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Abstract

Parameterized Strings:
Algorithms and Applications

by

Richard Beal

The parameterized string (p-string), a generalization of the traditional string, is com-
posed of constant and parameter symbols. A parameterized match (p-match) exists between
two p-strings if the constants match exactly and there exists a bijection between the param-
eter symbols. Historically, p-strings have been employed in source code cloning, plagiarism
detection, and structural similarity between biological sequences. By handling the intrica-
cies of the parameterized suffix, we can efficiently address complex applications with data
structures also reusable in traditional matching scenarios. In this dissertation, we extend
data structures for p-strings (and variants) to address sophisticated string computations.

We introduce a taxonomy of classes for longest factor problems. Using this taxonomy, we
show an interesting connection between the parameterized longest previous factor (pLPF )
and familiar data structures in string theory, including the border array, prefix array, longest
common prefix array, and analogous p-string data structures. Exploiting this connection, we
construct a multitude of data structures using the same general pLPF framework.

Before this dissertation, the p-match was defined predominately by the matching between
uncompressed p-strings. Here, we introduce the compressed parameterized pattern match
to find all p-matches between a pattern and a text, using only the pattern and a compressed
form of the text. We present parameterized compression (p-compression) as a new way
to losslessly compress data to support p-matching. Experimentally, it is shown that p-
compression is competitive with standard compression schemes. Using p-compression, we
address the compressed p-match independent of the underlying compression routine.

Currently, p-string theory lacks the capability to support indeterminate symbols, a staple
essential for applications involving inexact matching such as in music analysis. In this
work, we propose and efficiently address two new types of p-matching with indeterminate
symbols. (1) We introduce the indeterminate parameterized match (ip-match) to permit
matching with indeterminate holes in a p-string. We support the ip-match by introducing
data structures that extend the prefix array. (2) From a different perspective, the equivalence
parameterized match (e-match) evolves the p-match to consider intra-alphabet symbol classes
as equivalence classes. We propose a method to perform the e-match using the p-string
suffix array framework, i.e. the parameterized suffix array (pSA) and parameterized longest
common prefix array (pLCP ). Historically, direct constructions of the pSA and pLCP have
suffered from quadratic time bounds in the worst-case. Here, we introduce new p-string
theory to efficiently construct the pSA/pLCP and break the theoretical worst-case time
barrier.

Biological applications have become a classical use of p-string theory. Here, we intro-
duce the structural border array to provide a lightweight solution to the biologically-oriented
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variant of the p-match, i.e. the structural match (s-match) on structural strings (s-strings).
Following the s-match, we show how to use s-string suffix structures to support various pat-
tern matching problems involving RNA secondary structures. Finally, we propose/construct
the forward stem matrix (FSM), a data structure to access RNA stem structures, and we
apply the FSM to the detection of hairpins and pseudoknots in an RNA sequence.

This dissertation advances the state-of-the-art in p-string theory by developing data
structures for p-strings/s-strings and using p-string/s-string theory in new and old contexts
to address various applications. Due to the flexibility of the p-string/s-string, the data
structures and algorithms in this work are also applicable to the myriad of problems in the
string community that involve traditional strings.
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Chapter 1

Introduction

Strings are everywhere; they construct the World Wide Web, represent the human

genome, and even provide the transmission layout for our daily communications! A tra-

ditional string is a production of symbols from the constant alphabet Σ. An exact match

exists between two traditional strings S and T when each symbol matches. By representing

data with a traditional string, we can analyze data for equivalence by simply comparing

symbols. The limitation of the traditional string is that any further intricate study of the

symbol composition and structure requires intelligent algorithms and bookkeeping. The pa-

rameterized string and variations, such as the structural string, provide the foundation for

natural methods to more involved and complex string analyses.

1.1 Motivation and the Problem

The source code in Figure 1.1 displays two programs with slightly different code and

output to achieve the same function: to display all possible permutations of DNA se-

quences of length n. Traditional pattern matching will not detect this relationship between

the source files. Parameterized matching (p-matching) is a sophisticated pattern matching

scheme that utilizes a parameterized string (p-string), which is a production from the con-

stant alphabet Σ and parameter alphabet Π, with Σ ∩ Π = ∅. A p-match exists between

two p-strings S and T when the constant symbols σ ∈ Σ match and there exists a bijec-

tion of parameter symbols π ∈ Π between S and T . If we disregard whitespace and let
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Σ = {class, public, static, ..., !,=, (, ), ...} represent the keywords and special tokens and let

Π = {n, num, prog, Program, ..., A, C,G, T, ...} represent the remaining tokens, namely the

variables and values, then we observe that a p-match exists between the two source files

in Figure 1.1. The p-match permits a more natural pattern matching scheme to observe

the composition of parameters in a string. The notion that the p-string can provide more

involved pattern matching capabilities for applications provides the motivation to (1) rede-

fine traditional string problems for p-strings, (2) construct p-string oriented data structures

efficiently, and (3) further advance the theory of related sophisticated strings, such as the

structural string (s-string) used in the structural match (s-match) problem for analyzing

RNA sequences by their secondary structure.

1.2 Main Contributions

In this dissertation, we advance the state-of-the-art in parameterized string (p-string)

theory and variants, i.e. the structural string (s-string). We develop new data structures,

extend popular data structures, identify beautiful relationships between data structures,

propose a new context for p-string matching, and apply p-string/s-string theory in both

new and old contexts to address various applications. A common theme in this work is

advocating for more general data structures and acknowledging the power of string encodings

to generalize solutions, which promotes flexibility and reusability of solutions. Though each

chapter specifically highlights the contributions made, here, we note the core contributions

of the research.

• Chapter 3: Variations of the Parameterized Longest Previous Factor

– We define a taxonomy for longest factor problems.

– A connection is made between the parameterized longest previous factor (pLPF )

construction and a subset of the taxonomy. We exploit the linear time pLPF con-

struction to generate the following popular p-string data structures: the parame-

terized longest common prefix (pLCP ) and the parameterized-border (p-border)
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array. By altering the alphabets, we show how the same pLPF construction can

yield the longest common prefix (LCP ), the permuted-longest common prefix

(permuted-LCP ), the border array, and the prefix array.

– We propose other data structures also solved by the same pLPF framework.

• Chapter 4: The Structural Border Array

– Motivated to structural match without suffix structures, we propose the structural

border array (s-border) as an extension of the traditional border array.

– The traditional border properties are shown to also hold for the s-border, which

leads to a linear construction of the s-border. By altering the alphabet, we also

construct the p-border and border arrays in linear time with the same algorithm.

• Chapter 5: Compressed Parameterized Pattern Matching

– We introduce compressed parameterized pattern matching (compressed p-matching)

as the act of finding all occurrences of a pattern P in a text T compressed via

p-compression, a proposed way to losslessly compress data via a p-string encoding.

– An algorithm is provided for compressed p-matching in terms of any compression

scheme where a partial symbol decompression function can be defined.

• Chapter 6: Parameterized Strings with Indeterminate Symbols

– We propose the indeterminate parameterized match (ip-match) and the equiv-

alence parameterized match (e-match) as p-match variants with indeterminate

symbols.

– The ip-match is addressed via extensions to the compressed prefix array (cPA)

framework. Specifically, we propose and construct the compact parameterized pre-

fix array (cpPA) and compact indeterminate parameterized prefix array (cipPA).

– The e-match is solved via the parameterized suffix array (pSA) and parameterized

longest common prefix (pLCP ) framework. New p-string theory is introduced en

route to new pSA/pLCP constructions that break the worst-case time barrier.
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• Chapter 7: Matching RNA Secondary Structures

– We use the structural suffix array (sSA) to find RNA secondary structures in a

text, based on a complex user query.

– We propose the Forward Stem Matrix (FSM), which offers efficient access to

potential stems in RNA secondary structures, and construct the FSM in time

linear to its size via newly proposed auxiliary data structures.

– The FSM is applied to hairpin and pseudoknot detection in an RNA sequence.

