± = −∂ttρ±, and substituting this result into
equation (3.18) and multiplying by (−1) we get

∂ttρ±+(1+α±)∂tρ±−α±∂tρ∓± (ρ+−ρ−)−A±γ∆ρ± = 0, (3.19)

with initial data given by{
±(ρ+−ρ−)|t=0 =±(ρ+0−ρ−0) =±∇ ·E0,

∂tρ±|t=0 =−∇ ·u±0.
(3.20)

Then, taking the Fourier transform of the second order ODE (3.19) with (3.20), we
obtain

∂tt ρ̂±+(1+α±)∂t ρ̂±−α±∂t ρ̂∓± (ρ̂+− ρ̂−)+A±γ|k|2ρ̂± = 0,
±(ρ̂+− ρ̂−)|t=0 =±(ρ̂+0− ρ̂−0) =±ik · Ê0,

∂t ρ̂±|t=0 =−ik · û±0.

(3.21)

Now set

x1 = ρ̂+,

x2 = ẋ1 = ∂t ρ̂+,

x3 = ρ̂−,

x4 = ẋ3 = ∂t ρ̂−, x = [x1,x2,x3,x4]
T

Then
xt = A(k)x (3.22)

where

A(k) =


0 1 0 0

−1−A+γ|k|2 −(1+α+) 1 α+

0 0 0 1
1 α− −1−A−γ|k|2 −(1+α−)

 .
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Note the eigenvector of the matrix A(k) is given by

a1(λ ) =


(1+A−γ|k|2)+(1+α−)λ +λ 2

[(1+A−γ|k|2)+(1+α−)λ +λ 2]λ
1+α−λ

(1+α−λ )λ

 ,
and

a2(λ ) =


1+α+λ

(1+α+λ )λ
(1+A+γ|k|2)+(1+α+)λ +λ 2

[(1+A+γ|k|2)+(1+α+)λ +λ 2]λ

 .
In next two subsections we provide an estimate for û±, ρ̂±, Ê, B̂. In the subsection
of parallel part we estimate for û±, ρ̂±, and in the subsection of perpendicular part
we estimate for û±, Ê, B̂. To do so, we set k̃ = k/|k| and we use the relation û± =
k̃k̃ · û±− k̃× (k̃× û±) where we refer to k̃k̃ · û± as the “parallel part” and k̃× (k̃× û±)
as the “perpendicular part.”

3.2.1 Parallel Part
We proceed with asymptotic expansion of eigenvalues: let λ j(k), j = 1,2,3,4, be
the eigenvalues of the matrix A(k). Taking the determininant, we see the eigenvalues
satisfy,

det(A(k)−λ I) = λ
4 +(2+α++α−)λ

3 +(3+α++α−+A+γ|k|2 +A−γ|k|2)λ 2

+(2+A+γ|k|2 +A−γ|k|2 +α−A+γ|k|2 +α+A−γ|k|2)λ
+A+γ|k|2 +A−γ|k|2 +A−A+γ

2|k|4 = 0.
(3.23)

(i) First we consider when |k| → 0, since det(A−λ I) = 0 satisfies

λ (λ +1)(λ 2 +(1+α−+α+)λ +2) = 0,

and has the following asymptotic expansion:

λ j(k) = λ
(0)
j +λ

(1)
j k+λ

(2)
j k2 + ... , (3.24)
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where each coefficient λ
(n)
j is given by direct computation as

λ
(0)
1 = λ

(1)
1 = 0, λ

(2)
1 =−1

2
(A+γ +A−γ),

λ
(0)
2 =−1, λ

(1)
2 = 0, λ

(2)
2 =−A+γ +A−γ +α−A+γ +α+A−γ

2+α++α−
,

λ
(0)
3 =

−(1+α+−α−)−
√
(1+α++α−)2−8

2
, λ

(1)
3 = 0, λ

(2)
3 = 0,

λ
(0)
4 =

−(1+α+−α−)+
√
(1+α++α−)2−8

2
, λ

(1)
4 = 0, λ

(2)
4 = 0.

Thus the approximation of the eigenvalue when |k| → 0 is

λ1 =−
1
2
(A+γ +A−γ)k2,

λ2 =−1−
[

A+γ +A−γ +α−A+γ +α+A−γ

2−α+−α−

]
k2,

λ3 =
−(1+α++α−)−

√
(1+α++α−)2−8

2
,

λ4 =
−(1+α++α−)+

√
(1+α++α−)2−8

2
.

Therefore, if we define

B(t) = [a1(λ1)eλ1t a1(λ2)eλ2t a2(λ3)eλ3t a2(λ4)eλ4t ],

the Green matrix G for (3.22) is given by G(t) = B(t) B−1(0) and the solution is

x = G(t)x0.

Thus, after series of calculation using symbolic manipulater we have



x1

x2

x3

x4


=



(O(1)e−θ t (O(1)e−θ t (O(1)e−θ t (O(1)e−θ t

+O(1)e−θk2t) +O(1)e−θk2t) +O(1)e−θk2t) +O(1)e−θk2t)

(O(1)e−θ t (O(1)e−θ t (O(1)e−θ t (O(1)e−θ t

+O(1)e−θk2tk2) +O(1)e−θk2tk2) +O(1)e−θk2tk2) +O(1)e−θk2tk2)

(O(1)e−θ t (O(1)e−θ t (O(1)e−θ t (O(1)e−θ t

+O(1)e−θk2t) +O(1)e−θk2t) +O(1)e−θk2t) +O(1)e−θk2t)

(O(1)e−θ t (O(1)e−θ t (O(1)e−θ t (O(1)e−θ t

+O(1)e−θk2tk2) +O(1)e−θk2tk2) +O(1)e−θk2tk2) +O(1)e−θk2tk2)





x1,0

x2,0

x3,0

x4,0


,

29



where θ is the sum of real parts of λ j, j = 1,2,3,4. Thus,

ρ̂+(t,k) = (O(1)e−θ t +O(1)e−θk2t)ρ̂+0− (O(1)e−θ t +O(1)e−θk2t)ik · û+0

+(O(1)e−θ t +O(1)e−θk2t)ρ̂−0− (O(1)e−θ t +O(1)e−θk2t)ik · û−0,

− ik · û+(t,k) = (O(1)e−θ t +O(1)e−θk2tk2)ρ̂+0− (O(1)e−θ t +O(1)e−θk2tk2)ik · û+0

+(O(1)e−θ t +O(1)e−θk2tk2)ρ̂−0− (O(1)e−θ t +O(1)e−θk2tk2)ik · û−0,

ρ̂−(t,k) = (O(1)e−θk2t +O(1)e−θ t)ρ̂+0− (O(1)e−θk2t +O(1)e−θ t)ik · û+0

+(O(1)e−θk2t +O(1)e−θ t)ρ̂−0− (O(1)e−θk2t +O(1)e−θ t)ik · û−0,

− ik · û−(t,k) = (O(1)e−θ t +O(1)e−θk2tk2)ρ̂+0− (O(1)e−θ t +O(1)e−θk2tk2)ik · û+0

+(O(1)e−θ t +O(1)e−θk2tk2)ρ̂−0− (O(1)e−θ t +O(1)e−θk2tk2)ik · û−0.

(3.25)

In fact we know that

û± = k̃k̃ · û±− k̃× (k̃× û±) implies k̃k̃ · û± = û±+ k̃× (k̃× û±). (3.26)

Therefore, plugging (3.26) in the second and the fourth equations of (3.25), we obtain

û+(t,k) =−k̃× (k̃× û+)+
(

ik̃
|k|

(O(1)e−θ t +O(1)e−θk2tk2)ρ̂+0

+(O(1)e−θ t +O(1)e−θk2tk2)k̃k̃ · û+0 +
ik̃
|k|

(O(1)e−θ t +O(1)e−θk2tk2)ρ̂−0

+(O(1)e−θ t +O(1)e−θk2tk2)k̃k̃ · û−0

)
,

û−(t,k) =−k̃× (k̃× û−)+
(

ik̃
|k|

(O(1)e−θ t +O(1)e−θk2tk2)ρ̂+0

+(O(1)e−θ t +O(1)e−θk2tk2)k̃k̃ · û+0 +
ik̃
|k|

(O(1)e−θ t +O(1)e−θk2tk2)ρ̂−0

+(O(1)e−θ t +O(1)e−θk2tk2)k̃k̃ · û−0

)
.

(3.27)

(ii) When |k| → ∞, λ j(k) has the following asymptotic expansion

λ j(k) = µ
(1)
j k+µ

(0)
j +µ

(−1)
j k−1 +µ

(−2)
j k−2 +µ

(−3)
j k−3 + ... , (3.28)
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where each coefficient µ
(n)
j is given by direct computation as

µ
(1)
1 = i

√
A−γ, µ

(0)
1 =− (1+α−)

2
,

µ
(1)
2 =−i

√
A−γ, µ

(0)
2 =−(1+α−)

2
,

µ
(1)
3 = i

√
A+γ, µ

(0)
3 =− (1+α+)

2
,

µ
(1)
4 =−i

√
A+γ, µ

(0)
4 =− (1+α+)

2
.

The approximation of the eigenvalue when |k| → ∞ is

λ1 =−
(1+α−)

2
+ i
√

A−γ k,

λ2 =−
(1+α−)

2
− i
√

A−γ k,

λ3 =−
(1+α+)

2
+ i
√

A+γ k,

λ4 =−
(1+α+)

2
− i
√

A+γ k.

So G = B(t) B−1(0) is the Green matrix for (3.22) and the solution is

x = G(t)x0.

Thus, after series of calculation using symbolic manipulater we obtain

x1

x2

x3

x4


=



O(1)e−θ t O(1)e−θ t |k|−1 O(1)e−θ t |k|−1 O(1)e−θ t

O(1)e−θ t |k| O(1)e−θ t O(1)e−θ t O(1)e−θ t |k|−1

O(1)e−θ t |k|−1 O(1)e−θ t O(1)e−θ t O(1)e−θ t |k|−1

O(1)e−θ t O(1)e−θ t |k|−1 O(1)e−θ t |k| O(1)e−θ t





x1,0

x2,0

x3,0

x4,0


.

ρ̂+(t,k) = O(1)e−θ t
ρ̂+0−O(1)e−θ t |k|−1 i k · û+0 +O(1)e−θ t |k|−1

ρ̂−0−O(1)e−θ t i k · û−0,

− ik · û+(t,k) = O(1)e−θ t |k|ρ̂+0−O(1)e−θ t i k · û+0 +O(1)e−θ t
ρ̂−0−O(1)e−θ t |k|−1 i k · û−0,

ρ̂−(t,k) = O(1)e−θ t |k|−1
ρ̂+0−O(1)e−θ t i k · û+0 +O(1)e−θ t

ρ̂−0−O(1)e−θ t |k|−1 i k · û−0,

− ik · û−(t,k) = O(1)e−θ t
ρ̂+0−O(1)e−θ t |k|−1i k · û+0 +O(1)e−θ t |k| ρ̂−0−O(1)e−θ t i k · û−0.

(3.29)
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Therefore, after plugging (3.26) into the second and fourth equations of (3.29), we
obtain

û+(t,k) =−k̃× (k̃× û+)+
(

O(1)e−θ t i k̃k̃ · ρ̂+0 +O(1)e−θ t k̃k̃ · û+0

+O(1)e−θ t ik̃
|k|

ρ̂−0 +O(1)e−θ t k̃k̃
|k|
· û−0

)
,

û−(t,k) =−k̃× (k̃× û−)+
(

O(1)e−θ t i k̃
|k|

ρ̂+0 +O(1)e−θ t k̃k̃
|k|
· û+0

+O(1)e−θ t i k̃k̃ρ̂−0 +O(1)e−θ t k̃k̃ · û−0

)
.

(3.30)

(iii) When 0 < |k| < ∞, we consider the Routh-Hurwitz stability condition of the
characteristic polynomial (3.23). That is, if we write (3.23) in the form

b0λ
4 +b1λ

3 +b2λ
2 +b3λ +b4 = 0.

The system stability requires

b1 > 0,b1b2−b0b3 > 0,(b1b2−b0b3)b3−b2
1b4 > 0,b4 > 0. (3.31)

It can be shown that, in our case, the conditions corresponding to (3.31) are given
respectively, by

(2+α++α−)> 0,

[(2+α++α−)(3+α++α−+A+γ|k|2 +A−γ|k|2)]− (2+A+γ|k|2 +A−γ|k|2 +α−A+γ|k|2

+α+A−γ|k|2)> 0,

[(4+2α++2α−+A+γ|k|2 +A−γ|k|2 +3α++α
2
++2α+α−+α+A+γ|k|2 +3α−+α

2
−

+α−A−γ|k|2)(2+A+γ|k|2 +A−γ|k|2 +α−A+γ|k|2 +α+A−γ|k|2)]
− [(2+α++α−)

2(A+γ|k|2 +A−γ|k|2 +A−A+γ
2|k|4)]> 0,

A+γ|k|2 +A−γ|k|2 +A−A+γ
2|k|4 > 0.

It is not difficult to show that above inequalities are satisfied and this implies all roots
of the characteristic equation have negative real parts.
Although the eigenvalues may coalesce, the computations in (i), (ii), and (iii) show
that coalescence occurs when the real parts of the eigenvalues are negative. There-
fore, the stability conditions are satisfied.
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3.2.2 Perpendicular Part
Now we consider 

M1(t,k) :=−k̃× (k̃× û+(t,k)),
M2(t,k) :=−k̃× (k̃× û−(t,k)),
M3(t,k) :=−k̃× (k̃× Ê(t,k)),
M4(t,k) :=−k̃× (k̃× B̂(t,k)),

(3.32)

when t > 0 and |k| 6= 0. Taking the curl of all but the first and the last equation in
system (3.1) we have

∂t(∇×u+)+∇×u++α+(∇×u+)−α+(∇×u−)−∇×E = 0,
∂t(∇×u−)+∇×u−+α−(∇×u−)−α−(∇×u+)+∇×E = 0,
∂t(∇×E)−∇× (∇×B)+∇×u+−∇×u− = 0,
∂t(∇×B)+∇× (∇×E) = 0.

Now, taking the Fourier Transform and multiplying by −ik, we obtain
∂tM1 +M1 +α+M1−α+M2−M3 = 0,
∂tM2 +M2 +α−M2−α−M1 +M3 = 0,
∂tM3− ik×M4 +M1−M2 = 0,
∂tM4 + ik×M3 = 0.

(3.33)

Subtracting the first equation from the second equation in (3.33) we obtain

∂t(M2−M1)+(M2−M1)+α−(M2−M1)+α+(M2−M1)+2M3 = 0,

and we simplify the above computation by letting M5 = M2−M1.
So,

∂tM5 +(1+α++α−)M5 +2M3 = 0.

Thus, 
∂tM5 =−(1+α++α−)M5−2M3,

∂tM3 = ik×M4 +M5,

∂tM4 =−ik×M3,

(3.34)

where we write the initial data in the form

[M3,M4,M5]|t=0 = [M3,0,M4,0,M5,0], (3.35)

with

M5,0 =−k̃× (k̃× (û−− û+)), M3,0 =−k̃× (k̃× Ê0), M4,0 =−k̃× (k̃× B̂0).
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Taking the time derivative of ∂tM3 and substituting ∂tM5 and ∂tM4 as given in (3.34),
we get that

∂ttM3 = k× (k×M3)− (1+α++α−)M5−2M3.

From k ·M2 = 0, we find k× (k×M3) =−|k|2M3 thus

∂ttM3 +(2+ |k|2)M3 =−(1+α++α−)M5. (3.36)

Now taking the time derivative of (3.36) and replace ∂tM5 by the first equation of
(3.34) and taking the sum with equation (3.36). Then

∂tttM3 +(1+α++α−)∂ttM3 +(2+ |k|2)∂tM3 +(1+α++α−)|k|2M3 = 0, (3.37)

with initial data
M3|t=0 = M3,0,

∂tM3|t=0 = ik×M4,0 +M5,0,

∂ttM3|t=0 =−(1+α++α−)M5,0− (2+ |k|2)M3,0.

(3.38)

Note that the characteristic equation of (3.37) is

F(x) := χ
3 +(1+α++α−)χ

2 +(2+ |k|2)χ +(1+α++α−)|k|2 = 0. (3.39)

The exact roots of the characteristic equation (3.39), along with their fundamental
properties, are given by

Lemma 3.2. Let |k| 6= 0. The equation F(χ) = 0, χ ∈C, has a real root η = η(|k|)
where −(1+α++α−)< η < 0 and two conjugate complex roots χ± = β ± iω with

β = β (|k|) ∈ (− ((1+α++α−)+η)
4 ,0), and ω = ω(|k|) ∈ (

√
3(1+α++α−)2−6

3 ,∞) satisfy-
ing

β =− ((1+α++α−)+η)

2
, (3.40)

ω =

√
−(1+α++α−+η)(1+α++α−−3η)+4(2+ |k|2)

2
.

η ,β ,ω are smooth over |k|> 0, and η(|k|) is strictly decreasing in |k|> 0 with

lim
|k|→0

η(|k|) = 0, lim
|k|→∞

η(|k|) =−(1+α++α−)

Moreover, we have

η(|k|) =−O(1)|k|2, β (|k|) =−(1+α++α−)

4
+O(1)|k|2,

ω(|k|) =
√
(1+α++α−)(1+α++α−)+8

4
+O(1)|k|

.
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whenever |k| ≤ (1+α++α−) is small, and

η(|k|) =−(1+α++α−)+O(1)|k|−2, β (|k|) =−O(1)|k|−2, ω(|k|) = O(1)|k|

whenever |k| ≥ (1+α++α−) is large.

Proof : Suppose |k| 6= 0. First, we determine if F(χ) = 0 admits a real root. We have

F
′
(χ) = 3x2 +(1+α++α−)x+2+ |k|2 = 3(x+

1
3
(1+α++α−)

2− 1
3
(1+α++α−)

2

+2+ |k|2 > 0.

Now F(0)= (1+α++α−)|k|2 > 0 and F(−(1+α++α−))=−2(1+α++α−)< 0,
so F(χ) = 0 does in fact admit one real root which we will denote by η = η(|k|).
Note that η satisfies −(1+α++α−) < η < 0. Since F(·) is smooth, η(·) is also
smooth in |k|> 0. Now, taking the derivative of F(η(|k|)) = 0 with respect to |k| we
obtain

η
′
(|k|) = −2|k|(η(|k|)+(1+α++α−))

3[η(|k|)]2 +2(1+α++α−)η(|k|)
+2+ |k|2 < 0.

Thus η(·) is strictly decreasing for |k|> 0. Since F(η) = 0 can be rewritten as

η

[
η(η +(1+α++α−))

2+ |k|2
+1
]
=−(1+α++α−)|k|2

2+ |k|2
,

η has limits 0 and −(1+α++α−) as |k|→ 0 and |k|→∞ respectively. Furthermore
η =−O(1)|k|2 whenever |k|< (1+α++α−) is small. F(η) = 0 can also be written
as

η +(1+α++α−) =
−2η

(η2 +1)+ |k|2 +2
=

−2η

η2 + |k|2 +3
.

Therefore, η =−(1+α++α−)−O(1)|k|−2 when |k| ≥ (1+α++α−) is large.
Now, we will determine the roots of F(χ) = 0 over χ ∈ C. When F(η) = 0 with

η ∈ R, F(χ) = 0 can be factored as

F(χ) = (χ−η)[χ2 +(1+α++α−+η)χ +(1+α++α−+η)η +(2+ |k|2)] = 0.

The two conjugate complex roots χ± = β ± iω satisfy

χ
2 +(1+α++α−+η)χ +(1+α++α−+η)η +2+ |k|2 = 0.

