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Abstract 

Dynamic Discrepancy Reduced Order Modeling for 
Fischer-Tropsch Synthesis Over Cobalt-based Catalyst 

Jose M. Bohorquez 

 
Advances in carbon capture techniques and demands in alternative fuel sources have 

increased over the past couple of decades. The Fischer-Tropsch Synthesis (FTS) provides a 
viable way to produce hydrocarbons from natural gas, coal, CO2, or biomass. However, current 
comprehensive models for FTS encompass large number of reacting species, readsorption and 
conversion of primary products, surface intermediates, and coverage-dependent reaction rates. 
To accurately predict the products obtained through the process a reduced order model has 
been developed. By reducing the number of parameters of an existing comprehensive model, 
uncertainty is introduced. The uncertainty can be quantified by using discrepancy functions 
within the chemical rate equations, there by representing the reduced order model as a set of 
stochastic differential equations. Representing the uncertainty as model discrepancy functions, 
a Bayesian approach is used to calibrate the reduced order model to data obtained from 
literature. Through a Bayesian Smoothing Splines (BSS-ANOVA) framework, the stochastic 
differential equations are decoupled into deterministic differential equations and stochastic 
coefficients. The parameters are solved for using a Sequential Monte Carlo approach with 
importance sampling. Through the use of these stochastic coefficients, fidelity is restored to the 
reduced order model. Thus, the model can be fully described by fewer parameters than initially 
needed, as well as a reduction in the computational complexity. 
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1. Introduction 

The Fischer-Tropsch Synthesis dates back to the early twentieth century, when the 

German scientist Franz Fischer and Hans Tropsch showed the technology in their U.S. patent 

titled, “Process for the Production of Paraffin-Hydrocarbons with More Than One Carbon Atom” 

(United States of America Patent No. 1746464, 1930). It was during WWII that this process was 

further investigated by the Technical Oil Mission in Germany (Miller, 1945). Towards the end of 

the war, there were nine plants in operation using cobalt based catalyst in Germany. After the 

end of the war, these plants were shut down. It wasn’t until the oil shortage of the mid 1970’s 

that the Fischer-Tropsch synthesis was once again explored. In recent years, the Fischer-Tropsch 

synthesis has gained popularity as the world’s oil reserves are depleted. According to the World 

Energy Council, about 10 percent of the world’s total energy production is based on renewable 

energy sources such as solar, wind, geothermal and hydro-electrical energy (Hans-Wilhelm 

Schiffer, 2016). Meanwhile natural gas, oil and coal are the predominant energy sources, as seen 

in Figure 1.  

 

Figure 1: Ratio of the energy source of the global annual energy consumption, 2015 
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A rough estimate based on the 2016 reserves and consumption by the U.S. Energy 

Information Administration tells us that we have natural gas and oil for about half a century left 

(U.S. Energy Information Administration, 2017). Based on this estimate, relying solely on the 

refinement of crude oil to meet energy demands will eventually lead to an oil shortage. Thus, 

exploring an alternative for fuel generation is of interest. The Fischer-Tropsch synthesis provides 

a viable alternative. Figure 2 (Schouten, Hensen, & van Santen, 2015) shows how the Fischer-

Tropsch synthesis can aid in the production of fuels. 

 

Figure 2: Fischer-Tropsch synthesis provides an alternative pathway for the synthesis of hydrocarbons from natural 

gas, coal, CO2 or biomass 

As shown in Figure 2, Syngas can be obtained through the decomposition of biomass by 

the pyrolysis effect (Zafar, 2019), coal gasification (Wagner, Coertzen, & Matjie, 2008), carbon 

capture and storage of carbon dioxide (CO2) emissions (Center for Climate and Energy 

Solutions, 2019), and auto-thermal reforming of natural gas (Rice & Mann, 2007). These sources 
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of syngas can be used to produce a renewable energy-like system as shown in Figure 3 

(Brandtner, 2018).  

 

Figure 3: Closed Loop Energy Consumption Process 

 The benefit of having such sources to create fuel and alleviate our dependence on other 

sources justifies further exploration of the Fischer-Tropsch synthesis. 

The Fischer-Tropsch synthesis is a heterogeneous catalytic process that converts syngas 

(H2/CO) derived from carbon sources such as coal, natural gas or biomass, into liquid fuels and 

chemicals with a high cetane number and without any aromatic compounds such as Sulphur and 

Nitrogen (Zhou L. , 2016).  

The products created through the Fischer-Tropsch synthesis, depend on the choice of the 

catalyst. Figure 4 shows the possible metals for use in the Fischer-Tropsch synthesis, while Table 

1 shows the product classifications, properties and their applications.  
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Figure 4: Transition metals used in Fischer-Tropsch and their production 

Petroleum fraction / 

Physical state 

Product Number of Carbon 

Atoms 

Uses 

Petroleum gas / Gas Methane 1 Heating, cooking, 

electricity 

Ethane 2 Plastics, petrochemicals 

Propane 3 LPG, transport, domestic 

use Butane 4 

Light ends / Liquids Naptha 5-11 Petrochemicals, solvents, 

gasoline 

Gasoline 7-10 Transport 

Middle distillates / 

Liquids 

Kerosene 11-18 Jet fuel, heating cooking 

Gas oil 11-18 Diesel, heating 
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Heavy ends / 

Liquids 

Lubricating oil 18-25 Motor oil, transmission 

oil, lubricants 

Residual fuel oil 20-27 Shipping fuel, electricity 

Heavy ends / Solids Greases & Wax 25-30 Lubricants 

Bitumen 35+ Roads, roofing 

Coke 50+ Steel production 

Table 1: Product classifications, properties and applications 

Figure 4 shows that the Fischer-Tropsch synthesis product formation is catalyst 

dependent. The most common catalysts used in industry are Iron (Fe), Nickel (Ni), Cobalt (Co), 

Ruthenium (Ru), and Rhodium (Rh).  Nickel is not preferred due to the high methane selectivity. 

Figure 5 (Schouten, Hensen, & van Santen, 2015) shows that Iron is the cheapest of the options, 

however the use of iron leads to carbon deposition which reduces the efficiency of the overall 

synthesis (Dry, 1990). Ruthenium availability is scarce and as such it becomes inefficient for 

production, while Rhodium is not cost effective. Hence the reason Cobalt is one of the most 

researched catalyst in use. 

 

Figure 5: Prices of Common Catalyst 
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Current and ongoing research on the Fischer-Tropsch synthesis can be broken down into 

three categories: Experimental, Reactor Design, and Modeling of synthesis. These categories, 

however, are not mutually exclusive. 

Experimental research currently focuses on addition of promoter and supported additives 

over catalyst to maximize productivity and selectivity of longer-chain products (Bukur, Lang, 

Mukesh, & Zimmerman, 1990). 

The modeling of the Fischer-Tropsch synthesis is reactor dependent as Guettel and Turek 

demonstrated in their paper “Comparison of different reactor types for low temperature Fischer-

Tropsch synthesis: A simulation study” (Guettel & Turek, 2009). The reactors in the study were 

fixed bed, slurry bubble column, monolith loop, and micro-structured each modeled with a 

pseudo-homogeneous one-dimensional approach. 

The most basic reactor model is the pseudo-homogenous one-dimensional model, used to 

model a continuous-flow stirred tank reactor (CSTR) (Pratt, 2012). The separate effects of 

catalyst and fluid on mass transfer are lumped together, and temperature and concentration are 

the same for both the fluid and catalyst (pseudo-homogeneous). Concentration change is simply 

a function of the extent of reaction within the reactor. Higher fidelity can be achieved by 

extending this approach to a two-dimensional approach, taking radial mixing into consideration. 

Heterogeneous one-dimensional and two-dimensional models have also been developed (Wang, 

Xu, Li, Zhao, & Zhang, 2003). These models are typically used to model fixed-bed reactors 

(FBR) (Froment, Bischoff, & De Wild, 1999). 

Kinetic models of the Fischer-Tropsch Synthesis are hard to find, since the kinetics are 

largely unknown, due to the large number of reacting species, reabsorption and conversion of 

primary products, difficulties in measuring surface intermediates, and coverage-dependent 

reaction rates (Azadi, Brownbridge, Kemp, Mosbach, & Dennis, Microkinetic Modeling of the 
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Fischer–Tropsch Synthesis over Cobalt Catalysts, 2015).  As such, the kinetic models are still 

debated in the literature. Nonetheless, the existing kinetic models can be classified into three 

categories: 1. Overall reactant consumption models, 2. Hydrocarbon product distribution models 

,and 3. Comprehensive kinetic models. 

Reactant consumption models were among the first to be developed first by Anderson in 

1956 (Anderson, 1956), then Sarup and Wojciechowski  in 1989 (Sarup & Wojciechowski, 

1989), and then Zimmerman and Bukur in 1990 (Zimmerman & Bukur, 1990). These types of 

models are useful for initial design and reactor sizing. For more detailed reactor designs, these 

types of models are coupled with Hydrocarbon product distribution model to accurately model 

reactant and product formation rates (Rafiee & Hillestad, 2011). 