1.3 Organization

The dissertation is organized as follows. Chapter 2 presents the notations, theory, data

structures, etc. used in future chapters. In Chapter 3, we generalize and extend the con-

struction of the parameterized longest previous factor [19] from the Master’s thesis [16] to

also construct a family of popular data structures. Chapter 4 continues the data structure

conversation as we construct a generalization of the parameterized border (p-border) array

[56] for structural strings [86]. Subsequently, Chapter 5 proposes a method for parameterized

pattern matching on compressed p-strings, using the p-border array. The p-match capabili-

ties are extended to include indeterminate symbols in Chapter 6. In Chapter 7, we propose

data structures to assist with problems involving hairpins, pseudoknots, and complex RNA

secondary structures. Lastly, Chapter 8 summarizes the results and provides final remarks.
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1 public class Program {
2 private stat ic char [ ] a lphabet
3 = { ’A ’ , ’C ’ , ’G’ , ’T ’ } ;
4 private int num;
5
6 public Program ( int num)
7 throws Exception
8 {
9 this .num = num;

10 i f ( this .num <= 0) // i n v a l i d
11 throw new Exception ( ” ! ! ! ” ) ;
12 this . dnaPermutations ( ”” ) ;
13 }
14
15 public void dnaPermutations (
16 St r ing s t r ){
17 i f ( s t r . l ength ( ) != this .num)
18 {
19 for (char q : this . a lphabet )
20 this . dnaPermutations ( s t r+q ) ;
21 }
22 else
23 System . out . p r i n t l n ( s t r ) ;
24 }
25
26 public stat ic void main (
27 St r ing [ ] a rgs ) throws Exception
28 {
29 new Program ( 3 ) ;
30 }
31 }

public class prog {
private stat ic char [ ] a lpha

= { ’A ’ , ’T ’ , ’G’ , ’C ’ } ;
private int n ;

public prog ( int n)
throws Exception {

this . n = n ;
i f ( this . n <= 0) // i n v a l i d

throw new Exception ( ” ! ! ! ” ) ;
this . dna perm ( ”” ) ;

}

public void dna perm ( St r ing s ){
i f ( s . l ength ( ) != this . n ){

for (char q : this . a lpha )
this . dna perm ( s+q ) ;

} else System . out . p r i n t l n ( s ) ;
}

public stat ic void main (
St r ing [ ] a rgs ) throws Exception {
new prog ( 3 ) ;

}

}

Figure 1.1: Source files that p-match



7

Chapter 2

Preliminaries

A string on an alphabet of symbols, say A, is a production T = T [1]T [2]...T [n] from

An where n = |T | denotes the length of T . Later, we will introduce specific alphabets. In

this work, we assume the use of indexed alphabets, where every symbol is represented by a

distinct integer modeling the lexicographical ordering of the symbols. For completeness, we

append strings with a terminal symbol from the set {$1, $2, ...} or more generally $. Note

that $ /∈ A and $ lexicographically precedes every symbol in A. To simplify discussions and

for brevity, we may omit the terminal symbol and subscript.

We will use the following string notations: T [i] refers to the ith symbol of string T ,

T [i...j] refers to the substring T [i]T [i + 1]...T [j], and T [i...n] refers to the ith suffix of T :

T [i]T [i+ 1]...T [n]. The m-length prefix of a suffix is the substring with the first m symbols

of the suffix. A proper prefix and proper suffix of T is respectively any prefix and suffix

except T . Let S ◦ T , or simply ST , denote the concatenation of the strings S and T . This

notation is suppressed for concision when the context is clear. To compute the reverse of a

substring, we use the notation T [i...j]R = T [j]T [j−1]...T [i] for 1 ≤ i ≤ j ≤ n. Alternatively,

we can reverse a string without considering the terminal symbol with the following function:

reverse(T [1...n − 1]$) = T [1...n − 1]R$. Let replace(T, x, y) replace all occurrences in T

of the symbol x with y. For notation purposes, we may specify the string to which a data

structure refers. For instance, DQ denotes that the data structure D was constructed using

the string Q. This notation is omitted when the context is clear.

At the symbol level (say symbols s1, s2, and s3), the exact symbol matching operator
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(=) is a binary operator that accepts two symbols and returns true when the symbols match

and otherwise, returns false; this operator is reflexive (s1 = s1), symmetric (if s1 = s2, then

s2 = s1), and transitive (if s1 = s2 and s2 = s3, then s1 = s3). We generalize this operator to

the string level. For strings S1 and S2, S1 = S2 returns true if |S1| = |S2| (same length) and

S1[1] = S2[1] ∧ S1[2] = S2[2] ∧ ... ∧ S1[|S1|] = S2[|S2|], and returns false otherwise. Similarly,

we define the inexact symbol matching operator (≈) as a binary operator that returns true

when two symbols s1 and s2, not necessarily s1 = s2, are considered equivalent; this operator

is also reflexive, symmetric, and transitive, and also applies to strings. We define the 6=

operator to return the opposite of = and the 6≈ operator to return the opposite of ≈.

We now define operators on the lexicographical ordering of symbols and strings. The

operation s1 ≺ s2 (or s1 < s2) denotes that symbol s1 lexicographically precedes symbol s2.

Further, s1 � s2 (or s1 > s2) denotes that symbol s1 lexicographically succeeds symbol s2.

The ≺, <, �, and > operators also apply to strings.

We extend the aforementioned operators on strings to only consider the length k ≥ 0

prefix of the string operands: =k, 6=k, ≺k, and �k. For example, S1 ≺k S2 returns true if

S1[1...k] ≺ S2[1...k] and returns false otherwise. In the case that a string operand does not

have k symbols, the $ is padded to the end of the string.

For any array, say D, we can also use string notations such as |D| is the size of D and

D[i...j] is a subarray of D. We denote Dmax as the maximum value in the array and denote

Dµ as the mean of the array. We use the following notation to recursively access array

elements: D2[i] = D[D[i]], D3[i] = D[D[D[i]]], and Dv[i] = D[Dv−1[i]].

In this work, we assume that a doubly linked list has the following node definition and

basic operations. For readability, our doubly linked list will store the data suf , which are

suffix indices.

// **** Doubly Linked List ****

// Node type: { int suf , Node* previous , Node* next }
// Operations:

// -- void init( ) : initialization routine

// -- Node* insert(int i ) : inserts Node with data i ; returns pointer to Node

// -- void delete(Node* ptr ) : removes the Node pointed to by ptr

// -- void clear( ) : removes all Nodes in list
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We refer to a string from a single constant alphabet Σ as a traditional, standard, regular,

and exact string. In the following, we present theory for strings with other alphabets, i.e.

parameterized strings and structural strings.

2.1 Parameterized Strings

Parameterized strings (p-strings) are generated from the finite alphabets sets Σ and Π.

Alphabet Σ denotes the set of constant symbols and Π represents the set of parameter

symbols. These alphabets are disjoint (Σ ∩ Π = ∅).

Definition 2.1.1 ([11]) Parameterized string (p-string): A p-string is a production T

of length n from (Σ ∪ Π)∗$.

For practical purposes, we can assume that |Σ| + |Π| ≤ n for large n. Consider the

alphabets Σ = {A,B,C} and Π = {a, b, c, v, w, x, y, z}. Example p-strings include S =

AxByABxy$, T = AwBzABwz$, and U = AyByAByy$. For efficient access to the symbol

types of the p-string, we define the α encoding.

Definition 2.1.2 Alphabet encoding (α): Given an n-length p-string T , we define α(T )[i] =

SIGMA if T [i] ∈ (Σ ∪ {$}) and α(T )[i] = PI if T [i] ∈ Π, for 1 ≤ i ≤ n and readable con-

stants SIGMA and PI.

Two equal-length p-strings are said to be parameterized matches (p-matches) iff (1)

the constant symbols match exactly and (2) there exists a bijection between the parameter

symbols.

Definition 2.1.3 ([11, 40]) Parameterized matching (p-match): A p-match exists

between pair of p-strings S and T with n = |S| if and only if |S| = |T | and each 1 ≤ i ≤ n

corresponds to one of the following:

1. S[i], T [i] ∈ (Σ ∪ {$}) ∧ S[i] = T [i]

2. S[i], T [i] ∈ Π ∧ ((a) ∨ (b)) /* parameter bijection */
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(a) S[i] 6= S[j], T [i] 6= T [j] for every 1 ≤ j < i

(b) S[i] = S[i− q] iff T [i] = T [i− q] for every 1 ≤ q < i

In our example, we have a p-match between the p-strings S and T since every constan-

t/terminal symbol matches and there exists a bijection of parameter symbols between S and

T . U does not satisfy the parameter bijection to p-match with S or T . In [11], the prev

encoding was defined to more directly identify a p-match.

Definition 2.1.4 ([11, 53, 40]) Previous (prev) encoding: Given the n-length T and

nonnegative integers Z, the function prev : (Σ∪Π)∗$→ (Σ∪Z)∗$ (1) encodes constants/ter-

minals, say c, with the same symbol c and (2) encodes parameters, say π, to the distance to

the previous π in T . We formally define prev(T ) below for each i, 1 ≤ i ≤ n.

prev(T )[i] =


T [i], if T [i] ∈ (Σ ∪ {$})
0, if T [i] ∈ Π ∧ T [i] 6= T [j] for every 1 ≤ j < i

i−max{j|T [i] = T [j], 1 ≤ j < i}, otherwise

When the Σ and Π alphabets are unclear from the context, we overload prev as follows:

prev(T,Σ,Π). In our working example, we have prev(S)=A0B0AB54$, prev(T )=A0B0AB54$,

and prev(U)=A0B2AB31$. To construct prev(T ) when T is from a large, non-indexed al-

phabet, we can use a balanced binary tree to keep a record of the previous occurrence of

each π ∈ Π and thus, O(n log(|Π|)) time is needed when |Π| ≥ 1.

Lemma 2.1.5 Given an n-length p-string T from Σ and Π, the encoding prev(T ) can be

constructed in O(min{n, n log(|Π|)}) time with O(|Π|) extra space.

In our case with an indexed alphabet, we can construct prev(T ) in O(n) time with an

auxiliary O(|Π|) mapping structure.