By solving the above equation we obtained (3.40) for β = β (|k|), ω = ω(|k|). Thus,
the asymptotic behavior of β = β (|k|), ω = ω(|k|) as |k| → 0 and |k| → ∞ is a con-
sequence of η(|k|).
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Now, from Lemma 3.2, we can write the solution of (3.37) as

M3(t,k) = c1(k)eηt + eβ t [c2(k)cosωt + c3(k)sinωt], (3.41)

where we determine ci(k) for each i ∈ {1,2,3} later. By taking the first and second
derivative of equation (3.41) with respect to k we get M3

∂tM3
∂ttM3


t

= A

c1
c2
c3

 , A :=

 I3 I3 O3
ηI3 β I3 ωI3
η2I3 (β 2−ω2)I3 2βωI3

 . (3.42)

The determinent of A is

detA= [2βω−ω(β 2−ω
2)]−[2ηβω−η

2
ω] =ω[3η

2+2(1+α++α−)η+2+|k|2]> 0,

and

A−1 =
1

detA

 (β 2 +ω2)ωI3 −2βωI3 ωI3
ηω(η2β )I3 2βωI3 −ωI3

η(β 2−ω2−ηβ )I3 (ω2 +η2−β 2)I3 (β −η)I3

 .
Therefore, by using the matrix of the initial data (3.38) we obtainc1

c2
c3

= A−1

 O3 I3 O3
I3 O3 ik×

−(1+α++α−)I3 −(2+ |k|2)I3 O3

M5,0
M3,0
M4,0

 .
Substituting β and ω , it holds that

c1
c2
c3

=
1

detA


−(2β +(1+α++α−))ωI3 (β 2 +ω2−|k|2−2)ωI3 −2βωik×
(2β +(1+α++α−))ωI3 (η2−2ηβ + |k|2 +2)ωI3 2βωik×

[(ω2 +η2−β 2) [η(β 2−ω2−ηβ ) (ω2 +η2

−(β −η)(1+α++α−)]I3 −(β −η)(|k|2 +2)]I3 −β 2)ik×




M5,0

M3,0

M4,0

 .
Thus,[

c1,c2,c3
]T

=
1

3η2 +2(1+α++α−)η +2+ |k|2 (3.43)

 ηI3 η(1+α++α−+η)I3 (1+α++α−+η)ik×
−ηI3 (2η2 +(1+α++α−)η + |k|2 +2)ωI3 −(1+α++α−+η)ik×

3
2 η2+ 3

2 η(1+α++α−)+(2+|k|2)
ω

I3
(1+α++α−+η)(η(1+α++α−)+2+|k|2)

2ω
I3

−(1+α++α−)2
2 + 3

2 η2+(2+|k|2)
ω

ik×

[M5,0
M3,0
M4,0

]
,
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where

c1 =
1

3η2 +2(1+α++α−)η +2+ |k|2
[ηI3M5,0(t,k)+η(1+α++α−+η)I3M3,0(t,k)

+(1+α++α−+η)ik×M4,0(t,k)]

c2 =
1

3η2 +2(1+α++α−)η +2+ |k|2
[−ηI3M5,0(t,k)+(2η +η(1+α++α−+η)

+ |k|2 +2)I3M3,0(t,k)− (1+α++α−+η)ik×M4,0(t,k)]

c3 =
1

3η2 +2(1+α++α−)η +2+ |k|2

[ 3
2η2 + 3

2η(1+α++α−)+(2+ |k|2)
ω

I3M5,0(t,k)

+
(1+α++α−+η)(η(1+α++α−)+2+ |k|2)

2ω
I3M3,0(t,k)

+
−(1+α++α−)2

2 + 3
2η2 +(2+ |k|2)

ω
ik×M4,0(t,k)

]
(3.44)

Now, after substituting equation (3.41) in the first and the third equations of (3.34)
and integrating in t for both, it follows that

M5(t,k) = M5,0(k)e−t(1+α++α−)+2e−t(1+α++α−)

[∫ t

0
c1(k)e(1+α++α−+η)s ds

+
∫ t

0
e−t(1+α++α−+β )s(c2(k)cosωs+ c3(k)sinωs)ds

]
,

M4(t,k) = M4,0(k)− ik×
∫ t

0
c1(k)eηs + eβ s(c2(k)cosωs+ c3(k)sinωs)ds.

Then we have

M5(t,k) = [M5,0(k)+ c4(k)]e−t(1+α++α−)− 2c1(k)
(1+α++α−+η)

eηt

+
2c2(k)

(1+α++α−+β )2 +ω2 eβ t [(1+α++α−+β )cosωt +ω sinωt]

+
2c3(k)

(1+α++α−+β )2 +ω2 eβ t [(1+α++α−+β )sinωt−ω cosωt],

and

M4(t,k) = [M4,0(k)+ ik× c5(k)]− ik× c1(k)
η

eηt

− ik× 2c2(k)
β 2 +ω2 eβ t [β cosωt +ω sinωt]

− ik× 2c3(k)
β 2 +ω2 eβ t [β sinωt−ω cosωt],
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where c4(k), c5(k) are chosen such that [M5,M4]|t=0 = [M5,0,M4,0] by (3.35). Thus

c4(k) =−
2c1(k)

(1+α++α−+η)
− 2c2(k)

(1+α++α−+β )2 +ω2 (1+α++α−+β )

+
2c3(k)

(1+α++α−+β )2 +ω2 ω

c5(k) =
c1(k)

η
+

c2(k)
β 2 +ω2 β − c3(k)

β 2 +ω2 ω.

(3.45)

Therefore, substituting the first, second, and third equations of (3.44) into the above
computations of (3.45) we have

M5,0(k)+ c4 = 0
M4,0(k)+ ik× c5 = 0.

Thus, for all |k| 6= 0

M5(t,k) =−
2c1(k)

(1+α++α−+η)
eηt

+
2c2(k)

(1+α++α−+β )2 +ω2 eβ t [(1+α++α−+β )cosωt +ω sinωt]

+
2c3(k)

(1+α++α−+β )2 +ω2 eβ t [(1+α++α−+β )sinωt−ω cosωt],

(3.46)

and

M4(t,k) =−ik× c1(k)
η

eηt− ik× 2c2(k)
β 2 +ω2 eβ t [β cosωt +ω sinωt]

− ik× 2c3(k)
β 2 +ω2 eβ t [β sinωt−ω cosωt].

(3.47)

Now set

x1 = M3,

x2 = ẋ1 = ∂tM3,

x3 = ẋ2 = ∂ttM3, x = [x1,x2,x3]
T

so that

∂tttM3 =−(1+α++α−)∂ttM3− (2+ |k|2)∂tM3− (1+α++α−)|k|2M3.
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Then
xt = Φ(k)x (3.48)

where

Φ(k) =

 0 1 0
0 0 1

−(1+α++α−)|k|2 −(2+ |k|2) −(1+α++α−)

 .
Asymptotic expansion of eigenvalues: Let λ j(k) be the eigenvalues of the ma-
trix Φ(k). We will find the asymptotic expansion of the eigenvalues λ j(k) for |k| →
0, and |k| → ∞.
The eigenvalues λ j(k), j = 1,2,3, are the solutions of the characteristic equation

det(Φ(k)−λ I)= det

 −λ 1 0
0 −λ 1

−(1+α++α−)|k|2 −(2+ |k|2) −(1+α++α−)−λ

=

0
0
0

 ,
which can be written

det(Φ(k)−λ I) = λ
3 +(1+α++α−)λ

2 +(2+ |k|2)λ +(1+α++α−)|k|2 = 0.

The eigenvector for Φ(k) is

b(λ ) =

 1
λ

λ 2

 .
(i) When |k| → 0, λ j(k) has the following asymptotic expansion

λ j(k) = λ
(0)
j +λ

(1)
j k+λ

(2)
j k2 + ... , (3.49)

where each coefficient λ
(n)
j is given by direct computation as

λ
(0)
1 = λ

(1)
1 = 0, λ

(2)
1 =−1

2
(1+α++α−),

λ
(0)
2 =

−(1+α++α−)+
√

(1+α++α−)2−8
2

, λ
(1)
2 = 0,

λ
(2)
2 =

−(1+α++α−)−
√

(1+α++α−)2−8
4

,

λ
(0)
3 =

−(1+α++α−)−
√

(1+α++α−)2−8
2

, λ
(1)
3 = 0,

λ
(2)
3 =

−(1+α++α−)+
√

(1+α++α−)2−8
4

.
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Thus, the approximation of the eigenvalue when |k| → 0 is

λ1 =−
1
2
(1+α++α−)k2,

λ2 =
−(1+α++α−)+

√
(1+α++α−)2−8

2
−
[
(1+α++α−)+

√
(1+α++α−)2−8

4

]
k2,

λ3 =
−(1+α++α−)−

√
(1+α++α−)2−8

2
−
[
(1+α++α−)−

√
(1+α++α−)2−8

4

]
k2.

Therefore, if we set

D(t) =
[
b(λ1)eλ1t b(λ2)eλ2t b(λ3)eλ3t

]
,

the Green matrix G for (3.48) is given by G(t) = D(t) D−1(0) and the solution is
represented as

x = G(t)x0,

where each component of this solution is itself a 3×3 diagonal matrix. After series
of calculation using symbolic manipulater and definition (3.32) the solution can be
written as

(−k̃× (k̃× û−))− (−k̃× (k̃× û+)) = O(1)e−θk2t [(−k̃× (k̃× û−0))− (−k̃× (k̃× û+0))]

+(O(1)e−θk2t−O(1)e−θ t)(−k̃× (k̃× Ê0))

+(O(1)e−θk2t−O(1)e−θ t−O(1)ie−θ t)(−k̃× (k̃× B̂0)),

− k̃× (k̃× Ê) = (O(1)e−θ t−O(1)ie−θ t)(−k̃× (k̃× Ê0))+(O(1)ie−θ t)(−k̃× (k̃× B̂0)),

− k̃× (k̃× B̂) = (O(1)ie−θ t)(−k̃× (k̃× Ê0))+(O(1)e−θ t−O(1)ie−θ t)(−k̃× (k̃× B̂0)).

(3.50)

By using equation (3.26), and substituting (3.27) in the first equation of (3.50), we
obtain

û−− û+ =
ik̃
|k|

(O(1)e−θ t +O(1)e−θk2tk2)ρ̂+0 +(O(1)e−θ t +O(1)e−θk2tk2)k̃k̃ · û+0

+
ik̃
|k|

(O(1)e−θ t +O(1)e−θk2tk2)ρ̂−0 +(O(1)e−θ t +O(1)e−θk2tk2)k̃k̃ · û−0

+O(1)e−θk2t [(−k̃× (k̃× û−0))− (−k̃× (k̃× û+,0))]

+(O(1)e−θk2t−O(1)e−θ t)(−k̃× (k̃× Ê0))

+(O(1)e−θk2t−O(1)e−θ t−O(1)ie−θ t)(−k̃× (k̃× B̂0)).

(3.51)
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Furthermore, we know from (3.1)

∇ ·E = ρ+− ρ−,

and thus

Ê =−k̃× (k̃× Ê)− ik̃
|k|

(
ρ̂+− ρ̂−

)
. (3.52)

Multiplying the first and the third equation of (3.25) by k̃ and substituting the result
into equation (3.52), we obtain

Ê =
−ik̃
|k|

[
(O(1)e−θ t +O(1)e−θk2t)ρ̂+0− (O(1)e−θ t +O(1)e−θk2t)ik · û+0

+(O(1)e−θ t +O(1)e−θk2t)ρ̂−0− (O(1)e−θ t +O(1)e−θk2t)ik · û−0

]
+(O(1)e−θ t−O(1)ie−θ t)(−k̃× (k̃× Ê0))+O(1)ie−θ t(−k̃× (k̃× B̂0)).

(3.53)

Now since k̃ k̃ · B̂ = 0, we have

B̂ = (O(1)ie−θ t)(−k̃× (k̃× Ê0))+(O(1)e−θ t−O(1)ie−θ t)(−k̃× (k̃× B̂0)).

Moreover, taking the sum of the first and the second equations of (3.33), we obtain

∂t(M1 +M2)+(M1 +M2)+(M2−M1)(α−−α+) = 0.

Thus,

M1 +M2 = e−θ t(M1,0 +M2,0)+
∫ t

0
e−(t−s)(M2−M1)(α−−α+) ds. (3.54)

Substituting the first and the second equations of definition (3.32) into equation
(3.54), we get that

(−k̃× (k̃× û+))+(−k̃× (k̃× û−)) = e−θ t [(−k̃× (k̃× û+0))+(−k̃× (k̃× û−0))]

+
∫ t

0
e−(t−s)

[
O(1)e−θk2s[(−k̃× (k̃× û−0))− (−k̃× (k̃× û+0))]

+(O(1)e−θk2s−O(1)e−θs)(−k̃× (k̃× Ê0))

+(O(1)e−θk2s−O(1)e−θs−O(1)ie−θs)(−k̃× (k̃× B̂0))

]
ds.

(3.55)
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Next, substituting equations (3.27) into the above computations, we obtain

û+(t,k)+ û−(t,k) =
ik̃
|k|

(O(1)e−θ t +O(1)e−θk2tk2)ρ̂+0

+(O(1)e−θ t +O(1)e−θk2tk2)k̃k̃ · û+0

+
ik̃
|k|

(O(1)e−θ t +O(1)e−θk2tk2)ρ̂−0 +(O(1)e−θ t +O(1)e−θk2tk2)k̃k̃ · û−0

+ e−θ t [(−k̃× (k̃× û+0))+(−k̃× (k̃× û−0))]

+O(1)(e−θk2t− e−t)[(−k̃× (k̃× û+0))− (−k̃× (k̃× û−0))]

+O(1)(e−θk2t− e−t)(−k̃× (k̃× Ê0))+O(1)(e−θ t− e−t)(−k̃× (k̃× Ê0))

+O(1)(e−θk2t− e−t)(−k̃× (k̃× B̂0))−O(1)(e−θ t− e−t)(−k̃× (k̃× B̂0))

−O(1)(e−θ t− e−t)(−k̃× i(k̃× B̂0)).

(3.56)

Now, taking the sum and difference respectively of the equations (3.51) and (3.56),
we obtain

û±(t,k) =
ik̃
|k|

(O(1)e−θ t +O(1)e−θk2tk2)ρ̂+0 +(O(1)e−θ t +O(1)e−θk2tk2)k̃k̃ · û+0

+
ik̃
|k|

(O(1)e−θ t +O(1)e−θk2tk2)ρ̂−0 +(O(1)e−θ t +O(1)e−θk2tk2)k̃k̃ · û−0

+O(1)e−θk2t(−k̃× (k̃× û−0))− (−k̃× (k̃× û+0))

+(O(1)e−θk2t−O(1)e−θ t)(−k̃× (k̃× Ê0))

+(O(1)e−θk2t−O(1)e−θ t−O(1)ie−θ t)(−k̃× (k̃× B̂0))

+
ik̃
|k|

O(1)e−θ t
ρ̂+0 +O(1)e−θ t k̃k̃ · û+0−

ik̃
|k|

O(1)e−θ t
ρ̂−0

+O(1)e−θ t k̃k̃ · û−0 + e−θ t [(−k̃× (k̃× û+0))+(−k̃× (k̃× û−0))]

+O(1)e−θk2t +O(1)e−θk2t−O(1)e−θ t +O(1)e−θk2t +O(1)e−θ t

−O(1)ie−θ t−O(1)e−t .

(3.57)

(ii) When |k| → ∞, λ j(k) has the following asymptotic expansion:

λ j(k) = µ
(1)
j k+µ

(0)
j +µ

(−1)
j k−1 +µ

(−2)
j k−2 + ... · (3.58)
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Each coefficient µ
(n)
j is given by direct computation as

µ
(1)
1 = 0, µ

(0)
1 =−(1+α++α−),

µ
(1)
2 = i, µ

(0)
2 = 0, µ

(−1)
2 =

−2
3i

, µ
(−2)
2 =−4

9
,

µ
(1)
3 =−i, µ

(0)
3 = 0, µ

(−1)
3 =

2
3i
, µ

(−2)
3 =−4

9
.

The approximation of the eigenvalue when |k| → ∞ is

λ1 =−(1+α++α−),

λ2 = i k− 2
3i

k−1− 4
9

k−2,

λ3 =−i k+
2
3i

k−1− 4
9

k−2.

Hence, the Green matrix G for (3.48) is given by G(t) = D(t) D−1(0) and the solu-
tion is represented as

x = G(t)x0,

where each component of this solution is itself a 3×3 diagonal matrix. After series
of calculation using symbolic manipulater and equation (3.32) the solution can be
written as

(−k̃× (k̃× û−))− (−k̃× (k̃× û+))

= O(1)e−θ t [(−k̃× (k̃× û−,0))− (−k̃× (k̃× û+0))]

+
O(1)
|k|

e−θk−2t(−k̃× (k̃× Ê0))

+
O(1)
|k|2

e−θ t− O(1)
|k|2

e−θk−2t(−k̃× (k̃× B̂0)),

− k̃× (k̃× Ê) =−O(1)e−θ t +O(1)e−θk−2t [(−k̃× (k̃× û−0))− (−k̃× (k̃× û+0)]

+O(1)e−θk−2t(−k̃× (k̃× Ê0))+
O(1)
|k|

e−θk−2t(−k̃× (k̃× B̂0)),

− k̃× (k̃× B̂) = O(1) i |k|e−θk−2t [(−k̃× (k̃× û−0))− (−k̃× (k̃× û+0)]

−O(1) i |k|e−θ t(−k̃× (k̃× Ê0))+O(1)e−θk−2t(−k̃× (k̃× B̂0)).

(3.59)

By using (3.26), and substituting (3.30) into the first equation of the above computa-
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tion, we obtain

û−− û+ =

(
O(1)e−θ t k̃k̃−O(1)e−θ t i k̃

|k|
i
)

ρ̂+0 +

(
O(1)e−θ t−O(1)e−θ t 1

|k|

)
k̃k̃ · û+0

+

(
O(1)e−θ t ik̃

|k|
−O(1)e−θ t i k̃k̃

)
ρ̂−0 +

(
O(1)e−θ t 1

|k|
−O(1)e−θ t

)
k̃k̃ · û−0

+O(1)e−θ t [(−k̃× (k̃× û−0))− (−k̃× (k̃× û+,0))]

+
O(1)
|k|

e−θk−2t(−k̃× (k̃× Ê0))+

(
O(1)
|k|2

e−θ t− O(1)
|k|2

e−θk−2t
)
(−k̃× (k̃× B̂0)).

(3.60)

Furthermore, we have

Ê =−k̃× (k̃× Ê)− ik̃
|k|

(
ρ̂+− ρ̂−

)
.

Therefore, multiplying the first and the third equation of (3.29) by k̃ and substituting
into the above equation, we obtain

Ê =−
[
(O(1)−O(1)|k|−1)e−θ t

ρ̂+0− (O(1)|k|−1−O(1))e−θ t i k · û+0

+(O(1)|k|−1−O(1))e−θ t
ρ̂−0− (O(1)+O(1)|k|−1)e−θ t ik · û−0

]
+(−O(1)e−θ t +O(1)e−θk−2t)[(−k̃× (k̃× û−0))− (−k̃× (k̃× û+,0))]

+O(1)e−θk−2t(−k̃× (k̃× Ê0))+
O(1)
|k|

e−θk−2t(−k̃× (k̃× B̂0)).

(3.61)

Since k̃ k̃ · B̂ = 0, we have

B̂ = O(1) i |k|e−θk−2t(−k̃× (k̃× û−,0))− (−k̃× (k̃× û+,0)

−O(1) i |k|e−θ t(−k̃× (k̃× Ê0))+O(1)e−θk−2t(−k̃× (k̃× B̂0)).

