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ABSTRACT 

Kidney Ailment Prediction under Data Imbalance 

Ranaa Mahveen 

Chronic Kidney Disease (CKD) is the leading cause for kidney failure. It is a global health problem 

affecting approximately 10% of the world population and about 15% of US adults. Chronic Kidney 

Diseases do not generally show any disease specific symptoms in early stages thus it is hard to 

detect and prevent such diseases. Early detection and classification are the key factors in managing 

Chronic Kidney Diseases. 

In this thesis, we propose a new machine learning technique for Kidney Ailment Prediction. 

We focus on two key issues in machine learning, especially in its application to disease prediction. 

One is related to class imbalance problem. This occurs when at least one of the classes are 

represented by significantly smaller number of samples than the others in the training set. The 

problem with imbalanced dataset is that the classifiers tend to classify all samples as majority class, 

ignoring the minority class samples. The second issue is on the specific type of data to be used for 

a given problem. Here, we focused on predicting kidney diseases based on patient information 

extracted from laboratory and questionnaire data. Most recent approaches for predicting kidney 

diseases or other chronic diseases rely on the usage of prescription drugs. In this study, we focus 

on biomarker and anthropometry data of patients to analyze and predict kidney-related diseases.  

In this research, we adopted a learning approach which involves repeated random data sub-

sampling to tackle the class imbalance problem. This technique divides the samples into multiple 

sub-samples, while keeping each training sub-sample completely balanced. We then trained 

classification models on the balanced data to predict the risk of kidney failure. Further, we 

developed an intelligent fusion mechanism to combine information from both the biomarker and 

anthropometry data sets for improved prediction accuracy and stability. Results are included to 

demonstrate the performance.
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Chapter 1 : Introduction 

1.1 Problem and Motivation 
Chronic kidney disease (CKD) [1] is a worldwide public health problem. In the United States, there 

is a rising incidence and prevalence of kidney failure, with poor outcomes and high cost. The most 

common outcome of CKD is kidney failure which requires treatment with transplantation and 

dialysis. Disorders like diabetes, high blood pressure may trigger CKD [2]. However, 

cardiovascular disease (CVD) is also frequently associated with CKD. CVD in CKD is treatable and 

potentially preventable, and CKD appears to be a risk factor for CVD [3]. 

 With an estimated prevalence of 8-16% worldwide, CKD is a major noncommunicable 

disease. CKD may be the cause of premature mortality and loss of disability – adjusted life year 

[4]. Early diagnosis and effective interventions with CKD can be challenging due to variety in 

terms of causes, progression mechanisms and histopathological manifestations [5].  

In addition, CKD is a major drain on health resources, CKD and end‑stage renal disease 

(ESRD) cost Medicare in the United States over $98 billion [6]. Owing to the increasing occurrence 

of CKD, China faces a great financial burden. In field of health informatics, the definitions and 

boundaries of big data is highly debatable [7]. Big data is defined as consisting of extensive 

datasets in terms of volume, variability, velocity and variety by the US National Institute of 

Standards and Technology that need a scalable architecture for proficient storage and analysis 

[8,9]. 

Over two million people around the world undergo dialysis or kidney transplant to stay 

alive, this represent only 10% of people who require treatment to live [10]. The majority of the 

people who receive treatment for kidney failure are in five relatively wealthy countries, which is 

12% of the global population. On an average more than one million people in 112 lower – income 

countries die from untreated kidney failure annually, because of the huge financial burden of 

kidney transplantation treatment or dialysis [11].  

Thus, there is an urgent need for early detection, controlling, and management of the 

disease. It is necessary to predict the progression of CKD with reasonable accuracy because of its 

dynamic and covert nature in the early stages, and patient heterogeneity. CKD is often 
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described by severity stages. Therefore, Machine learning can play a major role in extracting 

hidden patterns from the large patient medical and clinical dataset that physicians frequently 

collect from patients to obtain insights about the diagnostic information, and to implement 

precise treatment plans. Machine learning techniques are applied and used widely in various 

contexts and fields. With machine learning techniques we could predict, classify, filter and cluster 

data. The goal or prediction attribute refers to the algorithm processing of a training set 

containing a set of attributes and outcomes. 

1.2 Thesis Contributions 
The contributions of this thesis are summarized as follows: 

• A detailed study on resampling methods to handle data imbalance problem 

• Developed Improved resampling methods to handle data imbalance problem 

• Proposed an intelligent data fusion method and analyze the stability and reliability of the 

results 

• Analysis of results to discover the best model among all and evaluation of results with the 

baseline results 

1.3 Thesis Outline 
Chapter 2 presents a detailed review of the existing literature on topics related to this thesis. 

Chapter 3 introduces various methods to tackle data imbalance problem, all the pre-processing 

stages of biomarker and anthropometric data, classification methods for prediction and our 

methodology to deal with the data imbalance problem in predicting kidney failure. Chapter 4 

provides information of the datasets used in this study and the results with performance analysis 

using different classification methods. Finally, Chapter 5 presents our overall conclusions and 

future work. 
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Chapter 2: Background 

In this chapter, we broadly discuss the existing methodologies used in Kidney ailment predictions, 

the strategies to deal with data imbalance problem and classification techniques used in 

biomedical informatics, especially in disease prediction. 

2.1 Kidney Ailment Prediction Methods  

The main function of kidneys is to filter the blood. Blood passes through the kidneys several times 

a day. The kidneys remove wastes, control the body's fluid balance, and regulate the balance of 

electrolytes. Each kidney contains around a million units called nephrons, each of which is a 

microscopic filter for blood. Disorders affect kidney function and structure in varying forms. It's 

possible to lose as much as 90% of kidney function without experiencing any symptoms or 

problems [11].  

Prediction methods that can identify individuals at high risk of developing kidney failure 

have great clinical value. These prediction methods can be used in determining the right time to 

refer to consult a nephrologist. CKD prediction methods might also help in improving health 

policies and risk stratification [12]. 

Machine learning is a field of study concerned with study of large sets of data. It involves 

algorithms, techniques for analysis, computational learning theory and it is evolved from pattern 

recognition. Machine learning is a promising field in medical science’s perspective, it can help 

physicians make optimal diagnosis to choose medications for their patients and improve patient’s 

condition by minimizing expenses. 

Machine learning and data mining techniques together have good success rate in 

prediction and diagnosis of many critical diseases. Machine learning techniques can often be 

applied to predict critical diseases, since they improve the efficiency of the systems. The features 

used to in predicting the diseases can be continuous, categorical or binary. If the samples are 

given with the corresponding correct outputs or outcomes, then the concerned data is called 

supervised and corresponding learning is called supervised learning, on the other hand, in 

unsupervised learning samples are unlabeled or the outcome of the feature set is unknown. 

Classification is a function that assigns items in a collection to target categories or classes. The 

goal of classification is to predict the target class for each instance in the data. Different 
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classification approaches and machine learning algorithms are applied for prediction of chronic 

diseases. Often, chronic kidney disease is diagnosed as a result of screening of people known to 

be at risk of kidney problems, such as those with high blood pressure or diabetes and those with 

a blood relative with CKD. It is differentiated from acute kidney disease in that the reduction in 

kidney function must be present for over 3 months.  

Major et al. [13] discuss the Kidney Failure Risk Equation (KFRE) which uses 4 variables, 

age, sex, urine albumin-to-creatinine ratio (ACR) and Glomerular filtration rate (GFR) in people 

who already have CKD to predict the risk of end stage renal disease (ESRD). This predicts kidney 

failure and the need for dialysis or kidney transplant within next 2 to 5 years. These prediction 

models are referred as clinical risk prediction models. 