The first hydrocarbon product distribution model was introduced by Anderson (Friedel & 

Anderson, 1950). Anderson’s model evolved from a proposed polymerization model by Schulz 

(Schultz, 1935) and Flory (Flory, 1936). This model became known as the Anderson-Schulz-

Flory (ASF) model.  It should be noted that the FT product distribution typically deviates from 

the ASF prediction in terms of methane (C1), yielding higher-than-expected C1 products, and 

ethane + ethene (C2), yielding lower-than-expected products. To make up for the non-ASF 

behavior, different selectivity models have been created such as the 2-alpha selectivity model 

(Chaumette, Verdon, & Boucot, 1995), methane kinetic, alpha for all others (Jess & Kern, 2009), 

desorption controlled (Botes, 2007), etc. Despite these attempts, since a single parameter 

describes the distribution of the entire product range and is modeled by empirical power-law 

kinetics, some parameters end up not making physical sense (Van Der Laan & Beenackers, 

1999). These types of models are primarily aimed at catalyst improvement (Fontenelle Jr & 

Fernandes, 2011). Due to the model being described by a single parameter, this type of model is 

the easiest to implement, computationally (Zhou, et al., 2010). 
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Recently, comprehensive kinetic models based on Langmuir-Hinshelwood-Hougen-

Watson (LHHW) rate expressions, as well as models based on single-event methodology have 

been surfacing in literature. The most comprehensive model comes from Zhang et al., which 

includes Water-Gas Shift, Olefin (ethene) reabsorption, dual polymerization process (carbon 

monoxide and ethane addition (Zhang, et al., 2009). This model accurately predicts hydrocarbon 

product distribution up to carbon number 45 (C45). The high complexity of this model makes it 

computationally inefficient to implement, as even a simulation of product distribution up to 

carbon number 5 includes about 100 equations. Tian et al. presented a similar comprehensive 

microkinetic model based solely on activation energies and a proposed reaction mechanism 

(Tian, et al., 2010). Similarly, this model has 31 equations to predict the distribution of products 

up to carbon number 2. No interpretation of results was presented to discuss accuracy of 

proposed model. 

Currently, there is a lack of models that predict product distribution as accurately as the 

comprehensive kinetic models yet remain computationally inexpensive as the hydrocarbon 

product distribution models. The need for fast computational models arises from model-based 

process control and online optimization to increase yield and efficiency during the Fischer-

Tropsch Synthesis.  

This thesis aims to fill in these gaps. By adapting the comprehensive model developed by 

Azadi, we reduce the order of this model by assuming that the product formations can be 

described solely by the inputs and outputs. That is, we assume that the reactions over the catalyst 

sites produce products that are of relatively low concentrations, and as such they can be 

neglected as they are accounted for through mass conservation in gas phase. This reduction of 

order allows us to simplify our reaction network and therefore the computational complexity, 

while retaining the comprehensive kinetics that the model is based on. 
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The reduced order model introduces uncertainty, and therefore correction terms are added 

in the form of discrepancy terms. Model form discrepancy is represented using a Gaussian 

Process with a Bayesian Smoothing Spline (BSS)-ANOVA covariance (Mebane, Storlie, 

Mahapatra, & Sham Bhat, 2014). These discrepancy terms are included within the model 

equations, resulting in stochastic differential equations (SDEs). Representing the system as a set 

of SDEs allows the dynamic system to change paths. As such, we call these correction terms 

dynamic discrepancy terms. 

We use a Bayesian approach to calibrate the model to data obtained in literature from 

experiments performed and reported by Visconti et al (Visconti, Tronconi, Lietti, Zennaro, & 

Forzatti, 2006). The resulting approach leads to a joint- sample distribution of model parameters 

and basis function coefficients. A Sequential Monte Carlo (SMC) routine is used to search for 

variable sets that are able to match the data. The SMC routine is used due to the flexibility, 

scalability and ease of implementation (Frellsen & Bui, 2014). Furthermore, the SMC routine 

employs the usage of resampling and importance sampling, such that the particles used to search 

for variable sets have a good balance between exploration and exploitation. This routine restores 

the fidelity to the reduced order model and allows for the parameter uncertainties represented in 

the posterior distribution to be propagated upward into a larger-scale system.  

Through the introduction of more discrepancy terms we can further reduce the error, 

however model complexity and computational time would increase. The model presented in this 

thesis aims at achieving a balance between model complexity and computational time, while 

retaining the thoroughness of the comprehensive model. This is achieved empirically, through 

the addition of discrepancy terms added to the model and their effect on the error vs the overall 

computational time.  
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2. Background 

2.1 High Fidelity Model 
 

The proposed reaction network by Azadi et al. (Azadi, Brownbridge, Kemp, Mosbach, & 

Dennis, Microkinetic Modeling of the Fischer–Tropsch Synthesis over Cobalt Catalysts, 2015) is 

shown in Figure 6. This reaction network includes intermediates steps over the catalyst, such as 

monomer formation, H abstraction, and hydrogenation, as well as the product formations and 

water gas shift. 

 

Figure 6: Flow Diagram for the Reaction Mechanism 

 The result of the complex reactions of Fischer-Tropsch synthesis is a wide distribution of 

products, namely straight chain hydrocarbons. The process includes a lot of desirable chemical 

reactions which produce paraffins, olefins and alcohols as well as some unfavorable and 

unwanted reactions resulting in aldehydes, ketones, acids, esters, carbon, etc. We can describe 

the reaction that occurs during the Fischer-Tropsch synthesis as: 
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Main reactions: 

Paraffins formation:  (𝟐𝐧 + 𝟏)𝑯𝟐 + 𝒏𝑪𝑶⟶ 𝑪𝒏𝑯𝟐𝒏,𝟐 + 𝒏𝑯𝟐𝑶   (1) 

Olefins formation:   𝟐𝒏𝑯𝟐 + 𝒏𝑪𝑶⟶ 𝑪𝒏𝑯𝟐𝒏 + 𝒏𝑯𝟐𝑶   (2) 

Water-gas shift:   𝑪𝑶 +𝑯𝟐𝑶 ↔ 𝑪𝑶𝟐 + 𝑯𝟐    (3) 

Side reactions: 

Alcohol formation:   𝟐𝒏𝑯𝟐 + 𝒏𝑪𝑶⟶ 𝑪𝒏𝑯𝟐𝒏,𝟏𝑶𝑯 + (𝒏 − 𝟏)𝑯𝟐𝑶 (4) 

Aldehydes formation: (𝟐𝐧 + 𝟏)𝑯𝟐 + (𝐧 + 𝟏)𝑪𝑶 ⟶ 𝑪𝒏𝑯𝟐𝒏,𝟏𝑪𝑶𝑯 + 𝒏𝑯𝟐𝑶 (5) 

Boudouard reaction:  𝟐𝑪𝑶 ↔ 𝑪 + 𝑪𝑶𝟐      (6) 

Carbon deposition:  𝑪𝑶 +𝑯𝟐 ↔ 𝑪 +𝑯𝟐𝑶     (7)  

Furthermore, the proposed model assumes the following: 

1. The reactor is isothermal and homogeneous 

2. The rate of the reaction is controlled by intrinsic surface kinetics and not mass 

transfer 

3. The catalyst contains only one type of active site, and all reactions occur 

competitively on the surface of metal nanoparticles 

4. The pre-exponential factors and activation energies are coverage independent  

The products formed through the Fischer-Tropsch process are highly dictated by 

operating conditions, such as reactor temperature and pressure, gas hourly space velocity, H2/CO 

feed molar ratio, type of reactor, and catalyst and its support, etc.  

More importantly, the number of desired carbon numbers to model dictate the complexity 

of this high-fidelity model. As seen in Figure 7, Azadi et al. expanded the desired number of 
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carbon numbers up to 28, which resulted in 95 reversible reactions, and 33 irreversible reactions, 

roughly translating to 223 equations.  

 

Figure 7: Azadi et Al. Reaction network expanded for up to 28 Carbon Numbers 

As pointed out within the text, Azadi reduced the complexity of the proposed model 

through some simplifying assumptions in order to arrive at these reactions. For example, with 

regard to the monomer formation group, only elementary reactions representing H2-assisted CO 

deoxygenation were considered and the carbide mechanism was excluded from the analysis. The 
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yield of oxygenated hydrocarbons was neglected as well. Thus, even with some simplifying 

assumptions the complexity of this model remains high. 

2.2 Bayesian Calibration 
 

Computer simulations are often developed to be generic and compatible with user defined 

input parameters. Often times, some of these parameters may not be known and may be 

extrapolated from physical observations. Through this manner, one may fit the built model to the 

gathered data from the observations in order to study these unknown parameters. This model 

fitting process is known as calibration. Traditional calibration techniques search for sets of 

values such that the output of the model fit as close as possible to the observed data. However, 

these techniques introduce uncertainty to future model predictions as the model parameters 

introduced through calibration are estimates.  

Through a Bayesian approach to calibration, the predictions allow for all sources of 

uncertainty to be quantified and attempts to reduce the discrepancy between the observed data 

and model output (Kennedy & O'Hagan, 2001). The Bayesian calibration framework presented 

by Kennedy and O’Hagan is given as: 

𝑌0 = 𝜂(𝑥0, 𝜃) + 𝛿(𝑥0) + 𝜖0      (8) 

Where 𝑌0 is the output, 𝑥0 is the model input, 	𝜂(𝑥, 𝜃) is the computer model, 𝜃 is a 

vector of model parameters, 𝛿(𝑥0) is model form discrepancy function, and 𝜖0 is the 

observational error. The objective of calibration is to estimate 𝜃 and the discrepancy function 𝛿. 

To achieve these estimates, a prior distribution is placed on 𝜃 and 𝛿 and then updated by 

conditioning on the experimental data (Higdon, Kennedy, Cavendish, Cafeo, & Ryne, 2004). 

