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ABSTRACT 

 

Rule Extraction and Insertion to Improve the Performance of a Dynamic Cell 
Structure Neural Network 

Osama Amhamed Elsarrar 

 

Artificial Neural Networks are extremely useful machine learning tools. They are used for many 
purposes, such as prediction, classification, pattern recognition, etc. Although neural networks 
have been used for decades, they are still often not completely understood or trusted, especially 
in safety and mission critical situations. Typically, neural networks are trained on data sets that 
are representative of what needs to be learned. Sometimes training sets are constructed in order 
to train the neural network in a certain way, in order to embed appropriate knowledge. The 
purpose of this research is to determine if there is another method that can be used to embed 
specific knowledge in a neural network before training and if this improves the performance of a 
neural network. 
 
This research develops and tests a new method of embedding pre-knowledge into the Dynamic 
Cell Structure (DCS) neural network. The DCS is a type of self-organizing map neural network 
that has been used for many purposes, including classification. In the research presented here, the 
method used for embedding pre-knowledge into the neural network is to start by converting the 
knowledge to a set of IF/THEN rules, that can be easily understood and/or validated by a human 
expert. Once the rules are constructed and validated, then they are converted to a beginning 
neural network structure. This allows pre-knowledge to be embedded before training the neural 
network. This conversion and embedding process is called Rule Insertion.  
 
In order to determine whether this process improves performance, the neural network was trained 
with and without pre-knowledge embedded. After the training, the neural network structure was 
again converted to rules, Rule Extraction, and then the neural network accuracy and the rule 
accuracy were computed. Also, the agreement between the neural network and the extracted 
rules was computed. 
 
The findings of this research show that using Rule Insertion to embed pre-knowledge into a DCS 
neural network can increase the accuracy of the neural network. An expert can create the rules to 
be embedded and can also examine and validate the rules extracted to give more confidence in 
what the neural network has learned during training. The extracted rules are also a refinement of 
the inserted rules, meaning the neural network was able to improve upon the expert knowledge 
based on the data presented.
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I. INTRODUCTION 
 
 Machine learning is programming computers to optimize a performance criterion using 

example data or past experience. Over the past two decades Machine Learning has become one 

of the mainstays of information technology and a central part of our lives. With the ever-

increasing amounts of data becoming available smart data analysis is becoming a pervasive and 

necessary part of technological progress. Much of the art of machine learning is to reduce a 

range of fairly disparate problems to a set of fairly narrow prototypes. Much of the science of 

machine learning is then to solve those problems and provide good guarantees for the solutions 

Artificial neural networks are an attempt at modeling the information processing 

capabilities of nervous systems. Thus, first of all, we need to consider the essential properties of 

biological neural networks from the viewpoint of information processing. This will allow us to 

design abstract models of artificial neural networks, which can then be simulated and analyzed.  

Natural neurons in the brain receive signals through synapses located on the dendrites or 

membrane of the neuron. When the signals received are strong enough (surpass a certain 

threshold), the neuron is activated and emits a signal though the axon. This signal might be sent 

to another synapse, and might activate other neurons 

Artificial neural networks are composed of nodes that are called “artificial neurons”. An 

artificial neuron is a computational model inspired by the natural neurons. The biological neural 

networks of the brain inspire machine learning. The “neurons” in artificial neural networks adapt 

through training on sets of data. This allows the artificial neural network to learn the patterns in 

the data. The artificial neural networks attempt to design themselves after the biological neural 

network, processing information through repetitive experience. The artificial neural network is 

only one kind of machine learning, used as a statistical tool within a multitude of fields. 

 

1.1 Types of Neural Networks 

 
 From this point on we will refer to artificial neural networks as simply neural networks. 

This section presents three basic neural network structures.  

 
Feedforward Neural Networks: 
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 Feedforward neural networks consist of three or more layers (input layer, hidden 

processing layer(s), and output layer), each layer can only provide direct connection to the layer 

succeeding it. For example, the hidden processing layer can only send direct connections to the 

output layer. Feedforward neural networks are considered to be the simplest form, as the process 

can only travel in one direction.  

 Feedforward neural networks are often coupled with a backpropagation training 

algorithm. In order to revise and correct the neural signal, the error must be propagated back 

through the network, and appropriate changes are made to the weights before trying again. The 

message is propagated as many times as necessary to reduce the error down to an acceptable 

level. 

 

Recurrence Neural Networks: 
 

 As opposed to the feedforward neural connection, which has clearly defined layers, the 

recurrence networks do NOT always have defined input or output neurons. Three types of 

recurrence can occur --- DIRECT or INDIRECT, or LATERAL recurrence. Direct recurrence 

(also referred to as self-recurrence) use neurons to strengthen themselves in order to reach their 

activation limits, whereas indirect recurrences occur when neurons hold connections with those 

preceding layer neurons. Lateral recurrence permits connections within ONE layer only. An 

example of this would be the fully recurrent neural network, which is the simplest form.  

 

Completely Linked Neural Network: 
 

 Completely linked neural networks permit connections between ALL neurons. Every 

neuron is permitted to be connected with every other neuron, which results in every neuron 

having the potential to become an input neuron. An example of a completely linked network 

would be a self-organizing map.  

 Later in this paper, we will be focusing on one type of self-organizing map called the 

dynamic cell structure (DCS) neural network [1, 2, 3]. These neural networks are designed as 

topology representing networks whose roles are to learn the topology of an input space. The DCS 

neural network partitions the input space into Voronoi regions.  The neurons within the neural 

network represent the reference vector (centroid) for each of the Voronoi regions.  The 
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connections between the neurons, cij, are then part of the Delaunay triangulation connecting 

neighboring Voronoi regions through their reference vectors. 

 Given an input, v, the best matching unit (BMU) is the neuron whose weight, w, is 

closest to v. Along with the BMU, the neighbors of the BMU are found through the Delaunay 

triangulation. During adaptation, adjustments are made to the BMU and neurons within the BMU 

neighborhood based on the input.   

 The DCS algorithm consists of two learning rules, Hebbian and Kohonen.  These two 

learning rules allow the DCS neural network to change its structure to adapt to inputs.  The 

ability to adjust neuron positions and add new neurons into the network gives the DCS neural 

network the potential to evolve into many different configurations. 

 

1.2 Uses of Neural Networks 

 

 In today’s world, neural networks are becoming increasingly common in a multitude of 

sectors, including business, sports, science, technology, manufacturing, and so forth. In the 

business world, using neural networks, businesses and organizations can easily calculate risk, 

identify patterns in sales, and make predictions about future sales [4]. 

 There are many uses instances of neural networks used in safety critical roles. In 

technological advances, neural networks aid in our ability to move toward advancements, such as 

the self-driving cars, by managing the steering processes. Another example in the technological 

field would be pattern recognition in relation to fingerprint scanning, voice recognition, and 

applications like image processing [5]. In medicine, this tool has been used to fine tune 

advancements like the cochlear implant, allowing the device to train itself to filter out particular 

audio noises. The Dynamic Cell Structure, mentioned in the last section, is a component of an 

intelligent flight control system developed by NASA, Boeing Phantom Works, the Institute for 

Scientific Research, Inc., and West Virginia University [6]. 

 Neural networks have an extremely wide range of applications that ultimately affect us 

all. The ability to understand how they work and what they have learned from data is extremely 

important to their trusted use. Often neural networks are viewed as a "black box"; meaning that 

after training, it is hard to know exactly what they have learned and predict how they will react 
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with data outside the training set. Techniques must be developed to make sure that these very 

important tools can continue to be used safely and effectively. 

 

1.3 Rule Extraction 

 
 A negative seen when using artificial neural networking is the fact that the 

“knowledge” is coded as a weights or activation values. This results in very few tools capable of 

validating the neural network process. Rule Extraction is a technique that can be used to make 

neural networks more understandable by assisting in revealing the internal knowledge of a 

trained neural network. The more accurate your rule extraction, the better it matches your neural 

network [7]. The predictions of a network can be explained through the rules extracted from it, 

making a neural network less of a “black box” of unexplained answers and more of an 

understandable process [8]. By using rule extraction, the degree of matching between network 

responses and rule classification allows the developer and user to understand the neural network 

inner workings and be confident in what it has learned [9].  

 

Types of Rule Extraction 
 

 Rule Extraction is a technique that can be used with several different types of 

classification techniques, such as decision trees, support vector machines, and neural networks. 

For now, the focus will be on the algorithmic methods that have been developed using the three 

types of rule extraction: pedagogical, decompositional, and eclectic. Each type of rule extraction 

focuses on different aspects of the neural network. 

 The pedagogical or “black box” method extracts the rules by paying close attention to 

the input-output relationships, attempting to mirror the way the neural networks understand the 

relationship between the input-output signals as closely as possible. The pedagogical approach to 

algorithms is typically the fastest approach, because it does not take the time to scrutinize or 

analyze the internal weights of the network. However, because of this, this approach is also less 

likely to accurately obtain all of the rules that help describe the network’s behavior [10]. The 

main advantage of using the pedagogical approach lies in the fact that it applies to most neural 

networks, whereas the decompositional approach can be more limited [11].  
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 The decompositional, or “white box”, approach can be more difficult than the 

pedagogical, however, the extra effort it takes helps improve the accuracy of the rules extracted. 

The decompositional approach takes a look at the internal weights and make-up of the network 

in order to more accurately extract rules [10]. The advantage of this approach is that the 

analyzing of the internal weights and makeup help create an accurate set of rules for the entire 

neural network [11].  

 The eclectic approach, or “mixed box”, is an approach that uses parts of the 

pedagogical AND decompositional methods. Generally, this can take longer than the 

pedagogical approach because of the decompositional aspects it uses, but like the 

decompositional approach, the results are likely to be much more accurate than the pedagogical 

[10].  

 

Types of Rules that can be extracted from a neural network include the following: 

1. Propositional: IF .... THEN ...., ELSE .... 

2. MofN rules: IF M of the given N conditions are satisfied, THEN .....  

3. Fuzzy rules: IF X is large, THEN ....., ELSE IF X is medium, THEN ..... 

  

1.4 Rule Insertion 

For safety critical uses of neural networks, accuracy and confidence are very important. 

The rigidity of the black box approach prevents the widespread application of neural networks in 

some safety-critical systems. There is a three step process that can assist in creating the most 

accurate outputs for neural networks and also provide confidence by allowing developers and 

users to better understand the internal workings of the neural network. First, a rule is inserted 

into the neural network using a specific program. This does not need to be a complete rule, as it 

is likely to be refined at the next step. Inserting the rule will change the dynamic from a symbolic 

representation to a neural representation. The second step is to train the specified program by 

using a standard neural learning algorithm, backpropagation, or other weight optimization 

methods. Performing this second step will correct the rules previously inserted so that they are 

consistent and accurate. The final step, rule extraction, occurs once the rules have been refined 

and symbolic information is then extracted. 
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Figure 1. Rule Insertion, Train, Rule Extraction 

The idea of rule insertion is that gathered knowledge is represented in a set of rules, 

which could possibly be incomplete or incorrect due to insufficient knowledge. A hybrid system 

refers to utilizing a combination of systems, which could use theoretical and empirical data. One 

such system is the sub-symbolic such as neural networks; another is the symbolic-based 

reasoning, such as expert system.  

The way a hybrid system works is first to form rules that represent the gathered 

knowledge. The initial knowledge is inserted and processed by rules-to-network algorithms. The 

inserted knowledge is now the initial neural network, which in turn is the initial symbolic 

knowledge. The initial symbolic knowledge then goes through a stage of training and refinement. 

Upon completion of training, rules are extracted (output).  

Kurd [12], discussed that the issue with the artificial neural networks (ANNs) is that its 

lifecycle relies on determining the specifications at the initial phase of development. This does 

not foster learning if the initial data are limited. The lifecycle of the hybrid systems can be 

described by the “W” model with the following levels (see Figure 2): 

1. Symbolic Level: it is associated with symbolic information and deals with 

analysis in terms of symbolic knowledge. 

2. Translation Level: This is where symbolic knowledge and neural architectures are 

joint or separated. 