The aim of clinical risk prediction models is to estimate the risk of an event for an 

individual using their related information. Prognostication in clinical practice, to assist research 

planning, to aid treatment decisions in relation to clinical trials, to asses resource management, 

and healthcare systems are the 3 main purposes of risk prediction models [14]. 

Risk models are updated using processes like recalibration, this is a common way and is 

likely to enhance the performance of a model in different geographical and temporal settings 

[15]. Few of the risk models are externally validated in other populations or their potential impact 

is studied [16].  

Meta-analysis of data samples from 31 cohorts of predominately North American CKD 

populations is used to develop prediction tools for ESRD. Subsequently, 3 ESRD prediction 

equations were derived based on 4, 6 or 8 variables. These models included variables of age, sex, 

GFR, urine albumin-to-creatinine ratio (ACR) along with additional variables of hypertension or 

serum albumin, diabetes mellitus, bicarbonate, calcium and phosphate [17].  

The model based on parsimony was recommended for implementation into clinical 

practice, however the 4-varibale Kidney Failure Risk Equation’s (KFRE) performance was same as 

that of the other 2 equations. A calibration factor was proposed as the overall risk was found to 

be lower in non-North American cohorts [17].  
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 Jena and Kamila [18] predicted and analyzed kidney disease using different algorithms 

like Support Vector Machines (SVM), Naïve Bayes classifier, Multilayer perceptron, conjunctive 

rule, J48 classifier in Waikato Environment for Knowledge Analysis (WEKA) tool. 

For efficient prediction of kidney diseases, different techniques have been proposed by 

exploiting patient’s medical data. Chatterjee et al. [19] presented a Cuckoo Search trained neural 

network (NN-CS) method for the identification of CKD [19]. Initially, the issues that exist in local 

search-based learning methods are being resolved by this model. The Cuckoo Search algorithm 

helps to efficiently selecting the input weight vector of the Neural Network. 

Chen et al. [20] proposed two fuzzy classifiers known as fuzzy rule-building expert system 

(FuRES) and fuzzy optimal Associative Memory (FOAM) for the identification of CKD. FuRES 

generates a classification tree which comprises a minimal NN. It creates the classification rules 

to determine the weight vector with the least fuzzy entropy. The two fuzzy classifiers are 

employed for the identification of 386 CKD patients. Also, FuRES is better compared to FOAM 

especially in situations where the training, as well as the prediction process, contain a similar 

intensity of noise. FuRES and FOAM attained better performance in the identification of CKD; at 

the same time, FuRES more efficient than FOAM. 

K.R.Lakshmi et.al [21] proposed performance evaluation of three data mining techniques 

for predicting kidney dialysis survivability. In this research, various data mining techniques are 

used to extract knowledge about the interaction between these variables and patient survival. 

The concepts introduced in this research have been engaged and tested using a data collected at 

different dialysis sites. Finally, ANN is suggested for kidney dialysis survivability analysis for 

improved performance in terms of accuracy. 

Several studies have analyzed patient data to predict kidney diseases using machine 

learning techniques, most of the research has been focused on the prediction and the 

classification algorithms. In our study, most of the patients in our dataset do not suffer from any 

kidney ailment making the dataset highly imbalanced. This leads to the problem of data 

imbalance which makes prediction highly unstable. In Section 2.2, we discuss the problem of 

class/data imbalance problem in detail. 
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2.2 Class/Data Imbalance Problem 

Data imbalance problem in classification has been addressed with hundreds of algorithms in the 

past decade. In this section, an overview of the imbalanced learning techniques that have been 

used are discussed. We discuss two basic strategies used for handling imbalanced learning, 

namely preprocessing and cost-sensitive learning. Resampling methods which are conducted in 

the sample space and feature selection methods that improve the performance of the feature 

space, this is one of the approaches in preprocessing. In Section 2.1, we give an overview of basic 

strategies for tackling with imbalanced learning. 

2.2.1 Basic strategies for dealing with imbalanced learning 

2.1.1 Preprocessing techniques 

Preprocessing of the data is done before training a learning model to gain an appropriate input 

data. Two classical techniques are often used as preprocessor considering the representation 

spaces of data.  

2.1.1.1 Resampling 

Resampling techniques are often used to balance the imbalanced data in the sample space to 

improve the effect of the skewed class distribution in the learning. López et al., 2013 categorized 

resampling methods to be more versatile because these methods are independent of the 

classifier. These methods further fall into three groups based on the method employed to 

rebalance the class distribution.  

• Over-sampling methods: This involves increasing the class distribution by creating new 

minority class samples. Chawla et al., 2002 [22] discuss SMOTE as a method to create 

synthetic minority classes and the other method is randomly duplicating the minority 

samples. 

• Under-sampling methods: This involves eliminating the intrinsic samples in the majority 

class, thereby balancing the class distribution. Tahir et al., 2009[23] described Random 

Under Sampling to be the most effective method, this involves elimination of majority 

class examples. 

• Hybrid methods: These methods are the combination of over-sampling and under-

sampling methods. 
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Most of the reviewed papers on data imbalance techniques use resampling techniques, this 

indicates resampling is a popular strategy for handling imbalanced data. Under-sampling, over-

sampling, hybrid-sampling are predominantly used to deal with data imbalance problem. Others 

developed new techniques based on cluster methods, generic algorithms and distance methods. 

All the resampling methods balance the data up to certain ratio desired by the user, and it is not 

required to balance the number of majority and minority classes equally. Zhou (2013) [24] 

recommended different sample ratio for different data sizes, Lu et al., 2016 [25] studied ways to 

automatically decide optimal sampling rate for different problem settings and imbalanced ratios.  

Napierala and Stefanowski (2015) [26] tried different types minority class samples and their 

effects on learning classifiers from the imbalanced data. From all the methods that have been 

implemented, some of the major insights are: When the data has hundreds of minority class 

observations, an under-sampling method was considered superior to an over-sampling method 

with regard to computational time. When there are few minority class observations, SMOTE (an 

over-sampling method) was considered as a better option. A combination of SMOTE and under-

sampling is found to be a better choice when the size of training sample is too large and SMOTE 

is an effective method in recognizing outliers.  

2.1.1.2 Feature Selection and Extraction:  

Li et al., 2016c [27] discussed the importance of feature selection when compared to the 

resampling methods. They found that removing irrelevant features in the features space is more 

efficient because under imbalanced cases and minority class samples can easily be eliminated as 

noise using resampling techniques. The aim of feature selection is to allow a classifier to achieve 

optimal performance by selecting a subset of k features from the feature space, where k is a user 

specified parameter. Guyon and Elisse- eff, 2003[28] divided feature selection into filters, 

wrappers and embedded methods. Saeys et al. (2007) [29] discussed the advantages and 

disadvantages of these methods.  

Motoda and Liu, 2002[30] discussed feature extraction as the other way to deal with 

dimensionality reduction. Dimensionality reduction converts the data into a low-dimensional 

space, this is related to feature extraction. This technique of feature extraction is quite different 
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from feature selection. Feature extraction uses functional mapping to create new features from 

the existing features, whereas a subset of the original features is returned with feature selection. 

Hartmann, 2004[31] proposed a variety of techniques for feature extraction, Principal 

Component Analysis (PCA), Singular Value Decomposition (SVD) and f Non-negative Matrix 

Factorization (NMF) are a few of them. Feature Extraction methods are used more frequently for 

unstructured data like images, text and speech. 