Figure 8 shows the flowchart of a typical Bayesian calibration model (Carmassi, Barbillon, 

Keller, Parent, & Chiodetti). 
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Figure 8: Bayesian Calibration Model 

We implemented further simplifying assumptions to reduce the high-fidelity network and 

employed the use of a Gaussian Process to restore variability to the model that was lost in the 

reduction from the full-scale network. The most effective Gaussian Process for dynamic 

discrepancy is called Bayesian Smoothing Spline Analysis of Variance (BSS-ANOVA). The 

BSS-ANOVA procedure allows for variable and search direction selection (Reich, Storlie, & 

Bondell, 2009). A multivariate normal distribution is assumed for the parameter set and Bayesian 

calibration is performed through comparison with data gathered from literature to determine the 

desired output distribution. Search direction sampling via a Sequential Monte Carlo (SMC) 

routine is used to search for variable sets that are able to match the data. Constructing the model 

in this manner allowed for decomposition of the variable selection into main effects and 

secondary effects. 
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2.3 Bayesian Smoothing Spline Analysis of Variance (BSS-ANOVA) 
 

A Gaussian Process is used to model the discrepancy function 𝛿. The Gaussian Process 

used is BSS-ANOVA (Reich, Storlie, & Bondell, 2009). The BSS-ANOVA is a Gaussian 

Process that utilizes a special covariance function that uses the functional components from a 

functional ANOVA decomposition (Gu, 2012). One of the benefits of using a BBS-ANOVA GP 

is that it decomposes the stochastic differential equation into stochastic parameters 𝛽, and 

nonparametric deterministic basis functions ∅, thus reducing the stochastic differential equation 

to an ordinary differential equation for convenient uncertainty propagation. An additional benefit 

to using such a GP is that it scales linearly with the number of data points, and thus reduces 

computational cost.  

The discrepancy function is represented as:  

𝛿(𝑥) = 𝛽; + ∑ 𝛿=(𝑥=)>
=?@ + ∑ 𝛿=,=A(𝑥=, 𝑥=A)

>
=B=A    (9) 

It is assumed that 𝛽;~𝑁(0, 𝜍;G), and that each main effect functional component is 

𝛿=~𝐺𝑃(0, 𝜍=G𝐾@), for some variance parameters 𝜍=G = 0,1,⋯ , 𝑅 and 𝐾@ is the BSS-ANOVA 

covariance kernel described in Reich et al. That is: 

𝐾@(𝑢, 𝑢O) = 𝐵@(𝑢)𝐵@(𝑢O) + 𝐵G(𝑢)𝐵G(𝑢O) −
@
GQ
𝐵Q(|𝑢 − 𝑢O|)   (10) 

Where 𝐵S is the 𝑙-th Bernoulli polynomial. The covariance kernel operates on [0,1]. 

Higher order kernels are formed through tensor products of the first order kernel. Thus, the GP is 

constructed in a manner such that the functional domain of the GP is a Sobolev space of arbitrary 

order. 

Storlie et al. demonstrated that every functional component of (10) can be decomposed 

into an orthogonal basis expansion (Storlie, Swiler, Helton, & Sallaberry, 2009): 

𝛿=(𝑥=) = ∑ 𝛽=,SU
S?@ ∅S(𝑥=)  where  𝛽=,S~𝑁(0, 𝜏=G)   (11) 
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Where the ∅S terms are the eigenfunction in the Karhunen-Loeve (KL) expansion 

(Berlinet & Thomas-Agnan, 2004). Figure 9 shows that the eigenfunctions ∅S	start at high 

amplitude and low frequency and decrease in amplitude and increase frequency as their order 

increases. 

 

Figure 9: First nine eigenfunctions from the Karhunen-Loeve expansion for a main effect function from the BSS-

ANOVA covariance. (adapted from (Storlie, Lane, Ryan, Gattiker, & Higdon, 2015)) 

Functional ANOVA and Karhunen-Loeve decompositions yield an expansion of the 

form: 

𝛿(𝑥@, 𝑥G, 	⋯ ) = ∑ 𝛽@W∅W(𝑥W)W + ∑ 𝛽XY∅X(𝑥X)∅Y(𝑥Y)XY + ⋯    where   𝛽=,S~𝑁(0, 𝜏=G)     (12) 

Hence, the functions, ∅, are nonparametric basis functions, orthogonal, and deterministic, 

and the coefficients 𝛽 are stochastic. The orthogonality of equation 12 allowed us to represent 
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the model in such a way that interaction terms are only needed and added if and only if the data 

cannot be explained by the main effects alone. Thus, avoiding overlap from main effects and 

higher interaction terms. While the stochastic coefficients allowed us to have flexibility in our 

parameter search.  

2.4 Reduced Order Modeling Calibration with Dynamic Discrepancy 
 

Reducing the order of the high-fidelity model introduces uncertainty into the original 

model. Applying dynamic discrepancy terms to the model allows the behavior of the reduced 

order model to mimic that of the high-fidelity model. We incorporate the parameters and the 

discrepancy function within our model equations to express our system as: 

Z[
Z\
= 𝑓 _𝑧, 𝜃, 𝑥(𝑡), 𝛿(𝑧, 𝑥(𝑡); 𝛽)c      (13) 

The model is then calibrated to the gathered experimental data. Fine tuning is then 

required in order to achieve adequate predictions. However, the process of fine tuning becomes 

an exercise of deciding between model accuracy and complexity. As the number of interactions 

increase within the discrepancy function, so does the computational complexity.  

Calibration is thought of as a search for a distribution of model forms which may 

correspond to the experimental data given its uncertainty. We search for a distribution of {𝜃}, 

and {𝛽} such that they yield model results consistent with the data. The calibration is 

accomplished using a Sequential Monte Carlo routine.   

2.5 Approximate Bayesian Computation using Sequential Monte Carlo Sampler 
 

In order to calibrate the model to the experimental data, a joint posterior distribution, Ω, 

is needed for parameter sets {𝜃}, and {𝛽}. The posterior distribution is given as: 

Ω({𝜃}, {𝛽}|	Z	) ∝ ℒ(𝑍|{𝜃}, {𝛽})𝜋({𝜃}, {𝛽})     (14) 
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Where Z is the observed data, ℒ is the likelihood of the data given the parameters set, and 

𝜋 is a prior distribution. By Bayes’ theorem, we can express the posterior as: 

Ω({𝜃}, {𝛽}|	Z	) = ℒ(l|{m},{n})o({m},{n})	
∫ ℒ(l|{m},{n})o({m},{n})	qmrn

     (15) 

Often, the likelihood term is expensive or impossible to calculate. Therefore, a Sequential 

Monte Carlo routine is used to calculate the posterior.  

The posterior distribution is approximated by a collection of 𝑁 random samples, 

s𝑍0
(W)t

W?@

u
, called particles. At time 0, the distribution Ω;, is chosen such that it is approximated 

by a uniform distribution 𝜂;, and the weight of each particle is the same.  

The initial weight of particle i is given by: 

 𝑊;
(W) ∝

wxylx
(z){

|xylx
(z){	

       (16) 

Such that ∑ 𝑊;
(X)u

X?@ = 1 

The effective sample size (ESS) is then calculated. The ESS is given as: (Liu, 2001) 

𝐸𝑆𝑆y𝑊0
(W){ = �∑ y𝑊0

(W){
G

u
W?@ �

�@
      (17) 

The ESS is then compared to the number of particles divided by 2. If 𝐸𝑆𝑆 < u
G
, then it 

triggers a resampling step. Otherwise, the weights are updated, and the particles are moved from 

time (𝑛 − 1) to time	𝑛 by using a Markov kernel 𝐾0(𝑧0�@, 𝑧0) which denotes the probability of 

moving from 𝑧0�@ to 𝑧0. 

The choice of the Markov kernel then allows us to update the weights at the next time 

step by (Del Moral, Doucet, & Jasra, 2011): 

𝑊0
(W) ∝ 𝑊0�@

(W) w�yl���
(z) {

w���yl���
(z) {	

       (18) 
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Once the weights are updated, they are normalized and based on the value, the draw is 

either accepted and remains on the Markov Chain or it is rejected, and the particle “dies”. Figure 

10, shows the sampler routine of the Sequential Monte Carlo, with particles x, weights w, and 

number of particles N. 

 

Figure 10: Sequential Monte Carlo Sampler with Importance Sampling and Resampling 
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3. Proposed Approach 

 We use Azadi et al. comprehensive model to derive a reduced order model. This model is 

derived through simplifications made from prior knowledge of the process, such as catalytic 

dependent reactions/products, temperature dependent products, etc. The Fischer-Tropsch 

synthesis is also assumed to take place strictly in gas phase, this assumption is key to model the 

kinetics of the reaction. 

3.1 Reduced Order Model 

 The reduction of Azadi’s model can be justified through a prior knowledge of the catalyst 

used within the synthesis. Cobalt catalysts have very poor water-gas shift (WGS) activity 

(Lualdi, Logdberg, Regali, & Boutennet, 2011), thus allowing us to eliminate equation 3. 

Alcohol yield and selectivity are low on Cobalt based catalyst  (Shafer, Gnanamani, Graham, & 

Yang, 2019), thus allowing us to eliminate equations 4 and 5. All catalysts suffer from carbon 

deposition to various extents, however we will ignore equations 6 and 7 as carbon deposition 

affecting the products will be built into the gathered data, and thus used when calibrating the 

reduced order model. We can therefore reduce Azadi et al. reaction network to the one shown in 

Figure 11.  