3. Neural Learning Level: This level uses neural learning to adapt and refine 

symbolic knowledge.  
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Figure 2. Rule Insertion Extraction W Model Kurd [12] 

Towell and Shavlik [13], introduced the new algorithm named Knowledge-Based Neural 

Network (KBANN). They conjectured that this algorithm would improve the learning speed 

because it is not ignoring any information. They described this algorithm as a way to address the 

problems of training “deep” networks. KBANN is a hybrid learning system and is more effective 

at classifying examples compared to other machine learning algorithms (see Figure 3). 

 
Figure 3. Rule Insertion Process Towell and Shavlik [13] 

Giles and Omlin [14] also discuss methods for extracting, inserting and refining symbolic 

grammatical rules for recurrent networks. The issues also discussed in this paper include how 

rules are inserted into the recurrent neural network, how training and generalization is affected, 

and how the rules can be checked in order for correction. The method Giles and Omlin devised 

requires the network size to exceed the number of Deterministic Finite State Automata (DFA) 
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states (see Figure 4). It was expected that the training time would decline with rising rule 

strength, but the network does not easily recognize partial correct rule insertion if the rule 

strength is too great. An additional aspect of symbolic knowledge extraction and insertion is rule 

checking, allowing for the establishment of the validity of the knowledge. Rule checking 

compares rules extracted from trained networks with prior knowledge. However, rule checking 

becomes increasingly difficult with rising rule strength when incorrect rules are inserted into a 

network. Further, the authors suggest that network architecture can be altered during training 

with symbolic guidance, and symbolic information gained from undertrained networks could 

prove useful in determining the current network architecture. However, there is no limitation that 

these methods previously described only should be used with symbolic data. Future studies 

should investigate this further.  

 
Figure 4. Rule Insertion Process Giles and Omlin[14] 

 
 This work produces a new Rule Insertion Method for the Dynamic Cell Structure (DCS) 

Neural Network. The new method creates rules from knowledge of an “expert” and then inserts 

the rules as pre-knowledge into the network before training. This thesis is structured as follows: 

Firstly, in Chapter 2 there is a discussion and application of the method of Rule Extraction for 

the DCS. This method is applied to the set of data to predict forest fires. This discussion 

illustrates how rules extracted from a neural network are useful in explaining the knowledge in a 

neural network, which is the first paper. Chapter 3, the second paper, discusses the new Rule 
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Insertion Method. The chapter outlines the new method of Rule Insertion and uses a benchmark 

set of data to test the method. The application of the new method to a large set of Social Science 

data is Chapter 4, the third paper. With the help of an “expert” in the field of Social Science, 

rules are developed based on the expert’s knowledge. These rules are inserted into the DCS 

neural network and then the DCS is trained on the data. The method is tested by comparing the 

neural network analysis results with and without the pre-knowledge inserted. The final chapter, 

Chapter 5, discusses future directions for this work. 
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II. PAPER 1: ANALYSIS OF FOREST FIRE DATA USING NEURAL NETWORK RULE 
EXTRACTION WITH HUMAN UNDERSTANDABLE RULES 

 

2.1 Abstract 

Forest fires spread fast, uncontrollably, and may leads to massive destruction. This makes 

the prevention of them a safety critical issue. Neural networks are a sub-area of machine learning 

that can be used to analyze the complex behavior of natural systems and help to predict forest 

fires. To make the knowledge learned by a neural network more accessible, rules can be 

extracted from the neural network to demystify the system behavior and directly relate inputs to 

outputs. In this paper, we present a Dynamic Cell Structure (DCS) neural network used for forest 

fire data prediction, determining which environmental factors lead to fires. We apply an intuitive 

rule extraction algorithm to extract understandable rules for this prediction. The results are 

verified through direct comparison with the raw data. 

 

2.2 Introduction 

 With the ever-increasing amount of data becoming available, smart data analysis is 

becoming pervasive in every aspect of life to solve a disparate set of problems. Machine learning 

seeks to reduce this range of disparate problems to a set of fairly narrow examples. The science ma- 

chine learning is then used to solve these examples and guarantee their solutions [15]. One example 

of machine learning that can be used to provide analysis for a wide range of problems is the neural 

network. However, some refer a neural network as a black-box method that can be difficult to 

understand and trust. It is also sometimes challenging to know exactly how the inputs are related to 

the outputs of a neural network, and whether the selected inputs have any significant relationship 

to the outputs [16]. There are methods, such as rule extraction, that paired with neural networks 

make the knowledge the neural network has learned by being trained on the data a little easier to 

understand and can assist with the connection between input and output. 

 One significant threat to the environment and human life, where analysis would be 

beneficial is in the area of forest fire prediction. In the past, a large effort was made to collect data 

and build automatic detection tools that could assist Fire Management Systems (FMS). With respect 
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to forest fires, there are several potential methods that can be used. By utilizing meteorological 

approaches, satellites, and infrared/smoke scanners, the data can better predict when and where a 

fire could occur. Temperature, wind, relative humidity, etc. are factors that come into play when 

analyzing the meteorological aspect of it. Using such analysis methods helps strengthen fire 

management techniques [17]. 

 Several researchers have applied various methods of analysis to the area of forest fire 

prediction. Clar, Drossel and Schwable [18] applied the idea of self-organization to the analyses os 

forest fire data. They introduced the “forest fire of self-organized criticality” model, which refers 

to the tendency of certain large dissipative systems to drive themselves into a critical state 

independent of the initial conditions and without fine tuning of the parameters. Grishin and Filkov 

[19] developed a deterministic-probabilistic expert system for prediction of forest fires. Their model 

included the drying of forest combustibles and determined the probability of the emergence of a 

forest fire within the 𝑗"# time range of the forest-fire period (dynamic model) and fire caused by 

meteorological conditions. 

 Eskandari [20] used fuzzy sets integrated with analytic hierarchy process (AHP) in a 

decision-making algorithm to model the fire risk in the study area. He used four major criteria 

(topographic, biologic, climatic, and human factors) and 17 subcriteria in his model. The fuzzy 

AHP method was used to express the relative importance and priority of the major criteria and sub-

criteria in forest fire risk in the study area. 

 Principal Component Analysis (PCA) and Self-Organizing Map (SOM) techniques have 

been applied to visualize and classify fire risk distribution in forest regions based on a hot spot 

dataset [21]. Both methods are a suitable method for extraction the high dimensional data onto a 

low dimensional representation. The SOM map gave an excellent classification and visualization 

of fire risk in forest regions via the node clusters and useful method for analysis of large size 

datasets. The PCA explained most the cumulative variance of data, but had difficulty with revealing 

a representative data pattern when the technique was applied to available large-scale data sets.  

 Cortez and Morais [22] used several data mining techniques for predicting size of forest 

fires. testing a variety of techniques, including Support Vector Machines (SVM) and random 

forests, and four distinct feature selection setups they achieved a predictive accuracy of 46% given 
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a tolerance of 1 hectare and 61% given a tolerance of 2 hectares. It is worth noting that this accuracy 

is achieved using four independent variables. 

 Youssef and Bouroumi [23] used a backpropagation learning algorithm for predicting forest 

fires data. The neural network that they used is a multilayer perceptron whose number and size of 

hidden layers can be heuristically determined for each application using its available data examples. 

They improve the error rate (ER) from 25% to 9%. They fixed the Input layer to 12 neurons and 

the output to one neuron. Also, they used C++ to code the algorithm. I use the same data but 

different method. 

 In this work, we use a dynamic cell structure (DCS) neural network with an associated rule 

extraction method to analyze various meteorological and environmental input parameters. The goal 

is to determine from a set of given parameters, what conditions will likely result in a forest fire. The 

DCS does the analyses, but the rule extraction techniques are used to produce rules that can be 

easily understood and verified by experts. The combination of these methods produces more useful 

and implementable results.  

 The rest of the paper is organized as follows. In Section 2, we present background material 

on the DCS neural network and rule extraction method. Section 3 discusses the application of our 

technique to the forest fire data. Section 4 provides a comparison of previous forest fire analyses 

with our method. Section 5 give conclusions. 

  

2.3 DCS Neural Network and Rule Extraction 

 This section discusses the Dynamic Cell Structure (DCS) neural network, the idea of rule 

extraction in general, and the specific rule extraction techniques developed for the DCS neural 

network.  

2.3.1 Dynamic Cell Structure NN  

 One type of neural network is self-organizing map. The specific self- organizing map that 

we are working with is called the Dynamic Cell Structure (DCS) neural network [1, 2, 3]. This type 

of neural network is designed as a topology representing network whose role is to learn the topology 

of an input space. The DCS neural network partitions the input space into Voronoi regions (Fig. 5). 

The neurons within the neural network represent the reference vector (centroid) for each of the 
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Voronoi regions. The connections between the neurons, 𝑐%& , are then part of the Delaunay 

triangulation connecting neighboring Voronoi regions through their reference vectors. 

 

Figure. 5 Voronoi Diagram 

 Given an input to the DCS, v, the best matching unit (BMU) is the neuron whose weight, 

w, is closest to v. Along with the BMU, the neighbors of the BMU are found through the Delaunay 

triangulation. During adaptation, adjustments are made to the BMU and neurons within the BMU 

neighborhood based on the input.  

 The DCS algorithm consists of two learning rules, Hebbian and Kohonen (See below). 

These two learning rules allow the DCS neural network to change its structure to adapt to inputs. 

The ability to adjust neuron positions and add new neurons into the network gives the DCS neural 

network the potential to evolve into many different configurations. 

𝒄𝒂𝒃 = +

𝟏															𝒂 ∈ [𝑩𝑴𝑼, 𝑺𝑬𝑪]	∧ 𝒃 ∈ [𝑩𝑴𝑼, 𝑺𝑬𝑪]
𝜶 ∙ 𝒄𝒂𝒃										𝜶 ∙ 𝒄𝒂𝒃 > 𝟎																																																			
𝟎														𝜶 ∙ 𝒄𝒂𝒃 < 𝟎																																																
𝟎														𝒂 = 𝒃																																																									

>                                          (1) 

 
Δ𝑤ABCD = 𝜀ABC(𝑣% − 𝑤ABCD)                                                                                       (2) 
 
 
Δ𝑤% = 𝜀JAK(𝑣% − 𝑤%)                                                                                                    (3) 
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2.3.2 Rule Extraction  

 A negative seen when using artificial neural networking is the fact that the knowledge is 

coded as weights or activation values. This results in very few tools capable of validating the neural 

network process. Rule Extraction is a technique that can be used to make neural networks more 

understandable by assisting in revealing the internal knowledge of a trained neural network in an 

attempt to explain the behavior of a given neural network (or the system that it represents) by 

converting the network into a set of rules. Subsequently, the rules may be used instead of the neural 

network, since they are closer to human understanding. 

 The more accurate your rule extraction, the better it matches your neural network. The 

predictions of a network can be explained through the rules extracted from it, making a neural 

network less of a black box of unexplained answers and more of an understandable process [8]. By 

using rule extraction, the degree of matching between network responses and rule classification 

allows the developer and user to understand the neural network inner workings and be confident in 

what it has learned [9]. 

2.3.3 Types of Rule Extraction  

 Rule Extraction is a technique that can be used with several different types of classification 

techniques, such as decision trees, support vector machines, and neural networks. For now, the 

focus will be on the algorithmic methods that have been developed using the three types of rule 

extraction: pedagogical, decompositional, and eclectic. Each type of rule extraction focuses on 

different aspects of the neural network. 

  The pedagogical, or black box, approach creates the rules by paying close attention to the 

input-output relationships, attempting to mirror the way the neural networks understand the 

relationship between the input-output signals as close as possible. The pedagogical approach to 

algorithms is typically the fastest approach because it does not take the time to scrutinize or analyze 

the internal weights of the network. However, because of this, this approach is also less likely to 

accurately obtain all of the rules that help describe the network’s behavior [24]. The main advantage 

of using the pedagogical approach lies in the fact that it is applied to most neural networks, whereas 

the decomposition approach can be more limited [11]. 

 The decompositional, or white box, approach can be more difficult than the pedagogical; 

however, the extra effort it takes helps improve the accuracy of the rules extracted. The de- 
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compositional approach takes a look at the internal weights and connections that make up the 

network in order to more accurately extract rules [24]. The advantage of this approach is that the 

analyzing of the internal weights and makeup help create an accurate set of rules for the entire 

neural network [11].  