In feature selection methods, filter and wrapper feature selection methods were most 

frequently used. Heuristic choice was a common choice to rank the features for wrapper methods 

and different metrics were used for filter methods. Casañola-Martin et al., 2016 [32] feature 

selection and feature extraction in solving real world problems such as disease diagnosis. Zhang 

et al., 2015a [33] used feature selection in textual sentiment analysis, Lima and Pereira, 2015 [34] 

used in fraud detection and other rare events detection problems  

2.1.2 Cost-sensitive learning 

Cost-sensitive learning can be integrated at the algorithmic level as well as the data level 

considering higher costs for misclassification of minority class samples with respect to majority 

class samples. Costs are identified as cost matrices, Ghazikhani et al., 2013b [35] described cost 

matrices in a specific domain can be determined using data stream scenarios and expert opinion. 

When compared with re-sampling techniques, cost-sensitive learning is found to be 

computationally efficient, therefore it is more suitable for big data streams. Nevertheless, cost-

sensitive learning was not being used much when compared to the resampling methods.   

 Krawczyk et al. (2014) [36] stated that there may be two potential reasons, one is that 

setting the values in the cost matrix is difficult because in most of the cases, cost of the 

misclassification is not known from the data and cannot be determined by the expert. However, 

an alternate way to handle this difficulty was discussed by Castro and Braga, 2013[37] where the 

majority class misclassification cost was set at 1 while setting the penalty minority class value as 

equal to the imbalanced ratios. Ensemble models and single ensemble models directly implement 

resampling methods, unlike cost-sensitive learning which requires modification in the learning 

algorithm. Re-sampling methods are predominantly used instead of cost-sensitive learning.  
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2.2.2 One – Class Classification (OOC) 

The multi-class classification aims to classify an unknown data object into one of several 

pre-defined categories. A problem arises when the unknown data object does not belong to any 

of those categories. Let us assume that we have a training data set comprising of instances of 

fruits and vegetables. Any binary classifier can be applied to this problem, if an unknown test 

object is given for classification. But if the test data object is from an entirely different domain, 

the classifier will always classify a cat as either a fruit or a vegetable, which is a wrong result in 

both the cases. Sometimes the classification task is just not to allocate a test object into 

predefined categories but to decide whether it even belongs to any of the classes or not. In the 

above example, an apple belongs to class fruits and the cat does not. 

 Juszczak [38] defined One-Class Classifiers (OCC) as class descriptors that are able to learn 

restricted domains in a multi-dimensional pattern space using primarily just a positive set of 

examples. In OCC one of the classes is well characterized by instances in the training data, while 

the other class has either no instances or very few of them, or they do not form a statistically 

representative sample of the negative concept [39]. For instance, in automatic diagnosis of a 

disease, positive data can be easily obtained when compared to negative data since other 

patients in the database cannot be assumed to be negative cases if they have never been tested, 

and such tests can be expensive. Thus, OCC can be viewed as one approach to the data imbalance 

problem 

 Classification methods and problems have been considered a major part of Machine 

Learning as a large amount of applications have been using these methods. Machine Learning is 

considered to be a broad concept which includes supervised, unsupervised and semi-supervised 

problems. Each data input is assigned with a class label in Supervised learning problem, the main 

task is to learn a model that gives the same labeling for the unknown data. Whereas, in 

unsupervised learning problem, data samples are unlabeled, and the task is to discover and 

analyze the structure of the data. This is mainly useful when there are differential clusters or 

groups in the data. Semi-supervised learning is also a broad research area on Machine Learning, 

its main objective is that when compared with labeled data, unlabeled data is easily available, 

and this data is crucial for decision functions in most of the situations.  
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2.2.3 PU learning 

PU learning is learning from Positive and Unlabeled data, it is a special case of binary 

classification. The labeling mechanism is a key concept in PU learning, the goal is same as binary 

classification. However, only some of the positive examples in the training data are labeled and 

none of the negative sample are labeled during the learning phase.  

 PU leaning has been explored for text mining [40], these algorithms share a two-step 

framework. The other related studies which explored PU learning are disease gene identification 

[41] and protein function identification [42]. 

 Gieseke, F et al. (2014) [43] used semi-supervised classification for obtaining better 

classifiers, in this setting of semi-supervised classification, both labeled and unlabeled samples 

are used during the construction of the classifier model to balance the information obtained. Lee 

et al. [44] pointed out that sometimes unsupervised learning is applied to get labels for training 

classifiers or to get some other parameters of the classification models.  

 The man aim of supervised classification algorithms is to divide the classes of the problem 

using only the training data. The problem is considered as binary classification if the output has 

two possible outcomes, and the problem is referred to as multi-class classification if there are 

more than two classes.  

 In our study, we predict the outcome of kidney failure from different feature set. The 

considered dataset is 2 class, so this is a binary class problem. The ratio of patients who have 

kidney ailments to the patients who do not is very high. Thus, this can be considered as a special 

case of PU learning where the data or an unbalanced data set problem. 
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Chapter 3: Methodology 

3.1 Empirical Analysis of Data Imbalance Problem 

3.1.1 Re-sampling Techniques 

In this study, we have used various re-sampling techniques to address the problem of data 

imbalance. The objective of re-sampling is to balance the class distribution, this method is the 

most direct way to deal with class distribution. There are many different forms of re-sampling 

such as active sampling techniques, random under-sampling, random over-sampling and 

combinations of above-mentioned techniques. We employed random over-sampling technique 

SMOTE and our own random sub-sampling technique to deal with data imbalance problem in our 

Biomarker and Anthropometric Data set. 

3.1.1.1 Random over-sampling 

Random over-sampling replicates the minority class randomly, this method can increase the 

likelihood of over-fitting because it creates copies of minority class. There are many heuristic 

over-sampling methods, such as SMOTE, and its variations. We tried to oversample the minority 

classes using SMOTE which balanced the data by creating synthetic samples for minority class. 

The modification of amount of class data using sampling methods gives a balanced class 

distribution. Various sampling methods have been proposed to tackle the problem of data 

imbalance. Chawla et.al [22] proposed an over-sampling approach called SMOTE, which stands 

for Synthetic Minority Oversampling Technique. This approach has been widely accepted and 

gives the best result when dealing with imbalanced datasets. Kubat et al. [45] created their own 

training datasets by selectively under-sampling the number of data points of majority class by 

keeping the number of minority class constant. This method of under-sampling the majority class 

has a scope to build better classifiers. However, a combination of under-sampling and over-

sampling approaches did not result in classifiers that are better than those built using only under-

sampling approach. Therefore, over-sampling the minority class does not usually improve the 

accuracy of predicting the minority class. [46] 

     SMOTE is an over-sampling approach in which the minority class is over-sampled by creating 

synthetic examples rather than by over-sampling with replacement. In this method, synthetic 

examples are generated by operating in feature space rather than in data space. In this approach, 
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the minority class is over-sampled by taking each minority class sample and introducing synthetic 

samples along any of the k minority class nearest neighbors. K nearest neighbors are randomly 

chosen depending on the required amount of over-sampling.  For example, if the required 

amount of over-sampling is 400% only four neighbors from the five nearest neighbors are chosen 

and one sample is generated in the direction of each.  

    Synthetic samples are usually generated in this way: Smin is a subset of minority class from the 

whole set S, for each instance 𝑥𝑖ϵ Smin, find its K nearest neighbors by using Euclidean distance. 

To generate a new synthetic sample, randomly select one of the K-nearest neighbors, calculate 

the feature difference between 𝑥𝑖    and its neighbor. Multiply this difference by a random number 

between 0 and 1, add this to the feature vector under consideration to get the synthetic sample 

𝑥𝑛𝑒𝑤. This selects a random point between two specific features, making the decision region of 

the minority class more general. 

