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Abstract 
 

The Impact of Permeability Heterogeneity on the Liquid Recovery from 
 Gas Condensate Reservoir 

 
 

Bashayer Alsanea 
 
In gas condensate reservoirs, when reservoir pressure drops below dew point pressure as 
production takes place at the surface, hydrocarbon liquids begin to form. The volume of 
the liquid formed in the reservoir increases as the reservoir pressure declines below dew 
point pressure. In most gas condensate reservoirs, the liquid saturation in the formation 
does not reach to the critical level for liquid flow to occur. Therefore, the liquid formed 
as result of the pressure decline becomes trapped in the formation. The formation of the 
liquid in the reservoir causes the produced gas composition to change continuously 
leading to lower liquid recovery at the surface facilities. The formation permeability 
directly impacts the pressure in the reservoir and as consequence the amount of liquid 
that is trapped in a gas condensate reservoir. In this study, a gas condensate reservoir 
model was developed to investigate the impact of permeability and heterogeneity of the 
gas condensate reservoir on the liquid recovery. The constant compositional changes in 
the gas condensate reservoir require rigorous evaluation of the fluid system to determine 
the hydrocarbon recovery accurately.  
 
A generic gas condensate reservoir model was constructed to simulate the liquid recovery 
and investigate the impact of permeability heterogeneity on the natural gas liquid 
recovery. Phase behavior model based on Peng-Robinson EoS equation of state (EoS) 
was developed by matching the results of a constant volume depletion (CVD) experiment 
obtained from a gas condensate reservoir in the Appalachian Basin. The phase behavior 
model was then incorporated into the reservoir model. The results of the investigation 
with the generic gas condensate reservoir model indicated that the permeability 
heterogeneity has a negative impact on the liquid recovery from a gas condensate 
reservoir.
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Chapter 1. Introduction 
 
Gas condensate reservoirs usually exhibit complex behavior due to the phase change that 

occurs when the reservoir pressure declines below dewpoint pressure during production. 

As the reservoir pressure drops, constant changes to fluid compositions the reservoir 

occur therefore understanding the behavior of the fluid system in gas condensate 

reservoir to has always been a major focus for reservoir engineers in the oil and gas 

industry. A proper reservoir fluid characterization is essential to establish an 

understanding the fluid behavior in the reservoir for an accurate prediction of the amount 

of the liquid recovered and eventually optimize liquid recovery.  

The amount of liquid and gas produced from a gas condensate reservoir is impacted by 

both reservoir fluid composition and reservoir rock properties. The impact of fluid 

composition on the liquid recovery from gas condensate reservoir has been investigated 

before. However, the impact of the reservoir rock properties, more specifically reservoir 

permeability, and the reservoir heterogeneity on the liquid recovery has not been 

investigated. The main objective of this study is investigate the impact of the reservoir 

permeability and reservoir heterogeneity on the liquid recovery from a gas condensate 

reservoir using a numerical model that is developed with all the necessary PVT data and 

fluid compositions as well as reservoir conditions using computer modeling group 

software.  

 

 



2	  

Chapter 2. Literature Review 
2.1. Gas Condensate Reservoirs 
 
A gas condensate reservoir refers to a gas system with a temperature being between 

cricondentherm and the critical temperature on pressure-temperature phase diagram. Gas 

condensate reservoirs are known to have a very distinctive fluid behavior. When the 

reservoir pressure is higher than dewpoint pressure, a single gas phase system exists 

within the reservoir. However, when the reservoir pressure drops below the dewpoint as 

the asset is put into production, liquid condenses from the gas and accumulates in the 

reservoir. Dewpoint pressure or saturation pressure is the pressure at which the first drop 

of liquid drops out of gas. The condensate typically has a high-API gravity. The existence 

of the liquid phase is dependent on pressure and temperature conditions in the reservoir.  

With the pressure constantly dropping during production, the compositions of the gas and 

liquid (condensate) in the reservoir constantly change which complicates the prediction 

of the fluid behavior in the reservoir. A multi-stage separator usually attached to the 

producer wells under selected pressure and temperature conditions to maximize liquid 

recovery at the surface. One of the problems associated with gas condensate reservoir is 

the accumulation of liquid around the wellbore which could to lead reduction in gas 

permeability and reduction in the productivity.  