 

Figure 11: Reduced Order Model Reaction Network 



21 
 

  Since no states involving the catalyst need be retained in a reduced model because the 

catalyst state is not ultimately of interest, this reduced order model is appropriate for the study.  

The reduced order model can therefore be expressed as a system of the following 

reactions: 

Paraffins formation:  (𝟐𝐧 + 𝟏)𝑯𝟐 + 𝒏𝑪𝑶⟶ 𝑪𝒏𝑯𝟐𝒏,𝟐 + 𝒏𝑯𝟐𝑶   (19) 

Olefins formation:   𝟐𝒏𝑯𝟐 + 𝒏𝑪𝑶⟶ 𝑪𝒏𝑯𝟐𝒏 + 𝒏𝑯𝟐𝑶   (20) 

Equations 19 and 20 can and are expanded in this work to model hydrocarbon chains. 

There are countless possible species that result from the Fischer-Tropsch Synthesis; Through the 

Schulz-Flory equation, 𝑥0 = (1 − 𝛼)𝛼0�@, we can show the selectivity of a particular carbon-

number species using the chain growth probability parameter 𝛼. For example, as shown in Figure 

12, with a chain growth probability of .9 the selectivity of higher hydrocarbons decreases 

monotonically. 

 

Figure 12: Anderson-Schulz-Flory (ASF) distribution in terms of mole percent, for α = 0.9 
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 Figure 12 shows that expanding equations 19 and 20 past a certain carbon number would 

be counterproductive to a reduced order model approach.  

Since we have data for up to 28 carbon numbers, we expand equations 19 and 20 such 

that we obtain: 

Paraffins:	

3𝐻G + 𝐶𝑂 ⟶ 𝐶𝐻Q + 𝐻G𝑂 

5𝐻G + 2𝐶𝑂 ⟶ 𝐶G𝐻� + 2𝐻G𝑂 

… 

57𝐻G + 28𝐶𝑂 ⟶ 𝐶G�𝐻�� + 28𝐻G𝑂 

Olefins:  

2𝐻G + 𝐶𝑂 ⟶ 𝐶𝐻G + 𝐻G𝑂 

4𝐻G + 2𝐶𝑂 ⟶ 𝐶G𝐻Q + 2𝐻G𝑂 

… 

56𝐻G + 28𝐶𝑂 ⟶ 𝐶G�𝐻�� + 28𝐻G𝑂 

 Through this expansion, we obtain the reaction rates: 

𝑟@ = 𝑘@ ��𝐶���
�[𝐶��] −

��¡¢£���¢�¤�

¥�
¦    𝑟G = 𝑘G §�𝐶���

�[𝐶��]G −
��¡�¢¨���¢�¤�

�

¥�
© 

… 𝑟G� = 𝑘G� §�𝐶���
�ª[𝐶��]G� −

��¡�«¢¬«���¢�¤�
�«

¥�«
© 

𝑟G­ = 𝑘G­ ��𝐶���
G[𝐶��] −

��¡¢����¢�¤�

¥�®
¦  𝑟�; = 𝑘�; ��𝐶���

Q[𝐶��]G −
��¡�¢£���¢�¤�

�

¥¯x
¦ 

… 
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𝑟�� = 𝑘�� °�𝐶���
��[𝐶��]G� −

�𝐶��«�¬¨��𝐶����
G�

𝜅��
² 

 Where the equilibrium rate constants, 𝜅, are expressed in terms of Gibbs Free 

Energy,	∆𝐺, Ideal Gas Constant, R, and Temperature, T: 

𝜅 = exp y∆·
>
{ exp y�∆�

>¸
{ = exp y∆¹

>¸
{     (21) 

 And the reaction rate constants, k, are expressed in terms of Activation Energy, 𝐸º, pre-

exponential factor, A, Ideal Gas Constant, R, and Temperature, T: 

𝑘 = A ∗ exp y− ½¾
>¸
{      (22) 

In turn, we created a system of differential equations: 

r��¢��

r\
=

��¢��x∗¿x���¢��∗¿

À
− ∑ (2 ∗ 𝑖 + 1)𝑟WG�

W?@ − ∑ (2 ∗ 𝑗 + 1)𝑟X,G�G�
X?@     (23) 

r[�¡¤]
r\

= [�¡¤]x∗¿x�[�¡¤]∗¿
À

− ∑ 𝑖 ∗ 𝑟WG�
W?@ − ∑ 𝑗 ∗ 𝑟X,G�G�

X?@       (24) 

r��¢�¤�

r\
= ∑ 𝑖 ∗ 𝑟WG�

W?@ + ∑ 𝑗 ∗ 𝑟X,G�G�
X?@          (25) 

rÃ�¡z¢�zÄ�Å

r\
= 𝑟W   for 1≤ 𝑖 ≤ 28        (26) 

rÃ�¡Ç¢�ÇÅ

r\
= 𝑟X,G�  for 1≤ 𝑗 ≤ 28        (27) 

Since it has been shown in literature that Methane does not conform well to the ASF 

distributions, we include a discrepancy term within that reaction. Since Methylene is usually 

assumed to be a rate limiting reaction, we included a discrepancy term within that reaction as 

well. 
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Ethane, Ethylene, and Propene are also fitted with discrepancy terms as according to the 

ASF distribution these are the most likely products to be produced through Fischer-Tropsch. 

Also, according to Schouten et al. in his thesis “Quantum Chemical and Microkinetic Modeling 

of the Fischer-Tropsch Reaction” these products are the most unstable. (Schouten, Hensen, & 

van Santen, 2015).  

The dynamic discrepancy terms, 𝛿, are placed within the equilibrium and rate constants, 

𝜅 and k respectively, allowing us to display the functions as 

𝜅W = 𝜅W,; ∗ exp y𝛿¥z(𝑃; 𝛽){     (28) 

𝑘W = 𝑘W,; ∗ exp y𝛿Yz(𝑃; 𝛽){     (29) 

This in turn allows us to write our system of differential equations as: 

r��¢��

r\
=

��¢��x∗¿x���¢��∗¿

À
− 3𝑟O@ − 5𝑟OG − 3𝑟OG­ − 5𝑟O�; − 7𝑟O�@ − ∑ (2 ∗ 𝑖 + 1)𝑟WG�

W?� − ∑ (2 ∗ 𝑗 + 1)𝑟X,G�G�
X?Q    (30) 

r[�¡¤]
r\

= [�¡¤]x∗¿x�[�¡¤]∗¿
À

− 𝑟O@ − 2𝑟OG − 𝑟OG­ − 2𝑟O�; − 3𝑟O�@ − ∑ 𝑖 ∗ 𝑟WG�
W?� − ∑ 𝑗 ∗ 𝑟X,G�G�

X?Q          (31) 

r��¢�¤�

r\
= 𝑟O@ + 2𝑟OG + 𝑟OG­ + 2𝑟O�; + 3𝑟O�@ + ∑ 𝑖 ∗ 𝑟WG�

W?� + ∑ 𝑗 ∗ 𝑟X,G�G�
X?@           (32) 

r��¡¢£�

r\
= 𝑟O@                (33) 

r��¡�¢¨�

r\
= 𝑟OG                (34) 

rÃ�¡z¢�zÄ�Å

r\
= 𝑟W   𝑓𝑜𝑟	3 ≤ 𝑖 ≤ 28                 (35)-(60) 

r��¡¢��

r\
= 𝑟′G­                (61) 

r��¡�¢£�

r\
= 𝑟′�;                (62) 
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r��¡¯¢¨�

r\
= 𝑟′�@                (63) 

rÃ�¡Ç¢�ÇÅ

r\
= 𝑟X  𝑓𝑜𝑟	32 ≤ 𝑗 ≤ 56                (64)-(88) 

where the r primes are given as: 

𝑟′@ = 𝑘@ ∗ expy𝛿Y�(𝑃; 𝛽){ §�𝐶���
�[𝐶��] −

��¡¢£���¢�¤�

¥�∗ÊËÌyÍÎ�(Ï;n){
©            (89) 

𝑟′G = 𝑘G ∗ exp y𝛿Y�(𝑃; 𝛽){ §�𝐶���
�[𝐶��]G −

��¡�¢¨���¢�¤�
�

¥�∗ÊËÌyÍÎ�(Ï;n){
©            (90) 

𝑟′G­ = 𝑘G­ ∗ expy𝛿Y�®(𝑃; 𝛽){ §�𝐶���
G[𝐶��] −

��¡¢����¢�¤�

¥�®∗ÊËÌyÍÎ�®(Ï;n){
©           (91) 

𝑟′�; = 𝑘�; ∗ exp y𝛿Y¯x(𝑃; 𝛽){ §�𝐶���
Q[𝐶��]G −

��¡�¢£���¢�¤�
�

¥¯x∗ÊËÌyÍÎ¯x(Ï;n){
©           (92) 

𝑟′�@ = 𝑘�@ ∗ exp y𝛿Y¯�(𝑃; 𝛽){ §�𝐶���
�[𝐶��]� −

��¡¯¢¨���¢�¤�
¯

¥¯�∗ÊËÌyÍÎ¯�(Ï;n){
©           (93) 

thus giving us a total of 57 differential equations, with five discrepancy terms. Each 𝛿 

discrepancy function is then composed of five one-way interactions and two two-way 

interactions. The two-way interactions corresponding to methane-methylene, and ethane-

ethylene. 

