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ABSTRACT 

Improving Broiler Performance Utilizing Modern Feed Additives 

Niles R. Ridgeway 

Modern broiler production strives to make modest improvements regarding broiler 

performance.  This remains a goal as global population increases thusly increasing the quantity 

of an affordable, high quality source of protein.  In recent years, an added stressor to achieving 

prior goals is mostly related to consciousness of environmental and consumer health.  For 

decades, integrators have utilized minimal amounts of antibiotics as a barrier to most pathogens 

affecting the microbiome of a broiler’s gastrointestinal tract.  Regulatory efforts have now 

prohibited most of previous sub-therapeutic medicine and started an in-depth scope of broiler gut 

health and interaction with antibiotic alternatives.  In an effort to provide beneficial bacteria in a 

challenged environment, broilers were fed Direct-Fed Microbials (DFM), notably Bacillus 

subtilis, to investigate performance improvements.  Diets were formulated to meet bird 

requirements during specific age periods. 2,280 male Ross x Ross 708 broilers were placed on 

study for 42 days to evaluate live performance. Pens of 23 broilers were randomly assigned one 

of four dietary treatments; a control diet, and 3 diets compromised of the control and an 

additional top dressed DFM. A natural challenge was manifested by a combination of built-up 

litter and a weekly water spray to facilitate bacterial growth.  Additionally, the diet was 

nutritionally limited. The results revealed that dietary treatments performed the same for most 

measurements. Live weight gain decreased in diets containing DFM2 or DFM3.  Overall, 

broilers performed below industry expectations in each performance variable, suggesting the 

additive effect of nutritional deficit, floor conditions, and heat stress may have hindered 

opportunity for DFMs to perform or provide enough stimulus to generate expected results. 

Additionally, transgenic grains were implemented into broiler diets to identify ability to 

liberate Ca and P by expressing phytase at two different concentrations. Different expressions 

resulted in volume discrepancies.  Distribution throughout a mixer was of interest to identify 

potential for minimizing dietary inclusion thusly total cost. Phytase has long been utilized to 

combat P excretion in the poultry industry related to environmental concerns.  Grain-expressed 

enzymes allow for a direct 1:1 replacement for the host grain.  Adding exogenous enzymes 

without diluting dietary nutrients will be another means of improving performance by 

maximizing nutrient utilization.  2,304 male Ross x Ross 708 broilers were obtained and placed 

in pens of 24. A dietary factorial treatment structure was utilized for two corn-expressed phytase 

products at three doses. Additionally, a positive and negative control were used.  Birds were 

selected randomly at day 21(n=5) and day 42(n=3), to be euthanized for tibia excision. Tibiae 

were collected, ashed and bone mineralization was determined to quantify liberation of 

additional P/Ca. Live performance was also measured. Results showed that a lower concentrated 

grain enzyme requires more volume and has more opportunity to distribute evenly during 

batching of a diet.  This is reinforced by performance results that yield improved LWG for a 

product that requires more volume for a target dose.  
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CHAPTER 1: LITERATURE REVIEW 

 

 

COMMERCIAL POULTRY PRODUCTION 

An expanding population has projected a need for total food source to increase. Several 

agriculture models contribute to overall food capacity. Of the models, it is often believed that 

commercial poultry production is expected to meet the demands through the design of vertical 

integration. The vertical integration model has allowed poultry to annually remain the largest 

sector of the meat industry in terms of count and pounds produced.[1]  Poultry consumption 

remains number one in pounds of consumption per capita each year in the United States.  The 

United States Department of Agriculture (USDA) reports that 92.2 pounds of total chicken had 

been consumed on a per capita basis in 2017.  Turkey adds an additional 16.4 pounds.[2]  It trails 

only pork in total consumption on a global scale. It also remains the number one agricultural 

commodity in West Virginia, estimated to be a 400 million dollar enterprise in 2017. Total 

number of broilers (86 million per year) has dropped in recent years, but still ranks West 

Virginia 18th in the United States.  Turkey production (3.7 million per year) places West Virginia 

at 14th.[3]  As the global population increases, efforts to maximize broiler rearing efficiency will 

hold steadfast for years to come.  Commercial production has made continuous improvements 

over the years in coordination with land-grant universities and federal agencies, USDA. The 

latter entities perform research in genetics, nutrition, biosecurity, and also management practices 

maximize current resources, while providing an affordable, highly nutritious protein. 

FEED MANUFACTURE 

Feeding an animal represents the major cost of animal production agriculture. Changes in 

feed form, specifically pelleting, have been known to increase feed efficiency whilst remaining 

cost-effective [4,5].  For this reason, more than 80% of non-ruminant feed is pelleted in the U.S. 
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[6].  Pelleting feed has many steps that vary accordingly, ultimately changing the quality of 

pellet produced. First, ground ingredients are mixed together with vitamins and minerals to 

provide a homogenous mash feed.  This feed then is passed into a conditioning barrel that is 

direct fed with saturated steam to increase temperature and also pliability, through moisture 

addition, of the feed.  As feed exits the conditioner, it falls into a press feeder that directs feed 

into a pellet press to be extruded.  Extrusion occurs from the mash feed being pressed between 

rolls and an outer die, forcing the feed through holes in the die. As conditioned feed is extruded 

through the pellet die it is subjected to high friction and pressure.  It is important to note that 

temperature increase across the die may be dependent on additional variables, such as rate of 

feed conveyance, die thickness, and diet composition [5].Once the compressed feed is extruded 

beyond the outer surface of the die, it takes on the form of a pellet.  A stationary knife then cuts 

off the pellet at a desired length.  Finally, pellets are conveyed to a cooling deck where moisture 

and temperature are both pulled off pellets to prevent growth of molds as well as potential 

nutrient dilutions from excess moisture.  

Pelleting feed can provide performance improvements due to decreased feed wastage, decreased 

ingredient segregation, decreased energy expenditure, improved palatability, increased 

digestibility, and thermal modification of starch and protein [7].Pelleted diets improve broiler 

and swine performance when compared to mash diets [8-10]; however, the amount of benefit has 

been shown to be dependent upon pellet quality [5]. 

Nutrient availability has also been considered when looking at subjecting mash feed to 

the thermal processing technique of pelleting.  Cutlip et al. conducted an experiment on 

temperature and pressure as they relate to nutrient availability finding that no differences could 

be found between unprocessed mash and conditioned pellets [11].  This contradicts Smith and 
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Circle that claim steam conditioning at high temperatures negatively affect nutrient availability, 

specifically amino acids found in soybean products [12].  The author [Cutlip et al.] attributes that 

his findings may be a result of a 3% inclusion of soybean oil at the mixer.  Soybean oil has 

lubricating properties during the pelleting process.  The lubrication increases throughput 

decreasing the amount of time feed may be subjected to friction during extrusion. Diets 

containing low mixer-added fat, subject feed to more time within the die, this can alter nutrient 

digestibility of ingredients that are not thermally stable such as amino acids noted by Smith and 

Circle. 

MIX UNIFORMITY 

An equal distribution of a diet’s ingredients within a mixer can be coined “mix 

uniformity”. A consistent mix of ingredients is important for the pelleting technique to provide 

an equal proportion of ingredients per pellet.  Increasing importance arises during exogenous 

enzyme supplementation as these are typically miniscule amounts.  A common measure of mix 

uniformity is mixer coefficient of variation (CV).  A CV less than 10% is accepted to be a 

consistent mix. To determine CV, a marker is placed within the diet and added to the mixer.  

After a set mix time, a sample is taken to be analyzed for the marker placed into the diet.  Pfost 

et al. stated criteria for marker selection[13]. Factors affecting mix uniformity usually involve, 

fill capacity, type of mixer, particle size of ingredients and mix time. McCoy et al. indicated 

improvements to mix uniformity improved feed efficiency of broilers [14].  