Subsituting the first equation of (3.59) into the equation (3.54) results in

(−k̃× (k̃× û+))+(−k̃× (k̃× û−)) = e−θ t [(−k̃× (k̃× û+0))+(−k̃× (k̃× û−0))]

+
∫ t

0
e−(t−s)

[
O(1)e−θs(−k̃× (k̃× û−0))− (−k̃× (k̃× û+0))

+
O(1)
|k|

e−θk−2s(−k̃× (k̃× Ê0))

+

(
O(1)
|k|2

e−θs− O(1)
|k|2

e−θk−2s
)
(−k̃× (k̃× B̂0))

]
ds.

(3.62)
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Next, substuting equation (3.30) into the equation (3.62), we obtain

û+(t,k)+ û−(t,k) =
(

O(1)e−θ t k̃k̃−O(1)e−θ t i k̃
|k|

i
)

ρ̂+0 +

(
O(1)e−θ t−O(1)e−θ t 1

|k|

)
k̃k̃ · û+0

+

(
O(1)e−θ t ik̃

|k|
−O(1)e−θ t i k̃k̃

)
ρ̂−0 +

(
O(1)e−θ t 1

|k|
−O(1)e−θ t

)
k̃k̃ · û−0

+ e−θ t [(−k̃× (k̃× û+0))+(−k̃× (k̃× û−0))]

+O(1)(e−θ t− e−t)[(−k̃× (k̃× û+0))+(−k̃× (k̃× û−0))]

+O(1)(e−θk−2t− e−t)(−k̃× (k̃× Ê0))

+O(1)(e−θ t− e−t)(−k̃× (k̃× B̂0))+O(1)(e−θk−2t− e−t)(−k̃× (k̃× B̂0)).

(3.63)

Now, taking the sum and difference respctively of the equations (3.60) and (3.63),
we obtain

û±(t,k) =
(

O(1)e−θ t k̃k̃−O(1)e−θ t i k̃
|k|

i
)

ρ̂+0 +

(
O(1)e−θ t−O(1)e−θ t 1

|k|

)
k̃k̃ · û+0

+

(
O(1)e−θ t ik̃

|k|
−O(1)e−θ t i k̃k̃

)
ρ̂−0 +

(
O(1)e−θ t 1

|k|
−O(1)e−θ t

)
k̃k̃ · û−0

+O(1)e−θ t [(−k̃× (k̃× û+0))+(−k̃× (k̃× û−0))]

+
O(1)
|k|

e−θk−2t(−k̃× (k̃× Ê0))+

(
O(1)
|k|2

e−θ t− O(1)
|k|2

e−θk−2t
)
(−k̃× (k̃× B̂0))

+
ik̃
|k|2

O(1)e−θ t
ρ̂+0 +

O(1)
|k|

e−θ t k̃k̃ · û+0− ik̃O(1)e−θ t
ρ̂−0

+O(1)e−θ t k̃k̃ · û−0 + e−θ t [(−k̃× (k̃× û+0))+(−k̃× (k̃× û−0))]

+O(1)e−θ t +O(1)e−θk−2t +O(1)e−θ t−O(1)e−θk−2t−O(1)e−t .

(3.64)

3.2.3 Combine the Parallel Part and Perpendicular Part
We will decompose the solution U = [ρ±,u±,E,B] into the parallel part and perpen-
dicular part.

Theorem 3.3. Let U = [ρ±,u±,E,B] be the solution to the Cauchy problem (3.1)
with intial data (3.2) on the linearized homogeneous system with initial data U0 =
[ρ±,0,u±,0,E0,B0] satisfying the condition (3.3). For all t ≥ 0 and all k ∈ R3 satisfy-
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ing |k| 6= 0, we may decompose U via
ρ̂+(t,k)
ρ̂−(t,k)
û+(t,k)
û−(t,k)
Ê(t,k)
B̂(t,k)

=



ρ̂+(t,k)
ρ̂−(t,k)

û+,‖(t,k)
û−,‖(t,k)
Ê‖(t,k)

0

+


0
0

û+,⊥(t,k)
û−,⊥(t,k)
Ê⊥(t,k)
B̂⊥(t,k)

 , (3.65)

where û±,‖, û±,⊥ are defined by

û±,‖ = k̃k̃ · û±, û±,⊥ =−k̃× (k̃× û±) = (I3− k̃⊗ k̃)û±.

simillarly, for Ê‖(t,k), Ê⊥(t,k) and B̂⊥(t,k)M5(t,k)
M3(t,k)
M4(t,k)

 :=

û±,⊥(t,k)
Ê⊥(t,k)
B̂⊥(t,k)

 ,
M5,0(t,k)

M3,0(t,k)
M4,0(t,k)

 :=

û±0,⊥(t,k)
Ê0,⊥(t,k)
B̂0,⊥(t,k)

 . (3.66)

Then we have the matrices GI
11×11(t,k) and GII

9×9(t,k) such that
ρ̂+(t,k)
ρ̂−(t,k)

û+,‖(t,k)
û−,‖(t,k)
Ê‖(t,k)

= GI
11×11(t,k)


ρ̂+0(t,k)
ρ̂−0(t,k)

û+0,‖(t,k)
û−0,‖(t,k)
Ê0‖(t,k)


and M5(t,k)

M3(t,k)
M4(t,k)

= GII
9×9(t,k)

M5,0(t,k)
M3,0(t,k)
M4,0(t,k)

 .
3.3 Refined Lp−Lq time-decay property
In this subsection, we seek to refine the Lp−Lq time-decay property for every com-
ponent of the solution U = [ρ±,u±,E,B]. To do so, we use Theorem 3.3 and find the
delicate time-frequency pointwise estimates on Û = [ρ̂±, û±, Ê, B̂] as follows.

Theorem 3.4. Let 1≤ p,r ≤ 2≤ q≤ ∞, l≥ 0 and let m≥ 0 be an integer. Define[
l+3

(1
r
− 1

q

)]
+

=


[

l+3
(1

r −
1
q

)]
−
+1, when r 6= 2 or q 6= 2 or l is not an integer,

l, when r = q = 2 and l is an integer,
(3.67)
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where [· ]− denotes the integer part of the argument. Suppose U0 satisfies (3.3). Then
for any t ≥ 0, ∇metLU0 satisfies the following time-decay property:

‖∇metLU0‖Lq ≤C(1+ t)−
3
2 (

1
p−

1
q )−

m
2 ‖U0‖Lp +C(1+ t)−

l
2‖∇m+[l+3( 1

r−
1
q )]+U0‖Lr ,

(3.68)

where C =C(p,q,r, l,m).

Lemma 3.5. Suppose U = [ρ±,u±,E,B] is the solution to the linearized homoge-
neous system (3.1) with initial data U0 = [ρ0,±,u0,±,E0,B0] satisfying (3.3). Then
there exist constants θ > 0, C > 0 such that for all t ≥ 0,k ∈ R3,

|ρ̂±(t,k)| ≤C|[ρ̂±0(k), û±0(k)]| ·

{
(e−θ t + e−θ |k|2t) if |k| ≤ 1
e−θ t if |k| ≥ 1

(3.69)

|û±(t,k)| ≤Ce−
t
2 |[ρ̂±0(k), û±0(k), Ê0(k)]|

+C|[ρ̂±0(k), û±0(k), Ê0(k), B̂0(k)]| ·

(e−θ t + |k|e−θ |k|2t) if |k| ≤ 1(
e−θ t + 1

|k|e
− θ t
|k|2
)

if |k| ≥ 1

(3.70)

|Ê(t,k)| ≤C|[ρ̂±0(k), û±0(k), Ê0(k), B̂0(k)]| ·

e−θ t if |k| ≤ 1(
1
|k|e
−θ t + e

− θ t
|k|2
)

if |k| ≥ 1

+C|[û±0(k), Ê0(k), B̂0(k)]| ·

(e−θ t + |k|e−θ |k|2t) if |k| ≤ 1(
1
|k|2 e−θ t + e

− θ t
|k|2
)

if |k| ≥ 1
(3.71)

|B̂(t,k)| ≤C|[û±0(k), Ê0(k), B̂0(k)]| ·

(|k|e−θ t + e−θ |k|2t) if |k| ≤ 1(
1
|k|e
−θ t + e

− θ t
|k|2
)

if |k| ≥ 1
(3.72)

Proof : The upper bound (3.69) follows from (3.65) and the first and third equa-
tions of (3.25) and (3.29). The first term of the right-hand side of (3.70) is obtained
from (3.57) and (3.64), while the right-hand side of (3.72) is obtained from (3.53),
(3.61). The remaining terms on the right-hand sides of (3.70) and (3.72) were found
by considering the upper bound of [M5,M3,M4]. Equivalently, we could consider
[0, û±⊥, Ê⊥, B̂⊥] in terms of [û±,0, Ê0, B̂0] by (3.65). Applying Lemma 3.2 to (3.43),
we find c1

c2
c3

=

 O(1)|k|2I3 −O(1)|k|2I3 O(1)|k|ik̃×
−O(1)|k|2I3 O(1)I3 −O(1)|k|ik̃×
−O(1)I3 O(1)I3 O(1)|k|ik̃×

M5,0
M3,0
M4,0
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when |k| → 0 andc1
c2
c3

=

 O(1)|k|−2I3 −O(1)|k|−4I3 O(1)|k|−3ik̃×
−O(1)|k|−2I3 O(1)I3 −O(1)|k|−3ik̃×
−O(1)|k|−1I3 O(1)|k|−3I3 O(1)ik̃×

M5,0
M3,0
M4,0


when |k| → ∞. Furthermore, it follows that

2(1+α++α−+β )

(1+α++α−+β )2 +ω2 =

{
O(1) if |k| → 0,
O(1)|k|−2 if |k| → ∞,

(3.73)

and
2ω

(1+α++α−+β )2 +ω2 =

{
O(1) if |k| → 0,
O(1)|k|−1 if |k| → ∞.

(3.74)

Substituting the equations (3.73) and (3.74) into equation (3.46), we obtain

M5(t,k) = 2(O(1)|k|2M5,0−O(1)|k|2M3,0 +O(1)|k|ik̃×M4,0) ·O(1)eη(k)t

+2(−O(1)|k|2M5,0 +O(1)M3,0−O(1)|k|ik̃×M4,0)

· (O(1)cosωt +O(1)sinωt)eβ (k)t

+2(−O(1)M5,0 +O(1)M3,0 +O(1)|k|ik̃×M4,0)

· (O(1)sinωt−O(1)cosωt)eβ (k)t

when |k| → 0. When |k| → ∞,

M5(t,k) = 2(−O(1)|k|−2M5,0−O(1)|k|−4M3,0 +O(1)|k|−3ik̃×M4,0) ·O(1)|k|2eη(k)t

+2(−O(1)|k|−2M5,0 +O(1)M3,0−O(1)|k|−3ik̃×M4,0)

· (O(1)|k|−2 cosωt +O(1)|k|−1 sinωt)eβ (k)t

+2(−O(1)|k|−1M5,0 +O(1)|k|−3M3,0 +O(1)ik̃×M4,0)

· (O(1)|k|−2 sinωt−O(1)|k|−1 cosωt)eβ (k)t .

According to Lemma 3.2, there is θ > 0 such that
σ(k)≥−θ |k|2, β (k) =−σ(k)+1

2 ≥−θ if |k| ≤ 1,

σ(k)≥−θ , β (k) =−σ(k)+1
2 ≥− θ t

|k|2 if |k| ≥ 1.

Therefore, since |[M5,0,M3,0,M4,0]| ≤ |[û±,0(k), Ê0(k), B̂0(k)]|, we obtain

|M5(t,k)| ≤C|[û0(k), Ê0(k), B̂0(k)]| ·

(e−θ t + |k|e−θ |k|2t) if |k| ≤ 1(
e−θ t + 1

|k|e
− θ t
|k|2
)

if |k| ≥ 1.
(3.75)
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This corresponds to the second term on the right-hand side of equation (3.70), and is
therefore the upper bounded of û±⊥(t,k).

Now, to check equations (3.71) and (3.72), we need to use

β

β 2 +ω2 =

{
−O(1) if |k| → 0,
O(1)|k|−4 if |k| → ∞,

and
β

β 2 +ω2 =

{
O(1) if |k| → 0,
O(1)|k|−1 if |k| → ∞.

Similarly, to estimate M4(t,k), we substitute the above computation into equation
(3.47) to obtain

M4(t,k) =−ik× (O(1)|k|2M5,0−O(1)|k|2M3,0 +O(1)|k|ik̃×M4,0) ·−O(1)|k|−2eη(k)t

− ik× (−O(1)|k|2M5,0 +O(1)M3,0−O(1)|k|ik̃×M4,0)

· (−O(1)cosωt +O(1)sinωt)eβ (k)t

− ik× (−O(1)M5,0 +O(1)M3,0 +O(1)|k|ik̃×M4,0)

· (−O(1)sinωt−O(1)cosωt)eβ (k)t

when |k| → 0. When |k| → ∞,

M4(t,k) =−ik× (−O(1)|k|−2M5,0−O(1)|k|−4M3,0 +O(1)|k|−3ik̃×M4,0) ·−O(1)eη(k)t

− ik× (−O(1)|k|−2M5,0 +O(1)M3,0−O(1)|k|−3ik̃×M4,0)

· (−O(1)|k|−4 cosωt +O(1)|k|−1 sinωt)eβ (k)t

− ik× (−O(1)|k|−1M5,0 +O(1)|k|−3M3,0 +O(1)ik̃×M4,0)

· (−O(1)|k|−4 sinωt−O(1)|k|−1 cosωt)eβ (k)t

Therefore, for |k| ≤ 1 and |k| ≥ 1 it follows that

|M4(t,k)| ≤C|[û0(k), Ê0(k), B̂0(k)]| ·

(e−θ t + |k|e−θ |k|2t) if |k| ≤ 1(
1
|k|2 e−θ t + e

− θ t
|k|2
)

if |k| ≥ 1.
(3.76)

Moreover, using equation (3.41), we get

M3(t,k) = (O(1)|k|2M5,0−O(1)|k|2M3,0 +O(1)|k|ik̃×M4,0) · eη(k)t

+(−O(1)|k|2M5,0 +O(1)M3,0−O(1)|k|ik̃×M4,0) · cosωteβ (k)t

+(−O(1)M5,0 +O(1)M3,0 +O(1)|k|ik̃×M4,0) · sinωteβ (k)t

49



when |k| → 0. When |k| → ∞,

M3(t,k) = (−O(1)|k|−2M5,0−O(1)|k|−4M3,0 +O(1)|k|−3ik̃×M4,0) · eη(k)t

+(−O(1)|k|−2M5,0 +O(1)M3,0−O(1)|k|−3ik̃×M4,0) · cosωteβ (k)t

+(−O(1)|k|−1M5,0 +O(1)|k|−3M3,0 +O(1)ik̃×M4,0) · sinωt.

Hence, for |k| ≤ 1 and |k| ≥ 1, (3.72) holds and this concludes of the proof.

Theorem 3.6. Let 1 ≤ p,r ≤ 2 ≤ q ≤ ∞, l ≥ 0 and let m ≥ 0 be an integer. Assume
U(t) = etLU0 is the solution of the initial value problem (3.1), (3.2) with initial data
[ρ±0,u±0,E0,B0] which satisfies (3.3). Then for any t ≥ 0, U = [ρ±,u±,E,B] satisfies

‖∇m
ρ±(t)‖Lq ≤C(1+ t)−

3
2 (

1
p−

1
q )−

m
2 ‖[ρ̂±0, û±,0]‖Lp +C‖[ρ±0,u±0]‖Lr , (3.77)

‖∇mu±(t)‖Lq ≤Ce−
t
2 (‖ρ±0‖Lp +‖∇m+[3( 1

r−
1
q )]+[ρ±0,u±0]‖Lr)

+C(1+ t)−
3
2 (

1
p−

1
q )−

m+1
2 ‖[u±0,E0,B0]‖Lp

+C(1+ t)−
l+1

2 ‖∇m+[l+3( 1
r−

1
q )]+[u±0,E0,B0]‖Lr

(3.78)

‖∇mE(t)‖Lq ≤C(1+ t)−
3
2 (

1
p−

1
q )−

m+1
2 ‖[u±0,E0,B0]‖Lp

+C(1+ t)−
l
2‖∇m+[l+3( 1

r−
1
q )]+[u±0,E0,B0]‖Lr

(3.79)

‖∇mB(t)‖Lq ≤C(1+ t)−
3
2 (

1
p−

1
q )−

m
2 ‖[u±0,E0,B0]‖Lp

+C(1+ t)−
l
2‖∇m+[l+3( 1

r−
1
q )]+[u±0,E0,B0]‖Lr ,

(3.80)

where C =C(p,q,r, l,m) and [l+3(1
r −

1
q)]+ is defined in (3.67).

Proof : Let 1 ≤ p,r ≤ 2 ≤ q ≤ ∞ and m be an non-negative integer. Let q′ satsify
1
q′ +

1
q = 1. Using the Hausdorff-Young inequality and (3.69) we prove (3.77) as

follows,

‖∇m
ρ±(t,k)‖Lq

x
≤C‖|k|mρ̂±‖Lq′(|k|≤1)+C‖|k|mρ̂±‖Lq′(|k|≥1). (3.81)

We estimate of the first term of (3.81) using Hölder inequality 1
q′ =

1
p′ +

p′−q′
p′q′ with
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1
p′ +

1
p = 1 and fixing ε > 0 sufficiently small; that is,

‖|k|m[ρ̂±0, û±0][e−θ t + e−θ |k|2t ]‖Lq′(|k|≤1)

= ‖|k|−
p′−q′
p′q′ (3−ε)|k|m+ p′−q′

p′q′ (3−ε)
[ρ̂±0, û±0][e−θ t + e−θ |k|2t ]‖Lq′(|k|≤1)

≤ ‖|k|−(3−ε)‖−
p′−q′
p′q′ ‖|k|m+ p′−q′

p′q′ [ρ̂±0, û±0][e−θ t + e−θ |k|2t ]‖Lp′(|k|≤1)

≤ ‖|k|m+ p′−q′
p′q′ (3−ε)

[ρ̂±0, û±0][e−θ t + e−θ |k|2t ]‖Lp′(|k|≤1)

≤Ce−θ t‖[ρ̂±0, û±0]‖Lp′(|k|≤1)+C(t +1)−
3
2 (

1
q′−

1
p′ )−

m+1
2 [ρ̂±0, û±0]‖Lp′(|k|≤1)

≤Ce−θ t‖[ρ±0,u±0]‖Lp(|k|≤1)+C(t +1)−
3
2 (

1
p−

1
q )−

m+1
2 ‖[ρ±0,u±0]‖Lp(|k|≤1).

Now we estimate of the second term; by taking ε > 0 sufficiently small and using
Hölder inequality 1

q′ =
1
r′ +

r′−q′
r′q′ with 1

r′ +
1
r = 1 we obtain

‖|k|m[ρ̂±0, û±0][e−θ t + e−θ |k|2t ]‖Lq′(|k|≥1)

= ‖|k|−
r′−q′
r′q′ (3+ε)|k|m+ p′−q′

p′q′ (3+ε)
[ρ̂±0, û±0]e−θ t‖Lq′(|k|≥1)

≤ ‖|k|−(3+ε)‖−
r′−q′
r′q′ ‖|k|m+ r′−q′

r′q′ (3+ε)
[ρ̂±0, û±0]e−θ t‖Lr′(|k|≥1)

≤C‖|k|m+( 1
q′−

1
r′ )(3+ε)

[ρ̂±0, û±0]e−θ t‖Lr′(|k|≥1)

≤Ce−θ t‖∇m+[3( 1
r−

1
q )]+[ρ±0,u±0]‖Lr′(|k|≥1).