 The eclectic, or “mixed box,” approach combines the ideas of the pedagogical and 

decompositional methods. Generally, this can take longer than the pedagogical approach because 

of the decompositional aspects it uses, but like the decomposition approach, the results are likely to 

be much more accurate than the pedagogical [24].  

 There are several types of rules that can be formulated from the rule extraction process. The 

rules can take on the form of an IF..THEN...ELSE statement, or an M-of-N statement, or If “a 

variable is in range” THEN “statement”[6, 25, 26]. 

2.3.4 DCS Rule Extraction Algorithms  

 The original DCS Rule Extraction algorithm was developed to generate human-readable 

rules that could be examined and understood by a person [11]. The second rule extraction algorithm 

was developed to completely capture the internal structure of the network and agree with the 

network 100 percent of the time [11]. This algorithm generates deterministic rules from a trained 

DCS that can be used in a two-step process to help refine the rules generated by the original 

algorithm. Although these rules are not easily understood by a human, they can be implemented 

and function like a fixed neural network. Both algorithms were previously applied to real-world 

data [18]. In this paper we will focus on the human-understandable rule extraction algorithm. 

 The human-understandable algorithm developed for extracting rules from the DCS was a 

modification of the LREX algorithm that was used to extract rules from a radial basis function 

neural network. Before performing the rule extraction, the DCS was put into operation for some 

time (learning on inputs or training), the weights on the connection were then used as input to the 

rule extraction algorithm. During operation, the BMU (centroid of a region) corresponding to each 

data point presented is recorded and then these are used as inputs to the algorithm. The data that has 

been presented to the neural network during operation (or training) is divided into regions based on 

the BMUs that have been recorded. Then for each BMU, 𝑥MNOPQ is the smallest value of the 

independent variable and 𝑥RSSPQ is the largest value of that independent variable that has that same 

BMU. These two numbers form bounds for the intervals in the antecedent of the rule (i.e. variable 
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≥ 𝑥MNOPQ AND ≤ 𝑥RSSPQ). An interval is determined for each of the independent variables and the 

statements are connected by ANDs to form the full antecedent. The algorithm for extracting human-

readable rules from the DCS is presented below. 

Human Understandable Rule Extraction Algorithm for DCS: 

Input:   

 Weights from a trained DCS (centers of Voronoi region) 
 Best matching unit for each input 

Output:  
 One rule for each cell of the DCS  

Procedure: 
 Apply input stimulus to DCS from training data  

 Record BMU for each input  
 Collect all inputs with common BMU to form cell  

 For each weight (𝑤%)  
  For each independent variable 

   𝑥MNOPQ= min{x | x has BMU= 𝑤%} 

  𝑥RSSPQ= max{x | x has BMU= 𝑤%} 

 Build rule by: 

  Independent variable in [𝑥MNOPQ, 𝑥RSSPQ]  

  Join antecedent statements with 
  AND  

  Dependent variable = category  
   OR  

  Dependent variable in [𝑦MNOPQ, 𝑦RSSPQ]  

  Join conclusion statements with 

  AND  
 Write Rule 

 
 Figure 6 shows a two-dimensional depiction of how the rules fit with the Voronoi structure 

of the DCS. The human-understandable rules do not fully capture the shape of the region, but they 

approximate the region and encompass all data that is in the region. The downside with this 
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approximation is that rules can sometimes overlap each other or sometimes overlap into another 

region. When the data is in a higher dimension, the overlap is less likely. 

 
Figure 6. Voronoi Diagram 

2.4 Test Results 

 
2.4.1 Benchmark Testing with Iris Data  

 The DCS neural network was first trained on the Iris Data. The rule extraction algorithm, 

written in MATLAB, was employed. The Iris data set is available from the UCI machine learning 

database and has four independent variables (petal width, petal length, sepal width, sepal length) 

and one dependent variable (type of Iris). This data set is widely used to test different algorithms. 

The set is interesting because it is not linearly separable. After training the DCS on the Iris data, 

rules were extracted by applying the algorithms to the weights and connection matrix. Below is an 

example of the types of rules extracted from the DCS neural network for the Iris data set. 

IF (SL ≥ 5.6 AND ≤ 7.9) AND (SW ≥ 2.2 AND ≤ 3.8) AND (PL ≥ 4.8 AND ≤ 6.9) AND  
(PW ≥ 1.4 AND ≤ 2.5) THEN Virginica  

 
2.4.2 Forest Fire Data Set 

 The Forest Fire data set is available from the UCI machine learning [17]. It is composed of 

517 instances and 13 attributes of data from the Montesinho Park in the Northeast region of 
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Portugal. The aim is to use the data to predict the likelihood of a forest fire given the conditions 

outlined in by the parameters. 

 The 13 attributes included in the Forest Fire data set: 

• X - x-axis spatial coordinate within the Montesinho Park map:1 to 9 

• Y - y-axis spatial coordinate within the Montesinho Park map: 2 to 9 

• month - month of the year: ’Jan’ to ’Dec’ 

• day - day of the week: ’mon’ to ’sun’  

• FFMC - FFMC index from the FWI system:18.7 to 96.20 

• DMC - DMC index from the FWI system: 1.1 to 291.3 

• DC - DC index from the FWI system: 7.9 to 860.6 

• ISI - ISI index from the FWI system: 0.0 to 56.10 

• temp - temperature in Celsius degrees: 2.2 to 33.30  

• RH - relative humidity in %: 15.0 to 100 

• wind - wind speed in km/h: 0.40 to 9.40  

• rain - outside rain in mm/m2: 0.0 to 6.4 

• area - the burned area of the forest (in hectare): 0.00 to 1090.84 (for our purposes 

coded as 0 no fire or 1 fire occurred) 

 

2.4.3 Analyzing Forest Fire Data 

 The DCS software allows for the configuration of the neural network. One of the parameters 

that can be chosen is the number of cells (or Voronoi regions) that will be developed during training. 

There is the ability to allow the neural network to grow without bound, but the result in this situation 

would be an overfit the neural network to the training data and provide poor generalization to future 

data. The best configuration is the least number of cells with the best accuracy. This allows for more 

general rules that can then be used more successfully with data that is not the training data. 

 The table below shows how the accuracy of the neural network’s predictive abilities for the 

Forest Fire data changed with the number of cells allowed to grow in the DCS. The number of cells 

is treated as an independent variable and modified to create a DCS neural network with the best 

ability to predict forest fire occurrence. The neural network is trained on a random 75% of the data 

set and human-understandable rules were extracted. Then the remaining 25% of the data set was 
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used as test data to check. The training and testing is run multiple times with different partitions of 

the data set each time; then an average is computed. The accuracy is judged in two ways. First, the 

accuracy of the neural network itself at predicting that forest fire is checked (NN accuracy). Second, 

the test data was processed by the rules to determine how accurate the rules were in predicting forest 

fire would occur (Rule accuracy).  

Table 1. Determining the Number of Cells for Best Accuracy 

Number cells NN accuracy Rule accuracy 

16 0.67647 0.61765 

14 0.64706 0.66667 

12 0.73529 0.75758 

10 0.67647 0.70588 

8 0.66176 0.65306 

6 0.67647 0.71698 

4 0.72059 0.72414 

3 0.66176 0.65574 

 

 As we see here in Table 1, when the neural network was restricted to growing only 12 cells, 

the neural network and the rules were the most accurate. Appendix A shows the complete set of 

human-understandable rules that were extracted from the neural network producing the best results 

when the neural network was restricted to 12 cells.  

 After the optimal number of nodes is established, then different subsets of the variables are 

used to determine if a smaller number of input variables can be used to accurately determine the 

output. All subsets from size two to number of independent variables (12) were run using allowing 

the network to grow 12 nodes. This is a large number of sets, in this case 122, so this is process is 

automated. Below in Table 2 the best subsets are listed.  
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Table 2. Determining the Best Subset of Variables for Best Accuracy 

 

 

 

 

 

 

 

 

 

 

 

 

 

 From this table, it can be seen that using the two variables day and rain result in the most 

accurate classification of the output variable (fire occurred).  

2.5 Conclusions 

 When obtaining data for events like forest fires, there are several potential methods that can 

be used. By utilizing meteorological approaches, satellites, and infrared/smoke scanners, the data 

can better predict when and where a fire could occur. Temperature, wind, relative humidity these 

factors come into play when analyzing the meteorological aspect of it. All of these methods help 

strengthen fire management techniques [15].  

 The Dynamic Cell Structure (DCS) neural network helps make the neural net- working 

process more understandable and helps understand the rules for the classification process in forest 

fire data. We show how this technique can be used to extract understandable forest fire classification 

rules that could be used to help predict the occurrence of forest fires.  

Parameters 

NN 

Accuracy 

Rule 

Accuracy 

day, rain 0.81538 0.65672 

x, y, month, day, ffmc, dmc, dc, isi, temp, rain 0.61538 0.59259 

x, day 0.59231 0.54808 

day, wind 0.58462 0.55963 

day, wind, rain 0.58462 0.53488 

x, y, month, day, ffmc, dc, isi, rh, wind, rain 0.57692 0.55446 

x, y, month, day, ffmc, dc, isi, temp, rh, wind 0.57692 0.56122 

x, day, rain 0.56154 0.53097 

x, y, month, day, ffmc, dc, temp, rh, wind, rain 0.56154 0.55238 

x, y, month, day, ffmc, dc, isi, temp, rh, wind, rain 0.54615 0.57009 

x, y, isi, rh 0.53077 0.55172 

x, y, isi, rh, rain 0.53077 0.54839 

y, month, day, ffmc, dc, isi, temp, rh, wind, rain 0.50000 0.52427 
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III. PAPER 2: RULE INSERTION TECHNIQUE FOR A DYNAMIC CELL STRUCTURE 
NEURAL NETWORK TO IMPROVE PERFORMANCE 

 

3.1 Abstract 

This paper discusses the idea of capturing an expert’s knowledge in the form of human 

understandable rules and then inserting these rules into a dynamic cell structure (DCS) neural 

network. The DCS is a form of self-organizing map that can be used for many purposes, 

including classification and prediction. This particular neural network is considered to be a 

topology preserving network that starts with no pre-structure, but assumes a structure once 

trained. The DCS has been used in several mission and safety-critical applications, including 

adaptive flight control and health-monitoring in aerial vehicles. The approach is to insert expert 

knowledge into the DCS before training. Rules are translated into a pre-structure and then 

training data is presented. This idea has been demonstrated using the well-known Iris data set 

and it has been shown that inserting the pre-structure results in better accuracy with the same 

training. 

3.2 Introduction 

Artificial Intelligence plays a key role in developing devices that can analyze situations 

like a human. Developing systems with a set of guiding knowledge that is then able to learn from 

new experiences to refine that knowledge is key to simulating human decision making. Neural-

Symbolic learning systems play a key role by combining the benefits of both the neural and 

symbolic paradigms of artificial intelligence [27]. 

Accuracy and confidence are very important for safety-critical uses of neural networks. 

The rationale for using rule insertion is that expert knowledge represented in a set of rules, which 

could possibly be incomplete or incorrect due to insufficient knowledge, can be inserted to 

initialize a neural network before training is applied. The initial knowledge is inserted using a 

rules-to-network algorithm. The initial symbolic knowledge that is inserted becomes the initial 

neural network structure. This process creates a "neural-symbolic" system utilizing a 

combination of theoretical and empirical data. The initial symbolic knowledge then goes through 

a stage of training and refinement. Upon completion of training, rules are then extracted again 
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for comparison. This three step process can assist in ensuring the most accurate output, reduce 

training time, and also provide confidence by allowing developers and users to better understand 

the internal workings of the neural network through the inspection of the rules. 

Neural networks are not recognized for their capacity to use symbolic knowledge, but 

rather from their capability “to be trained from data”. They have become an acknowledged tool 

in machine learning toolboxes. Usually, neural networks “readily” store knowledge in distributed 

internal weights, not in symbolic form. Although neural networks are commonly used for 

generalizations, other applications may require the knowledge be used in symbolic form [28]. 

Therefore, investigation into the interchange of information between connections and symbolic 

representations is necessary for effective learning. 

Kurd, Kelley, and Austin [12] discussed that the dilemma with the use of artificial neural 

networks in a safety-critical situation is that the software lifecycle relies on determining the 

specifications at the initial phase of development. This is not supported if the neural network 

starts with no initial internal structure, which is the case with the DCS self-organizing map that is 

the focus of our research. The lifecycle of the hybrid systems like the one we are suggesting can 

be described by the “W” model (Figure 7) [12]. 