Lemma 2.1.6 Given an n-length p-string T from indexed alphabets Σ and Π, the encoding

prev(T ) can be constructed in O(n) time with O(|Π|) extra space.

Note that during the prev(T ) construction, we can also construct α(T ) from Defini-

tion 2.1.2. While the prev encodes each parameter π to the distance to the previous occur-

rence of π in the string, the forw considers the forward occurrence of π.
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Definition 2.1.7 ([21, 16]) Forward (forw) encoding: We define the function forw for

the p-string T of length n as forw(T ) = reverse(replace(prev(reverse(T )), 0, n)).

Our definition of forw generates output mirroring the fw encoding used by Deguchi

et al. [53, 40]. Our example strings S = AxByABxy$, T = AwBzABwz$, and U =

AyByAByy$, where n = 9, yield forw(S) = A5B4AB99$, forw(T ) = A5B4AB99$, and

forw(U) = A2B3AB19$.

The relationship between p-strings and the lexicographical ordering of the prev encoding

is fundamental to the p-match problem.

Definition 2.1.8 prev lexicographical ordering: We define the ordering of symbols from

a prev encoding of the production (Σ ∪ Z)∗$ to be $ < ζ ∈ Z < σ ∈ Σ, where each ζ and σ

are lexicographically sorted in their respective alphabets.

In practice, p-string encodings can be realized using integer arrays with the terminal $

represented by the minimum integer, followed by the parameter distances z, and lastly fol-

lowed by constants σ. Now, we can easily deal with the lexicographical ordering of symbols

and with a simple range check, we can determine both p-string and prev alphabet mem-

bership questions x ∈ X via in(x,X), where X ∈ {Σ,Π,Z, $}, in O(1) time, an alternative

to α (Definition 2.1.2). In a program, we can “decompose” these symbol integers into a

class (i.e. z, σ, $) and a value (i.e. the index of the symbol in the alphabet or the ac-

tual parameter distance). We denote decomposition using the notation Cg for each symbol,

where C represents the class and g determines the value. For instance, consider the indexed

alphabet A = {A → 1, x → 2, Y → 3}. Let Σ′ = {A, Y } and Π′ = {x}. If T = xY x, then

prev(T,Σ′,Π′) = 0Y 2 and alternatively, we say G = prev(T,Σ′,Π′) = z0σ3z2, because z0

and z2 represent the respective distances 0 and 2 and further, σ3 represents the symbol A[3].

The expression ab = G[3] yields the assignments a = z and b = 2. The boolean expressions

a = σ, a = z, and a = $ can be used to determine the class of the encoded symbol G[3].

Further, we can use b as a traditional integer to retrieve the appropriate value.

Using the prev encoding, we can determine a p-match and the lexicographical ordering

of p-strings.
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Theorem 2.1.9 ([11]) Two p-strings S and T p-match when prev(S) = prev(T ). Also,

S ≺ T when prev(S) ≺ prev(T ) and S � T when prev(S) � prev(T ).

In our working example, we have a p-match between S and T since prev(S) = prev(T ) =

A0B0AB54$. Also, U � S and U � T since prev(U) = A0B2AB31$ � prev(S) =

prev(T ) = A0B0AB54$.

2.1.1 Data Structures

When extending traditional pattern matching data structures to the p-match, we deal

with a parameterized suffix (p-suffix) prev(T [i...n]), i.e. the suffix T [i...n] under prev.

The major difficulty in handling p-match problems is the prev encoding, which behaves on

suffixes in a way that voids traditional suffix properties. Due to the dynamic nature of the

p-suffixes, p-match based data structures typically cannot be constructed using approaches

for traditional strings. Unlike traditional suffixes, a smaller p-suffix is not necessarily a suffix

of a larger p-suffix, which is formalized below.

Lemma 2.1.10 Given a p-string T of length n, the suffixes of prev(T ) are not necessarily

the p-suffixes of T . More formally, if π ∈ Π occurs more than once in T , then ∃i such that

prev(T [i...n]) 6= prev(T )[i...n], 1 ≤ i ≤ n.

Proof Suppose the only parameter symbol to occur in the p-string T is π ∈ Π, which exists

only at positions a and b with a < b. Suppose that indeed prev(T [a...n]) = prev(T )[a...n]

and prev(T [b...n]) = prev(T )[b...n]. By Definition 2.1.4, the first occurrence of π at position

a will be prev encoded by 0 and the π at position b will be prev encoded by b−a. So, in the

case of suffix a, prev(T [a...n]) = prev(T )[a...n]. At suffix b, the encoding of π at position b

in T will change to 0 in prev(T [b...n]) by Definition 2.1.4 whereas prev(T )[b...n] will retain

the old encoding of b− a since π still occurs in prev(T ) at position a. The π at position b

forces prev(T [b...n]) 6= prev(T )[b...n], a contradiction. 2

For example, T = AcbcAc yields the p-suffixes X = {A002A2, 002A2, 00A2, 0A2, A0, 0}.

Notice that X [5] = T [5] ◦ X [6], but X [4] 6= T [4] ◦ X [5] and X [4] 6= X [4][1] ◦ X [5]. As noted

in [18], due to this dynamic nature, the n-length p-string T essentially compresses these
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n dynamic p-suffixes with O(n2) total symbols, giving merit to sub-quadratic solutions to

problems with p-strings.

A powerful pattern matching data structure is the suffix tree (ST ). The ST on the

n-length W is a compact trie (with O(n) nodes) that represents all of the suffixes W [i...n],

for 1 ≤ i ≤ n. Suffixes with common prefixes share nodes in the tree until the suffixes

differentiate and ultimately, each suffix W [i...n] will have its own leaf node to denote i.

Here, we will work more closely with alternative lightweight representations of the ST . The

suffix array (SA) and longest common prefix (LCP ) array represent the ST data in an array

format: the SA stores a list of the indices of the sorted suffixes and the LCP stores the length

of the longest prefix common between neighboring suffixes in the SA. In the following, we

define the SA and LCP data structures for p-strings.

Below, we define the parameterized suffix array (pSA), analogous to the SA, as a repre-

sentation of the lexicographical ordering of the p-suffixes of p-string T .

Definition 2.1.11 ([53, 40]) Parameterized suffix array (pSA): The pSA for a p-

string T of length n stores the lexicographical ordering of the indices i representing individual

p-suffixes prev(T [i...n]) with 1 ≤ i ≤ n, such that prev(T [pSA[q]...n]) ≺ prev(T [pSA[q +

1]...n])∀q, 1 ≤ q < n. The function construct pSA(T ′,Σ′,Π′) returns the pSA on the p-

string T ′ from the constant alphabet Σ′ and parameter alphabet Π′.

In general, let the rank array R on T rank each suffix index in the string T to its position

in the corresponding SA, i.e. R[SA[i]] = i. The length of the longest common prefix of

neighboring p-suffixes in the pSA is stored in the parameterized longest common prefix

(pLCP ) array, analogous to the LCP for traditional strings.

Definition 2.1.12 ([53, 40]) Parameterized longest common prefix (pLCP ) array:

The pLCP array for a p-string T of length n stores the length of the longest common prefix

of neighboring p-suffixes in pSA. We define plcp(a, b) = max{k | prev(a) =k prev(b)}.

Then, pLCP [1] = 0 and pLCP [i] = plcp(T [pSA[i]...n], T [pSA[i − 1]...n]), 2 ≤ i ≤ n. The

function construct pLCP(T ′,Σ′,Π′) returns the pLCP on the p-string T ′ from the constant

alphabet Σ′ and parameter alphabet Π′.
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For the example T = AwBzABwz$ with prev(T ) = A0B0AB54$, we have pSA =

{9, 8, 7, 4, 2, 1, 5, 6, 3}, R = {6, 5, 9, 4, 7, 8, 3, 2, 1}, and pLCP = {0, 0, 1, 1, 1, 0, 1, 0, 2}. In the

same way that the traditional SA and LCP help provide efficient exact pattern matching [72,

1], together, the pSA and pLCP help expedite p-matching [53, 40, 16]. In fact, the matching

algorithms are the same, except for properly encoding the pattern to search. Consider finding

all ηocc instances of the m-length encoding prev(P ) in the n-length p-string T . Using only

the pSA on T , we can solve this problem in O(m log n + ηocc) time. Using the pSA and

processing on the pLCP (see [72]), the problem is solved in O(m+ log n+ ηocc) time.

Theorem 2.1.13 ([53]) Using the pSA and pLCP on the n-length p-string T , all ηocc

instances of the m-length p-string pattern P in T can be found in O(m+ log n+ ηocc) time.

As with the LCP , we can use the pLCP to identify the longest prefix common between

any two arbitrary p-suffixes of the n length T by using range minimum query operations,

where rmq(a, b, A) = min{A[a], A[a + 1], ..., A[b]}. The following plcp(i, j, T ) returns the

longest prefix common between two p-suffixes prev(T [i...n]) and prev(T [j...n]).

plcp(i, j, T ) =


0, if i < 1 ∨ i > n ∨ j < 1 ∨ j > n

n− i+ 1, if i = j

rmq(RT [i] + 1, RT [j], pLCPT ), if RT [i] < RT [j]

rmq(RT [j] + 1, RT [i], pLCPT ), if RT [j] < RT [i]

The same approach is used for traditional strings, i.e. lcp(i, j, T ), to compute the longest

prefix common between two arbitrary suffixes at i and j in T . The rmq calculation was

proven by [25, 84, 85] to require O(n) preprocessing in O(n) space with O(1) query time.