 

ANTIBIOTIC ALTERNATIVES IN BROILER PRODUCTION 

Modern poultry consumption continues to rise and meet the demands of consumers, but 

consumer perception often influences commercial rearing standards.  Larger producers are 
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beginning to shift focus to antibiotic alternative production to meet the demand for ‘No 

Antibiotics Ever’ (NAE) birds [15,16]  Regulatory amendments such as the Veterinary Feed 

Directive (VFD), have reinforced efforts to find viable alternatives to antibiotics to maintain bird 

health.  Bird health is often compromised in commercial production from recycling litter and 

subjecting birds to an environment with pathogens.  Recycling litter is a common practice in a 

dual purpose effort to maximize efficiency, and become environmentally conscious.  Eimeria 

species and Clostridium perfringens are identified as being most problematic to the poultry 

industry, resulting in huge economic losses caused by coccidiosis  and necrotic enteritis 

respectively.[17,18; 19]  Probiotics, often termed Direct Fed Microbial (DFM), appear to have 

benefits when used as a feed additive in poultry production.  A single defined mode of action of 

DFMs has not yet been defined, due to variation of microorganisms used in applications.  

However, Flint and Garner proposed three mode of actions thus far, chemical inhibition, 

competitive exclusion, and microbially mediated immunodevelopment [20].  Chemical inhibition 

is a product of short-chain fatty acids and their ability to either destroy pathogens directly or 

create “microenvironments” of unfavorable conditions for pathogenic growth.  Competitive 

exclusion suggests that using these microbes as a feed additive allows them to attach themselves 

to epithelial cells of the gastrointestinal tract, preventing attachment of pathogens.  The last mode 

of action refers to an increase in various immunoglobulin antibodies seen by another group of 

authors [21]. 

Although multiple microorganisms have been approved for livestock feed additives, 

Bacillus spp. has become more prevalent because of their ability to form endospores within the 

gastrointestinal tract, and have increased thermal tolerances to withstand thermal processing such 

as pelleting.  The mode of action that appears to be associated with Bacillus spores is increased 
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immune function.  Multiple studies have shown that these spore forming bacteria do have ability 

to improve performance in both natural and advertently inoculated broilers. [22] 

PHOSPHORUS, PHYTATE, and PHYTASE 

Phosphorus (P) is an important nutrient in commercial broiler diets. Its main role within 

broiler production is to provide a solid skeletal base that prepares the bird to withstand rigors of 

rearing, transport, and processing. Additionally, P is a part of several metabolic functions in the 

avian model [27]. However, a large challenge in meeting this goal is to determine how much P is 

available to the bird.  Common ideologies within practice presume that non-phytate P (nPP) is 

equivalent to that of available P (avP)[28].  The amount of P utilized by the bird can vary 

dependent of not only other nutritional interactions, but source and quantity of P [29]. 

Environmental concerns have urged commercial poultry nutritionists to maximize efforts 

to conserve P usage, decreasing both diet costs and excess P presence of litter [30]. Runoff 

concerns involve litter application post market to field crops, notably within the Mid-Atlantic 

region. Litter is often high in P, due to an overage of P within diets to meet requirements. 

Continuing efforts to maximize P digestibility through enzymatic feed additives will assist in the 

reduction of runoff and subsequent algal blooms. 

The main hindrance of P utilization within poultry diets is often related to phytate.  Its 

presence is largely found in plant-based feed stuffs. Poultry are unable to utilize phytate in its 

common form, phytic acid, due to the lack of effective endogenous enzymes [31]. Phytic acid 

has the ability to bind minerals and render them unavailable to the bird. 

 Most diets now mandate an exogenous enzyme known as phytase to aid in release of P 

and allow chelated minerals such as zinc, magnesium, and calcium to be utilized by the bird. 
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Phytase enzymes became commercially available in 1991, but have been utilized in research 

trials dating back to 1962[32]. Modern day phytase additives accommodate a large range of traits 

for multiple applications. Point of hydrolysis, pH profile and pelleting temperature often place 

products into respective categories [33]. Point of hydrolysis refers to the location of the carbon 

(1v4) on the inositol ring that first starts to de-phosphorylate. Fungal derived phytases are the 

most common source, however recent efforts have been made to implement alternatively derived 

sources of phytases.  Transgenic grain phytases have been used historically in applied research 

with varied results. [34] As we continue to understand and develop these phytase products, 

achieving a more efficient feeding strategy will help prevent over utilization of P in commercial 

diets. 
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SUMMARY Animal health is a key component of rearing commercial chickens for meat 

production.  Previously, antibiotics were fed at sub-therapeutic levels to aid in prevention of 

disease, most notably coccidiosis.  Antibiotic alternatives are essential for the production of 

poultry within current regulations. Prior research has suggested using Bacillus spp., a direct-fed 

microbial (DFM), in diets to promote immune function, often resulting in improved bird 

performance.  The study objective was to evaluate untested strains of Bacillus spp., on broiler 

performance.  A basal diet was split equally into 4 allotments, with the difference among 

treatments being, one control diet (PC), one proven serotype plus PC (DFM1), and two 

experimental serotypes plus PC (DFM2 and DFM3).  All treatments were pelleted and provided 

in similar feed forms among growth phases.  A total of 24 replications per treatment were fed to 

broilers from d1 to d42.  Birds were reared via floor pen in a naturally challenged environment 

with built-up litter and a diet formulated to have limited nutritional safety margins.  Birds fed PC 

showed marginal increased live weight gain (LWG) as compared to diets containing 

experimental serotypes (P≤0.05), for the overall experimental period (d1-42). Feed Conversion 

Ratio (FCR) showed no differences among treatments.  The proven strain of Bacillus spp. 

yielded results comparable to the PC for all growth phases.  Individual growth phases yielded no 

significant differences among the dietary treatments. The experimental Bacillus spp. did not 

improve bird performance relative to a diet without supplementation of a direct-fed microbial.  

Key Words: probiotic, direct-fed microbial, antibiotic alternative, Bacillus subtilis  
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DESCRIPTION OF PROBLEM 

Antibiotics (AB) have historically been utilized to control disease and also aid in growth of 

commercial poultry produced for human consumption.  The United States Food and Drug 

Administration first approved the use of antibiotic feed additives without veterinary prescription 

in 1951[1].  Disease control has been connected to feeding AB at sub therapeutic levels to 

suppress pathogens within the gastrointestinal tract (GI).  Consumer and academic scrutiny has 

led to the abolishment of AB inclusion within animal feeds for food-producing animals.  The 

most concerning topic is antimicrobial resistance in human medicine as a product of AB use in 

food-producing animals[2].  In 2006, the European Union (EU) placed a ban on sub therapeutic 

AB use in animal feeds.  The United States followed suit a decade later in January of 2017, the 

veterinary feed directive (VFD) took effect, restricting sub therapeutic AB within feed.  Those 

AB placed on a restricted list are those of medical important to humans.  Continued research 

efforts have been pronounced in finding viable alternatives to antibiotics to minimize economic 

losses to diseases previously treated or prevented with AB. 

An ongoing investigative category of feed additives that are most commonly researched are 

probiotics.  Most probiotics are administered through the feed and are commonly labeled as 

Direct-Fed Microbials (DFM).  The accepted definition is as follows:  “Bacteria that have 

beneficial impacts on their host microbiome and physiology, when fed at adequate amounts.” [3] 

Specific to poultry, prior research has been conducted on Lactobacillus spp. and Bacillus spp. 

with success of improving growth performance for both sources of microbials[4-6].  In more 

recent years, success has been noted of using Bacillus spp. in poultry diets as part of a 

coccidiosis program[7].  Bacillus spores of various strains have been promoted for use, due to 

their ability to withstand not only harsh conditions of the GI, but also during feed manufacture 
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most notably, pelleting.  Spore based probiotics offer more success when multiples strains are 

utilized, as compared to single strain. 