 

In the above equation, 𝑥𝑖ϵ Smin is an instance of minority class in original dataset, �̂�𝑖 is one of the 

K-nearest neighbors of 𝑥𝑖, and α ϵ [0,1] is a real random number. So, the new synthetic sample is 

a data point between 𝑥𝑖  and the randomly selected K nearest neighbor  �̂�𝑖.  Larger and fewer 

specific regions are created with the synthetic samples. The SMOTE model shown below in 

Algorithm 1 and Algorithm 2 using a pseudo code. 

3.2 Data Preprocessing Techniques 

Data preprocessing is one of the major part of data analytics, the collected data is crude and 

might contain noise. The attributes required for the analysis are not always in the format we 

need it to be. Most times, the attributes in the dataset are in different scales, if we use any 

analytic technique without preprocessing, we end up with unrealistic results. The other issue with 

the data is occurrence of extreme data points, which are considered as outliers. When the dataset 

consists of these points, the performance of classification or regression models decline. These 

are the two major issues with the datasets. To handle scaling issues, data transformation 

techniques are employed, and various techniques are used to deal with outliers in the dataset. 
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3.2.1 Data Transformation  

Data transformation such as normalization, represent an important data pre-processing 

technique in machine learning. An attribute of a dataset is normalized by scaling its values so that 

all attributes fall within a small-specified range, such as 0.0 to 1.0. Normalization is particularly 

useful for classification algorithms involving neural networks, or distance measurements such as 

nearest neighbor classification and clustering. Normalization performs data smoothing and data 

normalization preparatory to modeling. The technique is easy to apply by using standard 

mathematical transformations such as min-max normalization to numerical columns, z-score 

normalization, log normalization, or decimal scaling normalization. Extreme values in data can 

make it difficult to detect patterns. When the data is very irregular, has very high or very low 

values, or values are scattered or do not follow a Gaussian distribution, normalizing the data can 

help fit the data to a distribution that better supports modeling.  

3.2.1.1 Min-Max Normalization  

This method rescales the features or outputs from one range of values to a new range of values. 

More often, the features are rescaled to lie within a range of [0,1] or from [-1, 1]. The rescaling 

is often accomplished by using a linear interpretation formula, such as:  

 

Where is the maximum value of attribute, is the minimum value of attribute for 

, it indicates a constant value for that feature in the data. 

When a feature value is found in the data with a constant value, it should be removed because it 

does not provide any information to the machine learning algorithms. When the min-max 

normalization is applied, each feature will lie within the new range of values which will remain 

the same for all features. Min-max normalization has the advantage of preserving exactly all 

relationships in the data.  
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3.2.1.2 Decimal Scaling Normalization  

Normalization by decimal scaling normalizes by moving the decimal point of attribute value. The 

number of decimal points moved depends on the maximum absolute value the attribute. For a 

given attribute A, the decimal scale normalization is performed as follows:  

 

Where m is the smallest integer such that Max |Aꞌ|<1.  

3.2.1.3 Z-Score Normalization (Statistical)  

Z-score normalization is also called zero-mean normalization; this technique uses the mean and 

standard deviation for each feature across a set of training data to normalize each input feature 

vector. The mean and standard deviation are computed for each feature. The transformation is 

given in the general formula:  

 

 

 

Where 𝜇𝐴 is mean of attribute A and 𝜎𝐴 = standard deviation of attribute A. This produces data 

where each feature has a zero mean and a unit variance. Z-Score normalization technique is 

applied to all the feature vectors in the data set first; creating a new training set and then training 

is started. Once the means and standard deviations are computed for each feature over a set of 

training data, they must be retained and used as weights in the final system design. In our 

research, we employed Z – score normalization to normalize the biomarkers and body measures. 

The normalized data was then trained with different classification models.  

 As the dataset we had was highly skewed, we employed various outlier treatments to 

reduce the noise in the data before we train the classification models. 

3.2.2 Identifying Outliers 

Outliers are the data points lying far away from most of the other data points. Outlier 

identification should be performed before data analysis because most of the statistical tests 

assume that data is normally distributed. There are various methods to identify outliers. To 
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determine an outlier, one of the methods measures the distance between data point and the 

center of all data points to find an outlier. In this method, outliers are determined depending on 

the Standard Deviation (SD), i.e., the data points which do not fall within certain SD of the mean 

are considered as outliers. Nevertheless, this method of using SD and mean are not regarded as 

proper as the SD and mean are statistically sensitive to the presence of outliers. On the other 

hand, the quartile range and median are more efficient because these are less sensitive to 

outliers [47]. 

 In our study, we used boxplots to identify outliers. Boxplots are another way of 

discovering the outliers by differentiating the data points based on the placement of the points 

within and outside the fence lines. Figure 3.1 shows a box plot with fence lines; fence lines are 

used to determine the points to be considered as outliers. The data points that lie outside the 

upper or lower fence lines are considered as outliers [48]. 

 

Figure 3.1: Box plot 

 

 Different techniques have been explored in many studies with respect to outlier 

identification. To detect outliers, regression analysis uses simple residuals, which are adjusted by 
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standardized residuals and predicted values against observed values [49]. For this same purpose 

a Support Vector Regression is also used [50]. When the same type of information is collected 

from different groups or if information is collected repeatedly from a single participant, the need 

for outlier detection increases. In some cases, outlier detection is studied based on the mean and 

variance of group data [51]. Univariate outliers are can be determined by a simple boxplot. To 

identify multivariate outliers, statistical tests which consider the relationships between variables 

are required. 

3.2.2.1 Treatment of Outliers  

There are basically three methods for treating outliers in a data set. One method is to remove 

outliers as a means of trimming the data set. Another method involves replacing the values of 

outliers or reducing the influence of outliers through outlier weight adjustments. The third 

method is used to estimate the values of outliers using robust techniques. In our research, we 

employed trimming to remove outliers based on Cook’s distance [52]. 

Cook’s distance is a measure computed with respect to a given regression model and 

therefore is impacted only by the X variables included in the model. It computes the influence 

exerted by each data point on the predicted outcome. The cook’s distance for each 

observation i measures the change in �̂�(fitted Y) for all observations with and without the 

presence of observation i, so we know how much the observation i impacted the fitted values. 

Mathematically, cook’s distance Di for observation i is computed as follows: 

Di = 
∑ (�̂�𝑗− �̂�𝑗(𝑖))2𝑛

𝑗=1

𝑝 ×𝑀𝑆𝐸
 

 

where, 

• �̂�𝑗 is the value of jth fitted response when all the observations are included 

• �̂�𝑗(𝑖) is the value of jth fitted response, where the fit does not include observation i. 

• MSE is the mean squared error. 

• p is the number of coefficients in the regression model. 

The observations that have a Cook’s distance (Di) greater than 2 times the mean are classified as 

influential in our study. 
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3.2.3 Feature Selection Methods with Boosting Ensemble 

The function featureSelection in R implements a feature selection algorithm leveraging the ideas 

from backpropagation and randomness. In this algorithm, a new random stability matrix with 

two columns is initialized. Name of the feature and stability score indicating the empirical 

relevance score of a feature are the contents of the two columns. The random matrices are 

updated over the course of component-wise boosting models on random subsets of the feature 

space. The updating process works as follows: 

• If a feature was contained in a subset, but was not selected in the boosting, it's score in 

the randomly initialized matrix is reduced by the amount of the penalty.  

• If a feature was contained in a subset and was selected in a boosting, it's score in the 

randomly initialized matrix is increased by the amount of the reward. 