 

Figure 7. Rule Insertion/Extraction “W” Model [12]. 
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In Figure7 the following levels are depicted: 
 

Symbolic Level: This level is associated with symbolic information and deals with 

analysis in terms of symbolic knowledge. 

Translation Level: This level is where symbolic knowledge and neural architectures are 

joined or separated. 

Neural Learning Level: This level uses neural learning to adapt and refine symbolic 

knowledge. 

In the past others have explored the idea of combining rule based knowledge and neural 

learning. Towell and Shavlik [13, 29] introduced the new algorithm named Knowledge-Based 

Neural Network (KBANN). He felt that this algorithm would improve the learning speed 

because it is not ignoring any information. He described this algorithm as a way to address the 

problems of training “deep” networks. Figure 8 shows the process that Towell and Shavlik used 

for Rule Insertion. KBANN is a hybrid learning system and is more effective at classifying 

examples compared to other machine learning algorithms. Unfortunately, the networks created 

by KBANN, known as KBANN-nets, have “deep” network properties that are not well suited to 

work with backpropagation. To address this issue, the Desired Antecedent Identification (DAID). 

algorithm was introduced  

 

Figure 8. Towell and Shavlik method for Rule Insertion 
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The DAID was motivated by two observations. First, the “deep” neural networks cause 

trouble to the neural leaning techniques because error signals become diffused. Second, it had 

been shown that KBANN is most effective when antecedents are ignored by the network. The 

DAID aids in this issue by lessening error. Ultimately the DAID is most useful in deep structures 

due to its learning bias towards learning at the bottom, whereas backpropagation is most useful 

in shallow structures due to its bias towards learning at the top of chains.  

Another idea from Giles and Omlin [14] discusses methods for extracting, inserting and 

refining symbolic grammatical rules for recurrent networks. The issues also discussed in this 

paper include how rules are inserted into the recurrent neural network, how training and 

generalization is affected, and how the rules can be checked in order for correction. The method 

Giles and Omlin [14] devised requires the network size to exceed the number of Deterministic 

Finite State Automata (DFA) states. It was expected the training time would decline with rising 

rule strength, but the network does not easily recognize partial correct rule insertion if the rule 

strength is too great. 

An additional aspect of symbolic knowledge extraction and insertion is rule checking, 

allowing for the establishment of the validity of the knowledge. Rule checking compares rules 

extracted from trained networks with prior knowledge. However, rule checking becomes 

increasingly difficult with rising rule strength when incorrect rules are inserted into a network. 

Further, Giles and Omlin [14] suggest that network architecture can be altered during training 

with symbolic guidance, and symbolic information gained from under-trained networks could 

prove useful in determining the current network architecture.  

This paper presents an approach to inserting rules to a specific neural network structure, 

the DCS neural network that has been used in several safety-critical applications including 

adaptive aircraft control [30] and on-board health state awareness for Unmanned Aerial 

Vehicles(UAVs) [31]. Section 2 discusses the process by outlining the DCS structure, the rule 

extraction process and the rule insertion process. Section 3 discusses the application of the 

process to a common benchmark data set. Section 4 provides the result of the experiment and 

Section 5 provides some conclusions that can be drawn. 
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3.3 The Process 

3.3.1 Structure of the Dynamic Cell Structure Neural Network 

As previously mentioned, one type of self-organizing map is called the Dynamic Cell 

Structure (DCS) neural network. [1, 2, 3] This type of neural network is designed as a topology 

representing network whose role is to learn the topology of an input space. The DCS neural 

network partitions the input space into Voronoi regions (Figure 9).  The neurons within the 

neural network represent the reference vector (centroid) for each of the Voronoi regions (cells).  

The connections between the neurons, 𝑐%&, are then part of the Delaunay triangulation connecting 

neighboring Voronoi regions through their reference vectors. 

Given an input to the DCS, v, the best matching unit (BMU) is the neuron whose weight, 

w, is closest to v, and the second best matching unit (SEC) is the neuron whose weight is the 

second closest to v. Along with the BMU, the neighbors of the BMU are found through the 

Delaunay triangulation, which connect the centers of the Voronoi regions if they share a 

boundary. During adaptation, adjustments are made to the BMU and SEC neurons within the 

BMU neighborhood (NBR) based on the input. 

 

 
Figure 9. Voronoi Diagram. 
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The DCS algorithm consists of two types of learning rules, Hebbian and Kohonen, 

Equation 1, Equation 2, and Equation 3.  These learning rules allow the DCS neural network to 

change its structure to adapt to inputs.  The ability to adjust neuron positions and add new 

neurons into the network gives the DCS neural network the potential to evolve into many 

different configurations. 

𝒄𝒂𝒃 = +

𝟏															𝒂 ∈ [𝑩𝑴𝑼, 𝑺𝑬𝑪]	∧ 𝒃 ∈ [𝑩𝑴𝑼, 𝑺𝑬𝑪]
𝜶 ∙ 𝒄𝒂𝒃										𝜶 ∙ 𝒄𝒂𝒃 > 𝟎																																																			
𝟎														𝜶 ∙ 𝒄𝒂𝒃 < 𝟎																																																
𝟎														𝒂 = 𝒃																																																									

>                                          (1) 

 
Δ𝑤ABCD = 𝜀ABC(𝑣% − 𝑤ABCD)                                                                                       (2) 
 
 
Δ𝑤% = 𝜀JAK(𝑣% − 𝑤%)                                                                                                    (3) 
 

Below, the rule extraction process, DCS structure to Human Understandable Rules, is 

discussed first, since this process was established for the DCS neural network in previous work 

[6]. Then we discuss how the rule insertion process, Human Understandable Rules to DCS 

structure, would work. 

3.4 Rule Extraction 

A negative seen when using neural networks is the fact that the knowledge acquired 

during training is coded as weights or activation values. This results in very few tools capable of 

validating neural network techniques. By using rule extraction, a developer can, at least in part, 

determine the internal knowledge of the trained neural network and validate that what has been 

learned matches expert understanding and intended need [32]. 

Rule Extraction techniques have been developed for many neural network types [33, 34, 

35].  This is a process that can help make neural network output more understandable by 

representing the internal knowledge of the neural network as a set of rules. The predictions or 

classifications of the network can be explained through the rules extracted from it, making neural 

networking less of a black box of unexplained answers and more of an understandable process 

[8]. Accuracy of the rules is generally judged by their agreement with the neural network [7]. 
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The process of extracting a list of human readable rules from the cell list output of the 

DCS neural network is straight-forward. Each data point is assigned a BMU, the BMU is a 

centroid of a Voronoi region (cell). Then for each cell there is a list of points that are assigned to 

that region. From this list of points the minimum and maximum values are determined in each 

dimension and these values are used to create a bounding box in the parameter space. This 

bounding box is the smallest such n-dimensional box that contains each point in the cell. Each 

rule is simply a list of the boundaries of these bounding boxes. In pseudocode the algorithm is as 

follows: 

For each(cell in cells): 
For each(datapoint in cell): 

   For each(param in datapoint): 
      maxes[cell,param]=max(maxes[cell,param], 
       datapoint[param])      
      mins[cell,param]=min(mins[cell,param], 
      datapoint[param])    
 

The following is an example of a list of extracted rules. The data set used to train the DCS 

in this case was the IRIS benchmark data that will be described later in the paper, with four input 

variables and three output types. 

RULES FOR CELL1 
IF (sepal_length>=6.7 AND <=7.4) AND 
IF (sepal_width>=2.8 AND <=3.6) AND 
IF (petal_length>=5.7 AND <=6.1) AND 
IF (petal_width>=1.6 AND <=2.5) 

THEN...2 
 

RULES FOR CELL2 
IF (sepal_length>=4.3 AND <=5) AND 
IF (sepal_width>=2.3 AND <=3.6) AND 
IF (petal_length>=1 AND <=1.6) AND 
IF (petal_width>=0.1 AND <=0.3) 

THEN...0 
 
RULES FOR CELL3 
IF (sepal_length>=6.3 AND <=6.9) AND 
IF (sepal_width>=2.5 AND <=3.4) AND 
IF (petal_length>=5.1 AND <=6) AND 
IF (petal_width>=1.8 AND <=2.5) 
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THEN...2 
 
RULES FOR CELL4 
IF (sepal_length>=5 AND <=6) AND 
IF (sepal_width>=2 AND <=2.9) AND 
IF (petal_length>=3 AND <=4) AND 
IF (petal_width>=1 AND <=1.4) 

THEN...1 
 
RULES FOR CELL5 
IF (sepal_length>=5.5 AND <=6.1) AND 
IF (sepal_width>=2.6 AND <=3) AND 
IF (petal_length>=4 AND <=4.5) AND 
IF (petal_width>=1 AND <=1.5) 

THEN...1 
 
RULES FOR CELL6 
IF (sepal_length>=7.3 AND <=7.7) AND 
IF (sepal_width>=2.6 AND <=3.8) AND 
IF (petal_length>=6.3 AND <=6.9) AND 
IF (petal_width>=1.8 AND <=2.3) 
THEN...2 
      

As mentioned previously, the rules make up the bounding boxes that loosely approximate 

the n-dimensional Voronoi regions. To illustrate the idea, Figure 10 is an example of a two-

dimensional Voronoi diagram that uses two of the variables, sepal length and sepal width, from 

the rules in the preceding list. The coordinates of the centroids for these two variables were used 

to create the Voronoi diagram. 
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Figure 10. Voronoi diagram using a 2-dimensional projection of the centroids of the DCS. 

Figure 11 shows some of the bounding boxes for the extracted rules in the previous list 

overlaid on the Voronoi regions. Observe how the bounding boxes approximate the cells of the 

Voronoi diagram, even though it is limited to just two dimensions. It can also be noted at this 

time that the approximation is not exact, there was a more exact rule extraction method 

developed [36], however the rules that were the output of that method are not considered human 

understandable," but were more mathematical. 
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Figure 11. Voronoi diagram of a 2-dimensional projection of the centroids of the DCS with some 

of the extracted rules bounding boxes overlaid. 

Such drastic overlapping does not occur when the rules are represented in all four dimensions. 
 

3.5 Rule Insertion 

Rule insertion is the process of supplying internal knowledge to influence the formation of 

the neural network before training occurs. The knowledge influences the formation towards a 

potential classification structure, which is used in initializing the neural network, and then 

trained upon, allowing the rules to be refined. 

The hypothesis is that the neural network with rules inserted should be able to be trained 

faster and be more accurate than the original neural network. The human readable rules can be 

represented simply as a collection of labeled convex subspaces inside a parameter space, where 

the label is the category assigned to each subspace. These subspaces are described by a series of 

if-then statements for each input variable. For example, "if a is less than x and x is less than b 

AND c is less than y and y is less than d, then the dependent variable belongs to category 1". 

Using the boundaries of these convex subspaces (in this case a rectangle or bounding box), the 

rules are converted into a collection of centers for the bounding box or centroids for a Voronoi 
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region. These Voronoi centroids become the neurons of the DCS and provide the initial starting 

point for neural network training. The DCS usually starts with two or more randomly placed 

neurons and then either modifies their positions or "grows" by adding additional neurons based 

on the data. 

Now suppose the rule list give previously is not the result of training the DCS, but for 

example was given to us by an expert botanist. Next, suppose we want to insert these rules to 

give the DCS some prior knowledge on which to train. In this case, we would take each rule and 

determine the middle values for each parameter. This n-dimensional point then becomes the 

centroid for a Voronoi region or a neuron of the DCS. The list of centroids is taken and directly 

used as the initial set of neurons for the DCS. The corresponding centroid list for the previous list 

of rules would look like:  

{7.05, 3.2, 5.9, 2.05}, {4.65, 2.95, 1.3, 0.2}, {6, 2.6, 5.2, 1.7}, {6.75, 3, 4.7, 1.5}, {6.6, 2.95, 
5.55, 2.15}, {5.5, 2.45, 3.5, 1.2} 
 

The output 0, 1, or 2 for the rules would also be stored associated with the centroid (neuron).  