We prove (3.78) similarly. That is,

‖∇mu±(t)‖Lq
x
≤C‖|k|mû±‖Lq′(|k|≤1)+C‖|k|mû±‖Lq′(|k|≥1),

where

‖|k|mû±(t,k)‖Lq′(|k|≤1) = ‖|k|
me−t/2[ρ̂±0, û±0, Ê0]‖Lq′ +‖|k|me−θ t [ρ̂±0, û±0, Ê0, B̂0]‖Lq′

+‖|k|me−θ |k|2t [ρ̂±0, û±0, Ê0, B̂0]‖Lq′ .

(3.82)

We estimate the first term of (3.82) using the Hölder inequality 1
q′ =

1
p′ +

p′−q′
p′q′ with
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1
p′ +

1
p = 1 and fixing ε > 0 sufficiently small:

‖|k|me−t/2[ρ̂±0, û±0, Ê0]‖Lq′ =

(∫
R3
||k|me−t/2[ρ̂±0, û±0, Ê0]|q

′
)1/q′

=

(∫
R3
||k|−

p′−q′
p′q′ (3−ε)|k|m+ p′−q′

p′q′ (3−ε)e−t/2[ρ̂±0, û±0, Ê0]|q
′
)1/q′

≤ e−t/2‖|k|−(3−ε)‖−
p′−q′
p′q′ ‖|k|m+ p′−q′

p′q′ [ρ̂±0]‖Lp′(|k|≤1)

≤ e−t/2‖|k|m+ p′−q′
p′q′ (3−ε)

[ρ̂±0]‖Lp′(|k|≤1) ≤Ce−t/2‖[ρ̂±0]‖Lp′(|k|≤1)

≤Ce−t/2‖[ρ±0]‖Lp(|k|≤1).

We estimate the second term of (3.82) by

‖|k|me−θ |k|2t [ρ̂±0, û±0, Ê0, B̂0]‖Lq′ =

(∫
R3
||k|m+1e−θ |k|2t [û±0, Ê0, B̂0]|q

′
)1/q′

=

(∫
R3
||k|−

p′−q′
p′q′ (3−ε)|k|m+ p′−q′

p′q′ (3−ε)e−θ |k|2t [û±0, Ê0, B̂0]|q
′
)1/q′

≤ ‖|k|−(3−ε)‖−
p′−q′
p′q′ ‖|k|m+ p′−q′

p′q′ e−θ |k|2t [û±0, Ê0, B̂0]‖Lp′(|k|≤1)

≤ e−t/2‖|k|m+ p′−q′
p′q′ (3−ε)

[ρ̂±0]‖Lp′(|k|≤1) ≤Ce−t/2‖[ρ̂±0]‖Lp′(|k|≤1)

≤Ce−t/2‖[ρ±0]‖Lp(|k|≤1).

We estimate the third term of (3.82) in two parts. First, take ε > 0 sufficiently small
and use Hölder inequality 1

q′ =
1
r′ +

r′−q′
r′q′ with 1

r′ +
1
r = 1:

‖|k|mû±(t,k)‖Lq′(|k|≥1) = ‖|k|
me−t/2[ρ̂±0, û±0, Ê0]‖Lq′ +‖|k|me−θ t [ρ̂±0, û±0, Ê0, B̂0]‖Lq′

+‖|k|m 1
|k|

e−θ |k|2t [ρ̂±0, û±0, Ê0, B̂0]‖Lq′ ,
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where

‖|k|me−t/2[ρ̂±0, û±0, Ê0]‖Lq′ =

(∫
R3
||k|me−t/2[ρ̂±0, û±0, Ê0]|q

′
)1/q′

=

(∫
R3
||k|−

r′−q′
r′q′ (3+ε)|k|m+ r′−q′

r′q′ (3+ε)e−t/2[ρ̂±0, û±0, Ê0]|q
′
)1/q′

≤ e−t/2‖|k|−(3+ε)‖−
r′−q′
r′q′ ‖|k|m+ r′−q′

r′q′ (3+ε)
[ρ̂±0]‖Lp′(|k|≤1)

≤ e−t/2‖|k|m+( 1
q′−

1
r′ )(3+ε)

[ρ̂±0]‖Lp′(|k|≤1)

≤Ce−t/2‖∇m+[3( 1
r−

1
q )]+[ρ̂±0]‖Lr .

To estimate the second part of the third term, we get

‖|k|m 1
|k|

e
−θ t
|k|2 [ρ̂±0, û±0, Ê0, B̂0]‖Lq′ =

(∫
R3
||k|m−1e

−θ t
|k|2 [û±0, Ê0, B̂0]|q

′
)1/q′

=

(∫
R3
||k|−

r′−q′
r′q′ (3+ε)|k|m+ r′−q′

r′q′ (3+ε)e
−θ t
|k|2 [û±0, Ê0, B̂0]|q

′
)1/q′

≤ ‖|k|−(3+ε)‖−
r′−q′
r′q′ ‖|k|m+ r′−q′

r′q′ (3+ε)e
−θ t
|k|2 [û±0, Ê0, B̂0]‖Lr′(|k|≤1)

≤ e
−θ t
|k|2 ‖|k|m+l+3( 1

q′−
1
r′ )|k|−(l+1)[u±0,E0,B0]‖Lr′(|k|≤1)

≤C(1+ t)−
l+1

2 ‖∇m+[l+3( 1
r−

1
q )]+[u±0,E0,B0]‖Lr

where we used

sup
|k|≤1

1
|k|l+1 e

−θ(t+1)
|k|2 ≤C(1+ t)−

l+1
2 .

The proofs of (3.79) and (3.80) are similar.
Note that we transformed to the Fourier space to find the solution representation.

Now we go back to the physical space x(t) and obtain the decay rates for the solutions
to the linearized equations. Fundamental properties of the system are given by the
following corollary based on Theorem 3.6.

Corollary 3.1. Assume U(t) = etLU0 is the solution of the initial value problem
(3.1),(3.2) with initial data [ρ±0,u±0,E0,B0] which satisfies (3.3). Then U = [ρ±,u±,E,B]
satisfies

‖ρ±(t)‖ ≤Ce−t/2‖[ρ±0,u±0]‖,
‖u±(t)‖ ≤Ce−t/2‖[ρ±0]‖+C(1+ t)−

5
4‖[u±0,E0,B0]‖L1∩Ḣ2 ,

‖E(t)‖ ≤C(1+ t)−
5
4‖[u±0,E0,B0]‖L1∩Ḣ3,

‖B(t)‖ ≤C(1+ t)−
3
4‖[u±0,E0,B0]‖L1∩Ḣ2 ,

(3.83)
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‖ρ±(t)‖L∞ ≤Ce−t/2‖[ρ±0,u±0]‖L2∩Ḣ2,

‖u±(t)‖L∞ ≤Ce−t/2‖[ρ±0]‖L1∩Ḣ2 +C(1+ t)−2‖[u±0,E0,B0]‖L1∩Ḣ5,

‖E(t)‖L∞ ≤C(1+ t)−2‖[u±0,E0,B0]‖L1∩Ḣ6,

‖B(t)‖L∞ ≤C(1+ t)−
3
2‖[u±0,E0,B0]‖L1∩Ḣ5,

(3.84)

and {
‖∇B(t)‖ ≤C(1+ t)−

5
4‖[u±0,E0,B0]‖L1∩Ḣ4 ,

‖∇N [E(t),B(t)]‖ ≤C(1+ t)−
5
4‖[u±0,E0,B0]‖L1∩ḢN+3.

(3.85)

Proof : The results of Corollary 3.1 are particular cases of Theorem 3.6.
For example we explain how we get the decay rates for u±. From equation (3.78) for
L2 take q = 2, p = 1,m = 0, l = 3/2 and r = 2

‖∇mu±(t)‖L2 ≤Ce−
t
2 (‖ρ±0‖L1 +‖∇[ 3

2 ]+1[ρ±0,u±0]‖L1)

+C(1+ t)−
5
4‖[u±0,E0,B0]‖L1

+C(1+ t)−
5
4‖∇[1+ 1

2 ]+1[u±0,E0,B0]‖L1

(3.86)

Thus
‖u±(t)‖L2 ≤Ce−t/2‖[ρ±0]‖+C(1+ t)−

5
4‖[u±0,E0,B0]‖L1∩Ḣ2.

Now for L∞ take q = ∞, p = 1,m = 0, l = 3 and r = 2

‖∇mu±(t)‖L∞ ≤Ce−
t
2 (‖ρ±0‖L1 +‖∇[ 3

2 ]+1[ρ±0,u±0]‖L2)

+C(1+ t)−2‖[u±0,E0,B0]‖L1

+C(1+ t)−2‖∇[4+ 1
2 ]+1[u±0,E0,B0]‖L2

(3.87)

Thus

‖u±(t)‖L∞ ≤Ce−t/2‖[ρ±0]‖L1∩Ḣ2 +C(1+ t)−2‖[u±0,E0,B0]‖L1∩Ḣ5.
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Chapter 4

The decay rates for nonlinear systems.

4.1 Decay rates for system 2.2.
In this section, we apply the linear Lp−Lq time-decay property of the homogeneous
system (3.1) to the nonlinear case. Throughout this section, we suppose that U =
[ρ±,u±,E,B] is the solution to the Cauchy problem (2.2) satisfying (2.3).

By Duhamel’s Principle, the solution U can be formally written as

U = etLU0 +
∫ t

0
e(t−s)L[g1(s),g2(s),g3(s),0] ds, (4.1)

where etLU0 is as defined in section 3.2 and
g1 =−∇.(ρ±u±),
g2 =−u±.∇u±−A±γ[(ρ±+1)γ−2−1]∇ρ±± (u±×B)+α±(u±−u∓),
g3 = ρ−u−−ρ+u+.

(4.2)

Remark 4.1. Note that in (4.1), [g1(s),g2(s),g3(s),0] satisfies the compatibility con-
dition (3.3). Thus e(t−s)L acts on [g1(s),g2(s),g3(s),0] for all 0≤ s≤ t.

Proposition 4.1. Suppose initial data V0 = [σ±0,υ±0, Ẽ0, B̃0] satisfies (2.4). If
εN+2(V0)> 0 is small enough, then the solution V = [σ±,υ±, Ẽ, B̃] satisfies

‖V (t)‖N ≤CεN+2(V0)(1+ t)−3/4, (4.3)

for any t > 0. Moreover, εN+6(V0) > 0 begin sufficiently small implies the solution
V = [σ±,υ±, Ẽ, B̃] satisfies

‖∇V (t)‖N−1 ≤CεN+6(V0)(1+ t)−5/4, (4.4)

for any t ≥ 0
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Lemma 4.1. Suppose V = [σ±,υ±,E,B] is the solution of the initial value problem
(2.2), (2.3) with initial data V0 = [σ±,υ±, Ẽ0, B̃0] satisfying (2.4) as described in
Proposition 2.1. If EN(V0) is sufficiently small, then

d
dt
EN(V (t))+λDN(V (t))≤ 0. (4.5)

Proof : Let l> 0. Multiplying equation (4.5) by (1+ t)l we get

d
dt
EN(V (t))(1+ t)l +λDN(V (t))(1+ t)l ≤ 0. (4.6)

Integrating over [0,1], we find∫ t

0

d
dt
EN(V (s))(1+ s)l ds+λ

∫ t

0
(1+ s)lDN(V (s)) ds≤ 0 (4.7)

which implies

(1+ t)lEN(V (t))+λ

∫ t

0
(1+ s)lDN(V (s)) ds≤ EN(V0)+ l

∫ t

0
(1+ s)l−1EN(V (s)) ds.

(4.8)
Recalling

EN(V (t)≤C
(
DN(V (t))+‖B̃‖2 +‖σ++σ−‖2

)
, (4.9)

we obtain

(1+ t)lEN(V (t))+λ

∫ t

0
(1+ s)lDN(V (s)) ds

≤ EN(V0)+Cl
∫ t

0
(1+ s)l−1

(
DN(V (t))+‖B̃‖2 +‖σ++σ−‖2

)
ds

+Cl
∫ t

0
(1+ s)l−1DN+1(V (s)) ds.

(4.10)

Similarly,

(1+ t)l−1EN+1(V (t))+λ

∫ t

0
(1+ s)l−1DN+1(V (s)) ds

≤ EN+1(V0)+Cl−1
∫ t

0
(1+ s)l−2

(
DN(V (t))+‖B̃‖2 +‖σ++σ−‖2

)
ds

+Cl+1
∫ t

0
(1+ s)l−2DN+2(V (s)) ds.

(4.11)
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and

λ

∫ t

0
DN+2(V (s)) ds≤ EN+2(Vt)+λ

∫ t

0
DN+2(V (s)) ds≤ EN+2(V0) (4.12)

for 1≤ l≤ 2. Thus

(1+ t)lEN(V (t))+λ

∫ t

0
(1+ s)lDN(V (s)) ds

≤ EN(V0)+C
∫ t

0
(1+ s)l−1

(
‖B̃‖2 +‖σ++σ−‖2

) (4.13)

To estimate the term on the right hand side of (4.13), define

EN,∞ ≤ (1+ s)3/2EN(V (s)). (4.14)

Applying Duhamel’s principle for t ≥ 0 along with the linear estimate on B from
(3.83) to (4.1), we get

‖B(t)‖ ≤ (1+ t)−3/4‖[u±0,E0,B0]‖L1∩Ḣ2 +C
∫ t

0
(1+ s)−3/4‖[g2(s),g3(s)]‖L1∩Ḣ2

(4.15)
for all 0≤ s≤ t.

Since

‖g2(s)‖L1 =
∫
|−−u±.∇u±−A±γ[(ρ±+1)γ−2−1]∇ρ±± (u±×B)+α±(u±−u∓)| ds

≤
∫
|−u±.∇u±| ds+

∫
|−u±×B| ds+

∫
|γ[(1+ρ±)

γ−2−1]∇ρ±| ds,

we can apply the Sobolev imbedding theorem along with the Hölder and Cauchy
inequalities to obtain

‖g2(s)‖L1 ≤C(‖∇u±‖+‖u±‖+‖B‖+‖∇ρ±‖), (4.16)

and

‖g3(s)‖L1 =
∫
|ρ±u±| ds (4.17)

Thus,
‖g3(s)‖L1 ≤C(‖ρ±‖+‖u±‖). (4.18)

Therefore, we get

‖g2(t)‖Ḣ2 =

( 2

∑
α=1
|Dα(−u±.∇u±−A±γ[(ρ±+1)γ−2−1]∇ρ±±(u±×B)+α±(u±−u∓)|

)
(4.19)
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Thus,
‖g2(t)‖Ḣ2 ≤ ‖∇U(t)‖2‖u±,B(t)‖L∞ , (4.20)

and

‖g3(s)‖Ḣ2 =

( 2

∑
α=1

∫
|Dα(ρ±u±)|2 ds

)1/2

. (4.21)

Thus,
‖g3(t)‖Ḣ2 ≤ ‖∇U(t)‖2‖[ρ±,u±]‖L∞ . (4.22)

Therefore,
‖[g2(s),g3(s)]‖L1∩Ḣ2 ≤CEN(U(s)).

Notice that
EN(U(s))≤CEN(V (

√
γs)). (4.23)

From (4.14)
EN(V (

√
γs))≤ (1+

√
γs)−3/2EN,∞(V (

√
γt)),

for any 0≤ s≤ t.
Then

‖[g2(s),g3(s)]‖L1∩Ḣ2 ≤C(1+
√

γs)−3/2EN,∞(V (
√

γt)) (4.24)

Substituting equation (4.24) in equation (4.15) we get

‖B(t)‖ ≤ (1+ t)−3/4
(
‖[u±0,E0,B0]‖L1∩Ḣ2 +C(1+ s)−3/2EN,∞(V (

√
γt))

)
≤ (1+ t)−3/4

(
‖[u±0,E0,B0]‖L1∩Ḣ2 +EN,∞(V (

√
γt))

)
,

(4.25)

which implies

‖B̃(t)‖2 ≤ (1+ t)−3/2
(
‖[υ±0, Ẽ0, B̃0]‖2

L1∩Ḣ2 +(EN,∞(V (
√

γt)))2
)
. (4.26)

Finally, we need to show the uniform-in-time bound of EN,∞(V (t)) which implies
the decay rates of the energy functional EN(V (t)). Using l = 3

2 + ε in (4.13) with
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ε > 0 sufficiently small and using (4.25) we get

(1+ t)
3
2+ε EN(V (t))+λ

∫ t

0
(1+ s)

3
2+ε DN(V (s)) ds

≤CEN+2(V0)+C
∫ t

0
(1+ s)

1
2+ε

(
‖B̃‖2 +‖σ++σ−‖2

)
≤CEN+1(V0)+(1+ t)

3
2+ε

(
C(1+ t)−3/2‖[υ±0, Ẽ0, B̃0]‖2

L1∩Ḣ2

+C(1+ s)−3/2(EN,∞(V (t)))2
)

≤CEN+2(V0)+C(1+ t)ε

(
‖[υ±0, Ẽ0, B̃0]‖2

L1∩Ḣ2 +(EN,∞(V (t)))2
)
,

(4.27)

which implies

(1+ t)
3
2 EN(V (t))≤C

(
EN+2(V0)+‖[υ±0, Ẽ0, B̃0]‖2

L1 +(EN,∞(V (t)))2
)
, (4.28)

and

(1+ t)
3
2 (EN,∞(V (t)))≤C

(
εN+2(V0)

2 +(EN,∞(V (t)))2
)
. (4.29)

Now from the definition (2.16), and since εN+2(V0)> 0 is sufficiently small, EN,∞(V (t))≤
εN+2(V0)

2 holds for any t ≥ 0 we get

‖V (t)‖N ≤C (EN(V (t))1/2 ≤C εN+2(V0)(1+ t)−3/4, (4.30)

that is the proof of (4.3) in Proposition 4.1.

4.2 Time rate for the high-order energy functional
In this section, we determine the time-decay estimates of the high-order energy func-
tional ‖∇V‖2

N , that is the proof (4.4) of Proposition 4.1. To do so, we investigate the
time-decay estimates on ‖∇B̃‖ and ‖∇N [Ẽ, B̃]‖ using the following lemma.

Lemma 4.2. Suppose V = [σ±,υ±, Ẽ, B̃] is the solution to the Cauchy proplem (2.2)
and (2.3) with initial condition V0 = [σ0,υ0, Ẽ0, B̃0] satisfying (2.4) as obtained in
Proposition 2.1. If EN(V0) is sufficiently small, then there exists the high-order energy
functional Eh

N(·) and the high-order dissipation rate Dh
N(·) such that for all ≥ 0

d
dt
Eh

N(V (t))+λDh
N(V (t))≤C‖∇B̃‖2. (4.31)
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By comparing the definitions of Eh
N(V (t)) (2.9) and Dh

N(V (t)) (2.13) and based
on lemma 4.2 the equation (4.31) we have

d
dt
Eh

N(V (t))+λEh
N(V (t))≤C

(
‖∇B̃‖2 +‖∇N [Ẽ, B̃]‖+‖∇(σ++σ−)‖2

)
,

which implies

Eh
N(V (t))≤ e−λ tEh

N(V0)+C
∫ t

0
e−λ (t−s)

(
‖∇B̃(s)‖2+‖∇N [Ẽ, B̃](s‖+‖∇(σ++σ−)(s)‖2

)
.

(4.32)
Now, we estimate the time integral term om the right-hand side of the inequality
(4.32), we have the next lemma.

Lemma 4.3. Suppose V = [σ±,υ±, Ẽ, B̃] is the solution of the initial value proplem
(2.2) and (2.3) with initial condition V0 = [σ0,υ0, Ẽ0, B̃0] satisfying (2.4) as obtained
in Proposition 2.1. If εN+6(V0) is sufficiently small, where defined in (2.16), then for
all t ≥ 0

‖∇B̃(t)‖2 +‖∇N [Ẽ(t), B̃(t)]‖2 +‖∇N(σ+(t)+σ−(t))‖2 ≤ εN+6(V0)
2(1+ t)

5
2 .