 

 

 

 

 



3	  

2.4. Constant Volume Depletion Test (CVD) 
 
Constant volume depletion experiment is usually performed on a gas condensate to 

achieve a variety of important information to be used in reservoir calculations. Constant 

Volume Depletion test, also known as CVD experiment, aims at simulating the actual 

behavior of a gas condensate reservoir.  The results of the experiment are used for the 

calculation of the surface gas condensate recovery in relation to the pressure. The results 

can be influenced by whether the provided gas condensate splits into two phases or 

occurs as single phase. During the process, as shown in Figure 1, the CVD test begins at 

the dew point pressure of the identified condensate value of the gas. Thereafter, the 

measurements pertaining to the saturation volume of the substance at the dew point are 

obtained and recorded as Vsat. 

To produce relevant and accurate results, different deliverables such as measured values 

recorded on a computer-generated table are provided. These values show the relationship 

between pressure and volume. For instance, as the level of the pressure decreases, the 

volume is supposed to increase to facilitate the formation of the gas condensate. 

 

Figure 1 - Schematic of the Constant Volume Depletion process 
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2.2. Equation of State 
 
Peng-Robinson is the equation of state (PR-EoS) is commonly used to describe the phase 

behavior of hydrocarbons and it has become the most popular and widely used in the 

petroleum industry. This equation is developed to calculate the fluid properties in the 

natural gas process and to validate PVT obtained from laboratory analysis.  As a result, it 

is considered to be the most reliable cubic equations of state for prediction of the 

gas/condensate system behavior. The PR-EoS (1978) is major component of the WinProp 

model of the CMG software and was used in this study in order to characterize the fluid 

properties and phase behavior  

PR-EoS is considered the most applicable model for volumetric and thermodynamic 

calculations in academic and petroleum industry and is recommended to be used for 

characterization of the rich gas condensate reservoirs. The PR-EoS was used in this 

study to describe the fluid phase behavior and tuned by regression to match the 

experimental data, in this case, CVD experimental data.. CMG software WinProp was 

used in this study for the tuning process. A tuned equation of state is required to develop 

an accurate simulation model to evaluate the fluid system in the reservoir. The use of 

EoS model can lead to a reliable prediction of the fluid behavior in gas condensate 

reservoir to accurately predict the oil and gas quantities recovered from the reservoir. 

To obtain accurate results, the first model for the application of the equation was as 

follows: 

 (𝑃 +    !"
!!!!!"!!!

)   𝑣 − 𝑏   = 𝑅𝑇 (1) 
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For the depiction of pressure, the above equation can also be written as: 

 P = 
!"
!!!

 – !"  
!!!!!"!!!

 (2) 

      

The introduction of the centric factor by Soave caused Peng and Robinson to consider the 

inclusion of the temperature factor. This was followed by the presentation of different 

fitting parameters that described the first two models. However, there was a change in the 

denominator of the pressure variable. Coefficients such ‘a’ and ‘b’ consist of functions 

depicting the characteristics of the critical elements under specified conditions. The 

equations devised formulas for coefficients influencing pressure, temperature, and gas 

centric factor. As a result, Peng-Robinson equation of state produced accurate estimation 

of the relationship between pressure and temperature of gas. This assisted in the 

calculation of the solubility rate of the gases. 

2.3. CMG Software  

2.3.1. WinProp 
 
WinProp is CMG fluid characterization tool that used to determine the impact of pressure 

and temperature on fluid properties. It is an integral component in advanced reservoir 

simulation modeling and is extremely useful for multi-phase and special processes where 

compositional variations exist. Therefore, it offers techniques for illustrating the heavy 

ends of the petroleum fluids, lumping of components, reservoir fluid characterization, 

matching laboratory PVT data through regression, and EoS characterization. 

Furthermore, WinProp also considers several laboratory experiments some of which are 

recombination of separator oil and gas, compressibility measurements along with the 

PVT experiments such as differential liberation, constant volume depletion, and constant 
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composition expansion. For this study specifically, WinProp is used to characterize 

reservoir fluids to tune the EoS and match lab data from constant volume depletion 

experiment. Since WinProp has the option of selecting from various equations of state 

models, the Peng-Robisnon (1976) equation of state is tuned to match the PVT results in 

the creation of the reservoir model. It contributes to enhance the understanding of the 

reservoir fluid and fluid phase behavior with advanced PVT calculations. 