While theoretically efficient, the rmq preprocessing may be considered heavy in practice.

When alternative solutions are available, we approach pattern matching problems with more

lightweight techniques.

The permuted-LCP array for traditional strings, discussed in [59], is defined as a varia-

tion of the LCP array to offer space improvements.

Definition 2.1.14 ([59]) Permuted longest common prefix (permuted-LCP ) array:

The permuted-LCP array for a traditional string W of length n stores the length of the
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longest common prefix of neighboring suffixes in the order that they appear in W . More

formally, permuted-LCP [i] = LCP [R[i]] or alternatively, permuted-LCP [SA[i]] = LCP [i],

1 ≤ i ≤ n.

In this work, we will propose and construct a permuted-LCP array for p-strings. Fol-

lowing the LCP -related arrays, we next define a related pattern matching data structure.

The longest previous factor (LPF ) on an n-length text W stores at LPF [i] the length of

the longest prefix common between W [i...n] and some W [h...n] with h < i.

Definition 2.1.15 ([35]) Longest previous factor (LPF ): For an n-length traditional

string W , the LPF is defined for each index 1 ≤ i ≤ n such that LPF [i] = max({0} ∪

{k | W [i...n] =k W [h...n], 1 ≤ h < i}) = max({0} ∪ {lcp(i, h,W ) | 1 ≤ h < i}).

The traditional string W = AAABABAB$ yields LPF = {0, 2, 1, 0, 4, 3, 2, 1, 0}. In [19],

we extend the LPF to p-strings.

Definition 2.1.16 ([19]) Parameterized longest previous factor (pLPF ): For an n-

length p-string T , the pLPF is defined for each index 1 ≤ i ≤ n such that pLPF [i] is

the length of the longest prefix common between the p-suffix prev(T [i...n]) and a p-suffix

occurring before i in T , i.e. pLPF [i] = max({0} ∪ {plcp(i, h, T ) | 1 ≤ h < i}). The array

L has the location of each previous factor, i.e. L[i] = h, or L[i] = 0 if no such factor exists.

For T = aABwxAByz, pLPF = {0, 0, 0, 1, 5, 4, 3, 2, 1} and L = {0, 0, 0, 1, 1, 2, 3, 4, 1}. In

the scenario that multiple previous equal length prefixes exist for prev(T [i...n]), depending on

the implementation, it may be the case that L[i] points to the leftmost previous occurrence.

Another pattern matching data structure is the border array (B). For a string W , each

B[i] stores the length of the longest prefix of W [1..i] that matches a suffix of W [1..i], which

is useful for pattern matching.

Definition 2.1.17 ([87]) border array (border or B): For an n-length traditional string

W , the border array is defined for each index 1 ≤ i ≤ n such that B[1] = 0 and otherwise

B[i] = max({0} ∪ {k | W [1...k] = W [i− k + 1...i], k ≥ 1 ∧ i− k + 1 > 1}).
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From the definition, we refer to the substrings W [1...k] and W [i − k + 1...i] as borders.

For the working example W = AAABABAB$, we have B = {0, 1, 2, 0, 1, 0, 1, 0, 0}. The

parameterized border (p-border) array, which was originally defined as the pfail function

in [56], redefines the traditional border array for p-strings and the p-match.

Definition 2.1.18 ([56]) parameterized border array (p-border or Bp): For an n-

length p-string T , the p-border array is defined for each index 1 ≤ i ≤ n such that Bp[1] = 0

and otherwise Bp[i] = max({0}∪{k | prev(T [1...k]) = prev(T [i−k+1...i]), k ≥ 1∧i−k+1 >

1}).

The borders under the encodings, i.e. prev(T [1...k]) and prev(T [i − k + 1...i]), are

referred to as parameterized borders or p-borders. The p-string T = wzwz$ yields the array

Bp = {0, 1, 2, 3, 0}. Related to the border is the prefix array (PA), which stores the length

of the longest common prefix between a string W and each suffix of W .

Definition 2.1.19 ([88]) Prefix array (PA): Given the n-length W , PA[i] = lcp(1, i,W )

for 1 ≤ i ≤ n.

In [88], the compressed prefix array is proposed as a representation of the PA that

removes the zero entries. We further refer to this succinct structure as the compact prefix

array.

Definition 2.1.20 ([88]) Compact prefix array (cPA): Given the PA for n-length W ,

the cPA is a pair of integer arrays (POS,LEN) that represent the left-to-right nonzero

elements of PA, i.e. PA[POS[i]] = LEN [i] ≥ 1 for 1 ≤ i ≤ n.

For the string W = AABBAABB, we have PA={8, 1, 0, 0, 4, 1, 0, 0}, POS={1, 2, 5, 6},

and LEN={8, 1, 4, 1}. Note that given i, it requiresO(log η) time to access PA[i] via the cPA

with a binary search for i on POS, where η = |cPA|. In this work, we will define/construct

the PA and cPA for p-strings.

2.2 Structural Strings

A structural string (s-string), formalized below, is a p-string where the parameter symbols

have complementary pairings.
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Definition 2.2.1 ([86]) Structural string (s-string): An s-string is a p-string T of

length n from (Σ ∪ Π)∗$ with complementary parameter pairings p = (πj, πk) in Γ =

{p1, p2, ..., p|Γ|}, where πj, πk ∈ Π. Each π ∈ Π is used in exactly one pair p ∈ Γ. Two

parameters πj and πk may either be (a) complementary to one another with j 6= k, i.e.

complement(πj) = πk and complement(πk) = πj, or (b) when j = k, simply complement(πj) =

πj.

For the working alphabets Σ = {A,B,C} and Π = {a, b, c, v, w, x, y, z}, consider Γ =

{(a, a), (b, b), (c, c), (v, v), (w, x), (y, z)}. Example s-strings include S = AxBzzywv$, T =

AwByyzxv$, and U = AwByyxzv$. The matching of s-strings is known as structural

matching (s-matching), which requires a bijection of the complementary symbols in addition

to the p-match.

Definition 2.2.2 ([86]) Structural matching (s-match): A pair of s-strings S and T

are s-matches with n = |S| iff |S| = |T | and the following are true: (1) constant and terminal

symbols in S and T match exactly and (2) there exists bijections between the parameters and

complements of S and T . More formally, one of the following must be true for each i,

1 ≤ i ≤ n:

1. S[i], T [i] ∈ (Σ ∪ {$}) ∧ S[i] = T [i]

2. S[i], T [i] ∈ Π ∧ (a) ∧ (b)

(a) S[i] = S[j] iff T [i] = T [j] for every 1 ≤ j < i

(b) S[i] = complement(S[q]) iff T [i] = complement(T [q]) for every 1 ≤ q < i

Notice that the s-match with Γ = {(π1, π1), ..., (π|Π|, π|Π|)}, πi ∈ Π, yields the p-match.

In our working example, S and T s-match. The s-string U does not s-match with either S

or T . The sencode scheme was defined in [86] to more easily detect an s-match by simply

comparing the encodings rather than independently satisfying the steps in Definition 2.2.2.

The sencode scheme is composed of the encodings prev (Definition 2.1.4) and compl. We

define compl below for the complementary symbols.
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Definition 2.2.3 ([86]) Complement (compl) encoding: Given the n-length T and non-

negative integers Z, the function compl : (Σ ∪Π)∗$→ (Σ ∪ Z)∗$ (1) encodes constants/ter-

minals, say c, with the same symbol c and (2) encodes parameters, say π, to the distance to

the previous complementary symbol complement(π). We formally define compl(T ) below for

each i, 1 ≤ i ≤ n.

compl(T )[i] =


T [i], if T [i] ∈ (Σ ∪ {$})
0, if T [i] ∈ Π ∧ T [i] 6= complement(T [j]) for every 1 ≤ j < i

i−max{j | T [i] = complement(T [j]), 1 ≤ j < i}, otherwise

When the alphabets are unclear from context, we overload compl as follows: compl(T,Σ,Π,Γ).

In our working example, compl(S) = compl(T ) = A0B00150$ and compl(U) = A0B00420$.

Also, prev(S) = prev(T ) = prev(U) = A0B01000$. Next, we define sencode to combine

both prev and compl for s-matching.

Definition 2.2.4 ([86]) Structural encoding (sencode): Given the n-length T and non-

negative integers Z, the function sencode : (Σ ∪ Π)∗$ → (Σ ∪ Z ∪ Z̄)∗$ (1) encodes con-

stants/terminals, say c, with the same symbol c and either (2a) encodes parameters π1 to

the distance to the previous π1 or (2b) encodes parameters π2 to the distance to the previous

complementary parameter complement(π2). We formally define sencode(T ) below for each

i, 1 ≤ i ≤ n.

sencode(T )[i] =


T [i], if T [i] ∈ (Σ ∪ {$})
prev(T )[i], if prev(T )[i] > 0

compl(T )[i], if compl(T )[i] > 0 ∧ prev(T )[i] = 0

0, otherwise

In order to compare s-strings, we now formalize the lexicographical ordering of symbols

from the structural encodings.