(4.33)

The proofs of Lemma 4.2 and Lemma 4.3 are analogous to those of Lemmas 5.1
and 5.2 in [2].
Now we suppose that the above lemma is true. Then by putting (4.32) into (4.31) we
get

Eh
N(V (t))≤ e−λ tEh

N(V0)+CεN+6(V0)
2(1+ t)

5
2 ,

which (4.4) in Proposition 4.1 holds.

4.3 Decay rate in Lq

In this section we determine the decay rates in Lq, 2 ≤ q ≤ +∞, of (1.4), (1.5), and
(1.6) for solutions U = [ρ±,u±,E,B] to the Cauchy problem (3.1) and (3.2). Suppose
that ε13(V0) is sufficiently small. In addition, for N ≥ 4, Proposition 4.1 shows that
if εN+2(V0) is sufficiently small then

‖U(t)‖N ≤CεN+2(V0)(1+ t)−
3
4 , (4.34)

and if εN+6(V0) is sufficiently small then

‖∇U(t)‖N−1 ≤CεN+6(V0)(1+ t)−
5
4 . (4.35)
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We establish the estimates on B, [u±,E] and ρ± as follows.
To estimate the L2 decay rate on ‖B‖Lq , note that from (4.34) we obtain

‖B(t)‖ ≤Cε6(V0)(1+ t)−
3
4 .

To estimate the L∞ decay rate, note that the L∞ estimates on B in (3.84) to (4.1) give

‖B(t)‖L∞ ≤C(1+t)−
3
2‖[u±0,E0,B0]‖L1∩Ḣ5 +C

∫ t

0
(1+t−s)−

3
2‖[g2(s),g3(s)]‖L1∩Ḣ5 ds.

From (4.34) we obtain

‖[g2(s),g3(s)]‖L1∩Ḣ5 ≤C‖U(t)‖2
6 ≤Cε

2
8 (V0)(1+ t)−

3
2 ,

and thus
‖B(t)‖L∞ ≤Cε8(V0)(1+ t)−

3
2 .

Moreover, by L2−L∞ interpolation,

‖B(t)‖Lq ≤Cε8(V0)(1+ t)−
3
2+

3
2q , (4.36)

for 2≤ q≤ ∞.
To estimate ‖u±,E‖Lq , note that for the L2 decay rate we can utilize the L2 esti-

mate on u± and E in (3.83) to (4.1). That is,

‖u±(t)‖ ≤C(1+ t)−
5
4 (‖ρ±0‖+‖[u±0,E0,B0]‖L1∩Ḣ2)

+C
∫ t

0
(1+ t− s)−

5
4 (‖g1(s)‖+‖[g2(s),g3(s)]‖L1∩Ḣ2) ds

and

‖E(t)‖ ≤C(1+ t)−
5
4‖[u±0,E0,B0]‖L1∩Ḣ3

+C
∫ t

0
(1+ t− s)−

5
4‖[g2(s),g3(s)]‖L1∩Ḣ3 ds.

From (4.34),

‖g1(t)‖+‖[g2(t),g3(t)]‖L1∩Ḣ3 ≤ ‖U(t)‖2
4 ≤Cε

2
6 (V0)(1+ t)−

3
2 ,

and it therefore holds that

‖u±(t),E(t)‖ ≤Cε6(V0)(1+ t)−
5
4 .
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For the L∞ decay rate, we can utilize the L∞ estimates on u± and E in (3.84) to (4.1).
That is,

‖u±(t)‖L∞ ≤C(1+ t)−2(‖ρ±0‖L2∩Ḣ2 +‖[u±0,E0,B0]‖L1∩Ḣ5)

+C
∫ t

0
(1+ t− s)−2(‖g1(s)‖L2∩Ḣ2 +‖[g2(s),g3(s)]‖L1∩Ḣ5) ds,

and

‖E(t)‖L∞ ≤C(1+ t)−2‖[u±0,E0,B0]‖L1∩Ḣ6

+C
∫ t

0
(1+ t− s)−2‖[g2(s),g3(s)]‖L1∩Ḣ6 ds.

Since

‖g1(t)‖L2∩Ḣ2 +‖[g2(t),g3(t)]‖Ḣ5∩Ḣ6 ≤ ‖∇U(t)‖2
6 ≤Cε

2
13(V0)(1+ t)−

5
2 ,

and

‖[g2(t),g3(t)]‖L1 ≤C‖U(t)‖(‖u±(t)‖+‖∇U(t)‖)

≤C[ε6(V0)(1+ t)−
3
4 ] · [ε10(V0)(1+ t)−

5
4 ]≤Cε

2
10(V0)(1+ t)−2,

it holds that
‖u±(t),E(t)‖L∞ ≤Cε13(V0)(1+ t)−2.

Moreover, by L2−L∞ interpolation,

‖u±(t),E(t)‖Lq ≤Cε13(V0)(1+ t)−2+ 3
2q (4.37)

for 2≤ q≤ ∞.
To estimate the L2 decay rate on ‖ρ±‖Lq , we utilize the L2 estimate on ρ± in

(3.83) to (4.1). We get

‖ρ±(t)‖ ≤Ce−
t
2‖[ρ±0,u±0]‖+C

∫ t

0
e−

(t−s)
2 ‖[g1(s),g2(s)]‖ ds. (4.38)

Since

‖[g1(t),g2(t)]‖ ≤C(‖∇U(t)‖2
1 +‖u±(t)‖ · ‖B(t)‖L∞)

≤Cε
2
10(V0)(1+ t)−

5
2 ,

(4.38) implies the slower decay estimate

‖ρ±(t)‖ ≤Cε10(V0)(1+ t)−
5
2 . (4.39)
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Moreover, after estimating ‖[g1(t),g2(t)]‖ and utilizing the previous slower decay
estimate to obtain

‖[g1(t),g2(t)]‖ ≤C‖u±(t)‖L∞(‖∇ρ±(t)‖+‖∇u±(t)‖+‖B(t)‖)

≤C‖ρ±(t)‖(‖∇ρ±(t)‖2 +‖∇u±(t)‖2)≤Cε13(V0)
2(1+ t)−

11
4 ,

it follows from (4.38) that

‖ρ±(t)‖ ≤Cε13(V0)(1+ t)−
11
4 . (4.40)

For the L∞ decay rate, we utilize the L∞ estimates on ρ± in (3.84) to (4.1). We have

‖ρ±(t)‖L∞ ≤Ce
t
2‖ρ±0,u±‖L2∩Ḣ2 +C

∫ t

0
e−

(t−s)
2 ‖[g1(s),g2(s)]‖L2∩Ḣ2 ds, (4.41)

and it is simple to check that

‖[g1(t),g2(t)]‖L2∩Ḣ2 ≤C‖∇U(t)‖4(‖ρ±(t)‖+‖u±(t),B(t)‖L∞ +‖∇[ρ±(t),u±(t)]‖L∞)

≤Cε13(V0)(1+ t)−
11
4 .

(4.42)

Applying (4.41), we obtain

‖ρ±(t)‖L∞ ≤Cε13(V0)(1+ t)−
11
4 .

Thus, by L2−L∞ interpolation,

‖ρ±(t)‖Lq ≤Cε13(V0)(1+ t)−
11
4 (4.43)

for 2 ≤ q ≤ ∞. Note that (4.36), (4.37) and (4.43), correspond to (1.6), (1.5) and
(1.4), respectively.
Now, from (4.1) let G(t)∗u±0 = etLU0. For the L2 decay rate, by applying (4.1) and
(7.4) we have

‖U−etLU0‖2 = ‖
∫ t

0
e(t−s)L[g1(s),g2(s),g3(s),0] ds‖2≤

∫ t

0
e(t−s)L‖[g1(s),g2(s),g3(s),0]‖2 ds,

since

‖g1(t)‖2
L2 = ‖

∫ t

0
e(t−s)L(−∇.(ρ±u±)) ds‖2

≤
∫ t

0
e(t−s)L‖∇.(ρ±u±)‖2 ds

≤Cε
2
10(V0)(1+ t)−

5
2 ,
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‖g2(t)‖2
L2 = ‖

∫ t

0
e(t−s)L(−u±.∇u±−A±γ[(ρ±+1)γ−2−1]∇ρ±± (u±×B)+α±(u±−u∓)) ds‖2

≤
∫ t

0
e(t−s)L‖−u±.∇u±−A±γ[(ρ±+1)γ−2−1]∇ρ±± (u±×B)+α±(u±−u∓)‖2 ds

≤Cε
2
10(V0)(1+ t)−

5
2 ,

‖g3(t)‖2
L2 = ‖

∫ t

0
e(t−s)L(ρ−u−−ρ+u+) ds‖2

≤
∫ t

0
e(t−s)L‖ρ−u−−ρ+u+‖2 ds

≤Cε
2
10(V0)(1+ t)−

5
2 .

Therefore,
‖U− etLU0‖L2 ≤Cε10(V0)(1+ t)−

5
2 . (4.44)

For the L∞ decay rate, by applying (4.1) and (7.4) we get

‖g1(t)‖L∞ = sup
0≤s≤t

|
∫ t

0
e(t−s)L(−∇.(ρ±u±)) ds|

≤ sup
0≤s≤t

∫ t

0
e(t−s)L|∇.(ρ±u±)| ds

≤Cε13(V0)(1+ t)−2,

‖g2(t)‖L∞ = sup
0≤s≤t

|
∫ t

0
e(t−s)L(−u±.∇u±−A±γ[(ρ±+1)γ−2−1]∇ρ±± (u±×B)+α±(u±−u∓)) ds|

≤ sup
0≤s≤t

∫ t

0
e(t−s)L|−u±.∇u±−A±γ[(ρ±+1)γ−2−1]∇ρ±± (u±×B)+α±(u±−u∓)| ds

≤Cε13(V0)(1+ t)−2,

‖g3(t)‖L∞ = sup
0≤s≤t

|
∫ t

0
e(t−s)L(ρ−u−−ρ+u+) ds|

≤ sup
0≤s≤t

∫ t

0
e(t−s)L|ρ−u−−ρ+u+| ds

≤Cε13(V0)(1+ t)−2.

Thus,
‖U− etLU0‖L∞ ≤Cε13(V0)(1+ t)−2. (4.45)

So, by L2−L∞ interpolation,

‖U− etLU0‖Lq ≤Cε13(V0)(1+ t)−2+ 3
2q , (4.46)

for 2≤ q≤ ∞. This completes the proof of Theorem 1.1.
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Part II

Heteroclinic Orbits For The nonlinear
Vlasov And The one-dimensional

Vlasov-Poisson Systems
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Chapter 5

Introduction

5.1 Overview

An important problem in Dynamical Systems is the existence of heteroclinic orbits,
i.e. orbits that are asymptotically connecting two distinct critical points or manifolds.
There is a rich literature in the case of planar systems, and here we recommend
the survey paper [24] by Feng and Hu, which reviews various methods for proving
existence of or constructing both homoclinic and heteroclinic orbits. As expected, the
dynamics is more complicated in higher dimensions, and thus much less is known
in this case. About three decades ago, Rabinowitz [33] used a natural variational
approach to prove existence of heteroclinic orbits for

q̈(t) =−∇W (q(t)), t ∈ R, (5.1)

where W ∈C2(Td) and satisfies the assumptions (5.3) below. The idea is to fix ξ ∈Zd

and look for minimizers of

I[u] :=
1
2

∫
R

[
|u̇(t)|2−W (u(t))

]
dt

among all sufficiently regular curves u : R→ Rd which stay sufficiently far from
Zd\{ξ} and satisfy

u(−∞) := lim
t→−∞

u(t) = 0 ∈ Rd and u(∞) := lim
t→∞

u(t) = ξ .

This variational approach has been used by other authors, in different situations (mul-
tiple global minima, double-well potentials etc): [16], [19], [35] etc. Similar con-
structions have been employed to prove existence of heteroclinic orbits for PDE, or,

66



in general, to prove the existence of connections between critical points in infinite-
dimensional metric spaces; see, for example, [30], [31], [36].

In recent years it has been revealed that some important evolutionary PDE aris-
ing in Atmospheric Science, Pressureless Gas Dynamics, Plasma Physics, etc. can
be interpreted as infinite-dimensional Hamiltonian dynamical systems in spaces of
measures. The dynamical viewpoint (where the time-continuous deformation of one
distribution into the other is tracked) of the optimal (with respect to some given
cost) transfer between two Borel measures of equal mass was pioneered by Ben-
amou and Brenier [22] and has led to the discovery of many important connections
between the Monge-Kantorovich theory and Fluid Dynamics. The set P2(Rd) (of
Borel probabilities on Rd with finite second moment) equipped with the quadratic
Monge-Kantorovich metric (see below) can be endowed with a Riemannian-like
structure; Otto [32] used the geometric insight (later made rigorous by Ambrosio,
Gigli and Savaré [18]) gained this way to prove useful asymptotic decay estimates
for porous media. In [22] it is shown that the Euler-Lagrange equation satisfied by
the geodesics of this “pseudo-Riemannian” metric space is the pressureless Euler
system. An earlier connection between equations of Fluid Dynamics and infinite-
dimensional Geometry, not unrelated to Benamou and Brenier’s [22], is the work
of Arnold [20], which, in the words of Schnirelman [34], marked the beginning of
“serious interaction between the dynamics of an ideal incompressible fluid and the
(infinite-dimensional) differential geometry”.

The realization that some classical evolutionary PDE (e.g. the Fokker-Planck
equation) are gradient flows in such metric spaces has had a profound impact on the
understanding of the mechanisms driving these flows. For example, whereas it had
been long known that the negative Boltzmann entropy was an H-functional (counter-
part of a Lyapunov function for ODE) for the Heat Equation, Jordan, Kinderlehrer
and Otto [28] showed that this equation is, in fact, the gradient flow of the entropy in
the non-Euclidean setting provided by P2(Rd). Soon following it was realized that,
beside these dissipative equations, there are systems of PDE (such as pressureless
Euler-Poisson, nonlinear Vlasov, or the Semi-Geostrophic equations) that are con-
servative in the same setting. As opposed to the gradient flow case, the solutions to
these conservative systems exhibit strong singularities and can be singular measures
(i.e. not absolutely continuous with respect to the Lebesgue measure). This adds
to the difficulty of the analysis, and reinforces our choice of setting the problem in
spaces of measures.

The requirement W ∈C2(Td) is sufficient to ensure existence and uniqueness of
solutions for the nonlinear Vlasov system

∂t f + v ·∇x f = ∇v ·
[

f (∇W ∗ρ)
]
, where ρ(t,x) :=

∫
Rd

f (t,x,v)dv, (NV)

when f0 := f (0, ·, ·) is prescribed. It models the kinetics of a system of charged
particles which interact according to a potential W (see [37], which also covers the
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interpretation of this system as a Hamiltonian system in the space of probability
measures endowed with a certain Monge-Kantorovich metric).

Definition 1. We say that [0,T ] 3 t → ft(dx,dv) ∈P(Rd×Rd) is a weak solution
to (NV) on Rd×Rd if

[0,T ] 3 t→
∫
Rd

∫
Rd

ϕ(x,v) ft(dx,dv) ∈W 1,1(0,T )

and

d
dt

∫
Rd

∫
Rd

ϕ(x,v) ft(dx,dv) =
∫
Rd

∫
Rd

v ·∇xϕ(x,v) ft(dx,dv)

−
∫
Rd

∫
Rd

∇W ∗ρt(x) ·∇vϕ(x,v) ft(dx,dv)
(5.2)

for any ϕ ∈Cc(Rd×Rd), where ρt denotes the x–marginal of ft .

We point the reader to [17] and [29] for issues like existence, uniqueness and
stability properties for the nonlinear Vlasov equation. We add three assumptions on
W , i.e.

W (−x) =W (x)<W (0) = 0 for all x ∈ Rd\Zd. (5.3)

Let n≥ 1 be an integer and define Ln : Rd×n×Rd×n→ R by

Ln(X ,V ) =
1
2
|V |2n−

1
2n2

n

∑
i, j=1

W (xi− x j), (5.4)

where | · |n is the norm on Rd×n induced by the inner-product

〈X ,Y 〉n :=
1
n

n

∑
j=1

x j · y j

(the dot represents the usual dot product in Rd). The Euler-Lagrange equations asso-
ciated to Ln are

ẍi(t) =−
1
n

n

∑
j=1

∇W (xi(t)− x j(t)), i = 1, ...,n. (5.5)

For all t ∈ R let

f n(t,x,v) :=
1
n

n

∑
i=1

δ(xi(t),ẋi(t))(x,v)
(

so its x–marginal is ρ
n(t,x) =

1
n

n

∑
j=1

δx j(t)(x)
)
.

(5.6)
The connection between the system (5.5) and (NV) has first been explored in [25] in
the context of action-minimizing monokinetic solutions to (NV) and is the result of
the following observation:
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Proposition 5.1. If Xn = [x1, ...,xn] solves (5.5), then f n solves (NV) in the sense of
distributions.

Proof: Let ϕ ∈C1
c (Rd×Rd) and use (5.6) to compute:

d
dt

∫
Rd

∫
Rd

ϕ(x,v) f n(t,dx,dv) =
1
n

n

∑
j=1

[
ẋ j(t) ·∇xϕ(x j(t), ẋ j(t))+ ẍ j(t) ·∇vϕ(x j(t), ẋ j(t))

]
.

We use (5.5) and (5.6) again to recognize the right hand side of the equation above as∫
Rd

∫
Rd

{
v ·∇xϕ(x,v)−

[
∇W ∗ρ

n(t, ·)
]
(x) ·∇vϕ(x,v)

}
f n(t,dx,dv),

which finishes the proof. QED.

In [33], P. Rabinowitz proved the following theorem (slightly reworded here):

Theorem 5.1. Let V ∈C2(Tm) satisfy V (−x)=V (x)<V (0)= 0 for all x∈Rm\Zm

(note that this implies that the absolute maximum points of V are isolated). Then,
for any z ∈ Zm there exist two solutions q∓ : R→ Rm of q̈ = −∇V (q) such that
q∓(∓∞) = z and q∓(±∞) ∈ Zm\{z}.

Put in words, this means that for any z ∈ Z there exists a heteroclinic orbit for
the system q̈ = −∇V (q) which emanates from z and another one which terminates
at z. Of course, it is easy to notice that given q−, q+ can be chosen such that q+(t) :=
q−(−t).

We denote

W n(X) :=
1

2n2

n

∑
i, j=1

W (xi− x j), (5.7)

which achieves its global maximum only at all matrices of the form

X = [x,x+ z1, ...,x+ zn−1] for all x ∈ Rd and all zi ∈ Zd, i = 1, ...,n−1.

For a given Z := [z1, ...,zn−1] ∈ Zd×(n−1) let

M (Z) := {X ∈ Rd×n : X = [x,x+ z1, ...,x+ zn−1], x ∈ Rd} (5.8)

and let
M :=

⋃
Z∈Rd×(n−1)

M (Z). (5.9)

Since M ⊂ ArgmaxW n and none of the points in M is isolated, Rabinowitz’s
results will not apply directly to (5.5) to provide existence of heteroclinic orbits ema-
nating from and terminating at every point in ArgmaxW n. However, it is transparent
that upon setting

Y := [y1, ...,yn−1] for yi := x1− xi+1, i = 1, ...,n−1, (5.10)
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we get that Y : R→ Rd×(n−1) solves

ÿi =−
2
n

∇W (yi)−
1
n

n−1

∑
j 6=i

[∇W (y j)+∇W (yi− y j)], i = 1, ...,n−1. (5.11)

One can then recover X from Y up to an affine function of t by first integrating

ẍ1 =−
1
n

n−1

∑
i=1

∇W (yi), (5.12)

and then setting
xi := x1− yi−1 for i = 2, ...,n.