The objective of this study was to evaluate a tested and previously untested serotypes of Bacillus 

subtilis on broiler liver performance, utilizing broilers in a challenged floor-pen environment. 
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MATERIALS AND METHODS 

Experimental diets were formulated to be corn and soybean meal based with an inclusion of corn 

DDGS and meat and bone meal (Table 1).  The diets were in agreement with sponsorship’s 

request to be on the lower end of nutrient densities in commercial practice with limited 

nutritional safety margins for most nutrients. The addition of a commercial phytase product was 

consistent among diets, with a suggested P and Ca sparing effect of 0.15 and 0.12%, 

respectively. [8] Dietary treatments were manufactured at the West Virginia University Pilot 

Feed Mill in Morgantown, West Virginia, using a 40 HP California Pellet Mill. [9] A premix of 

micro-ingredients was made for each diet according to formulation. A basal diet was mixed via a 

one-ton vertical screw mixer. [10] Basal diet was replicated and randomly allotted to 4 

treatments to assimilate nutrient content. On day of manufacture, Bacillus spp. products[8, 11],  

were added to a 3kg sample of basal feed in a Univex Mixer [12], and mixed for 5 minutes 

before being remixed with allotted feed in the vertical screw mixer. Inclusions of each product 

were determined by manufacturer’s recommendation to achieve target CFU/kg of feed. All 

dietary fat was added at the mixer. All four treatments per growth phase (starter, grower, and 

finisher) were pelleted on the same respective day. Diets were conditioned at 76.6 ̊C for 15 

seconds utilizing a California Pellet Mill Conditioner (457 x 1981 mm) and then passed through 

the barrel of a Hygienizer for 45 seconds. Feed is required to pass through the Hygienizer before 

being extruded; it should be noted that the steam jacket for the Hygienizer was off during this 

study. Feed was then extruded through a 4.8 x 38.1 mm pellet die. Hot pellet samples were 

collected immediately following pellet extrusion through the pellet die and used to measure hot 

pellet temperature. Samples were also collected from the pellet die and placed on a large fan to 

be cooled and subsequently analyzed for nutrient content- Feed samples were sent to a 
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commercial laboratory [13] for analysis of ,crude protein, crude fat, ash, total phosphorus, phytic 

acid, and calcium content of finished feed. Total phosphorus and phytic acid analyses were used 

to calculate nPP [14]. 

 The sampling method followed Reese et. al., [15] for proper diet validation.  Starter diets (d1-

14) were crumbled so that chicks could easily consume the feed on D1. Particle size of finished 

feed was manipulated by changing the gap distance between rolls on the roller mill. Grower 

(d15-28) and Finisher (d29-42) were fed as intact pellets. Feed samples were collected from the 

cooler deck for analysis of pellet durability. Particle size analysis was conducted on the starter 

diet, while percent pellet analysis was conducted on grower and finisher diets. Pellet durability 

analyses were conducted on all treatments for all three growth phases. Pellet durability was 

analyzed using three separate methods that varied in mechanics. Pellet Durability Index (PDI) 

and modified Pellet Durability Index (MPDI) were determined using a Pfost tumbler box [16].  

New Holmen Pellet Tester (NHPT) was utilized 24h post pelleting [17]. Particle size for starter 

complete feed was determined using a 100g sample passed through a sieve shaker for 10 minutes 

[18].  Percent pellet analysis for grower and finisher diets were determined by placing 22.7kg of 

complete feed on a ASAE #5 sieve and calculated as the percent of pellets remaining after 

sieving process [19].  Descriptive feed manufacture data can be found in Table 2.  

Live Birds and Housing 

A total of 2,208 Hubbard x Ross 708 male day old broilers chicks were obtained from a 

commercial hatchery [20] and vaccinated for Marek’s, New Castle, and coccidiosis. Chicks were 

weighed, sorted, and allocated to have similar starting pen weight by block. Birds were placed at 

a count of 23 broilers per pen in 96 pens (0.69 X 2.44 m). Pens were divided between 3 rooms 

joined together with woven wire, allowing heat and ventilation between all three.  Rooms are 
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located in a cross-ventilated negative pressure barn.  Litter was built up from one previous flock 

and sprayed once per week with a light water spray to facilitate bacterial growth.  Previously 

mentioned methods created a natural challenge for birds.  The four dietary treatments were 

randomly allotted to adjacent pens blocked by location in the rooms located at the West Virginia 

University Animal Sciences Farm. Each dietary treatment was applied to 24 replicate pens of 

broilers. Lighting was continuous from d1-3, reduced 1 hour per day from d4-7, reduced 4 hours 

per day from d8-14 and reduced 6 hours per day from d15-42 based off guidelines provided by a 

commercial rearing handbook [21]. Feed and water were provided ad libitum throughout the 

study and temperature was manipulated daily based on the Aviagen Broiler Handbook. [22] 

Initial starter feed provided on trays within each pen until d7, afterwards feed pans with attached 

hoppers would be used for the remainder of study. [23] Nipple drinkers provided water to 

approximately 12 birds/nipple [24].  Mortalities were replaced from d1 to d3.  

Variables measured included feed intake (FI), bird live weight gain (LWG), mortality corrected 

feed conversion ratio (FCR), and percent mortality (Mort). At the end of the study (d42), birds 

were individually weighed to calculate coefficient of variation (CV) to view weight uniformity 

among pens. Additionally, 3 broilers per pen (±100g of mean pen weight) were selected and 

euthanized via cervical dislocation for cecal collection.  All animals were reared according to 

protocols established by the West Virginia University Animal Care and Use Committee, protocol 

#1602000612. 

Statistical Analysis 

Performance variables were analyzed using a randomized complete block design. The 

experimental unit was 1 pen of 23 broilers.  Data were analyzed using the PROC GLM method 

of Statistical Analysis System[24] for a one-way ANOVA with alpha designated at 0.05.  When 
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means were revealed to be significantly different, means were separated using Fisher’s LSD post 

hoc comparison. 
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RESULTS AND DISCUSSION 

Data from feed manufacture and live performance are in Tables 2 and 3, respectively.  Feed 

manufacture and pellet quality measures were not replicated and should be interpreted as 

descriptive data.  Pellet durability index (PDI) ranged from 44.92 to 49.51%, 36.98 to 49.90%, 

and 34.10 to 45.29% respectively for starter, grower, and finisher periods.  These values were 

expected from the manufacturing technique of applying all dietary fat at the mixer, decreasing 

time of conditioned feed within the pellet die.  High inclusions of mixer-added fat (MAF) have 

been shown to decrease pellet quality, but aid against detriments to nutrient availability 

associated with pelleting [25]. Starter particle size ranged from 975 to 1263 microns. Grower and 

finisher percent pellet ranged from 34 to 44% and 23 to 35%, respectively.  These values 

corresponded with pellet quality data, utilizing a larger representative sample of feed.  Nutrient 

analyses of the complete diets best mimicked calculated nutrients during the finisher phase.  

Starter and grower phase analyses yielded crude protein values lower than expected.  Source of 

soybean meal was thought to explain why these values were lower than calculated values.   

Live Performance. 

Measures of LWG, FI, FCR and mortality are shown in Table 3.  Pen starting weight were not 

different by design with an average of 1.05 kg per pen (P = 0.6095).  Creating the natural 

challenge is necessary to hinder growth of control diet, promoting efficacy of microbial additives 

to manage environmental stressors. A natural challenge appeared to be present, as performance 

metrics were less than industry guidelines for this broiler strain [26].  Although birds fed the PC 

treatment did not meet industry standards for LWG, a significant increase (P=0.549) could be 

seen relative to both treatments containing experimental DFMs.  This difference in LWG was 

marginal and did not establish differences for FCR.  Numerous studies indicate improvements of 
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LWG with broilers fed diets containing DFM [26-28]. These experiments that generated positive 

results in LWG used Bacillus-based DFM. No significant differences in FI were observed among 

treatments (Table 3). Average FI (kg per bird) across treatments were 0.432 (P = 0.61), 1.444 (P 

= 0.94), and 2.152 (P = 0.49) for the 1-14, 15-28, and 29-42 d periods.  Notable differences 

among FI have been observed from other studies, notably studies that induce challenge through 

oral gavage around d 19 to 21. Variation of both increasing [27], and decreasing FI [29,30] are 

thought to vary partially by date of pathogen introduction and also combination effects albeit, 

diet formulation or DFM with added enzyme cocktails (Xylanase, Phytase, Amylase, etc.). 

Overall FCR differences were not observed in the current study (P = 0.84). Conversely, Tactacan 

et al., found that a Bacillus subtilis derived DFM can yield similar FCR to that of a diet 

containing an antibiotic growth promotor, while subjected to a Necrotic Enteritis challenge [31].  

In the same study, it was observed that a 1-log reduction in colony count of DFM would not 

exhibit the same improvements to FCR during the challenge, indicating adequate amounts of 

DFM must be supplied.  The performance results of this study indicate that the natural challenge 

may have been too large for additives to overcome a multitude of environmental stressors.  
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CONCLUSIONS AND APPLICATIONS 

1. The natural challenge in this study could not be overcome by experimental DFMs.  

2. The two experimental microbes (DFM 2 and 3) decreased performance. 

3. DFM1 showed similar performance as a diet without any microbial product. 
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Table 1. Ingredient and nutrient composition of diets through each growth 

period. 