•  After n_mods models in each n_rounds rounds the n_rounds updated stability matrices 

are combined by simply averaging the scores for each feature across all matrices. 

3.3 Improved Resampling Method  

Our proposed study uses Biomarker and Anthropometry data to predict kidney ailments. The 

collected data has majority of the patients without kidney disease making the data highly 

imbalanced. The biomarker data and anthropometric data are preprocessed separately, and 

classification algorithms are used on each dataset for predicting the risk of kidney failure. 

Before proceeding with data resampling method, the dataset is treated to remove the 

outliers using Cook’s distance as discussed in section 3.2.3. Further, to select the features which 

contribute the most to prediction outcome, automated feature selection method is used. We 

used automated feature selection function featureSelection in R to get the stability matrix for 

feature set of anthropometry and biomarker data. The top 6 features were selected based on the 

feature importance values.  

Now, the dataset is free from outliers and feature space of the data is optimal, but still 

the dataset is not balanced. To overcome this imbalance problem, we employed repeated data 

sub-sampling on the data after removing the outliers. Negatively labelled samples are divided 

into sub-samples equal to the number of positively labelled samples, this makes the training set 

completely balanced. All the sub-sample sets are trained on the classification models, and the 

trained models are used to predict the outcome on the test set. We trained the balanced data on 
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Random Forest (RF) and SVM models. The performance of the classification models for each 

group is recorded for both anthropometry and biomarker data.  
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Figure 3.2: Schematic diagram for improved resampling method 
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Algorithm 3: Pseudo code for Improved Re-sampling method 

D: Anthropometry/Biomarker Dataset, Pi: Positively labelled training samples (Minority), Ni: 

Negatively labelled training samples (Majority) 

1. begin 

2.     Treat the D to remove outliers 

3.     Select appropriate features 

4.     Divide D into train (Ti) and test set (Tj) set 

5.     s ← Ni/Pi; 

6.     for i = 1 → s 

7.          ni ← Ni/ s; 

8.          ti ← merge (Pi,ni); 

9.          mi  ← svm (ti) or rf(ti);         /* SVM or random forest algorithms*/ 

10.        ri  ← predict (mi, Tj); 

11.   end for 

12.    a ← averageAccuracy(ri);           /* majority vote rule*/ 

13.    p ← selectTopPredictors(mi);                           /*based on test accuracy */ 

14.    h ← selectTopPredictor(mi); 

15.    c ← compareAccuracies(a, p, h); 

16.    return c; 

17. end 

3.4 Intelligent Data Fusion  

In this section, we discuss the methods used to select best predictors from the set of predictors 

used to predict the test data. To select the predictors which are more reliable on varied datasets, 

we propose different fusion methods. Data fusion methods are as follows: 

3.4.1 Combining Results after resampling 

The prediction results obtained from improved resampling method are analyzed to get a specific 

pattern for the predictor groups. Majority vote method (Decision-level fusion) i.e., for an 

individual, class predicted by majority of the predictor groups is considered as the final predicted 
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outcome, and this outcome is used to calculate the average accuracy of the model of all 

predictors, top 5, top 10 and top 15 predictor outcomes. These set of predictors are further 

analyzed to check the accuracy pattern. The standard deviation is calculated for the average 

predictors to check the consistency in accuracy for all the predictor groups. This analysis is done 

on RF and SVM classification model results for both anthropometry and biomarker data.  

3.4.2 Feature-level fusion 

Further, to exploit the full potential of data fusion methods, we fused the selected features of 

anthropometry and biomarker after removing the outliers. The dataset with fused feature set is 

balanced using resampling method. The resulting group of sub-samples are completely balanced, 

it is then trained using classification models. The trained models are used to classify the test data, 

the performance of each model is recorded for further analysis. The results are combined to look 

for certain patterns in the predictor groups, this is done same the analysis on the individual 

dataset results using the majority vote method.  

3.4.3 Combining Feature-level and Decision-level fusion 

In this method, we improvise the data fusion technique in a more intelligent way by combining 

the feature-level and decision-level fusion techniques. By using the majority vote method on 

combined feature, anthropometry and biomarker prediction results, we decide the predicted 

result of an individual. We, then calculate the accuracy of the model based on decided outcome 

for the classification models. The performance is analyzed based on the average accuracy of top 

predictors for combined features data, anthropometry and biomarker datasets and standard 

deviation is calculated to show the stability of each result. 

 Further, the results of anthropometry and biomarker dataset are grouped into 4 groups 

based on the test dataset’s predicted outcome of the classification models. Table 3.1 shows the 

criteria for the groups. 
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Groups Classification Models 

Anthropometry (0) – Biomarker (0) Both the datasets predicted incorrectly 

Anthropometry (0) – Biomarker (1) anthropometry predicted incorrectly – 

biomarker predicted correctly 

Anthropometry (1) – Biomarker (0) anthropometry predicted correctly – 

biomarker predicted correctly 

Anthropometry (1) – Biomarker (1) Both the datasets predicted correctly 

Table 3.1: Groups based on prediction results 

3.5 Classification Methods 

Different classification algorithms have been used to predict the risk of kidney failure in the 

recent past. The main process of classification in Machine Learning is to train classifier to 

recognize patterns from a given training samples and to classify test examples with the trained 

classifier. For several reasons, training a classifier that is as accurate as possible in classifying new 

samples is demanding. Several problems need to be considered when building the classifiers, the 

efficiency of the classifiers depend on the many factors. One of the problems is related to the 

dataset, if the training set is small, it becomes difficult to capture the underlying distribution of 

the data. Another problem is related to the model, mainly the model complexity and the its 

capabilities. If the classifier is too simple, it becomes difficult to capture the underlying structure 

of the data. On the other hand, if the classifier is complex and there are too many unnecessary 

parameters noise might be assimilated in the model leading to over-fitting. This leads to high 

accuracy in training model but performs poorly on test samples. There are two main types of 

learning schemes in machine learning i.e., supervised learning and unsupervised learning. Our 

research focuses on supervised binary classification, in the following section we summarize the 

supervised learning algorithms which were being employed to classify the patient data. 

3.5.1 Support Vector Machines (SVM) 

Support Vector Machines is a supervised machine learning algorithm used both for classification 

and regression challenges. SVM performs classification by finding the hyperplane that maximizes 

the margin between the two classes [53]. The vectors which define the hyperplane are the 

support vectors. 
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Figure 3.3: Support Vector Machines 

SVM uses the input dataset with binary classes to train the training model in order to classify new 

observation to one of the two classes by creating a separating hyperplane [54]. Figure 3.3 shows 

the support vectors and the hyperplane dividing the data points into 2 halves, this is an ideal 

example for a binary class classification problem. 

The algorithm labels the new examples or the unknown data samples through the created 

hyperplane. In this work, we performed SVM training using Rstudio with R’s inbuilt function ‘svm’ 

from the package ‘e1071’ and the classification of new data samples or the prediction is 

performed using the function ‘predict’. SVM can be performed with four different kernels; Linear, 

Radial Basis Function (RBF), Polynomial, and Quadratic. These can be accessible in R as 

parameters within in the ‘svm’ function. We used Linear kernel for our dataset. The mathematical 

formulation for each kernel is shown here [55]:  

• Linear: 𝐾(𝑥, 𝑦) = 𝑤(𝑥. 𝑦) + 𝑏. The vector w is known as the weight vector and b is called the bias.  

• Radial basis function – RBF: For some positive number σ:  

𝐾 (𝑥, 𝑦) = exp [
−‖𝑥𝑖−𝑥𝑗‖

2

2𝜎2 ] 

 𝑥𝑖and 𝑥𝑗 will have either one becoming the support vector and the other will be the testing data 

point.  