2.3.2. GEM 
 
GEM in general is a world leading Equation-of-State reservoir simulator for 

compositional, chemical and unconventional reservoir modeling. It offers numerous of 

techniques in enhancing oil recovery, geomechanics, fracture modeling, and performance 

optimization. For this study in specific, GEM was utilized to optimize performance 

efficiency and run large, complex simulation jobs in the shortest amount of time which 

makes it feasible to complete the study. 
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Chapter 3. Methodology 
 

This study was carried out in two parts. The first part was to use WinProp for the purpose 

of characterizing reservoir fluid by tuning EoS to precisely match the collected CVD 

laboratory experiment data and investigate fluid behavior. Compositional simulation 

study using a tuned Equation of State is required to evaluate fluid behavior and 

production from the gas condensate reservoir. 

 In the second part of the study, CMG-Builder (GEM) was used to develop a generic 

model for a gas condensate reservoir with all the required data and fluid 

compositions incorporated to generate an accurate simulation model. Homogenous gas 

condensate reservoirs models consist of five layers were generated to investigate the 

impact of permeability. Following the creation of the homogenous models, a number of 

different cases of permeability variations were executed to study the impact of 

permeability heterogeneity on the liquid recovery.  That was done by altering 

permeability values in each layer of the reservoir in a consistent pattern and running the 

data in CMG to calculate the resulted amount of liquid and gas recovery. All obtained 

data for this study were used as an input to simulate the conditions encountered in the 

reservoir. 

3.1. Fluid Characterization (WinProp) 
 
In this part of the study, the Peng-Robinson equation of state was tuned to match the PVT 

data of an actual gas condensate reservoir located in the Appalachian Basins. The input 

data include the original fluid composition, reservoir temperature and pressure, and CVD 

test results. 
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The first step in modeling condensate fluid was to characterize reservoir fluid through 

splitting and lumping calculations option in WinProp. The obtained extended reservoir 

fluid compositions were utilized in the software to start the process of tuning the EoS and 

match experimental data. Table 1 shows the extended reservoir fluid composition. 

Table 1 – Original Reservoir Fluid Composition 

 

The fluid system in the reservoir consists of a large number of components starting from 

C1 up to C22, which made fluid characterization and component lumping essential to 

avoid the excessive run time for an accurate EoS calculation. Properties of the plus 

fractions C7+ such as molecular weight, specific gravity, and mole fraction shown in 

Table 2 were also entered to characterize the heavy fraction properties and specify plus 

fraction. 
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Component lumping is a process of reducing many components system into fewer 

pseudo-components used in EoS calculation for an accurate saturation pressure prediction 

and to simplify the EoS model in order to obtain reasonable results. WinProp determined 

the number of pseudo-components used in characterizing the heavy fraction of reservoir 

fluid. Component C7 up to C22 were grouped and lumped into 3 pseudo-components 

with a single carbon number. 

The next step in the tuning process after component lumping was to match the 

available experimental data through regression. The regression feature in WinProp 

was used to tune the equation of state to have a better match of the experimental 

results. Tuning through regression of the EoS parameters to match CVD experimental 

results and to improve the prediction of the saturation pressure. The required data for 

tuning are gas produced, liquid dropout, gas deviation factor, and pressure steps, 

which were derived from CVD test. Constant volume depletion specification 

experimental data were recorded for regression purpose in order to check the quality 

of the laboratory data by tuning the EoS. Table 3 shows the collected CVD laboratory 

experiment data that were used in the program. 

SG 0.763
MW	  C7+ 127.593
Mole,	  y% 1.74

Table	  2	  -‐	  C7+	  Properties	  
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Table 3 - CVD experiment results 

 

Based on the PVT data, original reservoir pressure was estimated to be 2760 psia and 

reservoir temperature was 120 F. The initial guess for the saturation pressure (dew point) 

for this experiment was 2700 psia. This value is required by the program to use in the 

saturation pressure calculation. The first column labeled Pressure was for pressure levels 

and column 2 through 5 were used for entering experimental data as shown in Figure 2. 