The chosen two-way interaction terms were added one at a time. That is, the interactions 

were determined empirically and added after consulting with the literature on hydrocarbon chain 

propagations, and their effect on one another, much like the decision to include discrepancy 

functions within the reactions for certain products. For example, it was determined that methane-

methylene terms were not sufficient in reducing the error, so the ethane-ethylene two-way 

interaction was incorporated. The general form of the discrepancy functions used is: 

𝛿¥ = ∑ 𝛽W∅@(𝑥W)
�
W?@ + 𝛽(@,@,G,@)∅@(𝑥@)∅@(𝑥G) + 𝛽(�,@,Q,@)∅@(𝑥�)∅@(𝑥Q)  (94) 
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𝛿Y = ∑ 𝛽W∅@(𝑥W)
�
W?@ + 𝛽(@,@,G,@)∅@(𝑥@)∅@(𝑥G) + 𝛽(�,@,Q,@)∅@(𝑥�)∅@(𝑥Q)  (95) 

3.2 Simulation 
 
 Simulations were conducted to test the capability of the reduced order model to predict 

the product distribution that results due to the Fischer-Tropsch synthesis. Using data gathered 

from literature, the Sequential Monte Carlo routine looks for the posterior distribution of the 

model and discrepancy parameters. For the base case, (non-discrepancy case), to restrict the 

region searched initial model parameters were estimated using Tian et al. (Tian, et al., 2010) 

Kinetic Monte Carlo study over an iron catalyst. This allowed for a faster convergence of the 

Sequential Monte Carlo routine. Once the posterior of these parameters was obtained, the data 

was used to calibrate the discrepancy case.  
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4. Results 

The model simulated a continuously stirred tank reactor (CSTR). Simulations were 

performed to determine the validity of the use of dynamic discrepancy within the reduced order 

model. Convergence is analyzed in the later sections. The model equations are then used to 

simulate a Plug Flow Reactor, with initial conditions similar to the CSTR ROM. 

4.1 Reduced Order Model Realizations 

 Simulations were conducted to determine the performance of the reduced order model at 

lab scale. Visconti’s data at 503.15-508.15 K and at 20-25 bar was used for calibration and 

validation (Visconti, Tronconi, Lietti, Zennaro, & Forzatti, 2006). The high-fidelity model case 

was simulated by using the data points pertaining to 503.15 K and 20 bar. A successful 

calibration requires adequate coverage of the predictions achieved through the high-fidelity 

model case.  

A well-mixed reactor and isothermal behavior are assumed. The geometry and initial 

conditions are also taken from Visconti and Fontenelle’s work (Fontenelle Jr & Fernandes, 

2011).  Initially CO and H2 were inlet to the system at a 5:1 molar ratio. The outflow depended 

on the concentration of gas in the volume. The simulation was conducted for 30 seconds, as that 

seemed adequate to achieve steady state.  

10,000 samples/particles were used during the Sequential Monte Carlo routine. This 

allowed for resampling to be introduced should the particle “die” or steer away from the prior. 

The baseline ROM was run without any discrepancy terms. Figure 13 show the reactants 

behavior with and without discrepancy terms. 
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(a) CO ROM Realizations: 10 Discrepancy Terms Used vs. No Discrepancy Terms Used 

 

(b) H2 ROM Realizations: 10 Discrepancy Terms Used vs. No Discrepancy Terms Used 

Figure 13: ROM Realizations vs experimental data for reactants with and without discrepancy terms: (a) CO (b) H2 
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 From Figure 13, we can see the need for discrepancy terms. The graphs to the right show 

the coverage of the ROM without discrepancy terms. The coverage has a wide range due to the 

uncertainty introduced when eliminating the intermediate equations. The tighter ROM 

Realizations present on the left-hand side are given due to the error quantification introduced 

through the discrepancy terms. Figure 12 shows the predicted product distribution obtained with 

and without discrepancy terms. 

 

(a) H2O ROM Realizations: 10 Discrepancy Terms Used vs. No Discrepancy Terms Used 
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(b) C1-C10 ROM Realizations: 10 Discrepancy Terms Used vs. No Discrepancy Terms Used 

 

(c)  C11-C20 ROM Realizations: 10 Discrepancy Terms Used vs. No Discrepancy Terms Used 
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(d) C21-C30 ROM Realizations: 10 Discrepancy Terms Used vs. No Discrepancy Terms Used 

Figure 14: ROM Realizations vs experimental data for products with and without discrepancy terms: (a) H2O (b) 

C1-C10 (c) C11-C20 (d) C21-C30  

 Due to the nature of these concentrations, the carbon numbers were lumped together to 

make better and more accurate graphs. Since theoretically, methane, ethane, ethaline, essentially 

carbon numbers up to five are the most produced during the synthesis, discrepancy terms were 

used within these five reaction rates. Placing these discrepancy terms in these first five reactions 

propagated and corrected the error in later reactions. Most visibly seen corrections happen for 

carbon numbers greater than 20 as well as the H2O production. This might be explained by the 

fact that the introduced discrepancy terms at the beginning of the reaction cascade and correct 

the later hydrocarbons produced.  
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4.2 Convergence and Statistics of Simulation 

Convergence of the Sequential Monte Carlo routine is guaranteed by Del Moral et al. for 

an arbitrary Kernel for weight updates. The proof is an extension of the functional fluctuation 

theorem of the local errors associated with the mean field particle approximation and employs 

the use of the functional central limit theorem.  

Consequentially, we can be sure that the model converged when the posterior distribution 

reaches a point in which at time (𝑛 − 1) does not differ from the posterior distribution at time	𝑛. 

That is, the SMC routine reaches an invariant space. 

Confirmation of the converged posterior distribution was verified statistically for both the 

discrepancy and non-discrepancy case. Tables 2 and 3 in the appendix show the mean and 

standard deviation of all parameters used within the models.   

 
4.3 Plug Flow Reactor 

 This section aims at propagating the error of the reduced order model of the continuously 

stirred tank reactor to the model for a plug flow reactor, through the simulation of the PFR as a 

series of CSTRs. 

  The posterior distribution obtained from the CSTR case was used in the case of modeling 

the plug flow reactor. Each plug follows the same initial conditions as described in section 4.1, 

as well as the assumption of being isothermal and well-mixed.  

 Figures 15 and 16 compare the high-fidelity data to that of the ROM realizations for both 

products and reactants. 
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(a) CO PFR Realizations with 10 Discrepancy Terms Used 

 

(b) H2 PFR Realizations with 10 Discrepancy Terms Used 

Figure 15: PFR ROM Realizations for reactants: (a) CO (b) H2 
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(a) H2O PFR Realizations with 10 Discrepancy Terms Used 

 

(b) C1-C10 PFR Realizations with 10 Discrepancy Terms Used 
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(c)  C11-C20 PFR Realizations with 10 Discrepancy Terms Used 

 

(d) C21-C30 PFR Realizations with 10 Discrepancy Terms Used 

Figure 16: PFR ROM Realizations for products: (a) H2O (b) C1-C10 (c) C11-C20 (d) C21-C30  
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 As expected, the uncertainty increases along the length of the reactor. The increase in 

uncertainty can be attributed to the move from the original calibration point.  
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5. Conclusions and Future Work 

The model developed in this thesis has been proven to work in the reduction of the error 

produced when eliminating the reactions that take place on catalyst sites. However, it should be 

noted that the data obtained from Visconti et al. only considers cases of temperature varying by 

five kelvin. As such, to make a more robust model considering temperature as a parameter and/or 

decoupling Gibbs free energy into entropy and enthalpy to increase accuracy. 

The model reduction was done empirically, and through prior knowledge of the 

chemistry that occurs when a given catalyst is present. Further and more precise reduction can be 

obtained using sensitivity analysis tools such as the Morris Screening/ Morris Method 

(Campolongo, Saltelli, & Cariboni, 2011).  

Furthermore, other techniques can be used to reduce the parameter search process. A 

Density Functional Theory model could be implemented, the results of which could then be used 

within a Microkinetic model and thus shorter your parameter space. This would be an interesting 

and more complicated process, since as mentioned earlier the complete kinetics of the Fischer-

Tropsch synthesis are still debated within literature. 

Additionally, the current model calibration was performed using lab-scale data. The next 

step would be to use industrial-scale data to perform calibrations. Unfortunately, most industrial 

scale Fischer-Tropsch plants are located overseas with the most popular being operated by Sasol 

and PetroSA both located in South Africa. Obtaining industrial-scale data, just as lab-scale data, 

will be hard to gather.  

As it stands now, the set of models developed through the calibration step can be used to 

build and program an adaptive controller, for real-time machine learning. This is a great tool as 
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the calculations can be performed offline and thanks to the reduced complexity of the proposed 

model, the computational time needed for the controller would decrease. 
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Appendix 
 

Non-Discrepancy Case 

Parameter Mean 

± 

Conf. 

Std. Parameter Mean 

± 

Conf. 

Std. Parameter Mean ± 

Conf. 

Std. 