• Polynomial: For some positive integer d: 
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 o 𝐾 (𝑥, 𝑦) = (1 + < 𝑥. 𝑦 >)𝑑. Where d is the polynomial's degree  

• Quadratic: 𝐾 (𝑥, 𝑦) = (< 𝑥. 𝑦 >)2 

SVM classifier is widely used in bioinformatics due to its high efficiency, theoretical importance 

regarding over-fitting, ability to deal with high-dimensional data, and flexibility in modeling 

diverse sources of data [56]. 

3.5.2 Random Forest 

Random Forest is a supervised classification algorithm, it consists of many individual decision 

trees that function as a group. Each tree in the random forest gives out a class prediction and the 

class with the most votes becomes the model’s prediction. The accuracy of random forest 

depends on the number of trees, as the number of trees increase the accuracy increases. 

 Random Forests grow many classification trees. The input vector is put down each of the 

trees in the forest to classify a new object from an input vector. Each tree results in a classification 

and it is considered as a vote for that class. The algorithm chooses the classification with a 

maximum number of votes [57] 

 Following steps show the growth of each tree in the forest: 

1. If N is the number of cases in the training set, N cases are sampled at random with 

replacement from the original data. This sample taken as the training set for growing the 

tree. 

2. If there are M variables, a number m<<M is declared such that at each node, m variables 

are chosen at random out of the M and the best number on these m is used to split the 

node. The number m is kept constant during the forest growth 

3. Each tree is grown to the maximum extent possible, there is no cutting.  

The forest rate depends on two major attributes: 

• One is the correlation between any two trees in the forest, forest error rate increases 

with increase in correlation. 

• The other attribute is the strength of each tree in the forest. A tree with a low error rate 

is considered as a string classifier. Forest error rate decreases with increase in correlation. 

The Random Forest algorithm can be stated as follows: 

1. Draw ntree bootstrap samples from the original data 
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2. Grow an unpruned classification tree with the below modification for each of the 

bootstrap samples: Rather than choosing the best split at each node from all the features, 

sample mtry (number of features available for splitting) of the predictors and select the 

best split from those features. 

3. Predict unknown data by grouping the predictions of the ntree trees, i.e., majority votes 

for classification. 

An estimate of the error rate can be observed on the training data by the following: 

1. At each bootstrap iteration, predict the data not in the bootstrap sample, which is also call out-

of-bag (OOB) [58] using the grown tree with the bootstrap sample. 

2. On an average, each data point would be out-of-bag around 36% of the times, so group these 

OOB predictions. Calculate the error rate, which is called the OOB estimate of error rate. 
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Chapter 4: Results and Evaluation 
This chapter gives an overview of the achieved results, the data used, and the methods used to 

achieve the given result. 

In this chapter, we present and analyze experimental results of various methods used to improve 

prediction accuracy and stability. This chapter is organized as follows: Section 4.1 focuses on the 

dataset we used. In section 4.2, we present baseline results obtained on imbalanced dataset 

Section 4.3 focuses on the results from our Improved Resampling method. In section 4.4, we 

discuss the results obtained after applying data fusion technique on the anthropometric and 

biomarker data. This section also summarizes the results from the classification methods 

employed on the combined data by fusing high impact features from anthropometry and 

biomarker data together.  

 Lastly, in section 4.2.4 we discuss the stability and improvement in the prediction 

accuracy obtained from the fusion mechanism developed by combining the features from 

anthropometry and biomarker data sets.  

4.1 Dataset  

In this work, we used National Health and Human Nutrition Examination Surveys (NHANES) 2003 

– 2006 anthropometric and biomarker datasets. NHANES is a program of studies to assess the 

health and nutritional status of adults and children in the United States. This survey combines 

interviews and physical examinations of patients and presents their information in organized 

data files [5]. The anthropometric data is collected by interviewing each patient and its obtained 

directly from the NHANES and used in our work. The Biomarker data is a combination of the 

required biomarker readings obtained from different laboratory data files. 

Table 4.1 summarizes information of both anthropometric and biomarker [5] National Health and 

Nutrition Examination Survey retrieved from https://www.cdc.gov/nchs/nhanes/index.htm  

 

 

 

https://www.cdc.gov/nchs/nhanes/index.htm
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Dataset Total no. of 

instances 

No. of positively 

labelled 

Instances  

No. of Negatively 

labelled Instances 

No. of 

attributes 

No. of 

classes 

Biomarker 19214 410 18804 15 2 

Anthropometry 19214 410 18804 18 2 

Table 4.1: Summary of NHANES dataset 

We randomly chose 15367 individuals for training and 3847 individuals for testing. All the 

methods are applied based on this partitioning of the dataset. 

Table 4.2 and Table 4.3 show the attributes used in both anthropometry and biomarker datasets 

respectively. 

Attribute Average ± SD 

Weight(kg) - BMXWT 75.49 ± 16.54 

Height(cm) - BMXHT1 167.83 ± 10.14 

Body Mass Index(kg/m2) - BMXBMI 26.72 ± 4.95 

Upper Arm Length(cm) - BMXARML 37.16 ± 2.75 

Arm Circumference (cm) - BMXARMC 31.57 ± 4.19 

Waist Circumference (cm) - BMXWAIST 93.56 ± 13.62 

Triceps Skinfold (mm) - BMXTRI 17.92 ± 8.01 

Subscapular Skinfold (mm) - BMXSUB 19.95 ± 7.80 

Vertical Trunk Circumference(cm) - VTC 159.00 ± 10.28 

Neck Circumference (cm) - NC 39.67 ± 2.70 

A body Shape Index (m11/6kg-2/3) - ABSI 0.08 ± 0.01 

Body Surface Area (cm2) – BSA 18235.73 ± 2223.73 

Surface - based body shape index - SBSI 0.12 ± 0.01 

Waist-to-Height Ratio - WHtR 0.56  ± 0.08 

BSA to VTC Ratio - BSAbyVTC 114.28  ± 6.73 

VTC to NC Ratio - VTNR 4.01  ± 0.08 

VTC to H Ratio - VTCbyHT 0.95  ± 0.05 

VTC to WC Ratio - VTCbyWC 1.72  ± 0.18 

Table 4.2: Anthropometry Attributes 

https://wwwn.cdc.gov/Nchs/Nhanes/2005-2006/BMX_D.htm#BMXSUB
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Attribute Average  ± SD 

Glycohemoglobin (%) - LBXGH 5.51 ± 0.90 

Serum Albumin (g/dL) - LBXSAL 4.29 ± 0.37 

Total Cholesterol(mg/dL) -LBXTC 196.58 ± 42.03 

Serum urea nitrogen (mg/dL) - LBXSBU 13.14 ± 5.63 

Serum Alkaline phosphatase (U/L) - LBXSAPSI 71.98 ±  26.50 

Systolic blood pressure (mm Hg) - BPXSY1 123.99  ± 20.33 

Diastolic Blood pressure (mm Hg) - BPXDI1 69.24 ± 13.55 

Pulse (30 sec. pulse × 2) - BPXPLS 71.93 ± 12.36 

Total cholesterol (mg/dL) - LBDHDL 196.58 ± 42.03 

Hemoglobin (g/dL) - LBXHGB 14.31 ± 1.53 

Lymphocyte percent (%) - LBXLYPCT 30.08 ± 8.64 

White blood cell count (1000 cells/uL) - LBXWBCSI 71.9 ± 2.49 

Hematocrit (%) - LBXHCT 42.05 ± 4.45 

Red blood cell count (million cells/uL) - LBXRBCSI 4.68 ± 0.52 

Platelet count (1000 cells/uL) - LBXPLTSI 259. 14 ± 67.33 

Table 4.3: Biomarker Attributes 

 