More precisely, X solves (5.5) if and only if Y , as defined in (5.10), solves (5.11)
and (5.12) is satisfied. This affine transformation from X ∈ Rd×n to Y ∈ Rd×(n−1)

turns out to be very helpful, as the expression in the right hand side of (5.11) is still a
gradient (with respect to an appropriately chosen inner-product; see Proposition 8.1
in Appendix). Clearly, W̃ n satisfies (5.3) over Rd×(n−1) (which implies the maximum
points are isolated, since they form the set Zd×(n−1)). A careful inspection of the
proof of Theorem 5.1 in [33] reveals that it holds true regardless of which inner-
product Rm is equipped with. Thus, by taking m = d× (n− 1) and V = W̃ n, we
deduce that for any Z ∈ Zd×(n−1) there exist two solutions Y∓ : R→ Rd×(n−1) for
(5.11) such that Y∓(∓∞) = Z and Y∓(±∞) ∈ Zd×(n−1)\{Z}. Reverting from Y to X
as indicated above, we translate the above result into:

Proposition 5.2. For any Z ∈ Zd×(n−1) there exist two solutions X∓ : R→ Rd×n for
(5.5) such that

lim
t→∓∞

dist(X∓(t),M (Z)) = 0 and lim
t→±∞

dist(X∓(t),M \M (Z)) = 0, (5.13)

where for a metric space (S,d) and any s ∈ S and A ⊂ S, we have dist(s,A) :=
infa∈A d(s,a).

5.2 Main results

One can write [25] a Lagrangian which coincides with Ln when restricted to averages
of n Dirac masses. It can be defined on⋃

µ∈P2(Rd)

({µ}×L2(µ;Rd))

by

L(µ,ζ )=
1
2
‖ζ‖2

L2(µ;Rd)−
1
2

∫
Rd

∫
Rd

W (x−y)µ(dx)µ(dy)=:
1
2
‖ζ‖2

L2(µ;Rd)−
1
2
W (µ).

(5.14)
It is not difficult to see that the “continuous version” of W n is W .
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Remark 5.1. It is proved in [25] that the monokinetic solutions of (NV) correspond
to the Euler-Lagrange equation associated to the Lagrangian (5.14). The same ref-
erence shows that the fully kinetic version of (NV) (i.e. (NV) itself) is the Euler-
Lagrange equation associated to a related Lagrangian defined on P2(Rd×Rd), in
the sense specified in [17]. We do not need to discuss the details here, so we refer the
reader to [17] and [25] for further details.

If

Λ :=
{

λ := (λz)z∈Zd : λz ≥ 0 for z ∈ Zd and ∑
z∈Zd

λz = 1
}
,

let
f ∞

x,λ := ∑
z∈Zd

λzδ(x+z,0) for some λ ∈ Λ, x ∈ Rd.

Let us denote

Fλ := { f ∞

x,λ : x ∈ Rd} if λ ∈ Λ, and F :=
⋃

λ∈Λ

Fλ .

We shall prove first that F is the set of all critical points (measures, in our context)
of (NV) whose x-marginals maximize the potential W . For critical measures whose
x-marginals are not maximizers of W we do not expect such heteroclinic orbits to
exist in general; this is consistent with the finite dimensional case of mechanical
Hamiltonians (1/2)|p|2 +F(x), where critical points associated to minima of F are,
in general, stable.

Remark 5.2. Note that, in light of Proposition 5.1, Proposition 5.2 provides hetero-
clinic orbits for (NV) originating and terminating at measures of the form

f̄ n :=
1
n

n

∑
j=1

δ(x+z j,0) ∈P2(Rd×Rd), where x ∈ Rd, z j ∈ Zd, j = 1, ...,n.

This result is, however, too restrictive, as it only covers a subset of critical points
whose x-marginals are maximizers of the potential W .

We hope that by now it is apparent that our goal is to formulate and prove a result
of the type Proposition 5.2 for (NV), i.e. we would like to establish the existence of
heteroclinic orbits emanating and terminating at Fλ for any λ ∈ Λ. We will prove
the following (in fact, a more precise version will be presented in the next Chapter;
see Theorem 6.1 and Corollary 6.1):

Theorem 5.2. Let λ ∈ Λ. There exist two solutions f∓ : R→P2(Rd×Rd) of (NV)
such that

lim
t→∓∞

distW2( f∓,Fλ ) = 0 and lim
t→±∞

distW2( f∓,F\Fλ ) = 0,

where distW2 is defined with respect to the Wasserstein distance W2 on P2(Rd×Rd).
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We define the Wasserstein distance as (see, e.g., [37]):

Definition 2. If µ, ν are Borel probability measures in Rm, then

W2(µ,ν) :=
(

inf
γ∈Γ(µ,ν)

∫
Rm

∫
Rm
|x− y|2γ(dx,dy)

) 1
2

, (5.15)

where

Γ(µ,ν) :=
{

γ ∈P(Rm×Rm) :
∫
Rm

∫
Rm

ϕ(x)γ(dx,dy) =
∫
Rm

ϕ(x)µ(dx),∫
Rm

∫
Rm

ϕ(y)γ(dx,dy) =
∫
Rm

ϕ(y)ν(dy) for all ϕ ∈Cb(Rm)

}
. (5.16)

In Chapter 3 of this paper we analyze a singular version of (NV), namely the
Vlasov-Poisson system. Here we restrict ourselves to d = 1 and show that the initial
value problem associated with a version of the periodic, one-dimensional Vlasov-
Poisson system that takes into account the possibility of measure-valued solutions
(see [27] for the Euclidean, non-periodic case) is ill-posed. Furthermore, we explic-
itly construct infinitely many non-trivial periodic solutions, as well as infinitely many
homoclinic and heteroclinic orbits for said system. The following conclusions will
follow from that analysis:

Theorem 5.3. (1) The periodic Vlasov-Poisson equation exhibits nonuniqueness of
distributional solutions for the initial-value problem.

(2) The periodic Vlasov-Poisson equation admits infinitely many periodic (nontrival)
distributional solutions.

(3) There exist infinitely many homoclinic orbits associated with the steady state
δ(0,0).

(4) There exist infinitely many heteroclinic orbits originating at δ(0,0) and infinitely
many terminating at δ(0,0).

We conclude with an Appendix Chapter where we mainly visit or re-visit some
concepts and results that are useful throughout Chapter 3 and are more or less known
in the literature.
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Chapter 6

Heteroclinic orbits for the Nonlinear
Vlasov system

As customary, we define Td := Rd/Zd ,

C(Td) := { f : Rd → R : f is continuous and Zd-periodic}.

We also use
|x|Td := min

k∈Zd
|x+ k|,

so that d(x,y) := |x− y|Td defines a metric on Td . We begin with the following
definition:

Definition 3.
1. We say that µ,ν ∈P(Rd) (the set of all Borel probabilities on Rd) are Td-
equivalent if ∫

Rd
ϕdµ =

∫
Rd

ϕdν for all ϕ ∈C(Td).

2. If the above holds, we write µ ∼ ν .

Remark 6.1.
1. It is known [26] that “∼” is an equivalence relation on P(Rd). We denote

P(Rd)/∼ by P(Td).

2. It is also known [26] that each equivalence class (or each P(Td)- measure)
admits a unique representative µ ∈P(Qd), where Qd := [0,1)d . We provide more
details in Chapter 8.2.
3. One can prove that given any µ ∈P(Rd) there exists a unique µ∗ ∈P(Qd) such
that µ∗ ∼ µ . The uniqueness is equivalent to:

µ ∼ ν if and only if µ
∗ = ν

∗.
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Indeed, assume θ , ϑ ∈P(Rd) such that θ(Qd) = ϑ(Qd) = 1 and∫
Rd

ϕdθ =
∫
Rd

ϕdϑ for all ϕ ∈C(Td).

Let ζ ∈Cb(Rd) be arbitrarily fixed. There exists a sequence {ϕn}n ⊂C(Td) bounded
in the sup norm and pointwise convergent everywhere in Qd to ζ |Qd . (One way to
construct such sequence would be by first multiplying ζ by a continuous function un
which is equal to 1 on the cube [0,1−1/n]d and 0 on Ω := Qd\[0,1−1/(2n)]d . Then
one can solve a Laplace boundary value problem in Ω by prescribing the boundary
value 0 on the portion of the boundary inside Qd and appropriate values elsewhere
such that the corresponding values on opposite faces of Qd match the values of ζ un.
The functions obtained by patching these solutions and ζ un are in C(Td), converge
pointwise everywhere to ζ in Qd and, as a consequence of the maximum principle
for the Laplace equation, are all bounded in the sup norm by sup |ζ |.) By dominated
convergence we conclude∫

Rd
ζ dθ =

∫
Rd

ζ dϑ for all ζ ∈Cb(Rd),

so θ = ϑ .

The proposition below fully characterizes the maximizers of the potential energy.

Proposition 6.1. Under the hypotheses (5.3) on W we have that the only maximizers
of the potential energy

I(µ) :=
1
2

∫
Rd

∫
Rd

W(x− y)µ(dy)µ(dx)

in each equivalence class are the Dirac measures δa, where a ∈ Qd (i.e. if µ ∈
P(Rd) is a maximizer, then µ∗ = δa for some a ∈ Qd).

Proof : Since W ∈ C(Td), we see that I is invariant in each equivalence class. In
particular, I(µ) = I(µ∗) for all µ ∈P2(Rd). Since I(δa) = 0 ≥ I(µ∗) for all µ∗ ∈
P(Qd) and for all a ∈ Qd, we deduce that the global maximum of I is 0 and it is
achieved at δa. Now, if we look for µ∗ ∈P(Qd) such that I(µ∗) = 0, we see from
(5.3) that µ∗⊗µ∗ must be supported on the diagonal of Qd×Qd. Thus, for any Borel
sets A,B⊂Qd such that A∩B = /0 we have 0 = (µ∗⊗µ∗)(A×B) = µ∗(A)µ∗(B), i.e
µ∗(A) = 0 or µ∗(B) = 0. We claim that this implies the existence of a ∈Qd such that
µ∗ = δa. Indeed, let us divide the cube Qd into 2d equal, disjoint subcubes, i.e.

Qd =
2d⋃
j=1

Q j
d, where Q j

d := [a j
1,a

j
1 +1)× [a j

2,a
j
2 +1)× ...× [a j

d,a
j
d +1).

Since µ∗(Qd)= 1, according to the previous observations, there exists j0 ∈{1, ...,2d}
such that µ∗(Q j0

d ) = 1 and µ∗(Q j
d) = 0 if j 6= j0. Next we divide Q j0

d into 2d equal,
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disjoint subcubes etc. Thus, we obtain a sequence of Borel sets A1 ⊃ A2 ⊃ ...⊃ Ak ⊃
... , such that µ∗(Ak) = 1 for all k ≥ 1, which implies

µ
∗
(⋂

k≥1

Ak

)
= 1.

Since the sets Ak are cubes with lim
k→∞

L d(Ak) = 0, we infer that
⋂

k≥1
Ak is a singleton.

QED.

Remark 6.2.
1. Thus, any measure µ ∈P2(Rd) that maximizes I is Td-equivalent to δa for some
a ∈ Qd. It is not difficult to see that this is equivalent to maximizers µ being of the
form:

µ = ∑
z∈Zd

λzδa+z, (6.1)

where a ∈ Qd and λz ≥ 0 such that ∑
z∈Zd

λz = 1.

2. We will prove in this Chapter that for any µ of the form (6.1) above there exists a
heteroclinic orbit

R 3 t→ f (t) ∈P2(Rd×Rd)

such that

lim
t→−∞

f (t) = ∑
z∈Zd

λzδ(a+z,0) and lim
t→∞

f (t) = ν ,

where ν is another maximizer which is not in the same equivalence class as f (−∞).
3. In fact, we shall see that there exist a continuum of measures ν as in 2.

The next proposition provides the main constructive idea for our most general
result (see Theorem 6.1 and its corollary). It is, basically, a simpler, particular case.
The reader may skip it and continue directly to Theorem 6.1.

Proposition 6.2. Let ξ ∈ Zd\{0} and let q : R→ Rd be a solution of q̈ = −∇W(q)
such that q(−∞) = 0 and q(∞) = ξ (this is guaranteed to exist for some ξ ∈ Zd\{0}
by Theorem 5.1). Fix α ∈ [0,1]. Then

fα(t) := αδ((α−1)q(t),(α−1)q̇(t))+(1−α)δ(αq(t),α q̇(t))

solves the (NV) system. Furthermore,

fα(−∞) = δ(0,0),

and
fα(∞) := αδ((α−1)ξ ,0)+(1−α)δ(αξ ,0).
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Remark 6.3.
1. Note that, indeed, fα(∞) is a stationary solution for (NV).
Proof : Since

∇W ∗ρ(x) =
∫
R

∇W (x− y)ρ(dy) and ρ = αδ(α−1)ξ +(1−α)δαξ ,

we get∫
Rd

∫
Rd

{
− v ·∇xϕ(x,v)+

[
∇W ∗ρ(x)

]
·∇vϕ(x,v)

}
f∞(dx,dv)

=
∫
R

∫
R

[
α∇W (x− (α−1)ξ )+(1−α)∇W (x−αξ )

]
·∇vϕ(x,v) f∞(dx,dv)

= α [α∇W ((α−1)ξ − (α−1)ξ )+(1−α)∇W ((α−1)ξ −αξ )] ·∇vϕ((α−1)ξ ,0)
+(α−1)[α∇W (αξ − (α−1)ξ )+(1−α)∇W (αξ −αξ )] ·∇vϕ(αξ ,0) = 0.

QED.

2. There exists a set A ⊂ [0,1] with cardinality c (cardinality of R) such that fα1(∞)
is not Td-equivalent to fα2(∞) for all α1 6= α2 ∈A .

Proof (of Proposition 6.2) : To check that fα solves (NV) we take ϕ ∈C1
c (Rd×Rd)

and see that:

d
dt

∫
Rd

∫
Rd

ϕ(x,v) fα(t,dx,dv)

=
d
dt

[
αϕ((α−1)q(t),(α−1)q̇(t))+(1−α)ϕ(αq(t),α q̇(t))

]
= α(α−1)q̇(t) ·∇xϕ((α−1)q(t),(α−1)q̇(t))+(1−α)α q̇(t) ·∇xϕ(αq(t),α q̇(t))
+α(α−1)q̈(t) ·∇vϕ((α−1)q(t),(α−1)q̇(t))+(1−α)α q̈(t) ·∇vϕ(αq(t),α q̇(t)).

(6.2)

The sum of the first two terms is∫
Rd

∫
Rd

v ·∇xϕ(x,v) fα(t,dx,dv).

We now use the x-marginal of fα , namely

ρα(t, ·) = αδ(α−1)q(t)+(1−α)δαq(t),

to see that∫
Rd

∇W(x− y)ρα(t,dy) = α∇W (x+(1−α)q(t))+(1−α)∇W (x−αq(t)).
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Thus,∫
Rd

∫
Rd

(∫
Rd

∇W(x− y)ρα(t,dy)
)
·∇vϕ(x,v) fα(t,dx,dv)

= α
2
∇W ((α−1)q(t)+(1−α)q(t)) ·∇vϕ((α−1)q(t),(α−1)q̇(t))

+α(1−α)∇W (αq(t)+(1−α)q(t)) ·∇vϕ(αq(t),α q̇(t))
+α(1−α)∇W ((α−1)q(t)−αq(t)) ·∇vϕ((α−1)q(t),(α−1)q̇(t))

+(1−α)2
∇W (αq(t)−αq(t)) ·∇vϕ(αq(t),α q̇(t))

= α(1−α)q̈(t) ·∇vϕ((α−1)q(t),(α−1)q̇(t))+α(α−1)q̈(t) ·∇vϕ(αq(t),α q̇(t)).

Note that we used q̈ =−∇W(q) = ∇W(−q) and ∇W(0) = 0. Thus we have proved:

d
dt

∫
Rd

∫
Rd

ϕ(x,v) fα(t,dx,dv) =
∫
Rd

∫
Rd

v ·∇xϕ(x,v) fα(t,dx,dv)

−
∫
Rd

∫
Rd

(∫
Rd

∇W(x− y)ρα(t,dy)
)
·∇vϕ(x,v) fα(t,dx,dv)

for any ϕ ∈C1
c (Rd×Rd), i.e. fα is a distributional solution for (NV). QED.

Despite (NV) being nonlinear in the term containing the convolution, the com-
patibility between the properties of the potential W and the stationary solutions with
maximizing potential allows us to put the building blocks from the previous proposi-
tion together in order to treat the most general case.

Theorem 6.1. Let α,β ∈ [0,1] such that α +β = 1 and λ j,µ j ∈ [0,1] such that

∞

∑
j=1

λ j = β ,
∞

∑
j=1

µ j = α. Then for any k j, l j ∈ Zd, j = 1, ...,∞, the measure

f (t, ·, ·) :=
∞

∑
j=1

(
λ jδ(k j+αq(t),α q̇(t))+µ jδ(l j−βq(t),−β q̇(t))

)
solves (NV) in the sense of distributions and satisfies

f (−∞) =
∞

∑
j=1

(
λ jδ(k j,0)+µ jδ(l j,0)

)
and

f (∞) =
∞

∑
j=1

(
λ jδ(k j+αξ ,0)+µ jδ(l j−βξ ,0)

)
,

which are both equilibrium solutions of (NV).
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Proof : Let

ρ(t) :=
∞

∑
j=1

(λ jδk j+αq(t)+µ jδl j−βq(t))

be the x-marginal of f (t). Note that∫
Rd

∇W(x− y)ρ(t,dy) =
∞

∑
j=1

[
λ j∇W(x− k j−αq(t))+µ j∇W(x− l j +βq(t))

]

= β∇W(x−αq(t))+α∇W(x+βq(t)).

Thus, we have∫
Rd

∫
Rd

(∫
Rd

∇W(x− y)ρα(t)dy
)
·∇vϕ(x,v) fα(t,dx,dv)

= β

∫
Rd

∫
Rd

∇W(x−αq(t)) ·∇vϕ(x,v) f (t,dx,dv)

+α

∫
Rd

∫
Rd

∇W(x+βq(t)) ·∇vϕ(x,v) f (t,dx,dv) =: βT1 +αT2.

We compute

T1 =
∞

∑
j=1

λ j∇W(k j +αq(t)−αq(t)) ·∇vϕ(k j +αq(t),α q̇(t))

+
∞

∑
j=1

µ j∇W(l j−βq(t)−αq(t)) ·∇vϕ(l j−βq(t),−β q̇(t))

=
∞

∑
j=1

µ j∇W(l j−q(t)) ·∇vϕ(l j−βq(t),−β q̇(t))

= q̈(t) ·
∞

∑
j=1

µ j∇vϕ(l j−βq(t),−β q̇(t)).

Likewise, T2 =−q̈(t) ·
∞

∑
j=1

λ j∇vϕ(k j +αq(t),α q̇(t)).

Consequently,

d
dt

∫
Rd

∫
Rd

ϕ(x,v) f (t,dx,dv) =
d
dt

[
∞

∑
j=1

λ jϕ(k j +αq(t),α q̇(t))+µ jϕ(l j−βq(t),−β q̇(t))
]

=
∞

∑
j=1

[
λ jα q̇(t) ·∇xϕ(k j +αq(t),α q̇(t))−µ jβ q̇(t) ·∇xϕ(l j−βq(t),−β q̇(t))

]
+

∞

∑
j=1

[
λ jα q̈(t) ·∇vϕ(k j +αq(t),α q̇(t))−µ jβ q̈(t) ·∇vϕ(l j−βq(t),−β q̇(t))

]
=
∫
Rd

∫
Rd

v ·∇xϕ(x,v) f (t,dx,dv)−βT1−αT2 =
∫
Rd

∫
Rd

v ·∇xϕ(x,v) f (t,dx,dv)

−
∫
Rd

∫
Rd

(∫
Rd

∇W(x− y)ρ(t,dy)
)
·∇vϕ(x,v) f (t,dx,dv),
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so f is a solution for (NV).