1Diets were formulated to be on the lower end of commercial diets with limited safety margins for all nutrients.  
2Direct-fed microbial (Bacillus subtilis) produced by Chr Hansen (Hoersholm, Danmark) 
3Experimental Bacillus subtilis products, DSM Nutritional Products Inc. (Parsippany, NJ) 
4Commercial phytase to replace 0.15% P & 0.12% Ca. (DSM Nutritional Products, Inc., Parsippany, NJ) 
5Supplied the following per kilogram of diet: manganese, 0.02%; zinc, 0.02%; iron, 0.01%; copper, 0.0025%; 
iodine, 0.0003%; selenium, 0.00003%; folic acid, 0.69 mg; choline, 386 mg; riboflavin, 6.61 mg; biotin, 0.03 mg; 

vitamin B6, 1.38 mg; niacin, 27.56 mg; pantothenic acid, 6.61 mg; thiamine, 2.20 mg; menadione, 0.83 mg; vitamin 

B12, 0.01 mg; vitamin E, 16.53 IU; vitamin D3, 2,133 ICU; vitamin A, 7,716 IU. 

 
  

 Positive Control 

Ingredients (%) Starter Grower Finisher 

Corn 64.93 62.63 61.46 

Soybean Meal (48%) 24.14 25.49 27.44 

Porcine Meat and Bone Meal 4.00 2.99 1.98 

Soybean Oil 2.22 3.45 4.26 

Corn DDGS 1.76 3.00 2.66 

Limestone 1.00 0.88 0.94 

Methionine 0.49 0.41 0.35 

Lysine 0.39 0.20 0.03 

DiCalcium Phosphate 0.26 0.20 0.20 

Poultry Vitamin Premix5 0.25 0.25 0.25 

Salt 0.23 0.26 0.29 

Threonine 0.19 0.10 0.009 

Sodium Bicarbonate 0.10 0.10 0.10 

HiPhos 2500 GT4 0.04 0.04 0.04 

Calculated Nutrients (%) 

ME (kcal/kg) 3020 3108 3164 

Crude Protein 19.00 19.00 19.00 

Dig Lysine 1.15 1.02 0.92 

Dig SAA 1.00 0.93 0.89 

Dig Valine 0.87 0.88 0.91 

Dig Threonine 0.77 0.69 0.62 

Dig Methionine 0.76 0.69 0.63 

Available Phosphorus 0.33 0.28 0.24 

Sodium 0.17 0.18 0.18 

Calcium 0.88 0.73 0.66 
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Table 2. Analyzed Nutrients (%) 

Treatment 
Growth 

Period 

Crude 

Protein1 

Crude 

Fat2 Ash3 Calcium4 Total 

Phosphorus5 nPP6 

Control 

Starter 17.3 5.45 4.39 0.91 0.53 0.34 

Grower 17.9 6.32 3.97 0.70 0.49 0.29 

Finisher 19.5 7.42 4.10 0.67 0.47 0.26 

Control + 

DFM1 

(0.10%) 

Starter 17.6 5.70 4.39 0.98 0.53 0.33 

Grower 17.4 6.59 3.85 0.74 0.47 0.26 

Finisher 19.0 7.74 3.99 0.69 0.47 0.24 

Control + 

DFM2 

(0.32%) 

Starter 17.6 5.42 4.79 0.91 0.53 0.32 

Grower 18.0 6.61 4.12 0.82 0.49 0.26 

Finisher 18.2 7.49 4.21 0.76 0.46 0.24 

Control + 

DFM3 

(0.32%) 

Starter 18.4 5.70 4.53 0.95 0.52 0.34 

Grower 18.7 6.21 4.13 0.77 0.49 0.28 

Finisher 18.8 7.62 4.26 0.69 0.45 0.22 
1AOAC 992.15, AOAC 990.03, AOCS Ba 4e-93; Combustion.  
2AOAC 920.39; Ethyl ether extraction. 
3AOAC 923.03 
4Inductively coupled plasma atomic emission spectrometry (ICP analysis AOAC 965.17/958.01 mod.). 
5AOAC 965.17/985.01; Photometric  
6Non-phytate phosphorus = total phosphorus (AOAC 965.17/985.01 mod) – [0.282 X phytic acid (Analytical 

Biochemistry Vol. 77:536-539, 1977)] x 100.  
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Table 3. Descriptive Feed Manufacture Data for Starter, Grower, and Finisher Periods. 1 

 2 

Treatment 
Growth 

Period 

Manufacture Data Pellet Durability Data Particle Analysis 

Mill Load1 

(%) 

Hygienizer 

Temp2 (⁰C) 

Hot Pellet 

Temp3 (⁰C) 

NHPT4 

(%) 
PDI5 (%) 

MPDI6 

(%) 

Crumble Particle 

Size7 (µm) 

Percent Pellet8 

(%) 

Control 

Starter 42 58.3 76.6 21.80 49.51 36.57 1263 ± 2.0 - 

Grower 41 52.8 74.3 26.20 49.90 35.01 - 34.47 

Finisher 40 61.7 73.0 18.71 34.10 21.01 - 35.14 

Control + DFM1 

(*.10%) 

Starter 42 61.1 76.7 18.60 47.89 35.86 1088 ± 2.0 - 

Grower 42 60.0 73.5 16.74 36.98 23.12 - 34.00 

Finisher 41 60.0 72.6 35.50 45.29 33.07 - 27.90 

Control + DFM2 

(*.32%) 

Starter 42 62.2 77.3 19.34 45.67 32.22 1218 ± 2.0 - 

Grower 42 61.1 74.2 24.97 46.48 32.45 - 40.52 

Finisher 41 60.6 72.4 19.24 35.30 21.65 - 25.34 

Control + DFM3 

(*.32%) 

Starter 42 63.9 77.7 19.23 44.92 33.99 975 ± 2.0 - 

Grower 43 61.7 72.8 18.50 41.09 25.47 - 43.92 

Finisher 41 60.0 73.2 25.38 40.44 19.58 - 23.20 
1A 100% motor load was based on FLA (full load amps) based on the pellet mill motor name plate. 3 
2The hygienizer was not turned on during this experiment; however, feed must run through the hygienizer for 45 seconds post conditioning and prior to pellet die extrusion based on the WVU feed 4 
manufacture system. 5 
3Hot pellet temperature was determined on pellets directly following extrusion from the die. Pellets were collected into an insulated container and temperature was measured using a thermocouple 6 
thermometer and an 80PK-24 temperature probe. 7 
4New Holmen Pellet Tester is run using 100g of sifted pelleted samples that are subjected to air flow within a perforated chamber for 30s. 8 
5Pellet durability index was determined by placing 500g of sifted pellets into a Pfost tumbler. Samples were tumbled for 10 min at 50 rpm. The sample was then sifted again and weighed. Pellet 9 
durability index was calculated as the percentage of sifted pellets retained after tumbling.  10 
6Modified pellet durability index was measured similarly to the previous description, with the exception that five 13-mm hexagonal nuts were added to the 500-g sample before tumbling. 11 
7 100 g of crumbled diets placed within WS Tyler Ro-Tap Sieve Shaker and run for 10 minutes, contents of each sieve was weighed back to determine particle size. 12 
822.7 kg of complete feed is passed through a No. 5 Tyler Sieve. Pellets remaining on sieve are weighed back and calculated as a pellet percentage. 13 
*Manufacture data is recorded when PLC(Programmable Logic Control) indicates the conditioner is at desired temperature (76.6⁰C). 14 
**Diets were manufactured with 275.8 kPa prior to Mason-Neilan valve. 15 
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Table 4. Performance Data for Individual Growth Periods 16 

 17 

Treatment 

D1-14 D15-28 D29-42 

Starting 

Bird Wt 

(kg) 

Feed 

Intake 

/ Bird 

(kg) 

LWG1 

/ Bird 

(kg) 

FCR2 

Percent 

Mortality 

(%) 

Starting 

Bird Wt 

(kg) 

Feed 

Intake 

/ Bird 

(kg) 

LWG1 

/ Bird 

(kg) 

FCR2 

Percent 

Mortality 

(%) 

Starting 

Bird Wt 

(kg) 

Feed 

Intake 

/ Bird 

(kg) 

LWG1 

/ Bird 

(kg) 

FCR2 

Percent 

Mortality 

(%) 