∆𝑮𝟏 

(kJ/mol) 

−104.55

± 7.13 

8.74 𝐸º@ 

(kJ/mol) 

254.52

± 5.43 

8.49 𝐴@ 2803.29

±41.37	

612.76	

∆𝑮𝟐 

(kJ/mol) 

−21.14

± 2.03 

4.38 𝐸ºG 

(kJ/mol) 

43.44

± 2.42 

5.39 𝐴G 2114.88

±227.7	

328.17	

∆𝑮𝟑 

(kJ/mol) 

−29.71

± 3.98 

4.62 𝐸º� 

(kJ/mol) 

143.34

± 8.34 

9.35 𝐴� 1502.61

±41.77	

220.25	

∆𝑮𝟒 

(kJ/mol) 

−80.43

± 2.11 

4.36 𝐸ºQ 

(kJ/mol) 

101.25

± 2.52 

3.9 𝐴Q 5736.08

±116.15	

239.62	

∆𝑮𝟓 

(kJ/mol) 

−33.65

± 2.21 

3.02 𝐸º� 

(kJ/mol) 

43.33

± 5.81 

8.95 𝐴� 1023.05

±166.83	

307.83	

∆𝑮𝟔 

(kJ/mol) 

−87.85

± 7.98 

8.21 𝐸º� 

(kJ/mol) 

40.02

± 2.52 

3.6 𝐴� 2477.05

±162.83	

378.74	

∆𝑮𝟕 

(kJ/mol) 

121.2

± 11.38 

13.03 𝐸ºª 

(kJ/mol) 

56.54

± 1.37 

3.85 𝐴ª 2846.19

±45.95	

625.97	

∆𝑮𝟖 

(kJ/mol) 

−29.73

± 4.83 

5.45 𝐸º� 

(kJ/mol) 

76.25

± 2.11 

3.29 𝐴� 8424.59

±373.22	

650.13	
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∆𝑮𝟗 

(kJ/mol) 

−25.9

± 5.33 

8.67 𝐸º­ 

(kJ/mol) 

107.07

± 4.32 

7.4 𝐴­ 8652.83

±363.96	

553.7	

∆𝑮𝟏𝟎 

(kJ/mol) 

168.3

± 3.96 

5.39 𝐸º@; 

(kJ/mol) 

86.18

± 5.18 

7.71 𝐴@; 1019.04

±46.27	

281.11	

∆𝑮𝟏𝟏 

(kJ/mol) 

49.25

± 1.26 

5.31 𝐸º@@ 

(kJ/mol) 

147.67

± 6.85 

8.33 𝐴@@ 1961.33

±233.07	

666.93	

∆𝑮𝟏𝟐 

(kJ/mol) 

240.75

± 19.40 

22.37 𝐸º@G 

(kJ/mol) 

113.11

± 2.23 

8.93 𝐴@G 2383.15

±137.63	

420.58	

∆𝑮𝟏𝟑 

(kJ/mol) 

136.19

± 1.89 

2.87 𝐸º@� 

(kJ/mol) 

258.40

± 3.39 

5.67 𝐴@� 2459.46

±397.03	

566.15	

∆𝑮𝟏𝟒 

(kJ/mol) 

162.09

± 9.67 

12.50 𝐸º@Q 

(kJ/mol) 

61.65

± 2.37 

6.29 𝐴@Q 5345.73

±145.79	

971.84	

∆𝑮𝟏𝟓 

(kJ/mol) 

47.83

± 2.28 

2.90 𝐸º@� 

(kJ/mol) 

208.03

± 1.43 

4.01 𝐴@� 2775.50

±344.65	

672.25	

∆𝑮𝟏𝟔 

(kJ/mol) 

13.65

± 0.68 

3.76 𝐸º@� 

(kJ/mol) 

100.23

± 6.86 

8.74 𝐴@� 1713.34

±56.66	

320.7	

∆𝑮𝟏𝟕 

(kJ/mol) 

247.19

± 15.9 

17.42 𝐸º@ª 

(kJ/mol) 

15.63

± 2.28 

4.39 𝐴@ª 2208.57

±149.55	

401.64	

∆𝑮𝟏𝟖 

(kJ/mol) 

27.21

± 3.12 

6.76 𝐸º@� 

(kJ/mol) 

74.30

± 4.01 

10.09 𝐴@� 1585.64

±87.4	

292.11	

∆𝑮𝟏𝟗 

(kJ/mol) 

36.51

± 1.42 

3.05 𝐸º@­ 

(kJ/mol) 

154.78

± 5.49 

10.92 𝐴@­ 7661.27

±345.21	

790.25	
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∆𝑮𝟐𝟎 

(kJ/mol) 

127.74

± 7.51 

15.56 𝐸ºG; 

(kJ/mol) 

106.68

± 3.17 

7.22 𝐴G; 3215.98

±185.62	

474.86	

∆𝑮𝟐𝟏 

(kJ/mol) 

318.94

± 9.82 

16.70 𝐸ºG@ 

(kJ/mol) 

127.83

± 3.38 

14.69 𝐴G@ 1684.57

±249.4	

321.16	

∆𝑮𝟐𝟐 

(kJ/mol) 

134.36

± 0.66 

12.71 𝐸ºGG 

(kJ/mol) 

168.73

± 10.25 

12.34 𝐴GG 3381.92

±232.45	

388.22	

∆𝑮𝟐𝟑 

(kJ/mol) 

251.78

± 11.18 

17.31 𝐸ºG� 

(kJ/mol) 

74.01

± 1.98 

12.17 𝐴G� 2993.52

±293.97	

459.14	

∆𝑮𝟐𝟒 

(kJ/mol) 

244.2

± 9.98 

18.89 𝐸ºGQ 

(kJ/mol) 

162.52

± 1.83 

13.94 𝐴GQ 10896.1

3±373.1

1	

870.50	

∆𝑮𝟐𝟓 

(kJ/mol) 

171.13

± 4.48 

12.50 𝐸ºG� 

(kJ/mol) 

58.16

± 3.25 

8.69 𝐴G� 1642.73

±157.52	

527.62	

∆𝑮𝟐𝟔 

(kJ/mol) 

168.04

± 1.13 

14.80 𝐸ºG� 

(kJ/mol) 

13.86

± 0.66 

1.37 𝐴G� 3488.50

±221.45	

567.58	

∆𝑮𝟐𝟕 

(kJ/mol) 

287.04

± 2.13 

5.14 𝐸ºGª 

(kJ/mol) 

152.31

± 9.51 

16.52 𝐴Gª 3968.8±

301.5	

479.17	

∆𝑮𝟐𝟖 

(kJ/mol) 

155.91

± 7.40 

28.44 𝐸ºG� 

(kJ/mol) 

94.47

± 5.58 

17.10 𝐴G� 4288.43

±287.01	

400.81	

∆𝑮𝟐𝟗 

(kJ/mol) 

48.48

± 1.93 

4.23 𝐸ºG­ 

(kJ/mol) 

15.60

± 3.7 

6.38 𝐴G­ 5345.88

±461.57	

583.62	
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∆𝑮𝟑𝟎 

(kJ/mol) 

142.5

± 7.89 

9.39 𝐸º�; 

(kJ/mol) 

124.98

± 1.77 

2.26 𝐴�; 6420.9±

283.79	

634.22	

∆𝑮𝟑𝟏 

(kJ/mol) 

224.38

± 1.56 

1.79 𝐸º�@ 

(kJ/mol) 

51.51

± 3.03 

6.70 𝐴�@ 4246.71

±212.41	

508.9	

∆𝑮𝟑𝟐 

(kJ/mol) 

34.01

± 7.44 

5.90 𝐸º�G 

(kJ/mol) 

252.45

± 2.81 

5.75 𝐴�G 3439.94

±241.61	

357.78	

∆𝑮𝟑𝟑 

(kJ/mol) 

50.93

± 3.46 

6.50 𝐸º�� 

(kJ/mol) 

59.76

± 2.82 

6.35 𝐴�� 3743.86

±166.1	

501.39	

∆𝑮𝟑𝟒 

(kJ/mol) 

17.94

± 1.09 

5.03 𝐸º�Q 

(kJ/mol) 

110.2

± 3.35 

5.47 𝐴�Q 1935.65

±68.09	

225.68	

∆𝑮𝟑𝟓 

(kJ/mol) 

150.2

± 5.36 

6.88 𝐸º�� 

(kJ/mol) 

112.31

± 13.22 

5.79 𝐴�� 1795.21

±78.17	

122.34	

∆𝑮𝟑𝟔 

(kJ/mol) 

132.2

± 1.23 

11.43 𝐸º�� 

(kJ/mol) 

106.45

± 10.92 

15.65 𝐴�� 4524.1±

175.44	

347.69	

∆𝑮𝟑𝟕 

(kJ/mol) 

58.1

± 6.06 

8.18 𝐸º�ª 

(kJ/mol) 

133.24

± 6.10 

7.35 𝐴�ª 921.30±

21.67	

96.71	

∆𝑮𝟑𝟖 

(kJ/mol) 

244.58

± 12.1 

13.97 𝐸º�� 

(kJ/mol) 

83.2

± 3.65 

7.82 𝐴�� 3869.3±

262.28	

135.74	

∆𝑮𝟑𝟗 

(kJ/mol) 

70.83

± 6.30 

7.74 𝐸º�­ 

(kJ/mol) 

112.31

± 3.52 

10.57 𝐴�­ 4619.59

±416.82	

649.73	

∆𝑮𝟒𝟎 

(kJ/mol) 

326.03

± 18.35 

20.08 𝐸ºQ; 

(kJ/mol) 

74.45

± 2.18 

3.98 𝐴Q; 4110.46

±269.45	

781.70	
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∆𝑮𝟒𝟏 

(kJ/mol) 

238.09

± 18.32 

19.8 𝐸ºQ@ 

(kJ/mol) 

124.82

± 4.06 

5.82 𝐴Q@ 8087.56

±381.27	

836.1	

∆𝑮𝟒𝟐 

(kJ/mol) 