Definition 2.2.5 sencode lexicographical ordering: We define the ordering of symbols

from the sencode encoding of the production (Σ∪Z∪ Z̄)∗$ to be $ < ζ ∈ Z < ζ̄ ∈ Z̄ < σ ∈ Σ,

where each ζ, ζ̄, and σ are lexicographically sorted within their respective alphabets.

For two s-strings S and T , we can identify an s-match by comparing the strings under

sencode.
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Theorem 2.2.6 ([86]) Two s-strings S and T s-match when sencode(S) = sencode(T ).

Also, S ≺ T when sencode(S) ≺ sencode(T ) and S � T when sencode(S) � sencode(T ).

In the working example, sencode(U) = A 0B 0 1 4 2 0 $ and sencode(S) = sencode(T ) =

A 0B 0 1 1 5 0 $. Thus, S and T are confirmed to s-match.

Since Γ allows at most two parameters to be complements to one another, we can con-

struct compl and sencode on a string from an indexed alphabet, like prev (Lemma 2.1.6)

and α, in linear time.

Lemma 2.2.7 Given an n-length s-string T from indexed alphabets Σ and Π, the encodings

prev(T ), compl(T ), sencode(T ), and α(T ) can be constructed in O(n) time with O(|Π|)

extra space.

The suffixes T [i...n] of an s-string under sencode, i.e. sencode(T [i...n]), are known as

structural suffixes (s-suffixes). Like p-suffixes, the s-suffixes are dynamic, i.e. we cannot

guarantee that sencode(T [1...n])[k...n] = sencode(T [k...n]) for 2 ≤ k ≤ n.

Lemma 2.2.8 Given an s-string T of length n, the suffixes of sencode(T ) are not neces-

sarily the s-suffixes of T , i.e. sencode(T [i...n]).

Proof Consider some s-string T = π1π2π2π2$ with alphabets Σ = {σ1}, Π = {π1, π2, π3},

and Γ = {(π1, π3), (π2, π2)}. By Definition 2.2.4, it is the case that sencode(T ) = prev(T )

and hence, this lemma holds by Lemma 2.1.10. 2

Due to the dynamic nature of s-suffixes, the following function was defined in [86] to

efficiently retrieve the jth symbol from the s-suffix sencode(T [i...n]).

Definition 2.2.9 ([86]) Structural suffix (s-suffix) symbol retrieval: Given an n-

length s-string T, let prevT = prev(T ), complT = compl(T ), and Z represent the set of

non-negative integers. Further, let i, j ∈ Z such that 1 ≤ i ≤ n and 1 ≤ j ≤ (n − i + 1).

The function sencode(T, i, j) → (Σ ∪ Z ∪ Z ∪ {$}) retrieves the symbol at j of the s-suffix

sencode(T [i...n]), i.e. sencode(T [i...n])[j].
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sencode(T, i, j)=



T [j + i− 1], if T [j + i− 1] ∈ (Σ ∪ {$})

prevT [j + i− 1], if 0 < prevT [j + i− 1] < j

complT [j + i− 1], if 0 < complT [j + i− 1] < j ∧ prevT [j + i− 1]=0

0, otherwise

The significance of sencode(T, i, j) is that we can retrieve s-suffix symbols effortlessly in

an algorithmic environment. Note that this function requires alphabet membership ques-

tions, which can be answered in constant time via α(T ) (Definition 2.1.2). Thus, each call

to sencode(T, i, j) executes in constant time.

Lemma 2.2.10 Each call to sencode(T, i, j) requires O(1) time.

2.2.1 Data Structures

Similar to the SA and pSA, we define the suffix array for the s-suffixes of an s-string.

Definition 2.2.11 ([16]) Structural suffix array (sSA): The sSA for an n-length

s-string T stores the lexicographical ordering of the indices i representing the s-suffixes

sencode(T [i...n]) with 1 ≤ i ≤ n, such that sencode(T [sSA[q]...n]) ≺ sencode(T [sSA[q +

1]...n]) ∀ q, 1 ≤ q < n.

Following the LCP and pLCP , we now define the longest common prefix array for s-

strings.

Definition 2.2.12 ([16]) Structural longest common prefix array (sLCP ): The

sLCP array for an n-length s-string T stores the length of the longest common prefix of neigh-

boring s-suffixes in the sSA. We define slcp(a, b) = max{k | sencode(a) =k sencode(b)}.

Then, sLCP [1] = 0 and sLCP [i] = slcp(T [sSA[i]...n], T [sSA[i− 1]...n]), 2 ≤ i ≤ n.

Similar to pattern matching with the SA/LCP and p-matching with the pSA/pLCP ,

we show, in [16], how to s-match with the sSA/sLCP .

Theorem 2.2.13 ([16]) Given an n-length s-string T , the sSA for T , and the sLCP for

T , the locations of all the ηocc occurrences of s-matches between an m-length s-string pattern

P and T can be found in O(log n+m+ ηocc) time.
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Chapter 3

Variations of the Parameterized

Longest Previous Factor

Below, we list our publications related to this chapter.

• Beal, R., Adjeroh, D.: Variations of the parameterized longest previous factor. Journal

of Discrete Algorithms, 16, 129-150 (2012)

• Beal, R., Adjeroh, D.: Parameterized longest previous factor. Theoretical Computer

Science, 437, 21-34 (2012)

3.1 Introduction

The longest previous factor (LPF ) problem finds for each suffix at i in an n-length

traditional string W = W [1]W [2]...W [n] a longest factor W [h...n] with 1 ≤ h < i ≤ n

preceding the suffix W [i...n] in W . Crochemore and Ilie [35] studied this data structure for

traditional strings. In order to construct the LPF array, it was shown in [35] that the suffix

array SA is useful to quickly identify the most lexicographically similar suffixes that are

candidate previous factors for the chosen suffix in question. The use of SA expedites the

work to construct the LPF array in linear time. The linear time construction of the LPF

data structure makes it a justified choice to use in various applications. The LPF array is

naturally setup for applications in string compression [100] and detecting runs [70] within a

string.
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In [19], we introduce the parameterized longest previous factor (pLPF ) to extend the

traditional LPF problem to parameterized strings (p-strings). A p-string, introduced by

Baker [11], is a generalized form of a string produced from the constant alphabet Σ and

the parameter alphabet Π. The alphabet to which a symbol belongs determines exactly

how the symbol is matched. The parameterized pattern matching (p-match) problem is to

identify an equivalence between a pair of p-strings S and T when (1) the individual constant

symbols match and (2) there exists a bijection between the parameter symbols of S and T .

Prominent applications concerned with the p-match problem include detecting plagiarism

in academia and industry, reporting similarities in biological sequences [86], discovering

cloned code segments in a program [12], and even answering critical legal questions regarding

the unauthorized use of intellectual property [98]. Baker [11] identifies that the p-match

bijection can be handled by using a previous (prev) encoding scheme where a p-match

exists between S and T if and only if prev(S) = prev(T ). The prev encoding codes each

symbol s with the same constant s if s ∈ Σ. Otherwise when s ∈ Π, prev encodes s

with the integer distance to the previous s in T or 0 if it is the first instance of s in T .

For example, the following p-strings that represent program statements f/a ∗ q−++q and

f/b ∗ c−++c over the alphabets Σ = {∗, /,−,+} and Π = {a, b, c, f, q} successfully p-match

since prev(“f/a∗q−++q”) =“0/0∗0−++4”= prev(“f/b∗c−++c”). By solving a problem

with the p-match, we are also solving the same problem with an exact match when |Π| = 0

and a mapped match (m-match) when |Σ| = 0 [6]. We show in [19] that the pLPF problem

is not a straightforward extension of the LPF problem because of the added challenges of

the p-match and dynamic nature of the parameterized suffixes (p-suffixes) under the prev

encoding. We provide an algorithm in [19] to construct the pLPF data structure in linear

time. A significant contribution of [19] is identifying the connection between the pLPF data

structure with other popular data structures such as the LPF , longest common prefix (LCP ),

and parameterized longest common prefix (pLCP ). We are influenced by the variations of

the traditional LPF problem studied in [38, 37] to further define variations for the pLPF

problem.

Main Contributions: In this chapter, we extend the power of the pLPF construction

by addressing variations of the data structure with the same algorithm. Initially, we consider
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the pLPF problem and prove its linear time construction. We are the first to introduce a

taxonomy for longest factor problems, which identifies that problems satisfying certain prop-

erties can be solved with the same pLPF algorithm by simply altering the preprocessing and

postprocessing. The pLPF framework is the basis for the data structures in this research.