Control 0.0458 0.434 0.317 1.37 2.36 0.363 1.450 0.887 1.64 0.55 1.250 2.194 1.060 2.07 2.26 

Control + 

DFM1 

(*.10%) 

0.0458 0.432 0.317 1.36 1.99 0.362 1.444 0.884 1.64 0.93 1.247 2.147 1.043 2.07 0.36 

Control + 

DFM2 
(*.32%) 

0.0457 0.432 0.315 1.37 1.81 0.361 1.443 0.882 1.64 1.49 1.243 2.147 1.020 2.12 0.76 

Control + 

DFM3 

(*.32%) 

0.0459 0.431 0.313 1.37 0.91 0.359 1.439 0.871 1.66 0.54 1.230 2.120 1.016 2.08 1.65 

P-value 0.6095 0.9499 0.7810 0.8710 0.2151 0.7972 0.9376 0.3469 0.5381 0.4978 0.3266 0.4922 0.4586 0.7255 0.1042 

SEM4 0.00005 0.004 0.003 0.011 0.4989 0.008 0.012 0.007 0.012 0.4983 0.008 0.034 0.022 0.033 0.5889 
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Table 5. Performance Data for Overall Growth Period 19 
 20 
 21 
 22 
 23 

 24 
 25 

 26 
 27 

 28 
 29 

 30 
 31 

 32 
 33 

 34 
 35 

 36 
a-bMeans within the same column with no common superscript differ 37 

significantly (p≤0.05) 38 
 1Live weight gain 39 

 2Feed conversion ratio 40 
 41 
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 43 
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Treatment 

D1-42 

Feed Intake 

/ Bird (kg) 

LWG1 / 

Bird (kg) 
FCR2 

Percent 

Mortality 

(%) 

Control 4.078 2.291a 1.78 5.53 

Control + DFM1 
(*.10%) 

4.013 2.242ab 1.79 3.16 

Control + DFM2 
(*.32%) 

3.979 2.186b 1.82 4.35 

Control + DFM3 
(*.32%) 

3.945 2.204b 1.79 2.96 

Treatment P-value 0.3942 0.0549 0.8445 0.0875 

Treatment SEM 0.047 0.023 0.016 0.8755 

Ross Guidelines 

For D42 
4.533 2.840 1.649 - 
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SUMMARY This study hypothesized that phytase activity concentration in grain affects mixer 75 

homogeneity, thermal stability post pelleting, and efficacy in regard to growth performance and 76 

tibia mineralization of broiler chickens. The objective of the study was to feed broilers two corn-77 

expressed phytase products that differed in activity concentration (CEP1: 3,000 FTU/g and 78 

CEP2: 12,036 FTU/g) and three doses (3,000, 6,000, and 9,000 FTU/kg). Differing experimental 79 

product and target dose varied volume of enzyme addition to evaluate mixer homogeneity, 80 

broiler performance, and tibia mineralization. Dietary treatments included a positive (PC) and 81 

negative control (NC) (0.15% decrease in Ca and nPP compared to PC), and six additional diets 82 

containing CEP products within the NC formulation at each target dose. Birds were fed a starter 83 

(d1-10), grower (d11-21), and finisher (d22-42) diet. All diets were conditioned at 75˚C for 15s 84 

and fed to 12 replications of 24 male Hubbard x Ross 708 broilers housed on floor pens. 85 

Treatments were arranged in a 2 (concentration) x 3 (dose) factorial in a randomized complete 86 

block design. Broilers provided PC and NC produced expected performance and tibia 87 

mineralization differences. Mixer CV based on phytase activity resulted in lower values for 88 

CEP1 compared to CEP2 for the starter phase. A concentration x dose interaction occurred for 89 

d10 FCR (P < 0.05). Day 10 FCR increased as inclusion rate increased for CEP2, and FCR 90 

decreased as dose increased from 3,000 to 9,000 FTU/kg for CEP1 (P = 0.0275). During the 91 

starter phase, birds fed diets with CEP1 consumed more feed than those fed CEP2 (P<0.05). As 92 

dose increased, grower phase LWG also increased (P<0.05). On d42, ending bird weight and 93 

subsequent LWG increased when birds were provided CEP1 compared to CEP2 (P < 0.05). Tibia 94 

ash was highest at 6,000 and 9,000 FTU/kg on d21 and lowest at 3,000 FTU/kg (P < 0.05). On 95 

d42, birds provided CEP1 had a higher tibia ash per bird compared to birds provided CEP2 (P = 96 

0.0280). These data suggest that a corn-expressed phytase product with a low concentration may 97 
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provide better broiler performance and tibia mineralization compared to a phytase product with 98 

higher concentration, likely caused by a more uniform mix. 99 

 100 

 101 

Key Words: concentration, inclusion level, corn-expressed phytase, tibia mineralization, mixer 102 

homogeneity 103 

  104 
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DESCRIPTION OF PROBLEM 105 

Commercial broiler diets are formulated through a systematic approach to meet nutrient 106 

requirements, while also limiting diet cost.  Formulating on digestible nutrient values has 107 

demonstrated increased utilization of nutrients per respective ingredient[1,2].  Exogenous 108 

enzymes have allowed further improvements regarding performance [3,4].  One such enzyme, 109 

phytase, has been added to diets to improve Phosphorus (P) digestibility of plant-based 110 

feedstuffs, and reduce P excretion in the litter [5].  111 

Historically, these enzymes are of a microbial source and generally lack thermal stability unless 112 

coated [6]. Transgenic grain enzyme technology has been effective at expressing phytase in 113 

animal feeds that result in similar or improved performance compared to microbial/fungal 114 

sources[7,8].  It also has been shown that corn-expressed enzymes are able to reduce anti-115 

nutritional properties associated with non-starch polysaccharides [9]. Grain-expressed enzymes 116 

may offer added practical advantage during diet formulation. The grain itself being composed of 117 

a specific enzyme allow for practically zero nutrient dilution unlike microbial derived enzymes. 118 

Uniform mix is important during feed manufacture to distribute all ingredients adequately.  119 

Subsequently, nutrient densities will be similar within a properly mixed formulation. Equal 120 

nutrient densities will supply the animal with a balanced diet, maximizing performance [10]. 121 

Most broiler diets have a variety of low-inclusion ingredients such as crystalline amino acids, 122 

vitamin and mineral premixes, and exogenous enzymes. Pelleted feed has been shown to 123 

improve performance and provide economic benefit despite requiring additional energy to 124 

manufacture [11]. These improvements may not be apparent if proper mixing was not achieved. 125 

Although there are differences of phytase origin, these phytases also differ in varying 126 

concentration between source of manufacture. This creates a discrepancy of volume required to 127 
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achieve target dose between two products. Throughput of commercial mills is often elevated in 128 

order to meet production quotas, while still producing feed of equal nutritional density. 129 

Therefore differing concentrations of dietary enzymes needs to be evaluated as a method of 130 

determining mixing homogeneity and its translation to performance. 131 

The current study investigated the effects of feeding two different grain-expressed phytase 132 

products at three increasing doses and its effect on mixer uniformity, broiler performance, and 133 

bone mineralization.134 
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MATERIALS AND METHODS 

Experimental Design 

Differences in phytase activity of transgenic corn were evaluated within a randomized complete 

block design. Treatments were arranged as two corn-expressed phytases differing in expression 

rates, at three target doses, along with a positive and negative control (reduced 0.15% in Ca and 

nPP), for a total of 8 treatments. The three target levels of phytase, 3,000, 6,000, and 9,000 

FTU/kg, were obtained using different loading rates for both the Corn-Expressed Phytase 

products (CEP1 and CEP2) [Table 1, 12]. The difference in expression rates generated different 

volumes of each respective phytase product (CEP1: 3,000 u/g and CEP2: 12,036 u/g).  Phytase 

analysis for 10 samples per treatment were analyzed to determine coefficient of variation to 

assess distribution within the mixed batch of feed (Table 2).   

Experimental Diets 

 

Experimental diets were corn and soybean meal based. In table 1, the PC and NC diets are 

shown. The remaining diets were generated with addition of product at target dose. Phytase 

product is expressed within the corn grain and was included in treatments at the expense of corn 

(1:1). Diets were manufactured at the West Virginia University pilot feed mill using a 40 HP 

California Pellet Mill [13]. Prior to pelleting, basal batches of diets were weighed, mixed, and 

allotted to all 8 treatments. A premix including the phytase had been mixed in a Univex mixer 

for 5 minutes, along with 3kg of basal diet before being remixed on day of manufacture [14,15]. 