238.84

± 8.49 

11.46 𝐸ºQG 

(kJ/mol) 

150.13

± 2.39 

4.92 𝐴QG 4711.63

±247.04	

397.58	

∆𝑮𝟒𝟑 

(kJ/mol) 

66.26

± 1.97 

2.98 𝐸ºQ� 

(kJ/mol) 

227.30

± 2.31 

13.07 𝐴Q� 3146.53

±102.64	

269.42	

∆𝑮𝟒𝟒 

(kJ/mol) 

100.68

± 2.21 

4.24 𝐸ºQQ 

(kJ/mol) 

23.71

± 1.38 

2.73 𝐴QQ 1717.73

±224.16	

388.99	

∆𝑮𝟒𝟓 

(kJ/mol) 

192.1

± 1.35 

6.73 𝐸ºQ� 

(kJ/mol) 

16.04

± 1.02 

5.54 𝐴Q� 6498.16

±417.49	

675.0	

∆𝑮𝟒𝟔 

(kJ/mol) 

54.52

± 1.39 

10.98 𝐸ºQ� 

(kJ/mol) 

114.34

± 3.31 

10.86 𝐴Q� 1599.39

±147.05	

699.85	

∆𝑮𝟒𝟕 

(kJ/mol) 

265.94

± 7.5 

24.89 𝐸ºQª 

(kJ/mol) 

121.96

± 5.23 

11.30 𝐴Qª 2401.99

±137.54	

439.33	

∆𝑮𝟒𝟖 

(kJ/mol) 

157.36

± 4.68 

19.14 𝐸ºQ� 

(kJ/mol) 

162.51

± 6.9 

12.59 𝐴Q� 4975.05

±202.58	

629.70	

∆𝑮𝟒𝟗 

(kJ/mol) 

111.14

± 9.72 

17.77 𝐸ºQ­ 

(kJ/mol) 

54.85

± 1.61 

15.72 𝐴Q­ 1767.14

±219.10	

310.96	

∆𝑮𝟓𝟎 

(kJ/mol) 

253.56

± 3.68 

5.47 𝐸º�; 

(kJ/mol) 

135.84

± 4.95 

14.71 𝐴�; 4807.80

±234.12	

561.83	

∆𝑮𝟓𝟏 

(kJ/mol) 

408.82

± 16.57 

18.66 𝐸º�@ 

(kJ/mol) 

34.06

± 5.69 

9.89 𝐴�@ 7530.62

±296.88	

708.16	
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∆𝑮𝟓𝟐 

(kJ/mol) 

252.24

± 3.71 

10.56 𝐸º�G 

(kJ/mol) 

74.15

± 2.92 

9.03 𝐴�G 6084.17

±211.66	

343.99	

∆𝑮𝟓𝟑 

(kJ/mol) 

125.66

± 1.33 

9.92 𝐸º�� 

(kJ/mol) 

44.07

± 1.35 

3.95 𝐴�� 2421.24

±31.93	

225.99	

∆𝑮𝟓𝟒 

(kJ/mol) 

269.88

± 4.57 

8.51 𝐸º�Q 

(kJ/mol) 

23.38

± 3.67 

4.83 𝐴�Q 4640.38

±103.59	

407.29	

∆𝑮𝟓𝟓 

(kJ/mol) 

179.25

± 8.54 

14.73 𝐸º�� 

(kJ/mol) 

90.07

± 3.15 

13.87 𝐴�� 6637.93

±375.63	

500.45	

∆𝑮𝟓𝟔 

(kJ/mol) 

376.5

± 1.04 

23.92 𝐸º�� 

(kJ/mol) 

61.94

± 6.87 

9.91 𝐴�� 1554.93

±157.62	

205.91	

Table 2: Statistics of the Posterior distribution for the baseline case 

 
Discrepancy Case 

Parameter Mean 

± 

Conf. 

Std. Parameter Mean 

± 

Conf. 

Std. Parameter Mean ± 

Conf. 

Std. 

∆𝑮𝟏 

(kJ/mol) 

−50.45

± 7.12 

3.23 𝐸º@ 

(kJ/mol) 

100.52

± 8.3 

7.51 𝐴@ 4251.29

± 34.28 

508.19 

∆𝑮𝟐 

(kJ/mol) 

−31.86

± 3.03 

2.93 𝐸ºG 

(kJ/mol) 

46.58

± 3.56 

6.46 𝐴G 2865.7

± 123.12 

204.88 

∆𝑮𝟑 

(kJ/mol) 

−24.29

± 5.28 

1.31 𝐸º� 

(kJ/mol) 

21.34

± 6.73 

7.44 𝐴� 1149.61

± 64.74 

165.25 
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∆𝑮𝟒 

(kJ/mol) 

−16.57

± 1.16 

2.18 𝐸ºQ 

(kJ/mol) 

19.25

± 0.52 

1.53 𝐴Q 4703.69

± 128.05 

630.18 

∆𝑮𝟓 

(kJ/mol) 

−8.65

± 0.79 

2.75 𝐸º� 

(kJ/mol) 

13.67

± 3.19 

5.28 𝐴� 1023.05

± 166.83 

251.16 

∆𝑮𝟔 

(kJ/mol) 

0.15

± 0.02 

0.04 𝐸º� 

(kJ/mol) 

75.02

± 1.48 

6.81 𝐴� 1565.19

± 263.41 

350.64 

∆𝑮𝟕 

(kJ/mol) 

8.2

± 0.84 

0.97 𝐸ºª 

(kJ/mol) 

77.44

± 9.63 

12.78 𝐴ª 4830.59

± 138.26 

481.53 

∆𝑮𝟖 

(kJ/mol) 

16.27

± 5.17 

1.69 𝐸º� 

(kJ/mol) 

68.75

± 7.24 

8.71 𝐴� 5079.83

± 66.55 

395.89 

∆𝑮𝟗 

(kJ/mol) 

25.1

± 0.67 

4.01 𝐸º­ 

(kJ/mol) 

94.77

± 1.80 

5.98 𝐴­ 5681.44

± 111.76 

468.45 

∆𝑮𝟏𝟎 

(kJ/mol) 

33.3

± 4.61 

1.06 𝐸º@; 

(kJ/mol) 

103.82

± 4.65 

12.98 𝐴@; 1983.67

± 121.93 

246.34 

∆𝑮𝟏𝟏 

(kJ/mol) 

41.25 ±

4.64 

7.9 𝐸º@@ 

(kJ/mol) 

116.15

± 5.33 

18.65 𝐴@@ 2383.15

± 137.63 

789.36 

∆𝑮𝟏𝟐 

(kJ/mol) 

49.53 ±

0.09 

6.67 𝐸º@G 

(kJ/mol) 

84.77

± 0.89 

2.16 𝐴@G 6500.46

± 70.67 

309.76 

∆𝑮𝟏𝟑 

(kJ/mol) 

57.81

± 4.38 

1.26 𝐸º@� 

(kJ/mol) 

80.40

± 5.96 

6.09 𝐴@� 7018.73

± 215.06 

506.38 

∆𝑮𝟏𝟒 

(kJ/mol) 

66.09 ±

0.72 

0.29 𝐸º@Q 

(kJ/mol) 

21.35

± 0.63 

4.64 𝐴@Q 5426.02

± 144.64 

693.05 
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∆𝑮𝟏𝟓 

(kJ/mol) 

74.37

± 4.11 

1.25 𝐸º@� 

(kJ/mol) 

73.98

± 8.31 

9.17 𝐴@� 6389.87

± 167.5 

433.62 

∆𝑮𝟏𝟔 

(kJ/mol) 

82.65 ±

0.87 

7.58 𝐸º@� 

(kJ/mol) 

88.77

± 2.14 

8.74 𝐴@� 2402.6

± 122.66 

518.36 

∆𝑮𝟏𝟕 

(kJ/mol) 

90.93

± 2.37 

9.53 𝐸º@ª 

(kJ/mol) 

22.28

± 2.32 

2.84 𝐴@ª 3824.54

± 120.43 

438.6 

∆𝑮𝟏𝟖 

(kJ/mol) 

99.21

± 0.74 

5.86 𝐸º@� 

(kJ/mol) 

143.3

± 6.99 

23.24 𝐴@� 1824.64

± 230.26 

362.43 

∆𝑮𝟏𝟗 

(kJ/mol) 

107.49

± 1.33 

19.08 𝐸º@­ 

(kJ/mol) 

103.52

± 3.97 

19.64 𝐴@­ 5807.64

± 271.41 

768.39 

∆𝑮𝟐𝟎 

(kJ/mol) 

115.77

± 8.58 

14.18 𝐸ºG; 

(kJ/mol) 

77.68

± 2.27 

8.32 𝐴G; 3870.68

± 101.46 

344.54 

∆𝑮𝟐𝟏 

(kJ/mol) 

125.94

± 1.82 

11.24 𝐸ºG@ 

(kJ/mol) 

95.92

± 1.17 

5.48 𝐴G@ 1425.98

± 66.28 

150.74 

∆𝑮𝟐𝟐 

(kJ/mol) 

134.36

± 0.66 

10.66 𝐸ºGG 

(kJ/mol) 

72.45

± 6.27 

10.36 𝐴GG 2722.57

± 95.6 

357.34 

∆𝑮𝟐𝟑 

(kJ/mol) 

142.78

± 2.82 

12.34 𝐸ºG� 

(kJ/mol) 