 

Figure 2 - CVD test 

 The data set was saved and ready to run. An output file was generated containing a 

summary of the resulting data.  
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Moving forward, the equation of state model in WinProp was written in a format suitable 

for CMG’s compositional simulator GEM to continue the study and reach the desired 

results. The file then can be imported into a GEM data set using Builder. 

3.2. Generic Gas Condensate Reservoir Model Development  
 
Upon opening Builder, the window illustrated in Figure 3 appeared and the desired 

options were selected to set the reservoir simulator.  

 

Figure 3 - Reservoir simulator settings 

After setting the simulator, Cartesian grids were created by clicking on reservoir icon 

using the software. The synthetic reservoir simulator consisted of five layers with a size 

of 386 acres. Each layer is 10 ft thick, the top grid of the model is at a depth of 6000 ft 

with an initial pressure of 2760 psia, three permeabilities in I, J, and K directions were 

considered, and reservoir porosity of 10%. To facilitate the process, the bottom layer of 

the reservoir is labeled as layer 5 and the top layer is labeled as layer 1. The figure below 

illustrates the layers of the reservoir.  
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Figure 4 - Reservoir layers 

 

The GEM model generated from WinProp was imported into the simulator to include the 

fluid compositions and fluid properties of the gas condensate fluid contained in the 

reservoir into the reservoir simulator. The EoS model imported contained EoS type and 

parameters, component critical properties, volume shifts, EoS omega parameters, 

reservoir temperature, and other important parameters.  

The presumed, reference pressure of 2760 psia and reference depth of 6000 ft were 

entered as the initial conditions of the reservoir. Water Gas was selected as the initial 

fluid in the reservoir. 

The next step in creating the model was to specify reservoir properties. The reservoir 

model at the beginning was designed to be homogenous. The physical properties in all 

the layers were equal and uniformed. Creating a homogenous reservoir model prior to 
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changing its properties was essential to acquire the optimal production data, and have 

them as reference for the comparison of the different permeability cases. 

Lastly, a producer well was added and attached to a multistage separator. The primary 

need for a multistage separator was to improve the liquid production and cause liquid to 

be formed at the surface under selected pressure and temperature.  

Table 4 shows the separator stage conditions. The last stage of the separator corresponds 

to the stock tank conditions. 

Table 4 - Separator conditions 

 

The well was located at the center of the reservoir and completed vertically. Only one 

producer well needed to achieve the final results. Adding one producer well was 

preferable in this study to have a uniform production and to focus on a single drainage 

area of the reservoir. The well operated under two specified constraints. Minimum 

bottom-hole pressure of 600 psi and a maximum surface gas rate of 3 MMscfd.  

The gas condensate reservoir simulator now is ready to predict the hydrocarbon recovery. 

Several permeability cases were made in order to see how the permeability and the 

heterogeneity of the reservoir impacted liquid recovery from gas condensate reservoir. 

Table 5 below shows four different homogenous reservoir models generated and utilized 

in this study to investigate the impact of permeability. 
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Table 5 - Homogenous reservoir models 

 

After the hydrocarbon recovery was predicted from the homogenous base models, 

additional heterogeneous cases based on model 1 and 4 were generated for further 

investigation. Those cases of heterogeneous reservoir models are summarized in the 

tables below. Table 6 shows the variation of the layer properties based on model 1 and 

table 7 shows the variation of the layer properties based on model 4. 
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Table 6 - Permeability variation by layers for model 1 

 
 

In case 1 only the top layer of the reservoir was reduced to 10 md and the other four 

layers remained at 100 md. In the second case, the first two layers were reduced and the 

rest were kept the same. The same thing applies to the third and fourth cases, case 3 only 

the top three Layers were decreased in permeability and in the last case four layers were 

reduced to 10 md as well. The same variation in permeability was applied to the 

homogeneous model 4. 
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Table 7 - Permeability variation by layers for model 4 

 

The liquid recovery from all the models and the cases presented was calculated to see 

how the heterogeneity of the reservoir impacts the liquid recovery. Finally, to reach an 

ultimate understating of the impact of the permeability, additional heterogeneous cases 

were generated to see if the location of the reservoir layers with low permeability was 

altered, what impact it might have on the liquid recovery.  
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Chapter 4. Results 
 

4.1. Model Development 
 
The output file from WinProp generated a variety of important information needed to 

successfully build the reservoir model. The resulting file included a summary of 

condensate heptane plus splitting, Constant Volume Depletion calculations before and 

after regression at 120F, Peng- Robinson equation of state component properties before 

and after regression, hydrocarbon analyses of produced gas phase Mole %, and summary 

of cumulative recovery during CV depletion at 120 F. Figure 5 shows the fluid 

compositions in mole fraction after component selection. The column where it says 

“primary” corresponds to the reservoir fluid and “secondary” corresponds to injection 

fluid, which was replaced with since there was no injection fluid utilized in this study. 