Diets were conditioned, pelleted, and bagged to be fed to broilers [16]. Hot pellet samples were 

collected immediately following pellet extrusion and placed on a large agricultural fan to be 

cooled for nutrient analysis following methods described by Reese et al [17].  Starter (d1 to 10) 

and grower (d11 to 21) diets were passed through a roller mill to generate a crumble form for 
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each period.  Particle size of finished feed was manipulated by changing the gap distance 

between rolls. Starter diets were determined to be a fine crumble, whereas grower feed, a 

coarsely crumbled diet to prepare broilers for intact pellets in the finisher (d22 to 42) phase. 

Descriptive feed manufacture data can be found in Table 2, describing pellet durability, pelleting 

temperature, and particle size of treatments for each phase. 

Live Birds and Housing 

 

A total of 2304 Hubbard x Ross 708 male broiler chicks were obtained from a commercial 

hatchery on day of hatch [18]. Birds were vaccinated for Marek’s, New Castle and coccidiosis. 

Twenty-four birds were randomly allotted to 96 floor pens containing a plastic feed tray and 

nipple drinker. Pens contained built-up litter from two previous flocks and were top dressed with 

fresh pine shavings. Temperature and lighting followed the Ross Broiler Management Handbook 

[19].  Variables measured included feed intake (FI), bird live weight gain (LWG), mortality 

corrected feed conversion ratio (FCR), and percent mortality. On d 21 chicks were weighed as a 

pen and 5 chicks per pen were randomly selected and euthanized for tibia excision and ash 

analysis [20]. Similar methods were used at the end of the study (d42), with three birds being 

selected for tibia excision. 

Statistical Analysis 

 

Overall comparisons were analyzed as a one-way ANOVA including all treatments in a 

randomized complete block design. A factorial analysis was performed on 6 treatments of 

factorial structure, disregarding controls. Main effects were considered as product concentration 

and inclusion level or dose. Main effect interactions were also considered. Means were further 

explored using Fisher’s Protected LSD test when main effect interactions were significant at the 

P ≤ 0.05. One pen of broilers was defined as the experimental unit. Blocking was based on pen 
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location within the research barn. Experimental period were 42 days, segmented into three 

growth phases, starter, grower, and finisher. Data was analyzed for each growth period as well as 

total study period using the PROC GLM method of SAS [21].  
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RESULTS AND DISCUSSION 

Feed Manufacture 

 

Feed manufacturing and pellet quality data were not replicated and should be considered as 

descriptive (Table 2). Pellet durability index (PDI) values ranged from 61.5% to 74.9%, 51.6% 

to 58.5%, and 58.3% to 72.3% for starter, grower, and finish phases respectively. An overall 

decreased quality range for the grower phase is likely associated with the ambient temperature of 

-4⁰C during manufacture. Positive control treatment appeared to have higher quality for PDI; this 

was also observed for both modified pellet durability and New Holmen pellet tester (not shown). 

The PDI best represents feed quality in current controlled research setting as feed is minimally 

handled.  Incremental increases of particle size could also be seen respective of growth phase to 

prepare broilers for in-tact pellets. Mineral analysis (Table 4) post manufacture, indicated 

reduced levels of non-phytate Phosphorus (nPP) and Calcium (Ca) in all treatments with 

negative control formulation base. This was expected in place of the sparing matrix values of the 

phytase used in this study. 

Phytase Analysis 

Phytase analysis data can be seen in Table 3. Starter phase analysis for all treatments was 

performed on 10 samples of each diet. Within each of the 10 samples, multiple analysis was 

performed. As inclusion level increased, CV decreased for both phytase supplements. The CEP1 

phytase grain consistently produced a CV value of less than 10, often thought to be an industry 

standard. This would confirm the hypothesis that more volume has higher success of uniform 

distribution in a batch of feed. This is further supported that as inclusion level of each respective 

product increased, CV also decreases. Analysis did suggest that the middle inclusion level may 

have not been achieved in mash diets, but studies have suggested phytase analysis is variable 

[22]. Furthermore, starter pellet samples indicated approximately 50% retention of phytase 
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activity, post thermal pelleting. The levels fed did however remain in stepwise order from lowest 

to highest. Analysis of CEP2 for pellet did yield erratic results in attempting to meet target 

activities. Phytase activity can be considered as a “superdose” (>1500 FTU/kg) for all inclusion 

levels. A super dose has been found to alleviate gastrointestinal irritation caused by phytate 

molecules [23,24]. Expected increases in performance are expected for phytase containing 

treatments.    

Dietary Phase Bird Performance 

 

Performance data were analyzed in overall comparison with control diets  and with only factorial 

treatment structure to determine interaction or main effect differences. Table 5 shows 

performance data for each phase. Within the starter period, birds fed a NC diet without grain 

phytase had decreased LWG across all treatments (P=0.0290).  Additionally, birds consuming 

diets containing CEP1 consumed more feed than those fed CEP2 containing diets (P=0.0298). 

Differences were not observed in FCR. Decreased body weight could have been caused by less 

bone mineralization from a Ca and P deficient diet. In the factorial analysis of phytase containing 

diets, an interaction was observed for FCR (P=0.0275).  In Figure 1, the CEP2 phytase yielded a 

lower FCR marginally for the 3,000 and 6,000 inclusion levels, but increases at highest dose 

(9,000 FTU/kg) for this study. This supports the theory that a larger volume of enzyme can be 

more adequately distributed within a batch of feed provided to birds. Grower phase results are 

similar with respect to birds fed NC diet had decreased LWG than treatments including phytase 

or PC (P<0.0001). Additionally, FI was also significantly decreased (P<0.0001).  Increasing dose 

of phytase activity increased LWG in phytase containing diets (P=0.0330).  No interactions were 

apparent, unlike starter phase.  Finisher phase contrasted results of initial two phases for 

performance, indicating only trends for LWG and FI in overall comparison (P=0.08). Factorial 
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analysis revealed a significant main effect for product as improvements to live weight gain for 

birds that consumed the CEP1 phytase that requires more volume (P=0.0328).  

Overall Period (d1-42) Performance 

Overall performance was similarly analyzed in an overall multiple comparison with control diets 

and the factorial treatment structure was analyzed separately (Table 6).  Diets containing phytase 

appeared to spare Ca and P to yield similar ending bird weights relative to birds fed a diet with 

adequate Ca and P (P=0.0063).  The birds fed the same diets (all but NC) also consumed more 

feed than the NC diet (P=0.0257).  Main effect for product resulted in larger birds or increased 

LWG for birds fed diets containing CEP1 versus CEP2. The overall difference was 

approximately 70g (P=0.0352). No interactions were seen for overall performance. FCR also was 

not significant for full experimental period (P>0.05).  

Tibia Mineralization 

The tibia mineralization results are presented in Table 7 in two expressions. Total mg of ash and 

percent ash of total tibia weight were analyzed. Significance was observed at the end of both d21 

and d42.  Diets containing phytase differed in tibia ash percentage and mg tibia ash per chick on 

d21 with lowest dose yielding lower values relative to both increased doses (P=0.0024 and 

0.0002).  Following the finisher phase, the results differed. Tibia ash percentage was effectively 

the same disregarding the NC diet.  Main effect was lost for dose, but the product main effect 

appeared in mg tibia ash per chick. The birds fed CEP1 had increased levels of tibia ash on a per 

chick basis compared t those fed diets containing CEP2. These data support the overall 

performance main effect that CEP1 improves LWG but also improves tibia mineralization. A 

lower concentrated product may be better distributed throughout batches of feed. 

CONCLUSIONS AND APPLICATIONS 
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1. Grain-expressed phytase products can provide Ca/P sparing effects in corn-soybean meal 

based diets. 

2. Increasing inclusion level of phytase will result in an improved distribution within a 

batch of feed, ultimately translating to performance. 