4.2 Baseline Results 
In this section, we discuss the baseline results of classification methods on the imbalanced 

dataset without applying data preprocessing 

4.2.1 Results without data imbalance treatment 

In this section, the results for the imbalanced data sets of anthropometry and biomarker are 

discussed. The entire data samples of both the datasets were trained separately using SVM and 

Random Forest models. The accuracy of the models is shown in Table 4.4  

Accuracy (%) Anthropometry Anthropometry - mi
nority class (YES) 

Biomarker Biomarker – min
ority class (YES) 

Random Forest 41.48 16.43 62.40 21.76 

SVM 50.01 18.45 57.43 20.8 

Table 4.4: Accuracy of imbalance data set 
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4.2.2 Results with SMOTE 

In this section, the results using SMOTE over-sampling method for anthropometry and 

biomarker are discussed. The minority data samples are over-sampled using SMOTE which 

generates synthetic samples. The balanced dataset is trained using SVM and random forest 

classification models and tested those models on the test data. The accuracy of the models is 

shown in table 4.5. 

Accuracy (%) Anthropometry Anthropometry – m
inority class (YES) 

Biomarker Biomarker – mino
rity class (YES) 

Random Fore
st 

53.63 22.76 55.34 23.7 

SVM 60.46 24.87 62.28 26.66 

Table 4.5: Accuracy using SMOTE 

4.3 Results with Improved Resampling 
In this section, we summarize the results after applying outlier treatment and feature selection on 

anthropometry and biomarker data separately and then sub-sample the dataset using random resampling 

technique. The dataset is now, divided into 46 completely balanced sub-samples. We trained the 

classification models with each balanced subsample with different number of feature combinations based 

on feature importance. We then used these 46 trained models to predict kidney failure risk for test data.  

Figure 4.1 shows the average prediction accuracy of all 46 predictors for biomarker data based on 

number of features used. After analyzing the results based on the features and stability, the prediction 

results of all predictors using 6 features are stable. 

 

Figure 4.1: Average prediction accuracy for biomarker data based on number of features 
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Figure 4.2 shows the average prediction accuracy of all 46 predictors for anthropometry data based on 

number of features used. From the results, it can be observed that the average prediction accuracy using 

6 features is better than other results.  

 

Figure 4.2: Average prediction accuracy for anthropometry data based on number of features 

Based on the prediction results obtained on test dataset using different number of features, we obtained 
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Figure 4.3: Random Forest – prediction accuracy for anthropometry 

 

 

Figure 4.4: Random Forest – prediction accuracy for biomarker 
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Figure 4.5: Anthropometry - Average accuracy for set of predictor groups 

 

 

Figure 4.6: Biomarker - Average accuracy for a set of predictor groups 
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Random Forest 

Model 

Average of all 

predictors ± SD 

Top predictor Top 5 predictors 

± SD 

Top 10 

predictors ±SD 

Top 15 

predictors ±SD 

Anthropometry 55.42±  2.7 

 

66.34 

 

59.03±  3.7 

 

61.24± 2.94 

 

59.14± 2.69 

 

Biomarker 77.80 ±  13.69 

 

70.08 

 

77.67 ±  0.69 

 

73.51 ± 0.85 

 

78.35 ± 0.90 

 

Table 4.6: Model RF - Average accuracy with SD 

 

Random Forest 

(YES %) 

Average of all 

predictors 

Top predictor Top 5 

predictors 

Top 10 

predictors 

Top 15 

predictors 

Anthropometry 67.86 70.24 54.76 67.86 69.05 

Biomarker 53.57 72.62 53.57 52.38 52.38 

Table 4.7: Model RF: Accuracy for minority (YES) class 

Random Forest 

(NO %) 

Average of all 

predictors 

Top predictor Top 5 

predictors 

Top 10 

predictors 

Top 15 

predictors 

Anthropometry 55.14 66.91 59.13 61.09 58.92 

Biomarker 78.34 70.18 78.21 73.98 78.93 

Table 4.8: Model RF: Accuracy for majority (NO) class 

Figure 4.7 and Figure 4.8 show the prediction accuracy of all the predictors using SVM model, the series 

is based on predictor ranking. The top predictor for anthropometry gives an accuracy of 78.27%, the 

accuracy of most of the predictors in the set is 60% and below. On the other hand, the top predictor for 

biomarker gives an accuracy of 80.43%, most of the predictor accuracy is in between 60% to 80%. The 

average accuracy for SVM model is calculated for both anthropometry and biomarker data with 6 selected 

features. 

 Figure 4.9 and Figure 4.10 show the average accuracy of SVM model for anthropometry and 

biomarker data separately. 
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Figure 4.7: SVM – prediction accuracy for anthropometry 

 

Figure 4.8: SVM – prediction accuracy for anthropometry 
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Figure 4.9: Anthropometry - Average accuracy for set of predictor groups 

 

Figure 4.10: Anthropometry - Average accuracy for set of predictor groups 

Table 4.5 shows the average accuracy with SD values; biomarker accuracy is consistent among all 

the groups, but the SD is very high when the overall average is concerned which makes it less 

stable. Apart from the that, the top 5, top 10, top 15 predictors accuracy is stable with 

0

10

20

30

40

50

60

70

80

90

Average Top predictor Top 5 Top 10 Top 15

A
cc

u
ra

cy

Predictors

Model SVM - Anthropometry Average Accuracy Plot

0

10

20

30

40

50

60

70

80

90

100

Average Top predictor Top 5 Top 10 Top 15

A
cc

u
ra

cy

Predictors

Model SVM - Biomarker Average Accuracy Plot



36 
 

considerable SD value. However, the average prediction accuracy of anthropometry is less than 

60% and SD is also equally same for all the predictors. 

 

SVM Model 
Average of all 

predictors ± SD 

Top predictor Top 5 predictors 

± SD 

Top 10 

predictors ±SD 

Top 15 

predictors ±SD 

Anthropometry 57.71 ± 4.24 

 

78.27 

 

64.49 ± 7.14 

 

63.04 ± 5.65 

 

61.29 ±4.98 

 

Biomarker 77.80 ± 13.01 

 

80.43 79.75 ± 0.48 

 

79.78 ± 0.79 

 

79.33 ± 1.11 

 

Table 4.9: Model SVM - Average accuracy with SD 

SVM (YES %) Average of all 

predictors 

Top predictor Top 5 

predictors 

Top 10 

predictors 

Top 15 

predictors 

Anthropometry 61.90 70.24 50 60 58.33 

Biomarker 53.57 76.19 50 51.19 51.19 

Table 4.10:  Model SVM - Accuracy for minority (YES) class 

SVM (NO %) Average of all 

predictors 

Top predictor Top 5 

predictors 

Top 10 

predictors 

Top 15 

predictors 

Anthropometry 57.61 79.35 64.82 63.11 61.36 

Biomarker 78.34 81 80.41 80.41 79.96 

Table 4.11: Model SVM - Accuracy for majority (YES) class 

4.4 Results with Data Fusion 

In this section, we discuss the prediction results achieved using data fusion methods applied on 

the balanced dataset. Random Forest is trained on training dataset with selected features of 

anthropometry and biomarker. The prediction accuracy of each predictor group using Random 

Forest model on test dataset with feature – level fusion is shown in Figure 4.11 
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Figure 4.11: Random Forest – prediction accuracy for feature-level fusion 

Figure 4.12 gives the prediction accuracy of each predictor group using SVM model with feature 

– level fusion. 