Finally, note that if we replace q(t) by 0 or ξ in T1 and T2 we get T1 = T2 = 0, so
f (−∞) and f (∞) are, indeed, stationary solutions. QED.

Corollary 6.1. The same conclusion as in Theorem 6.1 holds if one replaces f (t, ·, ·)
by:

f (t, ·, ·) :=
∞

∑
j=1

[
λ jδ(k j+x+αq(t),α q̇(t))+µ jδ(l j+x−βq(t),−β q̇(t))

]
.

for some x ∈ Rd and f (−∞), f (∞) are modified accordingly.

Proof : The right hand side of (NV) is Galilean invariant (depends only on the relative
coordinates xi− x j). QED.

Remark 6.4. Note that the above result settles Theorem 5.2. Indeed, given any se-
quence of reals λz ≥ 0 such that ∑

z∈Zd
λz = 1, one can write Zd = {k j} j≥1 and count

the coefficients λz as λ̄ j for z = k j. Then one takes, for example, λ j = µ j = λ̄ j/2 and
l j = k j for all integers j ≥ 1 to obtain

f (−∞) =
∞

∑
j=1

λ̄ jδ(x+k j,0) = ∑
z∈Zd

λzδ(x+z,0).

Finally, it is not difficult to quantify the rate of approach to the equilibria; the
proposition below also concludes the proof of Theorem 5.2.

Proposition 6.3. If | . |2d denotes the Euclidean norm in R2d, then:

W2( f (t), f (−∞))≤
√

αβ |(q(t), q̇(t))|2d

and
W2( f (t), f (∞))≤

√
αβ |(q(t)−ξ , q̇(t))|2d.

Proof : Let p1, ..., pn, q1, ...,qn ∈P2(Rd) and θ j ∈ [0,1], j = 1, ...,n such that
n
∑
j=1

θ j =

1.

By taking γ1 ∈ Γo(p1,q1),γ2 ∈ Γo(p2,q2), ...,γn ∈ Γo(pn,qn) we readily see that

n

∑
j=1

θ jγ j ∈ Γ

( n

∑
j=1

θ j p j ,
n

∑
j=1

θ jq j

)
.
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Thus,

W2
2

( n

∑
j=1

θ j p j,
n

∑
j=1

θ jq j

)
≤
∫
Rd

∫
Rd
|x− y|2

( n

∑
j=1

θ jγ j

)
(dx,dy)

=
n

∑
j=1

θ jW2
2(p j,q j).

By using the continuity of the Wasserstein distance this can easily be extended to
countable convex combinations of measures, so:

W2
2( f (t), f (−∞))≤

∞

∑
j=1

[
λ jW2

2(δ(k j+αq(t),α q̇(t),δ(k j,0))+µ jW2
2(δ(l j−βq(t),−β q̇(t)), δ(l j,0))

]
=

∞

∑
j=1

[
λ j(|αq(t)|2 + |α q̇(t)|2)+µ j(|βq(t)|2 + |β q̇(t)|2)

]
= αβ

(
|q(t)|2 + |q̇(t)|2

)
.

The second inequality is obtained similarly. QED.
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Chapter 7

Heteroclinic orbits for the
one-dimensional, periodic
Vlasov-Poisson system

If W is not differentiable everywhere, one can still give a meaning to the last term in
the right hand side of the equation (5.2) in some special cases. For example, if

W (x) =
1

2d
|x|2−Φ(x),

where Φ is the fundamental solution for the Laplace equation in Rd , equation (5.2)
can be rewritten as:

d
dt

∫
Rd

∫
Rd

ϕ(x,v) ft(dx,dv) =
∫
Rd

∫
Rd

v ·∇xϕ(x,v) ft(dx,dv)

−
∫
Rd

∫
Rd

∇Pt(x) ·∇vϕ(x,v) ft(dx,dv),
(VP)

where:
−∆Pt = ρt−1.

This is the repulsive Vlasov-Poisson system with constant background charge (nor-
malized to the unit) on Rd ×Rd [27]. However, note that we are now far removed
from the setting of the previous Chapters as not only is W singular, but it is also
non-periodic. Thus, we further specialize to d = 1 and take the periodic potential

W (z) :=
1
2
(|z|2T1−|z|T1) for z ∈ R. (7.1)

From Proposition 8.3 in the Appendix, if ρt (the x–marginal of ft) satisfies ρt�L 1,
then the map

Λ(t,x) := x−∂xP(t,x), (7.2)
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where P(t, ·) := W ∗ρt , is the optimal map (in the periodic setting, i.e. with respect
to the cost c(x,y) = |x− y|T1; see Appendix for details) such that

Λ(t, ·)#ρt = L 1
T1 on T1 for t ∈ [0,T ].

The map Pt also satisfies (once again, see Proposition 8.3 in the Appendix)

∂
2
x

[
1
2
|x|2−Pt(x)

]
= ρt(x) for a.e. x ∈ R. (7.3)

What if ρt is not necessarily absolutely continuous with respect to the Lebesgue
measure? In the section below we shall argue in favor of an appropriate modification
of (VP) that will address the case of general Borel probabilities ρt ∈P

(
T1). This

adaptation has already been used in the non-periodic setting in [27].

7.1 Barycentric projection; a periodic Vlasov-Poisson
equation

Definition 4. We say that two probabilities f , f̃ on Rd×Rd are Td×Rd–equivalent
if : ∫

Rd

∫
Rd

ϕ(x,v) f (dx,dv) =
∫
Rd

∫
Rd

ϕ(x,v) f̃ (dx,dv) for all ϕ ∈Cb(Td×Rd).

Remark 7.1. : Note that if f ∼ f̃ , then ρ ∼ ρ̃, where ρ and ρ̃ are the x-marginals of
f and f̃ respectively.

Definition 5. 1. If µ ∈P(Rd), m≥ 1 is an integer and 1≤ p≤ ∞ let

Lp
per(µ;Rm) := {ξ ∈Lp(µ;Rm) : ξn→ ξ in Lp(µ;Rm) for some {ξn}n⊂C(Td;Rm)}.

We denote this set by Lp
per(µ) if m = 1.

2. If µ ∼ ν and ξ ∈ L1
per(µ;Rm),ζ ∈ L1

per(ν ;Rm) we say (µ,ξ )∼ (ν ,ζ ) if∫
Rd

ϕ ·ξ dµ =
∫
Rd

ϕ ·ζ dν for all ϕ ∈C(Td;Rm).

Remark 7.2.
1. Assume µ ∼ ν . If (ξn)n ⊂C(Td;Rm) such that ξn→ ξ in Lp(µ;Rm), then∫
Rd

ϕ ·ξ dµ = lim
n→∞

∫
Rd

ϕ ·ξndµ = lim
n→∞

∫
Rd

ϕ ·ξndν =
∫
Rd

ϕ · ξ̃ dν for all ϕ ∈C(Td;Rm),
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where ξn→ ξ̃ in Lp(ν ;Rm) (indeed, since {ξn}n is Cauchy in Lp(µ;Rm), then it is
easy to see that it is Cauchy in Lp(ν ;Rm)). Since µ∗ = ν∗ (see Remark 6.1), we have
that ∫

[0,1)d
ϕ ·ξ dµ

∗ =
∫
[0,1)d

ϕ · ξ̃ dν
∗ for all ϕ ∈C(Td;Rm)

implies
ξ ≡ ξ̃ , µ

∗ a.e. in Qd.

2. Since ξ ∈ Lp
per(µ;Rm) is equivalent to the existence of {ξn}n ⊂ C(Td;Rm) such

that ξn → ξ in Lp(µ;Rm), if we take any sequence {ξn}n as above we note that
{ξn|Qd}n is Cauchy in Lp(µ∗;Rm). Thus, there exists ξ ∗ ∈ Lp(µ∗;Rm) such that
ξn→ ξ ∗ in Lp(µ∗;Rm). If we take any other sequence {ζn}n ⊂C(Td;Rm) such that
ζn→ ξ in Lp(µ;Rm), likewise {ζn|Qd}n is Cauchy in Lp(µ∗;Rm) and so ζn|Qd → ξ̃ ∗

in Lp(µ∗;Rm). If we concatenate {ξn}n,{ζn}n we obtain that ξ̃ ∗ ≡ ξ ∗, µ∗ a.e. in
Qd , so ξ ∗ depends only on ξ and not on the approximating sequence. Thus, if we
denote ξ ∗ := ξ ∗[µ,ξ ], we immediately see that if µ ∼ ν and ξ ∈ Lp

per(µ;Rm),ζ ∈
Lp

per(ν ;Rm), then ξ ∗[µ,ξ ] = ξ ∗[ν ,ζ ] if and only if (µ,ξ )∼ (ν ,ζ ).

Proposition 7.1. For any µ ∈P2(Rd), let M[µ] be the optimal map in the periodic
sense (see Appendix) such that

M[µ]#L
d
Td = µ.

Then, there exists a unique map b[µ] ∈ L2
per(µ

∗;Rd) such that∫
Qd

[x−M[µ](x)] ·ϕ(M[µ](x))dx =
∫

Qd

b[µ](y) ·ϕ(y)µ∗(dy), (7.4)

for all ϕ ∈C(Td;Rd).

Proof : Let I : C(Td;Rd)→ R given by Iϕ = L.H.S. of equation (7.4). This is a
linear functional on C(Td;Rd) which also satisfies:

|Iϕ| ≤WTd(µ,L d
Td)‖ϕ‖L2(µ;Rd) for all ϕ ∈C(Td;Rd).

By Hahn-Banach, I can be extended to a linear functional Ĩ : L2
per(µ;Rd)→ R, con-

tinuous with
|Ĩξ | ≤WTd(µ,L d

Td)‖ξ‖L2
per(µ;Rd).

From the Riesz-Frechet representation theorem we get that there exists a unique ξ ∈
L2

per(µ;Rd) such that

Iϕ =
∫
Rd

ϕ(y) ·ξ (y)µ(dy).

But we have seen that there exists a unique ξ ∗ = ξ ∗[µ,ξ ] ∈ L2(µ∗;Rd) such that

Iϕ =
∫

Qd
ϕ(y) ·ξ ∗(y)µ∗(dy) for all ϕ ∈C(Td;Rd).

We denote b[µ] := ξ ∗ to conclude the proof. QED.
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Definition 6. We call b[µ] defined above the barycentric projection in the periodic
sense of the optimal plan (in the periodic sense) between µ and L d|Qd .

Going back to the discussion of the 1D Vlasov-Poisson system (see (VP)-(7.3)),
if ρt is not absolutely continuous with respect to L 1, then it is a well-known fact in
periodic Optimal Transport that the optimal map Λ as in (7.2) may not exist [37], so
(7.3) may not make sense. In [27] the authors argued that in the general case (i.e.
ρt �L 1 may not hold), the map Λ(t, ·) should be replaced by the barycentric pro-
jection of the optimal plan between ρt and L 1|(0,1) (which exists and is unique). As
announced in the beginning of this Chapter, we shall argue that the same generaliza-
tion is appropriate in the periodic setting. Indeed, let us prove the following:

Proposition 7.2. Assume µ ∈P2(Rd) such that µ �L d . Let Φ : Rd → R be the
optimal map in the periodic sense such that

Φ#µ = L d
Td on Td.

Then b[µ]≡Φ− Id, µ-a.e. in Rd, where b[µ] is defined in the statement of Theorem
7.1.

Proof : It is well-known that if µ �L d, and Φ is as above, then:

M[µ]◦Φ = Id, µ a.e. in Rd

and
Φ◦M[µ] = Id, L d a.e. in Qd.

So, for all ϕ ∈C(Td;Rd), we have:∫
Qd

[x−M[µ](x)] ·ϕ(M[µ](x))dx =
∫

Qd

(Φ− Id)◦M[µ](x) ·ϕ(M[µ](x))dx

=
∫
Rd
[Φ(y)− y] ·ϕ(y)µ(dy).

By Proposition 7.1, we deduce b[µ]≡Φ− Id, µ a.e. QED.

We are finally in the position to make the following:

Definition 7. We say [0,T )3 t 7→P(R×R) is a weak solution to the one-dimensional
periodic Vlasov-Poisson equation if:

[0,T ] 3 t→
∫
T1

∫
R

ϕ(x,v) ft(dx,dv) ∈W 1,1(0,T )

and

d
dt

∫
T1

∫
R

ϕ(x,v) =
∫
T1

∫
R

v∂xϕ(x,v) ft(dx,dv)

+
∫
T1

∫
R

b[ρt ](x)∂xϕ(x,v) ft(dx,dv)
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for a.e. t ∈ [0,T ], and ϕ ∈Cc(T1×R), where ρt is the x-marginal of ft and b[ρt ] is
defined in Theorem 7.1.

Remark 7.3. So, if d = 1 and we do not know that ρt�L 1, then ∂xPt(x) = x−Λt(x)
should be replaced by −b[ρt ](x) in the Vlassov-Poisson equation (VP). Note that we
used Lemma 7.1 below to make sense of the last integral in the definition above.

Lemma 7.1. Let µ ∈P(Rd) and f ∈P(Rd×Rd) such that∫
Rd

∫
Rd

ϕ(x) f (dx,dv) =
∫
Rd

ϕ(y)µ(dy) for all ϕ ∈C(Td).

If ξ ∈ L1
per(µ), then there exist a unique ξ̂ (x,v) = ξ̂ (x), ξ̂ ∈ L1

per( f ) such that∫
Rd

∫
Rd

ξ̂ (x)ϕ(x) f (dx,dv) =
∫
Rd

ξ (y)ϕ(y)µ(dy) for all ϕ ∈C(Td).

Proof : Let (ξn)n ⊂C(Td) such that ξn→ ξ in L1(µ). Then (ξn)n is Cauchy in L1( f )
and so ξn→ ξ̂ in L1( f ).
As usual, ξ̂ does not depend on the approximating sequence (ξn)n, but only on ξ .
Thus, we have∫

Rd

∫
Rd

ξ̂ (x)ϕ(x) f (dx,dv) = lim
n→∞

∫
Rd

∫
Rd

ξn(x)ϕ(x) f (dx,dv)

= lim
n→∞

∫
Rd

ξn(x)ϕ(x)µ(dx)

=
∫
Rd

ξ (x)ϕ(x)µ(dx).

QED.

7.2 Five kinds of trajectories. Ill-posedness for the
initial-value problem. Periodic, homoclinic and
heteroclinic orbits.

In this section we prove Proposition 7.3, whose immediate consequence is Theorem
5.3. This result is of the same type as Proposition 5.1, but it is considerably more
delicate to prove due to the absence of the regular potential W ; instead one needs to
(somewhat painstakingly) verify that the correct expression for the periodic barycen-
tric projection appears in the weak form of the equation.
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Let σ : R→ R given by σ(t) := 1
4(1− cos t).

1. Let m < n be even integers and define

σm,n(t) :=


0 if t ≤ mπ

σ(t) if mπ < t < nπ

0 if t ≥ nπ.

Note that σm,n ∈C1(R) and σm,n(−∞) = σm,n(∞) = 0
2. Let m < n be integers, m even and n odd, and define

σ
m,n(t) :=


0 if t ≤ mπ

σ(t) if mπ < t < nπ

1
2 if t ≥ nπ.

Note that σm,n ∈C1(R) and σm,n(−∞) = 0,σm,n(∞) = 1/2.
3. Now take two integers m < n with m odd and n even.

σ̄
m,n(t) :=


1
2 if t ≤ mπ

σ(t) if mπ < t < nπ

0 if t ≥ nπ.

Note that σ̄m,n ∈C1(R) and σ̄m,n(−∞) = 1/2, σ̄m,n(∞) = 0.
4. If m < n are both odd, let

σ̄m,n(t) :=


1
2 if t ≤ mπ

σ(t) if mπ < t < nπ

1
2 if t ≥ nπ.

Then σ̄m,n ∈C1(R) and σ̄m,n(−∞) = 1/2, σ̄m,n(∞) = 1/2.
5. Let S ⊂ πZ. If S 6= /0, assume S := {...,n jπ, ...,nkπ, ...} is listed in increasing
order. Then, for n jπ < t < n j+1π we define σS(t) = 0 if both n j and n j+1 are even,
or σS(t) = 1

2 if n j and n j+1 are both odd. We let σS(t) = σ(t) if n j +n j+1 is odd.

Remark 7.4. Note that σZ ≡ σ .

Proposition 7.3. Let q : R→ R be any of the functions defined above. Then

ft :=
1
2
(δ(−q,−q̇)+δ(q,q̇))

is a weak solution to the Vlasov-Poisson equation on T1×R, t ∈ R.

Proof : We begin by noting that

q̈+q =


0 on time intervals where q≡ 0,
1
2 on time intervals where q≡ 1

2 ,
1
4 on time intervals where q≡ σ .
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Let ϕ ∈C1
c (T1×R). Since q ∈C1(R) and q̇ is absolutely continuous, we see that∫

T1

∫
R

ϕ(x,v) ft(dx,dv) =
1
2
[ϕ(−q(t),−q̇(t))+ϕ(q(t), q̇(t))]

is absolutely continuous as a function of time. We have:

d
dt

∫
T1

∫
R

ϕ(x,v) ft(dx,dv) =
1
2
{[−q̇∂xϕ(−q,−q̇)+ q̇∂xϕ(q(t), q̇(t))]

+ [−q̈∂vϕ(−q,−q̇)+ q̈∂vϕ(q(t), q̇(t))]}.

Clearly,∫
T1

∫
R

v∂xϕ(x,v) ft(dx,dv) =
1
2
[−q̇∂xϕ(−q,−q̇)+ q̇∂xϕ(q(t), q̇(t))].

As usual, denote by

ρt :=
1
2
(δ−q(t)+δq(t))

the x–marginal of ft .
(1) If q(t) = 0 for some t ∈ R, then ρt = δ0. The optimal map pushing L 1

T1 forward
to δ0 in the periodic sense is given by

M0(x) =

{
0 if 0≤ x < 1

2
1 if x≤ 1

2 < 1.

Indeed, note that M0 satisfies M0#L
1
T1 = δ0, the extension to R by M0(x + k) =

M0(x)+ k (x ∈ [0,1), k ∈ Z) is nondecreasing, and |M0(x)− x| ≤ 1
2 for all x ∈ [0,1)

(see Remark 8.1). So, we have:∫ 1

0
[x−M0(x)]ζ (M0(x))dx =

∫ 1
2

0
xζ (0)dx+

∫ 1

1
2

(x−1)ζ (1)dx

= 0 if ζ ∈C(T1).

So, ∫
R

b[δ0](y)ϕ(y)δ0(y) = b[δ0](0)ϕ(0) = 0 for all ϕ ∈C(T1),

i.e. b[δ0](0) = 0, or b[ρt ] ≡ 0, ρt-a.e.. Therefore, on all subintervals of R where
q≡ 0, we have

q̈(t) = 0 = b[δ0](q(t)) = b[δ0](0).

(2) Next, if t belongs to a subinterval on which q(t) = 1
2 , we have ρt =

1
2(δ− 1

2
+

δ 1
2
)∼T1 δ 1

2
.

The optimal map in the periodic sense pushing L 1
T1 forward to δ 1

2
is M ≡ 1

2 on [0,1).
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Indeed, the extension to R by M(x+k) = M(x)+k (x ∈ [0,1), k ∈ Z) is nondecreas-
ing,, satisfies M#L

1
T1 = δ 1

2
, and

|x−M(x)|=
∣∣∣∣x− 1

2

∣∣∣∣≤ 1
2

for all x ∈ [0,1).