3. Grain-phytase products expressed with lower concentrations(~3000 u/g) result in 

improved LWG over the life of the bird in this study because of improved distribution in 

feed.  
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Table 1. Diet composition of positive and negative control diets1 for starter, grower, and 

finisher periods) 

Ingredient 

Starter(D1-10) Grower(D11-21) Finisher(D22-42) 

Positive 
Control 

Negative 
Control 

Positive 
Control 

Negative 
Control 

Positive 
Control 

Negative 
Control 

% % % 

Corn 54.12 54.83 60.02 60.73 62.40 63.11 

Soybean Meal (46%) 38.02 38.02 32.14 32.14 30.14 30.14 

Soybean Oil 3.47 3.47 3.76 3.76 3.99 3.99 

Limestone 1.07 1.17 1.03 1.13 0.96 1.06 

DL – Methionine 0.49 0.49 0.37 0.37 0.24 0.24 

Dicalcium Phosphate 1.73 0.92 1.61 0.80 1.40 0.59 

Salt 0.33 0.33 0.35 0.35 0.35 0.35 

Vitamin Mineral 
Premix2 0.25 0.25 0.25 0.25 0.25 0.25 

Sodium Bicarbonate 0.10 0.10 0.10 0.10 0.10 0.10 

Lysine 0.12 0.12 0.17 0.17 0.11 0.11 

Threonine 0.29 0.29 0.20 0.20 0.06 0.06 

Calculated Nutrients 

ME3 (kcal/kg) 1361 1361 1394 1394 1416 1416 

Crude Protein (%) 22.4 22.4 20.0 19.8 18.7 18.7 

Digestible Lysine4 (%) 1.20 1.20 1.10 1.10 1.00 1.00 

Digestible 
Methionine4 (%) 

0.79 0.79 0.65 0.65 0.51 0.51 

Digestible Met + Cys4 
(%) 

1.09 1.09 0.92 0.92 0.77 0.77 

Digestible Threonine4 
(%) 

1.01 1.01 0.84 0.84 0.68 0.68 

Digestible 
Tryptophan4 (%) 

0.24 0.24 0.21 0.21 0.20 0.20 

Calcium (%) 0.90 0.75 0.84 0.69 0.76 0.61 

nPP (%) 0.45 0.30 0.42 0.27 0.38 0.23 
1Calculated inclusions of experimental corn-expressed phytase was added to the negative control 

at a 1:1 replacement of ground corn 
2Supplied per kilogram of diet:  0.02% manganese; 0.02% zinc, 0.01% iron; 0.0025% copper; 

0.0003% iodine; 0.0003% selenium; 0.69 mg of folic acid; 386 mg of choline; 6.61 mg of 

riboflavin; 0.03 mg of biotin; 1.38 mg of vitamin B6; 27.56 mg of niacin; 6.61 mg of pantothenic 

acid; 2.20 mg of thiamine; 0.83 mg of menadione; 0.01 mg of vitamin B12; 16.53 IU of vitamin 

E; 2,133 IU of vitamin D3; and 7,716 IU of vitamin A. 
3Metabolisable Energy and Available Phosphorus were based on Agristat values as suggested by 

M. Donohue. 2013 [25] Available Phosphorus in the NC were reduced by 0.15. 
4Digestible amino acids were based on the digestible lysine values suggested by P. B. Tillman 

and W. A. Dozier. 2013. [26] Digestible amino acid to digestible lysine ratios followed further 

recommendations in this publication. 
5nPP = non-phytate phosphorus
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Table 2. Phytase Activity in Starter Mash Diets 

Treatment Average Activity1 

(FTU/kg) 

Standard Deviation2 

(FTU/kg) 

Coefficient of 

Variation3 (%) Product Dose 

CEP1 

3,000 2910 249 8.55 

6,000 4290 276 6.44 

9,000 7981 577 7.23 

CEP2 

3,000 2524 418 16.57 

6,000 5370 747 13.91 

9,000 8499 792 9.32 

Negative Control4 54 61 - 

Positive Control4 60 129 - 

1Ten representative samples were analyzed for phytase activity; each sample was tested eight 

times. 
2Standard deviation shows the average standard deviation from multiple analysis of each sample 

bag. 
3Coefficient of variation was determined by dividing Standard Deviation by Average Analysis 

and multiplied by 100 to generate a percentage. 
4Both control values were generated from one representative sample as they were not treatments 

of interest, nor were they suspected to contain adequate phytase activity.
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Table 3. Descriptive Feed Manufacturing Data for Starter, Grower, and Finisher Growth Periods 

Treatment 
Growth Period 

Starter(D1-10)  Grower(D11-21)  Finisher(D22-42) 

Product 
Dose 

(FTU/k
g) 

Hot 
Pellet 

Temper
ature1 

(⁰C) 

PDI2 
(%) 

Particle 
Size3(µm

) 

Phytase 
Activity4 
(FTU/kg) 

 

Hot 
Pellet 

Tempe
rature1 

(⁰C) 

PDI2 
(%) 

Particle 
Size3 
(µm) 

Phytase 
Activity4 
(FTU/kg) 

 

Hot 
Pellet 

Tempe
rature1 

(⁰C) 

PDI2 
(%) 

Particle 
Size3 (µm) 

Phytase 
Activity4 
(FTU/kg) 

CEP 1 

3,000 73.0 65.58 1101 1500  73.5 54.24 1517 1200  76.8 68.15 3177 3000 

6,000 74.5 65.01 1365 2800  74.1 55.93 1562 4200  74.8 68.00 3522 2900 

9,000 74.4 62.33 1214 3600  72.8 54.38 1580 2800  76.7 62.27 3410 4200 

CEP 2 

3,000 74.1 61.51 1252 2600  71.8 53.44 1507 530  75.7 60.60 3238 480 

6,000 73.9 62.25 1092 3400  71.7 51.97 1465 5300  74.7 58.31 3360 1700 

9,000 72.9 61.71 1244 3100  72.9 51.58 1491 6100  75.7 61.87 3501 6600 

Negative Control 73.4 64.12 1152 170  73.8 52.9 1505 94  75.7 69.10 3104 <70 

Positive Control 73.3 74.85 1195 200  71.0 58.50 1692 140  75.9 72.29 3373 <70 
1 Hot pellet temperature was determined on pellets directly following extrusion from the die. Pellets were collected into an insulated 

container and temperature was measured using a thermocouple thermometer and an 80PK-24 temperature probe[27]. 
2 Pellet durability index was determined by placing 500g of sifted pellets into a Pfost tumbler. Samples were tumbled for 10 min at 50 

rpm. The sample was then sifted again and weighed. Pellet durability index was calculated as the percentage of sifted pellets retained 

after tumbling.  
3100 g of complete diets placed within WS Tyler Ro-Tap Sieve Shaker and run for 10 minutes, contents of each sieve was weighed 

back to determine particle size. 
4 Pelleted samples were collected directly post-extrusion and placed on a fan to cool before analysis using AOAC 2000.12 method.  
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Table 4. Mineral Analysis and nPP Calculations for Starter, Grower, and Finisher Periods 

1nPP = Total Phosphorus – (Phytic Acid * 0.282) [28]

Treatment 
Growth Period 

Starter (D1-10) 

 

Grower (D11-21) 

 

Finisher (D22-42) 

Product 
Dose 

(FTU/kg) 

Total 
Phosphorus 

(%) 

Phytic 
Acid 
(%) 

nPP1 
(%) 

Calcium 
(%) 

Total 
Phosphorus 

(%) 

Phytic 
Acid 
(%) 

nPP1 
(%) 

Calcium 
(%) 

Total 
Phosphorus 

(%) 

Phytic 
Acid 
(%) 

nPP1 
(%) 

Calcium 
(%) 

CEP1 

3,000 0.557 0.786 0.34 0.749 0.453 1.06 0.16 0.696 0.438 0.812 0.21 0.706 

6,000 0.541 0.751 0.33 0.752 0.452 0.801 0.23 0.630 0.417 0.760 0.20 0.566 

9,000 0.541 0.877 0.29 0.729 0.485 0.831 0.25 0.749 0.397 0.781 0.18 0.594 

CEP2 

3,000 0.526 0.843 0.29 0.744 0.500 0.923 0.24 0.693 0.382 0.789 0.16 0.590 

6,000 0.514 0.802 0.29 0.778 0.460 0.850 0.22 0.742 0.434 0.798 0.21 0.628 

9,000 0.528 0.766 0.31 0.722 0.500 0.854 0.26 0.676 0.448 0.794 0.23 0.713 

Negative Control 0.557 0.814 0.33 0.790 0.469 0.833 0.23 0.696 0.375 0.781 0.16 0.549 