First, it is proven that the pLCP and the newly introduced permuted-pLCP can be con-

structed with the pLPF framework in linear time. Next, we introduce three new variants

of the pLPF array, namely the parameterized longest not-equal factor (pLneF ), parame-

terized longest reverse factor (pLrF ), and parameterized longest factor (pLF ), and prove

that we can use the pLPF framework to construct these variants in linear time. We identify

that the border array [87], an important data structure in string pattern matching, is also a

variant of the pLPF . It is then shown how to compute the parameterized-border (p-border)

array in linear time using the pLPF framework. For simplicity, throughout this chapter, we

assume the most common case of p-strings – where the lexicographical relationship between

p-suffixes is like traditional that of suffixes, i.e. for the n-length S, if S[x] = S[i] = S[y] and

S[x...n] ≺ S[i...n] ≺ S[y...n] then S[x + 1...n] ≺ S[i + 1...n] ≺ S[y + 1...n] with 1 ≤ x < n,

1 ≤ i < n, 1 ≤ y < n. This corresponds to the case of Figure 1(a) of [19]. A straightforward

implementation of the details in [19] allow the algorithms to support all the other cases

identified. In terms of traditional data structures such as the longest common prefix (LCP )

and longest previous factor (LPF ), we prove that our p-string oriented algorithms can be

used to solve these standard problems. Finally, we implement our algorithms considering all

of the details in [19] and confirm the linear time nature of the constructions. We also show

how our newfound algorithms compare with standard algorithms in terms of the traditional

LCP and LPF constructions. The following theorems formalize our core contributions.

Theorem 3.3.3. Given an n-length p-string T , prevT = prev(T ), the prev encoding of T ,

and pSAT , the parameterized suffix array for T , the algorithm compute pLPF constructs the

pLPF array in O(n) time.

Theorem 3.4.2. Given an n-length p-string T , prevT = prev(T ), the prev encoding of

T , and pSAT , the parameterized suffix array for T , the construct algorithm can be used to

construct the pLCP and permuted-pLCP arrays in O(n) time.
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Theorem 3.4.9. Given an n-length p-string T , prevT = prev(T ), pSAT , Q1 = T [1...n −

1]$1, Q2 = T [1...n − 1]R$2, Q = Q1 ◦ Q2, prevT1 = prev(Q1), prevT2 = prev(Q2), and

pSAQ, the pLneF , pLrF , and pLF data structures are each constructed in O(n) time.

Theorem 3.4.10. Given an n-length p-string T , prevT = prev(T ), the prev encoding of T ,

and pSAT , the parameterized suffix array for T , the algorithm compute p-border computes

the p-border array in O(n) expected time.

3.2 Background / Related Work

Baker [12] identifies three types of pattern matching: (1) exact matching, (2) parame-

terized matching (p-match), and (3) matching with modifications. The p-match generalizes

exact matching by using a parameterized string (p-string) composed of symbols from a con-

stant symbol alphabet Σ and a parameter alphabet Π. A p-match exists between a pair of

p-strings S and T of length n when (1) the constant symbols σ ∈ Σ match and (2) there

exists a bijection of parameter symbols π ∈ Π between the p-strings. The first p-match

breakthroughs, namely, the prev encoding and the parameterized suffix tree (p-suffix tree)

were introduced by Baker [11]. The p-suffix tree construction time was improved by Baker

in [13]. Other contributions in the area of parameterized suffix trees include the improved

construction in [65] and the randomized algorithms in [31, 67, 68]. Like the traditional

suffix tree [47, 87, 1], the p-suffix tree [11] implementation suffers from a large memory foot-

print. Other solutions that address the p-match problem without the space limitations of

the p-suffix tree include the parameterized-KMP [6] and parameterized-BM [14], variants

of traditional pattern matching approaches. Idury et al. [56] studied the multiple p-match

problem using an automaton and a structure that is now referred to as the parameterized-

border (p-border) array. In [54, 55], I et al. studied how to verify whether a given array

is a valid p-border array. The parameterized suffix array (p-suffix array) and the parame-

terized longest common prefix (pLCP ) array combination is analogous to the suffix array

and LCP array for traditional strings [72, 47, 87, 1], which is both time and space efficient

for pattern matching. Direct p-suffix array and pLCP construction was first introduced by

Deguchi et al. [40] for binary strings, which required O(n) work. Deguchi and colleagues
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[53] later proposed the first approach to p-suffix sorting and pLCP construction with an

arbitrary alphabet size theoretically requiring O(n2) time in the worst case. We introduce

new algorithms in [21, 16] to p-suffix sort in linear time on average using coding methods

from information theory. In [21], we introduce improved theoretical worst case algorithms

for p-suffix sorting based on arithmetic coding techniques.

Table 3.1: Data structures for string W = AAABABAB$
i SA[i] W [SA[i]...n] LCP [i] W [i...n] permuted-LCP [i] LPF [i] LPnrF [i] LPnF [i]

1 9 $ 0 AAABABAB$ 0 0 0 0
2 1 AAABABAB$ 0 AABABAB$ 2 2 1 1
3 2 AABABAB$ 2 ABABAB$ 4 1 1 1
4 7 AB$ 1 BABAB$ 3 0 0 0
5 5 ABAB$ 2 ABAB$ 2 4 1 2
6 3 ABABAB$ 4 BAB$ 1 3 2 2
7 8 B$ 0 AB$ 1 2 2 2
8 6 BAB$ 1 B$ 0 1 1 1
9 4 BABAB$ 3 $ 0 0 0 0

In this research, we look at auxiliary data structures constructed from the suffix array.

In a novel application of the suffix array and the corresponding LCP array, Crochemore

and Ilie [35] introduced the longest previous factor (LPF ) problem for traditional strings.

Table 3.1 shows an example of the LPF array and related data structures for a short sequence

W = AAABABAB$. For any suffix u beginning at index i in string W , the LPF problem is

to identify the exact matching longest factor between u and another suffix v starting prior to

index i in W . We note that this definition is similar to (though not the same as) the Prior

array used in [47]. Crochemore and Ilie [35] exploited the notion that the nearby elements

within a suffix array are closely related en route to proposing a linear time solution to the

LPF problem. They also proposed another linear time algorithm to compute the LPF

array by using the LCP structure. In [38, 37], Crochemore and colleagues extended their

ideas related to the LPF data structure to propose new problems regarding various types

of previous factors in a string. Some of these variations observe reverse factors, which is the

case with the longest previous non-overlapping reverse factor (LPnrF ) data structure. The

LPnrF data structure stores, for each suffix at position i, the length of the longest reverse

factor occurring before index i in the string W . The longest previous reverse factor (LPrF )

and the longest previous non-overlapping factor (LPnF ) are other variants of the LPF array

studied in [37]. The significance of an efficient construction of the LPF data structure is
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the ability to simplify computations in various string analysis procedures. Typical examples

include computing the Lempel-Ziv factorization [100, 36], which is fundamental in string

compression algorithms such as the UNIX gzip utility [47, 87] and in algorithms for detecting

repeats in a string [70].

We extend the LPF data structure by generalizing the problem for p-strings with the

parameterized longest previous factor pLPF data structure proposed in [19]. The work in

[19] also constructs the pLCP , traditional LPF , and traditional LCP data structures in

linear time. The solutions in [19] are the first theoretical linear time claims that address the

pLCP array construction. In this research, we consider the pLPF construction to serve as

a foundation for popular data structures such as LPF , LCP , pLCP , and the border and

p-border arrays in addition to our newly proposed variations of the longest factor problem.

Our motivation to further study longest factor problems in terms of p-strings is the power

of parameterization to provide data structures for p-string applications and also address

problems for traditional strings.

3.3 Parameterized LPF

3.3.1 Preprocessing

Before developing the parameterized longest previous factor (pLPF ) data structure, we

begin by identifying the preprocessing involved. The intermediate data structures prepro-

cessed assist with the efficient construction of the pLPF data structure. Intuitively, the act

of finding a longest previous factor demands that we oracle a few “candidate” factors. As

with [35, 38, 37], the suffix array is used to efficiently find such factors for traditional strings.

Crochemore and Ilie [35] efficiently solve the LPF problem for a traditional n-length string

W by exploiting the properties of the suffix array SA. They construct the arrays prev<[1...n]

and prev>[1...n], which for each i in W store the suffix h < i respectively preceding and suc-

ceeding the suffix i in SA; when no such suffix exists, the element is denoted by −1. The

conceptual idea to compute the prev< and prev> arrays in linear time via deletions in a

doubly linked list of the SA was suggested in [35]. We provide the preprocessing required in
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Algorithm 3-1. Preprocessing algorithm for before< and before> arrays
1 int [ ] preprocess1( int SA[ n ] , int d) {
2 int q [ n ] , i
3 Node* ptr [ n ]
4 init( )
5 insert(−1)
6 for ( i = 1 to n)
7 ptr [SA[ i ] ] = insert(SA[ i ] )
8 insert(−1)
9 for ( i = n to 1) {

10 switch (d){
11 case BEFORE< : q [ i ] = ptr [ i ]−>previous−>su f
12 break
13 case BEFORE> : q [ i ] = ptr [ i ]−>next−>su f
14 break
15 }delete( ptr [ i ] )
16 }clear( )
17 return q
18 }

Algorithm 3-1.