Thus, ∫ 1

0
[x−M(x)]ζ (M(x))dx =

∫ 1

0

(
x− 1

2

)
ζ

(
1
2

)
dx = 0

so, as before, we deduce b[ρt ]≡ 0, ρt a.e.
(3) Finally, if t belongs to an open subinterval of R on which q≡ σ , then we see that
0 < q(t)< 1

2 . Denote α := q(t). We have ρt =
1
2(δ−α +δα).

Let

M(x) =

{
α if 0≤ x < 1

2
1−α if 1

2 ≤ x < 1.

Since 0 < α < 1
2 ,M is nondecreasing. Let, ζ ∈C(T1) and compute

∫ 1

0
ζ (M(x))dx =

∫ 1
2

0
ζ (α)dx+

∫ 1

1
2

ζ (1−α)dx

=
1
2
[ζ (−α)+ζ (α)] =

∫
R

ζ (y)ρt(dy),

so M#L
1
T1 = ρt . Furthermore,

|x−M(x)|=

{
|x−α| ≤ 1

2 if 0≤ x < 1
2

|x+α−1| ≤ 1
2 if 1

2 ≤ x < 1

and the extension to R by M(x+ k) = M(x)+ k (x ∈ [0,1), k ∈ Z) is nondecreasing,
so M is the optimal map in the periodic sense such that M#L

1
T1 = ρt . We now look at

(for ζ ∈C(T1))

∫ 1

0
[x−M(x)]ζ (M(x))dx =

∫ 1
2

0
(x−α)ζ (α)dx+

∫ 1

1
2

(x+α−1)ζ (−α)dx

=
1
2

[
ζ (−α)+ζ (α)

]
=

(
1
8
− α

2

)
ζ (α)+

(
− 1

8
+

α

2

)
ζ (−α)

=
1
2

[(
α− 1

4

)
ζ (−α)+

(
−α +

1
4

)
ζ (α)

]
to see that

b[ρt ](−α) = α− 1
4
, b[ρt ](α) =−α +

1
4
.
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Since α = q(t) and q̈(t)+q(t) = 1
4 for all t in open subintervals where q(t) ≡ σ(t),

we see that
b[ρt ](−q(t)) =−q̈(t) and b[ρt ](q(t)) = q̈(t).

Thus,

1
2
[−q̈∂vϕ(−q,−q̇)+ q̈∂vϕ(q, q̇)] =

∫
T1

∫
R

b[ρt ](x)∂vϕ(x,v) ft(dx,dv),

which finishes the proof. QED.

Remark 7.5. Note that the statements collected in Theorem 5.3 are immediate con-
sequences of Proposition 7.3.
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Chapter 8

Appendix

8.1 A new inner-product and its corresponding gradi-
ent

Proposition 8.1. On Rd×(n−1) we define the inner-product

〈〈Y 1,Y 2〉〉 :=
1
n2

n−1

∑
j=1

y1
j · y2

j +
1

2n2

n−1

∑
j,k=1

(y1
j − y1

k) · (y2
j − y2

k) for all Y 1, Y 2 ∈ Rd×(n−1).

Then the expression in the right hand side of (5.11) is the gradient of

W̃ n : Rd×(n−1)→ R, W̃ n(Y ) :=
1
n2

n−1

∑
j=1

W (y j)+
1

2n2

n−1

∑
j,k=1

W (y j− yk)

with respect to 〈〈·, ·〉〉.

Proof: We need to show 〈∇W̃ n(Y ),ξ 〉 = 〈〈U,ξ 〉〉 for all ξ ∈ Rd×(n−1), where U is
the matrix whose columns are the vectors in the right hand side of (5.11), and 〈·, ·〉
denotes the standard, Euclidean inner-product. First,

〈∇W̃ n(Y ),ξ 〉=
n−1

∑
j=1

∇y jW̃
n(Y ) ·ξ j

=
1
n2

n−1

∑
j=1

[
∇W (y j)+

n−1

∑
k=1

∇W (y j− yk)

]
·ξ j.
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Next we compute 〈〈U,ξ 〉〉:

〈〈U,ξ 〉〉= 1
n2

n−1

∑
j=1

u j ·ξ j +
1

2n2

n−1

∑
j,k=1

(u j−uk) · (ξ j−ξk)

=
1
n2

n−1

∑
j=1

u j ·ξ j +
1

2n2

n−1

∑
j,k=1

(u j ·ξ j +uk ·ξk)−
1

2n2

n−1

∑
j,k=1

(u j ·ξk +uk ·ξ j)

=
1
n2

n−1

∑
j=1

u j ·ξ j +
n−1

n2

n−1

∑
j=1

u j ·ξ j−
1

2n2

n−1

∑
j,k=1

(
u j ·ξk +uk ·ξ j

)

=
1
n

n−1

∑
j=1

u j ·ξ j−
1
n2

(n−1

∑
j=1

u j

)
·
(n−1

∑
j=1

ξ j

)

=
1
n

n−1

∑
j=1

u j ·ξ j−
n−1

∑
j=1

ξ j ·
(

1
n2

n−1

∑
j=1

u j

)

=
1
n2

n−1

∑
j=1

ξ j ·
(

nu j−
n−1

∑
k=1

uk

)
, for all U, ξ ∈ Rd×(n−1).

Now, fix Y ∈ Rd×(n−1) and use the expression in the right hand side of (5.11) to set:

u j =
1
n

∇W (y j)+
1
n

n−1

∑
k=1

[∇W (yk)+∇W (y j− yk)].

Thus,

n−1

∑
j=1

u j =
n−1

∑
j=1

[
1
n

∇W (y j)+
1
n

n−1

∑
k=1

[∇W (yk)+∇W (y j− yk)]

]

=
n−1

∑
j=1

∇W (y j)+
1
n

n−1

∑
j,k=1

∇W (y j− yk) =
n−1

∑
j=1

∇W (y j).

Since

nu j = ∇W (y j)+
n−1

∑
k=1

∇W (yk)+
n−1

∑
k=1

∇W (y j− yk),

we get

nu j−
n−1

∑
j=1

u j = ∇W (y j)+
n−1

∑
k=1

∇W (y j− yk).

We conclude

〈∇W̃ n(Y ),ξ 〉= 1
n2

n−1

∑
j=1

ξ j ·
[

∇W (y j)+
n−1

∑
k=1

∇W (y j− yk)

]
= 〈〈U,ξ 〉〉.

QED.
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8.2 Optimal Transport on the torus

There are different (yet, equivalent) ways of defining P(Td), the space of Borel
probability measures on Td.

1. In [23], which is the original paper on periodic Optimal Transport, the following
procedure is used: let µ∗ ∈P(Qd). Define µ0 ∈P(Rd) by µ0(B) := µ∗(B∩Qd)
for any Borel set B. Then define the translates of µ0 by

µk(B) := µ0(B− k) for all k ∈ Zd.

Clearly, µk(Qd + k) = 1. Let
µ := ∑

k∈Zd

µk.

This is a Borel measure on Rd with µ(Rd) = ∞, and such that for any ϕ ∈ C(Td)
we have∫

Q[a]
ϕdµ is independent of a := (a1, ...,ad) ∈ Rd, where Q[a] :=

d

∏
j=1

[a j,a j +1).

We denote the value of this integral by∫
Td

ϕdµ

(
=
∫

Qd

ϕdµ
∗
)
.

Take ϕ ≡ 1 to see that

µ(Td) :=
∫
Td

1dµ = 1.

It is known [23] that if µ,ν ∈P(Td) (the set of all measures defined as above)

and µ �L d, then there exists a unique Φ : Rd → R convex such that Φ− 1
2 |Id|

2 is

periodic and ∇Φ#µ = ν in the periodic sense, i.e.∫
Td

ξ (∇Φ(x))µ(dx) =
∫
Td

ξ (y)ν(dy) for all ξ ∈C(Td).

Furthermore,

|∇Φ(x)− x| ≤
√

d
2

for a.e. x ∈ Rd

and
W 2

Td(µ,ν) :=
∫
Td
|∇Φ(x)− x|2µ(dx) = min

S#µ=ν

∫
Td
|S(x)− x|2µ(dx),

where S satisfies S(x+ k) = S(x)+ k for a.e. x ∈ Rd , for all k ∈ Zd and∫
Td

ξ (S(x))µ(dx) =
∫
Td

ξ (y)ν(dy) for all ξ ∈C(Td).
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2. We now describe the procedure from [26], which we briefly touched upon in the
beginning of the previous Chapter. If µ ∈P(Rd), then P(Td) :=P(Rd)/∼, where

µ ∼ ν ⇐⇒
∫

ϕdµ =
∫

ϕdν for all C(Td).

If ϕ ∈C(Td) and µ ∈P(Rd), then:∫
Rd

ϕdµ = ∑
k∈Zd

∫
Qd+k

ϕdµ = ∑
k∈Zd

∫
Qd

ϕdµk.

Here,
µk(B) := µ(B+ k) for all k ∈ Zd and B⊂ Qd.

Let
µ
∗ := ∑

k∈Zd

µk ∈P(Qd) (8.1)

to see that µ∗ ∼ µ. The distance between µ,ν is (see [26] for a proof of the second
equality)

WTd(µ,ν) = inf
µ∼µ̃

ν∼ν̃

W2(µ̃, ν̃) = min
ν∼ν̃

W2(µ
∗, ν̃), (8.2)

where W2 is the Wasserstein distance for quadratic cost c(x,y) := |x−y|2/2 and WTd

is the distance associated with the cost cTd(x,y) := |x− y|2Td (see [26]). If µ �L d,

then µ∗�L d|Qd . Since spt µ∗ ⊂ Q̄d , it follows [23] that for each ν̃ ∼ ν , there exists

S[ν̃ ] : Qd → R the gradient of a convex function Φ such that S[ν̃ ]#µ∗ = ν̃ , i.e.∫
Qd

ξ (S[ν̃ ](x))µ∗(dx) =
∫
Rd

ξ (y)ν̃(dy) for all ξ ∈Cb(Rd).

Also, ∫
Qd

|S[ν̃ ](x)− x|2µ
∗(dx) = W2

2(µ
∗, ν̃).

Let ν0 ∼ ν (whose existence follows from (8.2)) such that∫
Qd

|S[ν0](x)− x|2µ
∗(dx) = W2

Td(µ
∗,ν0) =W 2

2 (µ
∗,ν0).

The equivalence with the previous way (from [23], explained at 1 above) of viewing
Optimal Transport on the torus is obtained from:

Proposition 8.2. There exists a convex function Φ : Rd → R such that Φ− 1
2 |Id|

2 is
Zd-periodic and ∇Φ|Qd = S[ν0], µ∗-a.e. in Qd . Also, WTd(µ,ν) =WTd(µ,ν).
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Proof: According to [26] (section 2.2), we have

inf
γ∈Γ(µ∗,ν0)

∫
R2d
|x− y|2Td γ(dx,dy) =: W 2

Td(µ,ν) = W 2
Td(µ

∗,ν0) =W 2
2 (µ

∗,ν0)

= max
( f ,g)∈U

{∫
Rd

f dµ
∗+

∫
Rd

gdν0

}
,

where U is the set of all ( f ,g) ∈C(Td)×C(Td) such that

f (x) = sup
u∈Rd
{|x−u|2Td −g(u)}, g(y) = sup

v∈Rd
{|y− v|2Td − f (v)} for all x, y ∈ Rd.

From the definition of W2 (see Definition (2)), the inequality c ≥ cTd and the fact
that the optimal transport plan (with respect to c) is uniquely given by γ̄ := (Id×
S[ν0])#µ∗, we deduce

f̄ (x)+ ḡ(S[ν0](x)) = |x−S[ν0](x)|2 = |x−S[ν0](x)|2Td for µ
∗− a.e. x ∈ Qd,

where ( f̄ , ḡ) is a maximizing pair in U . It follows that there exists a convex function
Φ :Rd→R such that Φ− 1

2 |Id|
2 = f̄ is Zd-periodic and (Φ∗ is the Legendre transform

of Φ)
x ·S[ν0](x) = Φ(x)+Φ

∗(S[ν0](x)) for µ
∗− a.e. x ∈ Qd.

This means S[ν0] ≡ ∇Φ, µ∗-a.e. in Qd . By the uniqueness of Φ from 1, we get that
Φ obtained here is the same as that from 1. In particular, WTd = WTd . QED.

Remark 8.1. It follows from the considerations above that in order to determine if
some map S : Qd → Rd that pushes µ∗ forward to ν in the periodic sense is also
optimal in the periodic sense, we need to check both (1) that |S(x)− x| ≤

√
d/2 for

µ-a.e. x ∈ Qd , and (2) the fact that the extension S̃ given by S̃(x+ k) := S(x)+ k,
x ∈ Qd, k ∈ Zd is the gradient of a convex function defined on Rd .

Lemma 8.1. Let ρ ∈P(T1)∩C(T1) and let W be the kernel defined in (7.1). Then
P∗(x) :=W ∗ρ∗(x) satisfies

dP∗

dx
(x) = x−

∫ x

0
ρ
∗(z)dz+

1
2
−
∫ 1

0
zρ
∗(z)dz (8.3)

and
d2

dx2

[
1
2
|x|2−P∗(x)

]
= ρ

∗(x). (8.4)

for all x ∈ [0,1).

We shall skip the proof of the above lemma, as it follows easily from the compu-
tation of the distributional derivatives of the kernel W .
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Proposition 8.3. If ρ∗ ∈P([0,1)) and ρ∗�L 1, then P∗ is differentiable ρ∗–a.e.
in [0,1) and the map G : R→ R given by G(x) := x− (P∗)′(x) is the optimal map
such that:

G#ρ = L 1
T1 on T1,

i.e. G : T1→ T1 is the optimal map (with respect to quadratic cost) such that∫
T1

ζ (G(x))ρ(dx) =
∫
T1

ζ (y)dy

for all ζ ∈C(T1) and for all ρ ∼ ρ∗.

Proof : Since ρ∗ ∈ L1(0,1), there exists (ρ̃n)n ⊂ Cc(0,1) such that ρ̃n → ρ∗ in
L1(0,1). From the triangle inequality ||a| − |b|| ≤ |a− b| we deduce |ρ̃n| → ρ∗ in
L1(0,1). Take

ρn(x) :=
|ρ̃n(x)|+ 1

n
1
n +

∫ 1
0 |ρ̃n(y)|dy

for all integers n≥ 1, and all x ∈ [0,1].

Note that ρn(0) = ρn(1) and ρn integrates to 1 over [0,1], so ρn ∈P([0,1))∩C(T1).
Let

Fn(x) :=
∫ x

0
ρn(y)dy,F(x) :=

∫ x

0
ρ(y)dy for all x ∈ [0,1].

It is not difficult to see that ρn converges to ρ∗ in L1(0,1), which implies that Fn→
F uniformly in [0,1]. Since ρn > 0 on [0,1] and ρn ∈ C(0,1) we have that Fn :
[0,1]→ [0,1] with Fn ∈C1([0,1]),Fn strictly increasing and Fn(0) = 0,Fn(1) = 1 for
all integers n≥ 1. If we let Pn(x) :=W ∗ρn(x),x ∈ [0,1], we see that

Pn(x) =
∫ 1

0
[(z− x)2−|z− x|]ρn(z)dz

for all x ∈ [0,1] because |z−x| ≤ 1 for all z,x ∈ [0,1] and we can see (simple compu-
tation) that, in this case,

|z− x|2T1−|z− x|T1 = |z− x|2−|z− x|.

We then use (8.3) to see that

P′n(x) = x+
1
2
−Fn(x)−

∫ 1

0
zF
′
n(z)dz

= x− 1
2
−Fn(x)+

∫ 1

0
Fn(z)dz.

(8.5)

To prove that |P′n(x)| ≤ 1
2 for all x ∈ (0,1) we show that

0≤ x+
1
2
−Fn(x)+

∫ 1

0
Fn(z)dz≤ 1.

95



We will prove that

0≤ x− f (x)+
∫ 1

0
f (z)dz≤ 1 (8.6)

for any strictly increasing, continuous function

f : [0,1]→ [0,1] such that f (0) = 0, f (1) = 1.

The obvious identity ∫ 1

0
f (x)dx+

∫ 1

0
f−1(y)dy = 1

shows that it is enough to prove

f (x)− x≤
∫ 1

0
f (z)dz for all x ∈ [0,1],

as the second inequality in (8.6) follows by applying the inequality above to f−1.
Since f is increasing, we have that for any x ∈ [0,1],∫ 1

0
f (z)dz≥

∫ 1

x
f (z)dz≥

∫ 1

x
f (x)dz = (1− x) f (x).

But 0 ≤ f (x) ≤ 1 and 0 ≤ x ≤ 1, so (1− x) f (x) ≥ f (x)− x, which proves our in-
equality.
So, ∣∣∣∣x−[Fn(x)+

1
2
−
∫ 1

0
Fn(z)dz

]∣∣∣∣= |P′n(x)| ≤ 1
2
.

Denote

Gn(x) := Fn(x)+
1
2
−
∫ 1

0
Fn(z)dz,

which is also strictly increasing on [0,1], so it is the gradient of a convex function.
Compute: ∫ 1

0
ζ (Gn(x))ρn(x)dx =

∫ bn

an

ζ (y)ρn(G−1
n (y))(G−1

n )′(y)dy,

where an := 1
2 −

∫ 1
0 Fn(z)dz, bn := 3

2 −
∫ 1

0 Fn(z)dz. Since,

(G−1
n )′(y) =

1
G′n(G

−1
n (y))

=
1

ρn(G−1
n (y))

for all an ≤ y≤ bn,

we obtain,∫ 1

0
ζ (Gn(x))ρn(x)dx =

∫ bn

an

ζ (y)dy =
∫ 1

0
ζ (y)dy if ζ ∈C(T1).
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If we extend Gn to R by

G̃n(x) := Gn(x− k)+ k if k ≤ x < k+1 (k ∈ Z),

then ∫
T1

ζ (G̃n(x))ρ̂n(x)dx =
∫
T1

ζ (y)dy for all ζ ∈C(T1),

where ρ̂n is periodic extention of ρn. Since Gn(1) = Gn(0) + 1, G̃n is strictly in-
creasing, so (see Remark 8.1) G̃n is the gradient of a convex function such that
G̃n : T1→ T1 and |x− G̃n(x)| ≤ 1

2 for all x ∈ R, and G̃n#ρ̂n = L 1
T1. We deduce that

G̃n is the optimal map such that G̃n#ρ̂n = L 1
T1 on T1. We now let n→ ∞ and use

ρn→ ρ∗ in L1(0,1) and Fn→ F uniformly on [0,1] to deduce∫ 1

0
ζ (G(x))ρ∗(x)dx =

∫ 1

0
ζ (y)dy for all ζ ∈C(T1),

where

G(x) = F(x)+
1
2
−
∫ 1

0
F(z)dz.

Also,

|x−G(x)|= lim
n→∞
|x−Gn(x)| ≤

1
2

for all x ∈ (0,1),

so we deduce the extension G̃ of G to R given by

G̃(x) := G(x− k)+ k if k ≤ x < k+1 (k ∈ Z),

is the optimal map such that G̃#ρ = L 1
T1 for any ρ ∼ ρ∗ (note also that G̃ is nonde-

creasing as the limit of G̃n). Finally, P∗(x) =W ∗ρ∗(x) is differentiable a.e. in (0,1)
and we use (8.5) to see that

(
P∗
)′
(x) = lim

n→∞
P′n(x) = x− 1

2
−F(x)+

∫ 1

0
F(z)dz = x−G(x)

for ρ∗ a.e. x ∈ [0,1). QED.
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