Positive Control 0.667 0.823 0.44 0.954 0.637 0.760 0.42 0.825 0.544 0.917 0.29 0.611 
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Table 5. Effect of CEP Product and Dose on Starter, Grower, and Finisher Period Broiler Performance 

a-c Means within the same column with no common superscript differ significantly (P<0.05) 
1 FI = Feed intake per bird 
2 LWG = Live Weight Gain per bird 
3 FCR = =Mortality corrected feed conversion ratio 
4 SEM = Pooled standard error of the mean  

Treatment 
Starter (D1-10) 

 

Grower (D11-21) 

 

Finisher (D22-42) 

FI1 
(kg/bird) 

LWG2 
(kg/bird) 

FCR3 FI1 
(kg/bird) 

LWG2 
(kg/bird) 

FCR3 FI1 (kg/bird) 
LWG2 

(kg/bird) 
FCR3 

Product 
Dose 

(FTU/kg) 

CEP1 

3,000 0.322ab 0.257a 1.251 1.024a 0.700ab 1.463 3.625 2.058 1.761 

6,000 0.325a 0.260a 1.259 1.009ab 0.697ab 1.446 3.577 2.010 1.762 

9,000 0.323ab 0.263a 1.226 1.010ab 0.710a 1.413 3.545 1.993 1.770 

CEP2 

3,000 0.314bc 0.253ab 1.238 0.978b 0.682b 1.432 3.490 1.944 1.767 

6,000 0.320ab 0.258a 1.239 1.002ab 0.705a 1.421 3.483 1.926 1.809 

9,000 0.318abc 0.253ab 1.257 1.013ab 0.708a 1.430 3.543 1.977 1.776 

Negative Control 0.308c 0.243b 1.262 0.929c 0.639c 1.452 3.408 1.867 1.811 

Positive Control 0.324a 0.259a 1.251 1.026ab 0.700ab 1.464 3.567 1.969 1.804 

P-Value 0.0104 0.0290 0.1586 <0.0001 <0.0001 0.0789 0.0747 0.0869 0.8718 

SEM4 0.0035 0.0039 0.0100 0.0134 0.0069 0.0137 0.0483 0.0420 0.0326 

Product Means 

CEP1 0.324a 0.2591 1.245 

 

1.014 0.702 1.441 

 

3.582 2.020a 1.764 

CEP2 0.317b 0.2547 1.245 0.998 0.698 1.428 3.506 1.949b 1.784 

Product SEM4 0.0020 0.0020 0.0105 0.0084 0.0040 0.0081 0.0287 0.0231 0.0198 

Dose Means 

3,000 FTU/kg 0.318 0.255 1.244 

 

1.000 0.691b 1.448 

 

3.558 2.001 1.764 

6,000 FTU/kg 0.323 0.258 1.249 1.005 0.701ab 1.433 3.530 1.968 1.785 

9,000 FTU/kg 0.321 0.257 1.241 1.011 0.709a 1.421 3.544 1.985 1.773 

Dose SEM4 0.0025 0.0030 0.0128 0.0103 0.0050 0.0010 0.0352 0.0282 0.0242 

Probability 

Product 0.0298 0.1297 0.9346 

 

0.1803 0.4916 0.2689 

 

0.0636 0.0328 0.4745 

Dose 0.4109 0.6836 0.7285 0.7610 0.0330 0.1833 0.8576 0.7160 0.8196 

Product x Dose 0.8315 0.4267 0.0275 0.2139 0.1834 0.2035 0.4004 0.4520 0.7878 
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Figure 1. Interaction plot between product and dose using FCR as response for d1-10. 
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Table 6. Effects of CEP Product and Dose on Overall Period (D1-42) Broiler Performance 

Product Dose (FTU/kg) 
Avg. Body Weight 

(kg) 
FI1 (kg/bird) LWG2 (kg/bird) FCR3 Corrected 

Mortality4 (%) 

CEP1 

3,000 3.047a 5.376a 3.006a 1.625 4.386 

6,000 3.001a 5.322a 2.960a 1.621 5.263 

9,000 3.005a 5.286a 2.965a 1.611 4.825 

CEP2 

3,000 2.924a 5.211ab 2.883a 1.617 6.140 

6,000 2.930a 5.212ab 2.889a 1.631 3.509 

9,000 2.979a 5.290a 2.938a 1.623 4.825 

Negative Control 2.792b 5.034b 2.751b 1.653 5.263 

Positive Control 2.980a 5.321a 2.938a 1.648 4.825 

P-Value 0.0063 0.0257 0.0064 0.6968 0.9059 

SEM5 0.0443 0.0676 0.0444 0.0181 1.2137 

Product Means 

CEP1 3.018a 5.328 2.977a 1.619 4.825 

CEP2 2.944b 5.237 2.903b 1.624 4.825 

Product SEM5 0.0241 0.0421 0.0242 0.0110 0.6656 

Dose Means 

3,000 FTU/kg 2.985 5.294 2.945 1.621 5.263 

6,000 FTU/kg 2.966 5.267 2.925 1.626 4.386 

9,000 FTU/kg 2.992 5.288 2.951 1.617 4.825 

Dose SEM5 0.0296 0.0516 0.0296 0.0134 0.8152 

Probability 

Product 0.0351 0.1338 0.0352 0.7563 1.000 

Dose 0.8050 0.9300 0.8032 0.8981 0.7498 

Product x Dose 0.5183 0.4994 0.5215 0.8324 0.3217 
1 D1-42 FI = D1-21 FI/bird + D22-42 FI/bird. This corrected the measurement for the removal of 5 birds per pen for tibia excision on D21. 
2 D-1-42 LWG = D1-21 LWG/bird + D22-42 LWG/bird. This corrected the measurement for the removal of 5 birds per pen for tibia excision on 
D21. 
3 D1-42 FCR was corrected for mortality, which included the weight of the three birds per pen removed for tibia analysis on D21. 
4 Corrected Mortality = ((100- ((D42 Bird #/D1 bird #) * 100)) – ((5/24)*100))). This corrected the measurement for the removal of 5 birds per 

pen for tibia excision on D21 
5 Pooled standard error of the mean.  
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Table 7. Effect of CEP Product and Concentration on D21 and D42 Tibia Ash 

Treatment 
D21 

 

D42 

Tibia Ash1 (%) 
mg Tibia Ash/bird2 

(mg/bird) 
Tibia Ash1 (%) 

mg Tibia Ash/bird2 
(mg/bird) Product Dose (FTU/kg) 

CEP1 

3,000 48.40c 986.02bc 48.25a 3398.06abc 

6,000 48.81abc 1053.57a 48.27a 3509.86a 

9,000 49.10a 1036.67ab 48.33a 3461.70ab 

CEP2 

3,000 48.54bc 948.98c 48.32a 3305.97bc 

6,000 48.87ab 1039.73a 48.14a 3248.36c 

9,000 48.86ab 1040.50a 48.50a 3452.86ab 

Negative Control 45.14d 739.47d 46.95b 2747.25d 

Positive Control 48.90ab 1001.92ab 48.60a 3351.22abc 

P-Value <0.0001 <0.0001 0.0009 <0.0001 

SEM3 0.1501 18.6280 0.2564 66.6933 

Product Means 

CEP1 48.77 1025.42 

 

48.28 3456.54a 

CEP2 48.75 1009.74 48.32 3335.73b 

Product SEM3 0.0840 11.1910 0.1391 37.8502 

Dose Means 

3,000 FTU/kg 48.47b 967.50b 

 

48.28 3352.01 

6,000 FTU/kg 48.84a 1046.65a 48.20 3379.11 

9,000 FTU/kg 48.98a 1038.58a 48.41 3457.28 

Dose SEM3 0.1023 13.7062 0.1702 46.3562 

Probability 

Product 0.8866 0.3262 

 

0.8576 0.0280 

Dose 0.0024 0.0002 0.6846 0.2576 

Product x Dose 0.3904 0.5750 0.8149 0.1550 
a-d Means within the same column with no common superscript differ significantly (P<0.05) 
1Tibia ash percentage was determined on dry, fat-extracted tibiae excised the from the left leg of 21d (5) or 42d (3) broilers. 
2mg tibia ash per bird was determined by dividing the weight (mg) of the tibia ash by the number birds utilized for tibia ash 

determination. 
3 SEM = Pooled standard error of the mean 
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