 

Figure 5– Reservoir Fluid Components after Lumping 
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The EoS was developed successfully to match the CVD experimental data and accurately 

predicted the saturation pressure, as it is appear in Table 8. Based on this table we can see 

the predicted saturation and the mole percentage of the fluid compositions closely 

matching the original data from the condensate reservoir. 

Table 8 - Summary of CVD test calculation after regression 

 

The first column represents the predicted saturated reservoir fluid and the mole 

percentage of gas compositions at that pressure. It can be found that the saturation 

pressure (dewpoint pressure) is 2,696.5 psia and fluid compositions are in agreement with 

the obtained data from the lab.  Moreover, looking back at Table 3, the HC analyses of 

produced gas phase mole percent summary results from WinProp show a good match of 

the liquid dropout percentage and mole% of cumulative gas produced of the actual 

experiment results as summarized in Table 9. 
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Table 9 - HC analyses of produced gas phase mole % 

 

Nonetheless, the data generated from WinProp output file verify that EoS has been 

successfully tuned and the experimental values were matched quite closely. Tuning the 

EoS was beneficial since it provided many important EoS parameters of the fluid 

components and pseudo-components such as specific gravity, critical temperature, 

critical, pressure, molecular weight, volume shift, heat value, etc. to assist in the creation 

of an effective reservoir simulation.  

4.2. Reservoir Simulator Model     
 
Several cases of layer properties variations were generated in CMG to address the impact 

of permeability on liquid production from a gas condensate reservoir. Prior to that, 

homogeneous models of the reservoir were created to investigate the impact of the 

permeability on the production from a uniform formation. Table 10 shows liquid and gas 

recovery percentage from the homogenous models. All the models were set to run for 20 

years. 

Table 10 - Liquid and gas recovery from homogenous models 

 

2696.5 2100 1500 900 500
Gas	  Produced,	  Mole	  % 0 21.16 45.54 69.04 82.98
Liquid,	  Vol	  % 0 4.1 5.33 4.7 3.88
2	  phase	  z	  factor 0.6972 0.6879 0.7105 0.7483 0.7545

Pressure	  Levels,	  psia
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The result here shows that the permeability does have a slight impact on the liquid 

recovery. As the permeability decreases in the homogenous reservoir models, liquid 

recovery decreases especially when comparing liquid recovery from Model 1 to Model 4.  

Based on these results, model 1 with the highest permeability value of 100 was chosen to 

further investigate the impact of the reservoir heterogeneity on the production. Table 6 

illustrated the cases of permeability variations for model 1. The liquid recovery 

percentage from these cases is shown Table 11. 

Table 11 - Liquid recovery from heterogeneous cases for model 1 

 

It can be observed by comparing these cases to one another that the reduction in the 

liquid recovery from case 1 through 4 is not very significant and the difference is very 

small when compared to the liquid recovery from the homogenous model.  

A conclusion can be drawn based on the liquid percentages recovery that 100 md is high 

enough that even when the permeability is reduced in a number of layers we can’t see any 

major changes in the liquid recovery. 100 md was too high to see the impact of the 

permeability heterogeneity on the production therefore; additional heterogeneous cases 

were generated based on model 4 with permeability of 10 to see if we can observe any 

major changes regarding the liquid recovery from the reservoir. 

Table 7 illustrated the cases made in order to accomplish the primary goal of this study. 

Results from these cases are summarized in the Table 12 below. 
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Table 12 - Liquid recovery from heterogeneous cases for model 4 

 

The result from these cases indicates a sufficient reduction in the liquid recovery as the 

number of layers with low permeability increases. In case 5, the top layer was reduced to 

1 md while the rest of the layers were remained at 10 md. Case 5 only the top two layers 

were reduced in permeability. Case 7 the first three layers were reduced and case 8 the 

first four layers were reduced to 1 md which explains the huge difference in the liquid 

recovery between case 6 and case 8.  