In order to visual this data, we use two dimensions and take sepal length and sepal width 

as the horizontal and vertical axes (respectively). In Figure 12, we can see the boxes that depict 

the rules and the centers of the boxes that become the centroids of the Voronoi regions. 
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Figure 12. Rule Set Depicted as Boxes in 2-dimension Projection Overlaid on Voronoi Diagram 

Constructed from the Box Centers 

 

The centroids given above produce the Voronoi regions in Figure 13. We note that Figure 

13 Voronoi diagram is not exactly like Figure 10 Voronoi diagram, but they have some similarity 

in structure. Recall, the structure in Figure 10 resulted from training and the structure in Figure 

13 resulted from using a set of rules to develop the structure. 
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Figure 13: Voronoi Diagram of a 2-dimension Projection of the Centroids for an Inserted Rule 

Set 

 

3.6 Application of Process to Benchmark Data Set 

3.6.1 Iris Data Set 

One of the most popular machine learning benchmark data sets is the Iris Data set. The 

problem to be solved is to learn which category an Iris flower belongs to based on four 

measurements: sepal length, sepal width, petal length and petal width. The three Iris categories 

are: Setosa, Versicolour, and Virginica. The dataset is available from the UCI Machine Learning 

Repository. It is composed of 150 instances divided evenly between the three categories (i.e. 50 

instances per category.) 

3.6.2 Comparing the Results 

In this section we will test the efficacy of the rule insertion by first training the DCS 

neural network with no pre-knowledge (starting with the configuration of two random neurons) 

and training the DCS with inserted pre-knowledge (rule set inserted into neural network structure 
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as a set of starting neurons). Rule Insertion relies on the processes of engaging an expert to help 

formulate an initial set of rules. In the case of this proof of concept study using a benchmark Iris 

data set, no expert was available to construct a set of rules, so a "typical" set of rules was used. 

The rule set used as the pre-knowledge in the test was similar to rules sets that were extracted; 

the bounding values for the parameters were approximated in order to provide a starting set of 

neurons. 

For each training epoch, the DCS neural network was trained using a random 75% of the 

data points from the IRIS data. The remaining 25% of the data points were used to test the 

accuracy of the resultant neural network. The "neural network accuracy" was calculated as the 

percentage of data points that were correctly classified by the neural network. In addition, each 

time the DSC was trained, Human Understandable rules were extracted using the process 

described earlier. The extracted rules were then tested and the "rule accuracy" was calculated as 

the percentage of data points that were correctly classified by the set of extracted rules. To avoid 

overfitting, the DCS was limited to only grow to the size of four neurons, which leads to only 

four cells.  

For testing whether the network would be more accurate being initialized in the default 

way or initialized with the inserted rules, two experiments were conducted. The DCS NN was 

developed in both ways, trained using the Iris data ten times, rules were extracted at the end of 

each training. To compare the two methods of initialization, the accuracy of the trained DCS NN 

to predict Iris type and the accuracy of the extracted rules to predict Iris type were compiled. 

First, the DCS NN was created with the default initialization of two random neurons. The 

DCS was trained on the Iris data ten different times. When the DCS was trained with the default 

initialization, the accuracy for the neural network prediction was on average $92.4±1.86% and 

the average prediction from the set of the extracted rules themselves averaged $90.2±1.66%. 

Second, the DCS NN was created with the rules inserted. This initialization started with 

several nodes that were based on the rule set used (same rule set used each time). The DCS was 

again trained on the Iris data ten different times. When the DCS was trained with the rule-based 
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initialization, the accuracy for the neural network prediction was on average $94.7±1.57% and 

the prediction from the set of the extracted rules themselves averaged $94.2±1.28%.  

This was an improvement of 2.5% for the network prediction and 2.2% for the extracted 

rule prediction. 

3.7 Conclusions 

Several methods of rule extraction from the DCS neural network had already been 

developed [36], but there was no previous rule insertion process investigated. Our research 

focused on developing a method for inserting rules into a DCS neural network structure. In this 

paper we determine a method for rule insertion for this type of neural network and tested its 

usefulness to produce results on a benchmark data set. These findings show that there is great 

potential for this technique to improve the accuracy of the neural network and also improve the 

accuracy of any rules extracted. 

This opens up numerous possibilities for creating more efficient and more accurate neural 

networks. The initialization of the DCS with "expert" rules allows the neural network to come to 

a better solution in the same time, than can be developed by just training alone.  

This DCS neural network has been used in several mission and safety critical applications, 

namely adaptive aircraft control [30] and on-board health state awareness for Unmanned Aerial 

Vehicles (UAVs) [31]. The ability to allow a developer to work with an expert to develop a 

better Neural-Symbolic system is important to further the usefulness of this neural network type. 
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IV. PAPER 3: IMPROVING PERFORMANCE BY EMBEDDING EXPERT KNOWLEDGE IN A 
SELF-ORGANIZING MAP NEURAL NETWORK 

 

4.1 Abstract 

This paper describes the process of capturing an expert’s knowledge in the form of human 

understandable rules and then inserting these rules into a self-organizing map neural network. 

The Dynamic Cell Structure (DCS) is a form of self-organizing map that can be used for many 

purposes, including classification and prediction. This particular neural network has been used 

for various purposes including accommodating faults in a flight control system, health 

monitoring for an unmanned aerial vehicle, and classification of data. The DCS is considered to 

be a topology preserving network that starts with no pre-structure, but assumes a structure once 

trained. This paper explores applying the DCS to classifying social science data. The approach is 

to talk to an expert in the field who is familiar with the data. The expert provides knowledge and 

that knowledge is formed into if then rules, then these rules are embedded in DCS before 

training. This idea will be demonstrated on a set of social science data that is used to determine 

factors used to predict high mortality in an area. The authors have found, that with this data set, 

starting with the pre-knowledge embedded can provide increased accuracy, compared to simply 

training the neural network on the raw data. 

4.2 Introduction 

Artificial Neural Networks are acknowledged as valuable tools for machine learning. 

These networks come in many varieties, feed-forward, recurrent, self-organizing maps, etc., and 

are typically known for their capacity “to be trained on data”, not for their understandable 

structures. Neural networks usually store knowledge in distributed internal weights, not in 

symbolic form. Although neural networks are commonly used for generalizations, other 

applications may require the knowledge be used in symbolic form [37]. Therefore, investigation 

into the interchange of information between connections and symbolic representations is 

necessary for effective learning. 

Accuracy and confidence is very important for many uses of neural networks. The 

rationale for embedding expert knowledge by using the technique of rule insertion is to be able to 
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begin with some pre-knowledge that is deemed to be accurate, but possibly incomplete, and then 

train the neural network on a large data set to determine if there are things that the expert may 

have missed. In our example, the initial knowledge of the expert is formulated into if-then type 

rules, which are converted to a network structure. The initial symbolic knowledge becomes the 

initial neural network structure, and then the data is presented to the neural network as training or 

refining of the initial knowledge. Once the training is completed, rules can be extracted from the 

neural network for the expert to inspect and validate. This process creates a "neural-symbolic" 

system which utilizes a combination of theoretical (expert knowledge) and empirical data 

(training data set). This three step process, insert–train–extract, can ensure the most accurate 

output, reduce training time, and also provide confidence by allowing developers and users to 

better understand the internal workings of the neural network through the inspection of the rules. 

Many others have explored the translation between neural structures and understandable 

symbolic logic. Kurd, Kelley, and Austin [12] focused on the use of artificial neural networks in 

a safety critical situation. In these situations, the software lifecycle relies on determining the 

specifications at the initial phase of development. These authors described the lifecycle of the 

hybrid systems like the one we are suggesting as having three levels: the symbolic level, the 

translation level and the neural level. [12]  

In the past others have explored the idea of combining rule based knowledge and neural 

learning. Towell and Shavlik [13, 29] introduced the new algorithm named Knowledge-Based 

Neural Network (KBANN). They thought that this algorithm would improve the learning speed 

because it is not ignoring any information. They described a process whereby initial domain 

knowledge were expressed as rules and then translated to neural networks structure and then 

training was applied. Another idea from Giles and Omlin [14] discusses methods for extracting, 

inserting and refining symbolic grammatical rules for recurrent networks. We also discuss how 

rules are inserted into the recurrent neural network, how training and generalization is affected, 

and how the rules can be checked in order for correction. The method Giles and Omlin [14] 

devised requires the network size to exceed the number of Deterministic Finite State Automata 

(DFA) states.  
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An additional aspect of symbolic knowledge extraction and insertion is rule checking, 

allowing for the establishment of the validity of the knowledge. Rule checking compares rules 

extracted from trained networks with prior knowledge. However, rule checking becomes more 

difficult with rising rule strength when incorrect rules are inserted into a network. Further, Giles 

and Omlin [14] suggest that network architecture can be altered during training with symbolic 

guidance, and symbolic information gained from under-trained networks could prove useful in 

determining the current network architecture.  

McGarry, Wermter, and MacIntyre [38] examined may techniques for integrating neural 

networks and symbolic components into powerful hybrid systems. They argued that neural 

networks have unique processing characteristics that enable tasks to be performed that would be 

difficult or intractable for a symbolic rule-based system. However, McGarry et al go on to 

explain that a stand-alone neural network requires an interpretation either by a human or a rule-

based system and that this motivates the integration of neural/symbolic techniques within a 

hybrid system.  They surveyed a variety of research and point out that there are number of 

integration possibilities and provided an overview and evaluation of several hybrid neural 

systems for rule-based processing. 

More recently, Chong et al. [39] apply ideas that have been used for a rule-based neural 

network approach to model driver naturalistic behavior in traffic. Neural network acts as a driver 

simulator in this study. The neural network structure proposed here has four layers. The first 

layer is the input layer. Each node represents a continuous state variable. The second layer is the 

fuzzy membership layer. States are fuzzified into linguistic terms such as: ‘‘Speed is High’’ and 

‘‘Speed is Low.’’ Each node is a discrete fuzzy set and has a membership function. The third 

layer is the fuzzy rule layer. Each node represents a fuzzy rule and is connected to a number of 

discrete fuzzy sets of the second layer. For each true, a firing strength function is defined to 

indicate its strength. The fourth layer consists of a number of action nodes. Each fuzzy rule 

chooses one action. The output action is the weighted average of the selected actions (where 

fuzzy rule strengths are the associated weights).  
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This paper presents an approach to inserting rules to a specific self-organizing map neural 

network, the Dynamic Cell Structure (DCS) neural network, which has been used in several 

safety critical applications including adaptive aircraft control [30] and on-board health state 

awareness for Unmanned Aerial Vehicles(UAVs) [31]. Section 2 discusses the Process of 

Embedding Expert Knowledge by outlining the DCS structure, the rule translation of rules to 

neural network structure, and the rule insertion process. Section 3 discusses the application of the 

process to a large data set of Social Science Data. This section outlines the data set, discusses 

how an expert was utilized to supply the initial knowledge, and how the process was applied. 

Section 4 provides the result of the experiment and a comparison where the DCS was trained 

with and without pre-knowledge. Section 5 provides some conclusions that can be drawn. 

4.3 The Process 

This section first describes the data set used in this study. Then the process of converting 

the expert knowledge into rules is explained. Next, the structure of the DCS is detailed as a 

precursor to the discussion of how the expert rules are then embedded in the neural network 

structure using Rule Insertion. Rule Insertion is the process of supplying internal knowledge to 

influence the formation of the neural network before training occurs. The knowledge influences 

the formation towards a potential classification structure, which is used in initializing the neural 

network, and then trained upon, allowing the rules to be refined. 

4.3.1 Data Set 

We tested the process of inserting expert rules into a neural network that would be used to 

analyze a large set of social science data. The data set contains a set of county-level variables 

that could be analyzed with respect to the part they play in the high mortality rate in the area. The 

data set has been studied by James and Cossman [40, 41] (and others) and we were given access 

to the data and also to the expert, Cossman. This allowed us to discuss previous findings and 

explore pre-determined ideas based on previous research.  

Originally, to construct the data set two data sources were used. First, the mortality trend 

data from the Compressed Mortality File of the National Center of Health Statistics 

(CMF/NCHS) [42, 43, 44], a controlled access database documenting deaths by country, year, 
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state, county of residence, race, sex, age of death, and cause of death by International 

Classification of Diseases (ICD) Codes. [42, 43, 44] The analytical sample is the total number of 

US deaths from 1968 to 2012 (N=98,304,544). In 2012, there were 3,105 counties or county 

equivalents included in the data after Virginia’s independent cities and other independent units 

were collapsed into the respective county comparisons. 