It is apparent from Definition 2.1.11 that p-suffixes are different from traditional suffixes

due to the prev encoding. Later, we will clearly identify the specific challenges introduced

because of the prev encoding of Definition 2.1.4. At this stage, however, it is important to

observe that the computations of these “candidate” factors prev< and prev> do not depend

on the individual symbols and rather, only depend on the location of the factor in the string.

Thus, we can also use a p-suffix array to find these factors for p-strings using Algorithm 3-

1. Furthermore, we will refer to prev< and prev> respectively as before< and before>

(identified by readable constants BEFORE< and BEFORE>), in order to avoid confusion

with the prev encoding for p-strings. Table 3.2 displays a general example of the before<

and before> arrays.

3.3.2 Construction

The parameterized longest previous factor (pLPF ) (Definition 2.1.16) was originally defined

in [19]. In the following, we define the pLPF in terms of the before< and before> arrays.

Definition 3.3.1 Parameterized longest previous factor (pLPF ): For a p-string T
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of length n, the pLPF array is defined for each index 1 ≤ i ≤ n to store the length of

the longest factor between a p-suffix and a previous p-suffix occurring in T . In addition to

Definition 2.1.16, we define pLPF [i] = max({0}∪{k | prev(T [i...n]) =k prev(T [h...n]), 1 ≤

h < i}) = max{plcp(i, before<[i], T ), plcp(i, before>[i], T )}.

Constructing the pLPF array requires that we deal with p-suffixes, which are suffixes

encoded with prev. This task is more demanding than the LPF for traditional strings be-

cause Lemma 2.1.10 indicates that we cannot guarantee the individual suffixes of a single

prev encoding to be p-suffixes. Thus, the changing nature of the prev encoding poses a

major challenge to efficient and correct construction of the pLPF array using current algo-

rithms that construct the LPF array for traditional strings. Consider the n-length p-string

T = AAAwBxyyAAAzwwB$ where Σ = {A,B,C} and Π = {a, b, c, v, w, x, y, z}. The suffix

at i = 7 is T [i...n] = yyAAAzwwB$ and the suffix at j = i+1 = 8 is T [j...n] = yAAAzwwB$.

The p-suffix at index i is prev(T [i...n]) = prev(yyAAAzwwB$) = 01AAA001B$ and

the p-suffix at index j is prev(T [j...n]) = prev(yAAAzwwB$) = 0AAA001B$. Notice

the relationship between the traditional suffixes since T [i...n] = T [i] ◦ T [j...n] whereas

for p-suffixes, it is the case that prev(T [i...n]) 6= prev(T [i]) ◦ prev(T [j...n]) and even

prev(T [i...n]) 6= prev(T [i...n])[1] ◦ prev(T [j...n]). The fact that we cannot exploit the prop-

erty of relating suffixes complicates p-string problems.

Table 3.2 shows the pLPF for T = AAAwBxyyAAAzwwB$. We note the intricacies of

Lemma 2.1.10 since simply using the traditional LPF construction does not result in the

correct pLPF array: (1) LPFT = {0, 2, 1, 0, 0, 0, 0, 1, 3, 2, 1, 0, 1, 2, 1, 0}, (2) LPFprev(T ) =

{0, 2, 1, 0, 0, 1, 1, 0, 4, 3, 2, 1, 0, 1, 1, 0}, and (3) LPFforw(T ) = {0, 2, 1, 0, 0, 0, 0, 1, 3, 2, 1, 3, 2, 1, 1, 0}.

Essentially, Lemma 2.1.10 demands that we individually handle p-suffixes in a way differing

from the approach for traditional suffixes used in LPF construction.

Given the before< and before> arrays, the element LPF [i] of the traditional LPF is sim-

ply the maximum q between W [i...n] =q W [before<[i]...n] and W [i...n] =q W [before>[i]...n].

The magic of a linear time solution to constructing the LPF array is achieved through the

computation of an element by extending the previous element, more formally LPF [i] ≥

LPF [i − 1] − 1, which is a variant of the extension property used in LCP construction
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Table 3.2: pLPF calculation for p-string T = AAAwBxyyAAAzwwB$
i pSA[i] pLCP [i] prev(T [pSA[i]...n]) before<[pSA[i]] before>[pSA[i]] pLPF [i]

1 16 0 $ -1 6 0
2 6 0 001AAA001B$ -1 4 2
3 12 3 001B$ 6 7 1
4 7 1 01AAA001B$ 6 4 0
5 13 2 01B$ 7 8 0
6 8 1 0AAA001B$ 7 4 1
7 14 1 0B$ 8 4 1
8 4 2 0B001AAA091B$ -1 3 1
9 11 0 A001B$ 4 3 4
10 3 2 A0B001AAA091B$ -1 2 3
11 10 1 AA001B$ 3 2 2
12 2 3 AA0B001AAA091B$ -1 1 3
13 9 2 AAA001B$ 2 1 2
14 1 4 AAA0B001AAA091B$ -1 -1 2
15 15 0 B$ 1 5 1
16 5 1 B001AAA001B$ 1 -1 0

proven by Kasai et al. [61]. We prove that this same property holds for the pLPF prob-

lem defined on p-strings. The proof assumes that p-strings follow Figure 1(a) in [19] (for

the n-length p-string S, if S[x] = S[i] = S[y] and S[x...n] ≺ S[i...n] ≺ S[y...n] then

S[x+ 1...n] ≺ S[i+ 1...n] ≺ S[y + 1...n] with 1 ≤ x < n, 1 ≤ i < n, 1 ≤ y < n).

Lemma 3.3.2 The pLPF for a p-string T of length n is such that pLPF [i] ≥ pLPF [i−1]−1

with 1 < i ≤ n.

Proof Consider pLPF [i] at i = 1 by which Definition 3.3.1 requires that we find a previous

factor at 1 ≤ h < 1 that does not exist; i.e., pLPF [1] = 0. At i = 2, indeed pLPF [2] ≥

pLPF [1]− 1 = −1 is clearly true for all succeeding elements in which a previous factor does

not exist. For arbitrary i = j with 1 < j < n, suppose that the maximum length factor is

at g < j and without loss of generality, consider that the first q ≥ 2 symbols match so that

prev(T [j...n]) =q prev(T [g...n]). Thus, pLPF [j] = q. Shifting the computation to i = j+1,

we lose the symbols prev(T [j]) and prev(T [g]) in the p-suffixes at j and g respectively. By

Theorem 2.1.9, prev(T [j...j + q − 1]) = prev(T [g...g + q − 1]) ⇒ prev(T [j]) = prev(T [g])

and as a consequence of the prev encoding in Definition 2.1.4 we have prev(T [i...n]) =q−1

prev(T [g+ 1...n]). Since we can guarantee that ∃ a factor with (q− 1) symbols for pLPF [i]

or possibly find another factor at h with 1 ≤ h < i matching q or more symbols, the lemma

holds. 2
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Algorithm 3-2. pLPF computation
1 int [ ] compute pLPF(char T[ n ] , int pSA [ n ] ) {
2 return construct(preprocess1(pSA ,BEFORE< ) ,preprocess1(pSA ,BEFORE> ) ,
3 prev(T) ,prev(T) )
4 }

Algorithm 3-3. General construction
1 boolean extend=true
2 int [ ] construct( int ar r 1 [ n ] , int ar r 2 [ n ] , int prevT1 [ n ] , int prevT2 [ n ] ) {
3 int z [ n ] , z1=0, z2=0, i , j =0, k=0
4 for ( i = 1 to n) {
5 i f ( extend ) {
6 j = max{0 , z1−1} , k = max{0 , z2−1}
7 /* see [19] f o r a d d i t i o n a l d e t a i l s */
8 } i f ( a r r 1 6= null ) z1 = Λ( i , a r r 1 [ i ] , j , prevT1 , prevT2 )
9 i f ( a r r 2 6= null ) z2 = Λ( i , a r r 2 [ i ] , k , prevT1 , prevT2 )

10 z [ i ] = max{z1 , z2}
11 }return z
12 }

Algorithm 3-4. p-matcher function Λ
1 int Λ( int a , int b , int q , int prevT1 [ n ] , int prevT2 [ n ] ) {
2 boolean c = true
3 int x , y
4 i f (b = −1) return 0
5 while ( c ∧ ( a+q ) ≤ n ∧ (b+q ) ≤ n) {
6 x = prevT1 [ a+q ] , y = prevT2 [ b+q ]
7 i f (in(x , Σ) ∧ in(y , Σ) ){
8 i f ( x = y ) q++
9 else c = fa l se

10 } else i f (in(x ,Z) ∧ in(y ,Z ) ){
11 i f ( q < x ) x = 0
12 i f ( q < y ) y = 0
13 i f ( x = y ) q++
14 else c = fa l se
15 } else c = fa l se
16 }return q
17 }
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At this point, we identify that the individual extensions of the p-matches prev(T [i...n]) =j

prev(T [before<[i]...n]) and prev(T [i...n]) =k prev(T [before>[i]...n]) for sequential i and

some j > 0 and k > 0 require special consideration from the Ω function details in our re-

search [19]. As noted earlier in this chapter, we assume the most common case of p-strings

where p-suffixes are classified by Figure 1(a) of [19], in which the lexicographical relation-

ship between p-suffixes is like that of traditional suffixes; we note that Lemma 3.3.2 would

change slightly if the other relationships are considered. A straightforward implementation

of the details in [19] will extend this to support all classifications. As a result, Lemma 3.3.2

permits us to adapt the basic algorithm compute LPF given in [35] for our pLPF problem by

extending the solution to incorporate the dynamic matching of p-suffixes. In [19], we pro-

vide the construction of the pLPF data structure by comparing both “candidate” p-suffixes

using data from the same prev encoding. Since we will be looking at a multitude of pLPF

variations in this research, we give a more generalized pLPF solution here that compares

“candidate” p-suffixes on two separate, individual prev encodings. In [19], we take advan-

tage of the fact that we can reuse the same prev encoding during the construction of the

pLPF array. Extending the algorithm to use individual prev encodings does not change the

behavior of the algorithm and rather, it gives us the extra flexibility to perform the same

type of construction on parallel prev encodings. The compute pLPF in Algorithm 3-2 shows

how to correctly perform the preprocessing of before< and before> via Algorithm 3-1 and

call the construction routine in Algorithm 3-3. This construction routine makes use of the

p-matcher Λ in Algorithm 3-4 to properly handle the sophisticated matching of p-suffixes,

the dynamic suffixes under the prev encoding.