Now that we reached an understanding that the liquid recovery decreases gradually as the 

permeability is reduced in the reservoir layers, a further step was taken into analyzing 

which layer of the five reservoir layers has the most impact on the reduction of the liquid 

recovery. To achieve that, the order of the layers was altered and the location of the 

layers with reduced permeability value was changed to see if the location had an impact 

on the liquid recovery.  
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Table 13 – Case 5A and 5B showing the location the reduced permeability layer 

 

Based on Table 13, as opposed to case 5 where the top reservoir layer was reduced in 

permeability, case 5A the middle layer of the reservoir was reduced in permeability and 

in case 5B the bottom layer was reduced instead. The liquid recovery was calculated and 

represented in Table 14 below. 

Table 14 – Liquid recovery from case 5, 5A, and 5B 

 

As we can see, the order of the layers in this case had almost no impact on the liquid 

recovery.  

Similarly, the location of layers with reduced permeability in case 6 was changed as 

illustrated in Table 15 and liquid recovery was calculated.  
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Table 15 - Case 6A, 6B, and 6C showing the location the reduced permeability 
layers 

 

In case 6A, the permeability in the bottom two layers was reduced and in case 6B the top 

and the bottom layers were change and in case 6C layer 2 and 3 were changed. The 

results from these cases compared to the original case, case 6, are shown in table 16. 

Table 16 - Liquid recovery from case 6, 6A, 6B, and 6C 

 

Based on the results, the liquid recovery from case 6 and case 6A is exactly the same 

whereas the recovery from case 6B and 6C is slightly higher but not very significant. 
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Table 17 - Case 7A, 7B, and 7C showing the location the reduced permeability 
layers 

 

In the same way, in cases 7A, 7B, and 7C the order of the three layers was changed as 

shown in table 17. 

Table 18 - Liquid recovery from case 7, 7A, 7B, and 7C 

 

As summarized in Table 18, liquid recovery did not have any significant changes. 

In case 8 where the first four layers were reduced in permeability to 1md as layer 5 

remained at 10 md, the location of these layers were altered in case 8A and 8B as shown 

in Table 19 below.  
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Table 19 - Case 8A and 8B showing the location the reduced permeability layers 

 

In case 8A the bottom four layers were changed whereas in case 8B the middle layer, 

layer 3, remained at 10 md and the rest of the layers were reduced in permeability. 

Table 20 - Liquid recovery from case 8, 8A, and case 8B 

 

As a result, illustrated in Table 20, the liquid recovery was slightly reduced in case 8A 

and 8B compared to case 7. The change in the recovery in case 8A compared to case 8 is 

not significant however when comparing case 8B to case 8 we can see some changes in 

the recovery. 

We can conclude that the location of the layer with low permeability in the reservoir does 

not impact the liquid recovery from a gas condensate reservoir as much as the number of 

layers with low permeability in the reservoir does. 
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Chapter 5. Conclusions and Recommendation 
 
Based on the analysis of the results obtained from this research study, the following 

conclusions can be made regarding the developed EoS model and the impact of the 

reservoir heterogeneity and properties on production from gas condensate. 

1. An EoS fluid model was successfully developed and tuned via regression and was 

matched with the experimental data. 

2. The liquid recovery from a homogenous gas condensate reservoir is impacted by the 

permeability. 

3. Reservoir heterogeneity in a high-permeability gas condensate reservoir does not 

have significant impact on the liquid recovery. 

4. Reservoir heterogeneity in a low-permeability gas condensate reservoir negatively 

impacts the liquid recovery. 

5. As the severity of the reservoir heterogeneity (the number of layers with the reduced 

permeability) increases the liquid recovery decreases. 

6. The location of the reservoir heterogeneity (layers with the reduced permeability) 

does not have a significant impact on the liquid recovery reduction. 

Recommendation 
 
The impact of the followings on the liquid recovery from a heterogeneous gas condensate 

reservoir needs to be investigated: 

1. Different variations of fluid composition. 

2. Reservoir pressure and temperature. 

3. Separator conditions. 
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