Age-adjusted, all-cause death rates are calculated using the 2000 Standard Million’s 

eleven age categories by years (less than 1, 1-4, 5-14, 15-24, 25-34, 35-44, 45-54, 55-64, 65-74, 

75-84, greater than 85). The proportion of the total population for each age group is used as a 

weight in the age-adjusted mortality rate calculations. Using this method, the urban and rural 

mortality rates are based on the same standard population distribution, permitting direct county 

comparisons. [45]  

The second data source was the Area Health Resource File’s (AHRF) [46] county-level 

estimates of population, socioeconomic status, and health care infrastructure (2000-2007). These 

predictors of mortality precede the mortality rate (i.e, 2012) in the multivariate analysis to 

account for the lag between exposure to social conditions and death. 

The researchers also modified the data of several of the variables in order to put the 

variable into the same range. Most of the variables were already in percent (0-100), so some of 

the others that were not in this format, for example meansofexchange, were converted to 

percentage. There were 3058 data vectors in the final set of data, with 20 independent variables 

and one dependent variable. 

4.3.2 Converting Expert Knowledge 

To develop rule for inserting into the neural network, the expert determined how the data  

should be grouped. The expert described how the factors would affect mortality of a region and 

looked at a way to group variable into three scales, social, socioeconomic status, and access.  

From the data sources mentioned above, the following variables were used and grouped 

into the three scales, with the age-adjusted mortality used for the dependent variable for the 

analyses. 
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Table 3. Mortality Correlation Scales 

Social Scale 
religious All denominations/groups--rates of adherence per 1,000 population 
security Rates of violent crimes per 1,000 total county population  
shelter Percent occupied housing units    
healing Percent of adults uninsured 
Socioeconomic Status (SES) Scale 
edu904pl Percent adults with 4 years of college or higher 
food Percentage of total students eligible for Free Lunch Program 
work not employed in labor force, female age 16+ 
meansofexchange Per capita income in the past 12 months (changed to percentile) 
Access Scale 
transport Percent of households with 1 vehicle 
info Rate of high speed internet 
play Rate of access to recreational facilities 
social Proportion voter turnout  
Dependent Variable 
ageadjrate_all All-cause age-adjusted mortality 

Once the variables were determined, rules were made for each set of variable. The rules 

took the form of  

𝐼𝐹	(𝑣𝑎𝑟𝑖𝑎𝑏𝑙𝑒]	 ≥ 𝑥]	𝑎𝑛𝑑	 ≤ 𝑦])	 
𝑇𝐻𝐸𝑁	𝑂𝑢𝑡𝑝𝑢𝑡	 

The Output in this case is 2-High Mortality, 1-Average Mortality, 0-Low Mortality. The 

High, Average, and Low were determined by using Quartiles. The variables were not all 

normally distributed, so looking at standard deviations above or below the mean was not the 

right approach. The expert used background knowledge to determine how the rules should be 

stated. For example, the rules for the Social Scale are below. 

𝐼𝐹	(𝑟𝑒𝑙𝑖𝑔𝑖𝑜𝑢𝑠 ≥ 0	𝑎𝑛𝑑	 ≤ 38.71)		𝐴𝑁𝐷  
𝐼𝐹	(𝑠𝑒𝑐𝑢𝑟𝑖𝑡𝑦 ≥ 3.29	𝑎𝑛𝑑	 ≤ 21.52)	𝐴𝑁𝐷   
𝐼𝐹	(𝑠ℎ𝑒𝑙𝑡𝑒𝑟 ≥ 0	𝑎𝑛𝑑	 ≤ 79.6)	𝐴𝑁𝐷  
𝐼𝐹	(ℎ𝑒𝑎𝑙𝑖𝑛𝑔 ≥ 17.7	𝑎𝑛𝑑	 ≤ 38)	  
𝑇𝐻𝐸𝑁	𝟐  
 
𝐼𝐹	(𝑟𝑒𝑙𝑖𝑔𝑖𝑜𝑢𝑠 ≥ 38.71	𝑎𝑛𝑑	 ≤ 62.49)	𝐴𝑁𝐷  
𝐼𝐹	(𝑠𝑒𝑐𝑢𝑟𝑖𝑡𝑦 ≥ 0.96	𝑎𝑛𝑑	 ≤ 3.29)	𝐴𝑁𝐷  
𝐼𝐹	(𝑠ℎ𝑒𝑙𝑡𝑒𝑟 ≥ 79.6	𝑎𝑛𝑑	 ≤ 89.9)	𝐴𝑁𝐷  
𝐼𝐹	(ℎ𝑒𝑎𝑙𝑖𝑛𝑔 ≥ 10.9	𝑎𝑛𝑑	 ≤ 17.7)	  
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𝑇𝐻𝐸𝑁	𝟏  
 
𝐼𝐹	(𝑟𝑒𝑙𝑖𝑔𝑖𝑜𝑢𝑠 ≥ 62.49	𝑎𝑛𝑑	 ≤ 192.46)	𝐴𝑁𝐷  
𝐼𝐹	(𝑠𝑒𝑐𝑢𝑟𝑖𝑡𝑦 ≥ 0	𝑎𝑛𝑑	 ≤ 0.96)	𝐴𝑁𝐷  
𝐼𝐹	(𝑠ℎ𝑒𝑙𝑡𝑒𝑟 ≥ 89.9	𝑎𝑛𝑑	 ≤ 98.3)	𝐴𝑁𝐷  
𝐼𝐹	(ℎ𝑒𝑎𝑙𝑖𝑛𝑔 ≥ 0	𝑎𝑛𝑑	 ≤ 10.9)	  
𝑇𝐻𝐸𝑁	𝟎  

 

As can be seen, sometime low values of the variable correlate with high mortality. For 

example, low “religious” correlates with high mortality, while high “security” (rate of violent 

crime) correlates with high mortality. So the expert was able to give the information which was 

then put into rules.  

4.4 Embedding Knowledge 

This section explains how the knowledge of the expert, which was converted to rules, was 

then used to give the neural network “beginning knowledge”. We will first outline the structure 

of the Dynamic Cell Structure (DCS) neural network. Then we will explain how rules are 

inserted for this particular set of data. A thorough treatment of this complete process can be 

found in our previous paper. [47] 

4.4.1 Structure of the Dynamic Cell Structure Neural Network 

One type of self-organizing map is called the Dynamic Cell Structure (DCS) neural 

network. [1, 2, 3] The DCS neural network partitions the parameter space into Voronoi regions 

(Figure 14).  The neurons within the neural network represent the reference vector (centroid) for 

each of the Voronoi regions (cells). The connections between the neurons, 𝑐%&, are then part of 

the Delaunay triangulation connecting neighboring Voronoi regions through their reference 

vectors. 

Given an input to the DCS, v, the best matching unit (BMU) is the neuron whose weight, 

w, is closest to v, and the second best matching unit (SEC) is the neuron whose weight is the 

second closest to v. Along with the BMU, the neighbors of the BMU are found through the 

Delaunay triangulation, which connect the centers of the Voronoi regions if they share a 
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boundary. During adaptation, adjustments are made to the BMU and SEC neurons within the 

BMU neighborhood (NBR) based on the input. 

 

Figure 14. Voronoi Diagram with Delaunay Triangulation 

The DCS algorithm consists of two types of learning rules, Hebbian and Kohonen, 

Equation 1, Equation 2, and Equation 3.  These learning rules allow the DCS neural network to 

change its structure to adapt to inputs, which gives the DCS neural network the potential to 

evolve into many different configurations. 

𝑐|} = +

1															𝑎 ∈ [𝐵𝑀𝑈, 𝑆𝐸𝐶] 	∧ 𝑏 ∈ [𝐵𝑀𝑈, 𝑆𝐸𝐶]
𝛼 ∙ 𝑐|}										𝛼 ∙ 𝑐|} > 0																																																			
0														𝛼 ∙ 𝑐|} < 0																																																
0														𝑎 = 𝑏																																																									

>                                        (1) 

 
Δ𝑤ABCD = 𝜀ABC(𝑣% − 𝑤ABCD)                                                                                       (2) 
 
 
Δ𝑤% = 𝜀JAK(𝑣% − 𝑤%)                                                                                                    (3) 
 

4.4.2 Insertion of Expert Knowledge in to the DCS 
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Typically, the DCS is initialized with two random points in the parameter space. Then the 

training data is presented to the neural network and it begins to conform the structure to the data. 

The hypothesis is that the neural network with rules inserted should be able to be trained faster 

and be more accurately than the original neural network.  

The expert rules that were given in IF/THEN format can be represented simply as a 

collection of labeled convex subspaces inside a parameter space, where the label is the category 

assigned to each subspace. For example, consider the rules defined previously by the expert. 

𝐼𝐹	(𝑟𝑒𝑙𝑖𝑔𝑖𝑜𝑢𝑠 ≥ 0	𝑎𝑛𝑑	 ≤ 38.71)		𝐴𝑁𝐷  
𝐼𝐹	(𝑠𝑒𝑐𝑢𝑟𝑖𝑡𝑦 ≥ 3.29	𝑎𝑛𝑑	 ≤ 21.52)	𝐴𝑁𝐷   
𝐼𝐹	(𝑠ℎ𝑒𝑙𝑡𝑒𝑟 ≥ 0	𝑎𝑛𝑑	 ≤ 79.6)	𝐴𝑁𝐷  
𝐼𝐹	(ℎ𝑒𝑎𝑙𝑖𝑛𝑔 ≥ 17.7	𝑎𝑛𝑑	 ≤ 38)	  
𝑇𝐻𝐸𝑁	𝟐  
 
𝐼𝐹	(𝑟𝑒𝑙𝑖𝑔𝑖𝑜𝑢𝑠 ≥ 38.71	𝑎𝑛𝑑	 ≤ 62.49)	𝐴𝑁𝐷  
𝐼𝐹	(𝑠𝑒𝑐𝑢𝑟𝑖𝑡𝑦 ≥ 0.96	𝑎𝑛𝑑	 ≤ 3.29)	𝐴𝑁𝐷  
𝐼𝐹	(𝑠ℎ𝑒𝑙𝑡𝑒𝑟 ≥ 79.6	𝑎𝑛𝑑	 ≤ 89.9)	𝐴𝑁𝐷  
𝐼𝐹	(ℎ𝑒𝑎𝑙𝑖𝑛𝑔 ≥ 10.9	𝑎𝑛𝑑	 ≤ 17.7)	  
𝑇𝐻𝐸𝑁	𝟏  
 
𝐼𝐹	(𝑟𝑒𝑙𝑖𝑔𝑖𝑜𝑢𝑠 ≥ 62.49	𝑎𝑛𝑑	 ≤ 192.46)	𝐴𝑁𝐷  
𝐼𝐹	(𝑠𝑒𝑐𝑢𝑟𝑖𝑡𝑦 ≥ 0	𝑎𝑛𝑑	 ≤ 0.96)	𝐴𝑁𝐷  
𝐼𝐹	(𝑠ℎ𝑒𝑙𝑡𝑒𝑟 ≥ 89.9	𝑎𝑛𝑑	 ≤ 98.3)	𝐴𝑁𝐷  
𝐼𝐹	(ℎ𝑒𝑎𝑙𝑖𝑛𝑔 ≥ 0	𝑎𝑛𝑑	 ≤ 10.9)	  
𝑇𝐻𝐸𝑁	𝟎  

 

Using these rules we formed the boundaries of these convex subspaces, the rules are 

converted into a collection of “centers” for the bounding convex hulls and then these centers 

become the centroids for a Voronoi regions. In 2-dimensions the bounding shape is a rectangle, 

in 3-dimension it would be a rectangular prism, etc. These Voronoi centroids then become the 

neurons of the DCS and provide the initial starting point for neural network training.  

In this case, we would take each rule and determine the middle values for each parameter. 

This 4-dimensional point then becomes the centroid for a Voronoi region or a neuron of the 

DCS. The list of centroids is taken and directly used as the initial set of neurons for the DCS. 

The corresponding centroid list for the previous list of rules would look like:  
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{19.36, 12.41, 39.8, 27.85} related to output 2  
{50.6, 1.69, 84.75, 14.3} related to output 1 
{127.48, 0.48, 94.1, 5.45} related to output 0 

The output 0, 1, or 2 for the rules would also be stored associated with the centroid 

(neuron). The neural network is then initialized with these neurons and the network will be 

trained on the training data.  