29.99

± 2.02 

5.68 𝐴G� 3697.92

± 83.55 

480.5 

∆𝑮𝟐𝟒 

(kJ/mol) 

151.2

± 0.91 

15.94 𝐸ºGQ 

(kJ/mol) 

37.26

± 3.28 

6.06 𝐴GQ 7393.51

± 228.1 

750.74 

∆𝑮𝟐𝟓 

(kJ/mol) 

159.62

± 2.69 

18.55 𝐸ºG� 

(kJ/mol) 

74.52

± 2.75 

3.76 𝐴G� 2139.52

± 139.27 

466.87 
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∆𝑮𝟐𝟔 

(kJ/mol) 

168.04

± 1.13 

13.94 𝐸ºG� 

(kJ/mol) 

68.56

± 3.34 

5.42 𝐴G� 4364.45

± 154.5 

745.44 

∆𝑮𝟐𝟕 

(kJ/mol) 

176.46

± 3.09 

16.12 𝐸ºGª 

(kJ/mol) 

48.59

± 5.91 

6.69 𝐴Gª 1017.8

± 64.62 

136.06 

∆𝑮𝟐𝟖 

(kJ/mol) 

184.88

± 2.65 

26.19 𝐸ºG� 

(kJ/mol) 

102.58

± 1.53 

10.47 𝐴G� 1496.3

± 78.1 

153.43 

∆𝑮𝟐𝟗 

(kJ/mol) 

68.48

± 0.97 

1.65 𝐸ºG­ 

(kJ/mol) 

12.59

± 4.6 

5.39 𝐴G­ 3985.76

± 155.75 

450.59 

∆𝑮𝟑𝟎 

(kJ/mol) 

62.5

± 8.92 

1.39 𝐸º�; 

(kJ/mol) 

69.02

± 3.24 

4.01 𝐴�; 3700.9

± 117.97 

609.85 

∆𝑮𝟑𝟏 

(kJ/mol) 

70.37

± 2.94 

1.79 𝐸º�@ 

(kJ/mol) 

83.49

± 4.63 

6.17 𝐴�@ 2275.17

± 153.12 

303.27 

∆𝑮𝟑𝟐 

(kJ/mol) 

78.6

± 5.36 

0.63 𝐸º�G 

(kJ/mol) 

66.73

± 1.19 

5.34 𝐴�G 1146.84

± 123.19 

234.19 

∆𝑮𝟑𝟑 

(kJ/mol) 

86.9

± 1.32 

4.89 𝐸º�� 

(kJ/mol) 

59.76

± 2.82 

3.45 𝐴�� 3925.39

± 198.14 

663.59 

∆𝑮𝟑𝟒 

(kJ/mol) 

95.06

± 3.30 

4.66 𝐸º�Q 

(kJ/mol) 

110.2

± 3.35 

6.21 𝐴�Q 1369.1

± 114.35 

139.89 

∆𝑮𝟑𝟓 

(kJ/mol) 

103.2

± 6.62 

10.33 𝐸º�� 

(kJ/mol) 

112.31

± 13.22 

15.86 𝐴�� 1078.83

± 63.79 

82.51 

∆𝑮𝟑𝟔 

(kJ/mol) 

111.8

± 1.27 

19.71 𝐸º�� 

(kJ/mol) 

106.45

± 10.92 

13.65 𝐴�� 2880.1

± 110.49 

338.34 
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∆𝑮𝟑𝟕 

(kJ/mol) 

121.1

± 2.94 

11.32 𝐸º�ª 

(kJ/mol) 

56.18

± 6.94 

9.85 𝐴�ª 487.59

± 36.22 

58.3 

∆𝑮𝟑𝟖 

(kJ/mol) 

129.58

± 5.41 

17.07 𝐸º�� 

(kJ/mol) 

23.71

± 4.38 

6.66 𝐴�� 1295.7

± 49.93 

135.74 

∆𝑮𝟑𝟗 

(kJ/mol) 

138.07

± 7.70 

0.62 𝐸º�­ 

(kJ/mol) 

47.87

± 8.09 

9.78 𝐴�­ 2768.08

± 117.82 

232.89 

∆𝑮𝟒𝟎 

(kJ/mol) 

146.42

± 3.24 

2.84 𝐸ºQ; 

(kJ/mol) 

16.04

± 1.02 

4.14 𝐴Q; 1453.91

± 37.74 

82.93 

∆𝑮𝟒𝟏 

(kJ/mol) 

154.84

± 0.9 

1.39 𝐸ºQ@ 

(kJ/mol) 

116.3

± 1.39 

8.84 𝐴Q@ 4331.84

± 59.51 

348.44 

∆𝑮𝟒𝟐 

(kJ/mol) 

163.26

± 7.27 

11.07 𝐸ºQG 

(kJ/mol) 

114.34

± 3.31 

6.98 𝐴QG 1893.3

± 152.12 

237.06 

∆𝑮𝟒𝟑 

(kJ/mol) 

171.68

± 8.82 

2.32 𝐸ºQ� 

(kJ/mol) 

87.96

± 1.29 

3.92 𝐴Q� 4294.46

± 121.47 

346.93 

∆𝑮𝟒𝟒 

(kJ/mol) 

180.1

± 1.52 

4.24 𝐸ºQQ 

(kJ/mol) 

25.49

± 1.1 

5.69 𝐴QQ 611.27

± 97.5 

127.74 

∆𝑮𝟒𝟓 

(kJ/mol) 

188.52

± 3.86 

2.08 𝐸ºQ� 

(kJ/mol) 

48.85

± 5.61 

9.07 𝐴Q� 2444.87

± 123.61 

233.49 

∆𝑮𝟒𝟔 

(kJ/mol) 

196.94

± 6.07 

19.29 𝐸ºQ� 

(kJ/mol) 

124.84

± 3.95 

18.72 𝐴Q� 5430.26

± 147.05 

699.85 

∆𝑮𝟒𝟕 

(kJ/mol) 

205.36

± 1.92 

22.97 𝐸ºQª 

(kJ/mol) 

34.06

± 5.69 

9.31 𝐴Qª 1082.99

± 56.49 

131.54 
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∆𝑮𝟒𝟖 

(kJ/mol) 

210.14

± 1.76 

25.29 𝐸ºQ� 

(kJ/mol) 

74.15

± 2.92 

4.54 𝐴Q� 6357.14

± 70.9 

498.54 

∆𝑮𝟒𝟗 

(kJ/mol) 

218.56

± 1.83 

23.85 𝐸ºQ­ 

(kJ/mol) 

44.07

± 1.35 

5.89 𝐴Q­ 3794.33

± 193.09 

340.2 

∆𝑮𝟓𝟎 

(kJ/mol) 

226.98

± 1.12 

6.95 𝐸º�; 

(kJ/mol) 

43.38

± 6.33 

8.27 𝐴�; 2567.27

± 101.48 

276.97 

∆𝑮𝟓𝟏 

(kJ/mol) 

235.4

± 3.1 

6.22 𝐸º�@ 

(kJ/mol) 

90.07

± 3.15 

6.78 𝐴�@ 4742.05

± 177.07 

408.26 

∆𝑮𝟓𝟐 

(kJ/mol) 

243.82

± 6.77 

3.68 𝐸º�G 

(kJ/mol) 

96.06

± 1.13 

5.56 𝐴�G 4193.62

± 225.73 

567.33 

∆𝑮𝟓𝟑 

(kJ/mol) 

252.24

± 3.71 

27.73 𝐸º�� 

(kJ/mol) 

53.05

± 2.97 

4.96 𝐴�� 2785.93

± 51.76 

309.8 

∆𝑮𝟓𝟒 

(kJ/mol) 

260.66

± 1.87 

2.89 𝐸º�Q 

(kJ/mol) 

55.85

± 5.77 

8.89 𝐴�Q 5891.94

± 215.35 

481.97 

∆𝑮𝟓𝟓 

(kJ/mol) 

269.08

± 4.57 

29.71 𝐸º�� 

(kJ/mol) 

128.82

± 3.33 

18.28 𝐴�� 3027.22

± 149.36 

513.66 

∆𝑮𝟓𝟔 

(kJ/mol) 

277.5

± 1.48 

21.25 𝐸º�� 

(kJ/mol) 

89.58

± 2.25 

6.38 𝐴�� 2252.03

± 130.05 

240.41 

𝜷𝒌𝟏 −4.193

± 0.128 

0.489 𝜷𝒌𝟐 4.565

± 0.025 

0.213 𝜷𝒌𝟑 −3.3389

± 0.038 

0.258 

𝜷𝒌𝟒 5.702

± 0.091 

0.691 𝜷𝒌𝟓 −4.183

± 0.076 

0.647 𝜷𝒌(�,�,�,�) −1.8642

± 0.058 

0.149 
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𝜷𝒌(𝟑,𝟏,𝟒,𝟏) 1.767

± 0.155 

0.499 𝜷𝜿𝟏 2.907

± 0.201 

0.855 𝜷𝜿𝟐 −4.293

± 0.088 

0.315 

𝜷𝜿𝟑 −3.086

± 0.142 

0.716 𝜷𝜿𝟒 3.719

± 0.037 

0.812 𝜷𝜿𝟓 −4.762

± 0.161 

0.538 

𝜷𝜿(𝟏,𝟏,𝟐,𝟏) −2.694

± 0.041 

0.431 𝜷𝜿(𝟑,𝟏,𝟒,𝟏) 3.544

± 0.024 

0.645    

Table 3:Statistics of the Posterior distribution for the dynamic discrepancy case 
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