 

Figure 4.12: SVM – prediction accuracy for feature-level fusion 
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Figure 4.13: Random Forest – Average accuracy for a set of predictor groups 

 

Figure 4.14: SVM Model – Average accuracy for a set of predictor groups 

Table 4.6 gives the summary of average prediction results obtained from Random Forest and 

SVM models with SD. The top predictor using SVM model gives the highest accuracy of 90.46% 

over all the other predictors. However, the average accuracy is consistent over all the groups 

considered and SD about the same for both the models. 

  

79.59 79.59

83.05 82.82

81.26

70

72

74

76

78

80

82

84

86

88

Average Top predictor Top 5 Top 10 Top 15

A
cc

u
ra

cy

Predictors

Model RF - Feature-level fusion Average Accuracy Plot

79.59

90.46

84.22 83.78
82.06

65

70

75

80

85

90

95

Average Top predictor Top 5 Top 10 Top 15

A
cc

u
ra

cy

Predictors

Model SVM - Feature-level fusion Average Accuracy Plot



39 
 

Feature-level 

fusion 

Average of all 

predictors ± SD 

Top predictor Top 5 predictors 

± SD 

Top 10 

predictors ±SD 

Top 15 

predictors ±SD 

Random Forest 79.59 ±  3.26 79.59 

 

83.05±  3.95 

 

82.82± 3.13 

 

81.26± 2.80 

 

SVM 79.59 ±  3.58 

 

90.46 

 

84.22 ±  4.03 

 

83.78 ± 3.17 

 

82.06 ± 2.80 

Table 4.12: Feature-level fusion - Average accuracy with SD 

Figure 4.15 summarizes the average and top predictor prediction accuracy of all combination of 

datasets using SVM model. 

Feature-level 

fusion (YES %) 

Average of all 

predictors 

Top predictor Top 5 

predictors 

Top 10 

predictors 

Top 15 

predictors 

Random Forest 53.57 73.81 51.19 52.38 51.19 

SVM 53.57 65.48 51.19 52.38 52.38 

Table 4.13: Accuracy for minority (YES) class 

Feature-level 

fusion (NO %) 

Average of all 

predictors 

Top predictor Top 5 

predictors 

Top 10 

predictors 

Top 15 

predictors 

Random Forest 80.18 80.31 83.76 83.50 81.93 

SVM 80.18 91.58 84.96 84.48 82.73 

Table 4.14: Accuracy for majority (YES) class 
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Figure 4.15: Model SVM- Average accuracy for feature-level fusion, biomarker, anthropometry 
and decision-level fusion 

Table 4.15 gives the overall average prediction accuracy with SD. Feature-level fusion technique 

gives better prediction accuracy over other techniques used. However, the SD is high when 

compared to the results obtained from biomarker data. Anthropometry gives the least prediction 

accuracy, but the accuracy is improved when its features are fused with biomarker. 

SVM Feature-level 

fusion 

Biomarker Anthropometry Average of all 3 

(Majority Vote) 

Average ± SD 79.59 ± 3.58 77.80 ± 13.01 57.71 ± 4.24 77.98 

Top Predictor 90.46  80.43  78.27 87.99 

Top 5 ± SD 84.22 ± 4.03 79.75 ± 0.48 64.49 ± 7.14 82.06 

Top 10 ± SD 83.78 ± 3.17 79.78 ± 0.79 63.04 ± 5.65 81.57 

Top 15 ± SD 82.06 ± 2.80 79.33 ± 1.11 61.29 ± 4.98 80.09 

Table 4.15: Model SVM - Average accuracy of data set combinations 

 

Figure 4.16 summarizes the average and top predictor prediction accuracy of all combination of 

datasets using Random Forest model. 
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Figure 4.16: Model RF- Average accuracy for feature-level fusion, biomarker, anthropometry 
and decision-level fusion 

Table 4.16 gives the overall average prediction accuracy with SD using Random Forest. The 

accuracy trend is similar to SVM model, with highest accuracy for feature-level fusion technique 

over other techniques.  

Random Forest Feature-level fusion Biomarker Anthropometry Average of all 3 

Average ± SD 79.59 ± 3.26 77.80 ± 13.69 55.42 ± 2.7 77.88 

Top Predictor 79.59  70.08  66.34 84.66 

Top 5 ± SD 83.05 ± 3.95 77.67 ± 0.69 59.03 ± 3.7 80.24 

Top 10 ± SD 82.82 ± 3.13 73.51 ± 0.85 61.24 ± 2.94 78.74 

Top 15 ± SD 81.26 ± 2.8 78.35 ± 0.9 59.14 ± 2.69 79.54 

Table 4.16: Model RF - Average accuracy of data set combinations 
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Figure 4.17 shows the percentage of test data samples which fall under the groups shown in table 4.9.  

Groups Classification Models 

Anthropometry (0) – Biomarker (0) Both the datasets predicted incorrectly 

Anthropometry (0) – Biomarker (1) anthropometry predicted incorrectly – 

biomarker predicted correctly 

Anthropometry (1) – Biomarker (0) anthropometry predicted correctly – biomarker 

predicted correctly 

Anthropometry (1) – Biomarker (1) Both the datasets predicted correctly 

Table 4.17: Groups based on prediction results 

 

 

Figure 4.17: Percentage of data samples in each predictor group 
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Top 5 top 10  top 15 

Anthropometry (0) - Biomarker (0) 11.8014 11.98336 12.76319 

Anthropometry (0) - Biomarker (1) 23.70678 24.9805 25.94229 

Anthropometry (1) - Biomarker (0) 8.448141 8.240187 7.902262 

Anthropometry (1) - Biomarker (1) 56.04367 54.79594 53.39225 

Table 4.18: Percentage of data samples in each group 

4.5 Discussion 

In our implementation, biomarker feature space gave a better prediction results over 

anthropometry feature space after applying improved data balancing techniques. However, 

feature-level fusion improved the results which shows the importance of feature space in 

prediction methods. Further, we observed that the majority vote method showed the results 

could be better if data fusion is carried out in an intelligent way.
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Chapter 5: Conclusion and Future work 

In our study, we have addressed the problem of data imbalance in prediction of kidney ailments. 

We studied different techniques to overcome data imbalance problem and proposed a new 

improved resampling method to balance the anthropometric and biomarker data obtained from 

NHANES dataset, then applied machine learning techniques to predict kidney ailments on the 

balanced dataset. 

 The results from the classification models are analyzed to discover certain patterns in the 

prediction accuracy for different combination of features. We employed feature-level fusion and 

decision-level fusion techniques to analyze the performance of the classification models on the 

test data. Further, we fused both feature-level and decision-level prediction results to select the 

best predictor group which could be used to predict unknown data samples. The feature-level 

fusion prediction accuracy for SVM model was better than the results obtained from individual 

feature sets of anthropometry and biomarker.  

 The feature-level fusion technique performed better when compared with the prediction 

models of individual data set results. The standard deviation shows the consistency of the results 

over all the predictors, which shows the performance stability and reliability. Our results using 

intelligent data fusion show more than 50% of data samples being predicted accurately by both 

anthropometry and biomarker dataset. Even though, this result is not dependable, there is scope 

to improve the data fusion methods further. 

In future, we intend to improve the intelligent data fusion method to efficiently predict 

kidney ailments in patients. We would also increase the feature space by incorporating features 

like age, sex, demographics which might give interesting patterns of results. We would further 

apply these proposed methods to other disease predictions and look for better ways to 

incorporate feature space for prediction. 
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