4.5 Testing Process 

In this section we will test the efficacy of the rule insertion by first training the DCS 

neural network with no pre-knowledge (starting with the configuration of two random neurons) 

and then training the DCS with inserted pre-knowledge of the expert (rule set inserted into neural 

network structure as a set of starting neurons). For testing whether the network would be more 

accurate being initialized in the default way or initialized with the inserted rules, two 

experiments were conducted.  

The DCS NN was developed in the two ways mentioned above, trained using the data set 

ten times, rules were extracted at the end of each training. Rules similar to the ones inserted, that 

captured the neural network knowledge, were extracted after each training epoch using the Rule 

Extraction process describe in [6, 47]. This was an important part of the process so that the 

extracted rules could be presented to the expert for inspection and validation. The extracted rules 

were then tested and the "rule accuracy" was calculated as the percentage of data points that were 

correctly classified by the set of extracted rules. To compare the two methods of initialization, 

the accuracy of the trained DCS NN and the accuracy of the extracted rules were both compiled. 

4.5.1 Preliminary Testing of the Neural Network on the Data Set 

After getting the data set from Cossman and before meeting  to discuss the rules she 

would develop, we ran the DCS with 20 independent variables testing different number of nodes 

“cells” to see which size of the neural network would produce more accurate results. We tried 

five, seven, nine, 11, 13, and 15 nodes. Five and 15 nodes gave the good results.  
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The rest of the preliminary study was run with the DCS limited to growing five nodes. In 

the tables below, the average of 10 training epochs is given for the neural network accuracy to 

predict the correct output, the rule accuracy to predict the correct output, the agreement between 

the neural network and the rules on the data points that they both classified, and finally what 

percentage of the data could be classified by both methods.   

First, with the set of 20 variables, the results can be seen below. 

Table 4. Preliminary Results for All 20 Variables 

% of data that NN 
accurately classified 

% of data that rules 
accurately classified 

% agreement between 
NN and rules 

% of data that both 
classified 

0.596 0.603 1 0.971 

For this particular epoch, approximately 3000 of the data points were able to be classified, 

leaving only about 60 left unclassified. This means that the neural network and the rules could 

correctly classify the data approximately 60% of the time and almost all the data was classified. 

Below is a sample set of extracted rules from this run. 

RULES FOR CELL1 
IF (edu90somecol>=12.8 AND <=40.1) AND 
IF (housekeeping>=1.4 AND <=25.5) AND 
IF (religious>=30.6489 AND <=1924.6089) AND 
IF (transport>=9.9 AND <=52.7) AND 
IF (air>=0 AND <=105) AND 
IF (hygiene>=0 AND <=1748.9) AND 
IF (persrel>=2.2 AND <=20.3) AND 
IF (security>=0 AND <=16.39) AND 
IF (water>=0 AND <=7.2) AND 
IF (edu904pl>=6 AND <=53.4) AND 
IF (food>=0 AND <=69.0111) AND 
IF (info1>=1 AND <=5) AND 
IF (play>=0 AND <=57.5) AND 
IF (shelter>=22.9 AND <=98.3) AND 
IF (work>=0 AND <=0.13797) AND 
IF (edu90hs>=13.5 AND <=46.9) AND 
IF (healing>=3.8 AND <=22.6) AND 
IF (meansofexchange>=24378 AND <=64381) AND 
IF (refedu>=4.5 AND <=43.2) AND 
IF (social>=0.35 AND <=0.85) 
THEN...0 
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We looked for smaller data subsets that would predict mortality (dependent variable). 

Cossman, the field expert chose 12 variables expected to have the most effect on the dependent 

variable, mortality; she also grouped the explanatory variables into three sets of four, labeled 

SES, Social, and Access (as mentioned before). 

A preliminary study was done using these 12 variables. First, all 12 were used, then two 

groups of four were used (eight variables), and then each group of four was run independently. 

See the tables below. 

Table 5. Preliminary Results for 12 Variables 

% of data that NN 
accurately classified 

% of data that rules 
accurately classified 

% agreement between 
NN and rules 

% of data that both 
classified 

0.727 0.732 1 0.961 

For this run, 3026 of the data points were able to be classified, leaving 32 left unclassified. 

Sample rules for all 12 variables 

RULES FOR CELL1 
IF (religious>=30.6489 AND <=1397.99) AND 
IF (transport>=15.2 AND <=48.8) AND 
IF (security>=0.14 AND <=13.34) AND 
IF (edu904pl>=11.1 AND <=53.4) AND 
IF (food>=0 AND <=64.8064) AND 
IF (info1>=3 AND <=5) AND 
IF (play>=0 AND <=57.5) AND 
IF (shelter>=22.9 AND <=98.3) AND 
IF (work>=0 AND <=0.10425) AND 
IF (healing>=3.8 AND <=21) AND 
IF (meansofexchange>=31377 AND <=59149) AND 
IF (social>=0.48 AND <=0.82) 
THEN...1 
 
 
 
 
 
 
 
 



48 
 

Next we tested each group 2 groups (3 groups of 8) 

Table 6. Preliminary Results for 8 Variable Groups 

Groups % of data that 
NN accurately 
classified 

% of data that 
rules accurately 
classified 

% agreement 
between NN and 
rules 

% of data that 
both classified 

SES & Social 0.731         0.731            1             0.963  
Social & 
Access 

0.878         0.873            0.946       0.0719 

SES & Access 0.707                    0.708            1 0.979 
 
Sample rules for SES & Social 
 

RULES FOR CELL1 
IF (edu904pl>=8.7 AND <=52.8) AND 
IF (food>=6.6261 AND <=65.6337) AND 
IF (work>=0 AND <=0.11882) AND 
IF (meansofexchange>=26901 AND <=64381) AND 
IF (religious>=52.38 AND <=1924.6089) AND 
IF (security>=0 AND <=16.39) AND 
IF (shelter>=27.8 AND <=95.9) AND 
IF (healing>=4.7 AND <=22.6) 
THEN...1 

 
Sample rules Social & Access 
 

RULES FOR CELL1 
IF (religious>=117.67 AND <=511.35) AND 
IF (security>=0 AND <=12.62) AND 
IF (shelter>=22.7 AND <=95.9) AND 
IF (healing>=7.5 AND <=34.3) AND 
IF (transport>=18.2 AND <=48.7) AND 
IF (info1>=1 AND <=5) AND 
IF (play>=0 AND <=62.4) AND 
IF (social>=0.32 AND <=0.77) 
THEN...2 

 
Sample rules SES & Access 
 

RULES FOR CELL1 
IF (edu904pl>=15.6 AND <=53.4) AND 
IF (food>=0 AND <=64.8064) AND 
IF (work>=0.012984 AND <=0.091734) AND 
IF (meansofexchange>=34630 AND <=64381) AND 
IF (transport>=9.9 AND <=52.7) AND 
IF (info1>=3 AND <=5) AND 



49 
 

IF (play>=4.6 AND <=57.5) AND 
IF (social>=0.48 AND <=0.82) 
THEN...1 

 
Then we tested each group individually. 
 

Table 7. Preliminary Results for 4 Variable Groups 

Groups % of data that 
NN accurately 
classified 

% of data that 
rules accurately 
classified 

% agreement 
between NN and 
rules 

% of data that 
both classified 

SES 0.757                   0.761            1   0.980 
Social 0.858         0.875              0.964       0.073 
Access 0.854                        1   0.8           0.007 

 
Sample rules for SES 
 

RULES FOR CELL1 
IF (edu904pl>=4.6 AND <=42.9) AND 
IF (food>=0.91935 AND <=90.1203) AND 
IF (work>=0 AND <=0.18708) AND 
IF (meansofexchange>=19187 AND <=22890) 
THEN...2 

 
Sample rules for Access 
 

RULES FOR CELL1 
IF (transport>=9.9 AND <=52.7) AND 
IF (info1>=1 AND <=5) AND 
IF (play>=0 AND <=49.9) AND 
IF (social>=0.27 AND <=0.86) 
THEN...1 

 
Sample rules for Social 
 

RULES FOR CELL1  
IF (religious>=649.3789 AND <=1413.7) AND  
IF (security>=0 AND <=8.61) AND  
IF (shelter>=38.3 AND <=98.3) AND  
IF (healing>=5.1 AND <=31.6)  
THEN...1  

 

Some results were good, others were not. To improve results, we modified the data and 

the variables were all put in a similar scale. The raw data had variable in different formats, some 

were in percentages, some in dollars, some in occurrences per 1000, etc. The varying scales 
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caused trouble when creating convex hulls “rules” in the parameter space. To rectify this 

situation, we recalculated each variable into roughly the same scale, (0-100). 

4.5.2 Training the Neural Network without Rules 

The DCS was initialized as usual with two random centroids to begin the learning and 

growing process. Each of the scales, Social, SES, and Access, were run separately, the groups of 

two were run, and then finally the group of all 12 variables were used. For each training epoch, 

the DCS neural network was trained using a random 75% of the data points from the data set 

described previously. The remaining 25% of the data points were used to test the accuracy of the 

resultant neural network. For the set of 12 variables, the DCS was allowed to grow to the size of 

15 neurons, which leads to only 15 cells and 15 rules. For the sets of eight variables, the DCS 

was allowed to grow to the size of 15 neurons, which leads to only 15 cells and 15 rules. For the 

sets of size four variables, the better results were when the DCS was allowed to grow four 

neurons, four cells, and then four rules. 

4.5.3 Training the Neural Network after Rules are Inserted  

The DCS was initialized with the centroid sets described above that were constructed from 

the expert rules. Each of the scales, Social, SES, and Access, were run separately, the groups of 

two were run, and then finally the group of all 12 variables were used. For each training epoch, 

the DCS neural network was trained using a random 75% of the data points from the data set 

described previously. The remaining 25% of the data points were used to test the accuracy of the 

resultant neural network.  

4.5.4 Comparing the Results 

For the test described above, five training epochs were completed, and an average taken. 

The results are summarized in Table 8 below. After the rules were inserted the performance of 

the neural network (in most cases) improved. Some of the improvement is small, but in some 

cases, the improvement is between 3% - 7% (highlighted in the table), which represents 100 - 

200 additional data points that were correctly categorized. The Access group seemed to be the 
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most troublesome group. The variables in that group need to be examined and some of them 

dropped out of the analysis for better prediction results. 

Table 8. Comparing Results Without and With Rules Inserted for All Size Groups 

Groups % of data that NN 
accurately 
classified 

% of data that 
rules accurately 
classified 

% agreement 
between NN and 
rules 

% of data that 
both classified 

 without with without with without with without with 
All 0.652 0.712 0.674 0.716 0.994 1 0.898 0.896 
SES & 
Social 

0.672 0.71 0.678 0.718 0.996 1 0.924 0.926 

SES & 
Access 

0.636 0.708 0.64 0.71 0.996 1 0.93 0.938 

Social & 
Access 

0.786 0.798 0.492 0.564 0.79 0.738 0.078 0.11 

SES 0.674 0.694 0.674 0.696 1 1 0.990 0.992 
Social  0.672 0.678 0.672 0.678 1 1 0.990 0.990 
Access 0.730 0.720 0.564 0.618 0.980 0.984 0.306 0.648 

 
 

4.6 Conclusions 

Several methods of Rule Extraction from the DCS neural network had already been 

developed [21] and the Rule Insertion process was investigated and simulated on a small 

benchmark data set in Chapter 3 [47]. Our research focused on applying the method developed in 

Chapter 3 [47] for inserting rules into a DCS neural network structure. This research represents 

the first attempt to use a data set supplied by an expert and work with that expert to develop the 

pre-knowledge to be embedded in the neural network. The Rule Insertion process for the DCS 

neural network is a promising technique to provide more accurate data analysis. Starting with the 

pre-knowledge of an expert in the form of inserted rules proved to increase the accuracy of the 

neural network by up to 7%. The technique also has the benefit of providing the corresponding 

rules that can be inspected and validated by the expert to see what the neural network has 

actually learned. 

V. FUTURE DIRECTIONS 
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 The artificial neural network is one method of machine learning that is used for 

many applications. The intention for future research is to continue to focus on uses for Rule 

Insertion in various fields. Since, the purpose of Rule Insertion is to start with internal 

knowledge and train the neural network to see how rules are refined, then experts can better 

understand and use the knowledge learned by the neural network. To continue to test whether the 

process is effective, and the rules are useful, my future plan to concentrate on the DCS self-

organizing map, but also learn more about Rule Extraction and Insertion techniques for other 

types of neural network. This could allow me to compare our work with others.  

 We will continue to work with Cossman on social science data, continuing compare our 

technique to previous techniques that have been used to analyze the data.  Also, we will work 

with experts in other fields. We have had discussions with Dr. Hatim Al-Jaroushi, a 

Pulmonologist in the medical school, about our method for analyses of data sets. He has access 

to medical data sets, and he can serve as the expert in this field to give us information to form the 

rules for insertion. The hope is that this method will give insight to experts about the data that 

they cannot get from other techniques. 

 

 
  



53 
 

REFERENCES 

[1]  J. Bruske and G. Sommer, “Dynamic cell structures,” Advances in neural information 
processing systems, pp. 497-504, 1995. 

[2] B. Fritzke, “Growing cell structures a self-organizing network for unsupervised and 
supervised learning,” Neural networks, vol. 7, no. 9, pp. 1441-1460, 1994. 

 
[3]  T. Martinetz, “Competitive hebbian learning rule forms perfectly topology preserving 

maps,” In ICANN’93, pp. 427-434, 1993. 
 
[4] E. Y. Li, “Artificial Neural Networks and Their Business Applications,” Information and 

Management, vol. 27. No. 5, pp. 303-314, 1994. 
 
[5] D. De Ridder, R. P. W. Duin, M. Egmont-Peterson, L. J. Van Vliet, and P. W. Verbeek, 

“Nonlinear Image Processing using Artificial Neural Networks,” Advances in Imaging 
and Electron Physics, Vol. 126, pp. 351-450, 2003. 

 
[6]  M. Darrah, B. J. Taylor, and Spiro T. Skias. "Rule Extraction From Dynamic Cell Structure 

Neural Network Used in a Safety Critical Application," in Proceedings of  FLAIRS 
Conference, 2004. 

 
[7]  S. M. Kamruzzaman and A. R. Hasan, “Rule Extraction using Artificial Neural Networks,” 
 arXiv: 1009.4984, 2010. 
 
[8]  R. Setiono and H. Liu, “Understanding neural networks via rule extraction,” in IJCAI, vol. 

1, pp. 480-485, 1995. 
 
[9] G. Bologna, “A study on rule extraction from neural networks applied to medical 

databases,” in The 4th European Conference on Principles and Practice of Knowledge 
Discovery (PKDD2000), Lyon, France, 2000. 

 
[10] M. G. Augasta and T. Kathirvalavakumar, “Rule extraction from neural networks? a 

comparative study,” in Pattern Recognition, Informatics and Medical Engineering 
(PRIME), 2012 International Conference on, pp. 404–408, IEEE, 2012. 

 
[11] M. A. Darrah and B. J. Taylor, “Rule extraction to understand changes in an adaptive 

system,” Adaptive Control Approach for Software Quality Improvement, vol. 20, p. 115, 
2011. 

 
[12] Z. Kurd, T. Kelly, and J. Austin, “Safety criteria and safety lifecycle for artificial neural 

networks,” In Proceedings of Eunite, vol. 2003, 2003. 
 



54 
 

[13]  G. G Towell and J. W. Shavlik, “Extracting refined rules from knowledge-based neural 
networks,” in Machine learning, vol. 13, no. 1, pp. 71-101, 1993. 

 
[14] C. L. Giles and C. W. Omlin, “Extraction, insertion and refinement of symbolic rules in 

dynamically driven recurrent neural networks,” Connection Science, vol. 5, no. 3-4, pp. 
307-337, 1993. 

 
[15] S. V. N. Vishwanathan, N. N. Schraudolph, R. Kondor, and K. M. Borgwardt, “Graph 

kernels,” Journal of Machine Learning Research, vol. 11, no. Apr, pp. 1201–1242, 2010.   
 
[16] K. Sudheer, “Knowledge extraction from trained neural network river flow models,” 

Journal of Hydrologic Engineering, vol. 10, no. 4, pp. 264–269, 2005.  
 
[17] P. Cortez and A. Morais, A Data Mining Approach to Predict Forest Fires using 

Meteorological Data, in J. Neves, M. F. Santos and J. Machado Eds., New Trends in 
Artificial Intelligence, in Proceedings of the 13th EPIA 2007, Portuguese Conference on 
Artificial Intelligence, (2007), December, Guimaraes, Portugal, 512 - 523, ISBN-13 978-
989-95618-0-9.2007 

 
[18] S. Clar, B. Drossel, and F. Schwabl, “Forest fires and other examples of self-organized 

criticality,” Journal of Physics: Condensed Matter, vol. 8, no. 37, p. 6803, 1996.  
 
[19] A. Grishin and A. Fil’Kov, “A model of prediction of forest-fire hazard,” Journal of 

engineering physics and thermo- physics, vol. 76, no. 5, pp. 1139–1144, 2003.  
 
[20] S. Eskandari. "A new approach for forest fire risk modeling using fuzzy AHP and GIS in 

Hyrcanian forests of Iran." Arabian Journal of Geosciences, vol. 10, no. 8 pp. 190, 2017.  
  
[21] S. Annas, K. Suwardi, T. Kanai, and S. Koyama. “Principal Component Analysis and 

Self-Organizing Map for Visualizing and Classifying Fire Risk in Forest Regions,” 
Agricultural and Information Research, vol. 16, no. 2, pp. 44-51, 2007. 

 
[22]  P. Cortez, and AJR Morais, "A data mining approach to predict forest fires using 

meteorological data," in J. M. Neves, M. F. Santos, J. M. Machado, eds. - New trends in 
artificial intelligence : proceedings of the 13th Portuguese Conference on Artificial 
Intelligence (EPIA 2007), Guimarães, Portugal, 2007, Lisboa: APPIA, p. 512-523, 2007. 
ISBN 978-989-95618-0-9.  

[23] S.  Youssef, and A. Bouroumi. "Prediction of forest fires using artificial neural 
networks." Applied Mathematical Sciences vol. 7, no. 6, pp. 271-286, 2013. 

 
[24] M. G. Augasta and T. Kathirvalavakumar, “Rule extraction from neural networks? a 

comparative study,” in Pattern Recognition, Informatics and Medical Engineering 
(PRIME), 2012 International Conference on, pp. 404–408, IEEE, 2012. 

 



55 
 

[25] MW. Craven, and JW. Shavlik. "Using sampling and queries to extract rules from trained 
neural networks." In Machine Learning Proceedings 1994. Morgan Kaufmann, 1994. 37-
45. 

 
[26] AB. Tickle M. Orlowski, and J. Diederich. "DEDEC: decision detection by rule 

extraction from neural networks,” in QUT NRC, 1994. 
 

[27] A. S. Garcez, D. M. Gabbay, K. B. Broda, Neural-Symbolic Learning Systems: 
Foundations and Applications, Springer-Verleg, 2002. 

 
[28]  M. Hoehfeld and S. E. Fahlman, “Learning with limited numerical precision using the 

cascade-correlation algorithm,” IEEE Transactions on Neural Networks, vol. 3, no. 4, pp. 
602-611, 1992. 

 
[29]  G. G Towell and J. W. Shavlik, “Using symbolic learning to improve knowledge-based 

neural networks,”  In AAAI, pp. 177-182, 1992. 
 
[30]  M. Charles and C. Jorgensen, Direct adaptive aircraft control using dynamic cell 

structure neural networks. NASA Technical Memorandum, Ames Research Center, 
1997. 

 
[31]  M. Darrah, A. Rubenstein, E. Sorton, and B. DeRoos, “On-board health-state awareness 

to detect degradation in multirotor systems,” In Proceedings of International Conference 
on Unmanned Aircraft Systems (ICUAS), pp. 1134-1141, 2018. 

 
[32] L. L. Pullum, B. J. Taylor, and M. Darrah, Guidance for the Verification and Validation 

of Neural Networks, vol. 11. John Wiley & Sons, 2007. 
 
[33]  B. J. Taylor and M. A. Darrah, “Rule extraction as a formal method for the verification 

and validation of neural networks.” In Proceedings of 2005 IEEE International Joint 
Conference on Neural Networks, vol. 5, pp. 2915-2920, 2005. 

[34]  Guido Bologna and Yoichi Hayashi, “A Comparison Study on Rule Extraction from 
Neural Network Ensembles, Boosted Shallow Trees, and SVMs,” Applied Computational 
Intelligence and Soft Computing, vol. 2018, Article ID 4084850, 20 pages, 2018. 
https://doi.org/10.1155/2018/4084850. 

[35]  Yan-Xin Liu, Faiyaz Doctor, Shou-Zen Fan, and Jiann-Shing Shieh, “Performance 
Analysis of Extracted Rule-Base Multivariable Type-2 Self-Organizing Fuzzy Logic 
Controller Applied to Anesthesia,” BioMed Research International, vol. 2014, Article ID 
379090, 19 pages, 2014. https://doi.org/10.1155/2014/379090. 

[36] M. Darrah, B. J. Taylor, M. Webb, and R. Livingston. “A geometric rule extraction 
approach used for  verification and validation of a safety critical application,” in 
Proceedings of FLAIRS Conference, 2005. 

 



56 
 

[37] M. Hoehfeld and S. E. Fahlman, “Learning with limited numerical precision using the 
cascade-correlation algorithm,” IEEE Transactions on Neural Networks, vol. 3, no. 4, pp. 
602-611, 1992. 

 
[38] K. McGarry, S. Wermter, and J. MacIntyre,  “Hybrid neural systems: from simple 

coupling to fully integrated neural networks,” Neural Computing Surveys, vol. 2, no. 1, 
pp. 62-93, 1999. ISSN 1093-7609 

 
[39] L. Chong,  M. M. Abbas, A. M. Flintsch, and B. Higgs,  “A rule-based neural network 

approach to model driver naturalistic behavior in traffic,” Transportation Research: Part 
C Emerging Technologies, vol. 32, pp. 207.223, 2013. 

[40] W. James and J. S. Cossman, “Long-Term Trends in Black and White Mortality in the 
Rural United States: Evidence of Race-Specific Rural Mortality Penalty,” The Journal of 
Rural Health, vol. 33, pp. 21-31, 2017. 

[41] J. S. Cossman, W. L. James and R. E. Cossman, “Underlying Causes of the Emergin 
Neonmetropolitan Mortality Penalty,” American Journal of Public Health, vol. 100, no. 
8, pp. 1417-1419, 2010. 

[42]  National Center for Health Statistics. Compressed Mortality File: 1968-1988, as compiled 
from data provided by the 57 vital statistics jurisdictions through the Vital Statistics 
Cooperative Program. Atlanta, GA: National Center for Health Statistics, Centers for 
Disease Control and Prevention. 

[43] National Center for Health Statistics. Compressed Mortality File: 1989-1998, as compiled 
from data provided by the 57 vital statistics jurisdictions through the Vital Statistics 
Cooperative Program. Atlanta, GA: National Center for Health Statistics, Centers for 
Disease Control and Prevention. 

[44] National Center for Health Statistics. Compressed Mortality File: 1999-2012, as compiled 
from data provided by the 57 vital statistics jurisdictions through the Vital Statistics 
Cooperative Program. Atlanta, GA: National Center for Health Statistics, Centers for 
Disease Control and Prevention. 

[45] Swanson D, Siegel J. The Methods and Materials of Demography, 2nd ed. Amsterdam: 
Elsevier Science and Technology Books; 2004. 

[46] US Dept. of Health and Human Services. Area Health Resources Files (AHRF). 
Rockville, MD: US Department of Health and Human Services, Health Resources and 
Services Administration, Bureau of Health Workforce; 2014-2015. 

[47] O. Elsarrar, M. Darrah, and R. Devine, “Rule Insertion Technique for a Dynamic Cell 
Structure Neural Network to Improve Performance,” to be submitted. 

 


	Rule Extraction and Insertion to Improve the Performance of a Dynamic Cell Structure Neural Network
	Recommended Citation

	Dissertation Osama Elsarrar Final 12319