The main difference between our pLPF solution and the traditional LPF solution in

[35] is the actual pattern matching performed. For the pLPF , the p-suffixes must be p-

matched as formalized in Definition 2.1.3. The role of Λ is to extend the matches between

the p-suffix at a, constructed from the prevT1 parameter, and at b, constructed from the

prevT2 parameter, beyond the initial q symbols by directly comparing constant/terminal

symbols and comparing the dynamically adjusted parameter encodings for each p-suffix. For

example, consider prevT1 = prevT2 = prev(T ). Then, the compared symbols at position

(q + 1) in the p-suffixes prev(T [a...n]) and prev(T [b...n]) are adjusted to 0 when they are
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either already 0, i.e. prevT1[a+ q] = 0 or prevT2[b+ q] = 0, or the symbol at prevT1[a+ q] or

prevT2[b+q] encodes the distance to the previous occurrence of a parameter before the initial

symbol of the p-suffix a or b in T , i.e. the compared symbols are the first occurrences of that

parameter in the p-suffix. Otherwise, the compared parameter symbols are simply encoded

to prevT1[a+ q] and prevT2[b+ q], signifying that the parameters have a previous occurrence

in the p-suffix. See [21, 16] for an extended discussion and proof on the relationship between

p-suffixes. Nonetheless, this dynamic adjusting does not add to the theoretical complexity

of the algorithm.

Theorem 3.3.3 Given an n-length p-string T , prevT = prev(T ), the prev encoding of T ,

and pSAT , the parameterized suffix array for T , the algorithm compute pLPF constructs the

pLPF array in O(n) time.

Proof It follows from Lemma 3.3.2 that compute pLPF exploits the properties of pLPF to

correctly compute and extend factors. Computing the arrays before< and before> clearly

require O(n) processing via Algorithm 3-1. What remains now is to show that, starting

with the call in Algorithm 3-2 between Algorithm 3-3 and Algorithm 3-4, the total number

of times that the body of the while loop (lines 6-15 in Algorithm 3-4) will be executed is

in O(n). Let prevT1 = prevT2 = prevT . The number of iterations of the while loop is

given by the number of symbols matched between prevT1 and prevT2, namely the number

of increments of the variable q, which identifies the shift required to compare the current

symbol. Without loss of generality, suppose that the initial p-suffix at position a retrieved

from prevT1 and at position b retrieved from prevT2 are the longest p-suffixes at positions 1

and 2 in T of lengths n and (n−1), respectively. In the worst case, (n−1) of the symbols will

match between these p-suffixes and each comparison, which clearly requires O(1) work, will

increment q. Lemma 3.3.2 indicates that succeeding calculations, or calls to Λ, already match

at least (q− 1) symbols that are not rematched and rather, the match is extended. Since the

decreasing lengths of the succeeding p-suffixes at 3, 4, ..., n cannot extend the current q, no

further matching or increments of q are needed. Hence, the while loop iterates a total of

O(n) times amortized across all of the n iterations of the for loop in Algorithm 3-3. Thus,

the total work is O(n). 2
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Our algorithm compute pLPF is motivated by the compute LPF algorithm in [35]. We

also observe that similar pattern matching mechanisms as the one used between the for loop

in Algorithm 3-3 and the while loop in Algorithm 3-4 exist in standard string processing,

for example in computing the border array discussed in [87].

3.3.3 A Taxonomy for Longest Factor Problems

The construction algorithm for the pLPF data structure that we provide is very powerful.

In the future sections of this chapter, we show how to use this very construction to approach

various significant and other newly proposed data structures. Influenced by the variants

of the LPF discussed in [38, 37], we take longest factor problems to a more theoretical

level by introducing a class of problems referred to as “longest factor symbol comparison

problems” and appropriately identify the subclasses. This discussion is aimed to show how

we may “reuse” the pLPF construction. By no means is this section a complete compilation

of thoughts and theory on the classes and subclasses of longest factor problems, which is

additional research beyond the scope of this work. Instead, we provide the first true look at

longest factor problems in terms of classes and identify types of problems that can be solved

by our pLPF construction.

A longest factor symbol comparison problem, or longest factor problem for short, pro-

duces a data structure d on the n-length text T , where each d[i] stores the maximum number

of symbols (longest factor) common between T [i...n] and some other suffix in T . Without

loss of generality, these problems can be defined for p-strings or traditional strings. We say

that problems like the pLPF with the property of Lemma 3.3.2 have the extension property.

See Definition 3.3.4 for a more formal description of the property.

Definition 3.3.4 Extension property: Let p be a longest factor problem yielding the

data structure d on the n-length T . Let y = max{0, d[i − 1] − 1} and some J ≥ y. If each

d[i] = max{y,J }, the y symbols at d[i − 1] are first considered in the answer d[i] until the

true solution J is found, and d[i] ≥ d[i − 1] − 1 for all possible d and 1 < i ≤ n, then we

say that problem p has the extension property.

Considering all of the p-suffix classifications in [19] will slightly modify this property. We
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identify that problems possessing the extension property may be of two main classes: (1) with

restrictions or (2) without restrictions. Specifically, longest factor problems with restrictions

may have a requirement on perhaps the location of the match. The way in which these

restrictions are handled create the additional subclasses of problems: (type-1) pre-satisfied

with the preprocessing of arrays, (type-2) post-satisfied requiring additional verification and

work afterwards, or (type-3) both pre-satisfied and post-satisfied. We do not consider type-2

problems since they do not take advantage of preprocessing.

Problems like the pLPF are said to have type-1 pre-satisfied restrictions since the before<

and before> arrays handle the only restriction that the longest factor precede the suffix in

question within the p-string. In other words, after the execution of the construct routine

in Algorithm 3-3, there is no real additional work required since all of the restrictions are

handled beforehand. Examples of new data structures that we introduce which fit this

scheme include the pLneF and pLrF .

Consider for example a problem like the longest previous non-overlapping factor (LPnF )

in [38, 37]. We can view this problem as satisfying restrictions by either type-1 or type-3.

More specifically, the LPnF problem requires that the longest factor precede the suffix at

position i in the string and also, this match must not overlap the suffix at i. In this case, we

can easily pre-satisfy the restriction that a “candidate” suffix occurs beforehand however,

the fact that the match must be both the longest and not-overlap the suffix at i will require

more sophisticated preprocessing as in [38, 37]. We can view this problem in terms of either

type-1 preprocessing [38, 37] or a type-3 mixture of preprocessing and postprocessing. By

observing the LPnF as a type-3 problem, we can preprocess “candidate” suffixes to check and

afterwards, decide if they meet the non-overlapping criteria and re-evaluate where necessary.

We view LCP -related data structures in this way.

By utilizing preprocessed arrays in the same way as used by the pLPF construction, it

is possible to solve longest factor problems possessing the extension property with type-1

pre-satisfied restrictions simply using Algorithms 3-3 and 3-4.

Proposition 3.3.5 Let p be a longest factor problem satisfying the extension property. Fur-

ther, let p be in a class of problems with type-1 pre-satisfied restrictions similar in form to
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the pLPF preprocessed arrays, which pre-satisfy the restrictions of the pLPF problem. If the

preprocessed arrays are constructed in linear time, then p can be solved in linear time with

Algorithm 3-3 and Algorithm 3-4, the same construction routines as the pLPF problem.

Proof Algorithm 3-3 and Algorithm 3-4 clearly implement the extension property in Def-

inition 3.3.4. Further, the algorithms compute a longest factor with preprocessed arrays

to pre-satisfy restrictions. Since p is a type-1 pre-satisfied restriction problem with the ex-

tension property, the algorithms will compute p given the correct preprocessed arrays. It

follows from Theorem 3.3.3 that Algorithms 3-3 and 3-4 execute in linear time given that

the preprocessed arrays are constructed in linear time. 2

Similar in nature to Proposition 3.3.5, we can prove that any type-3 longest factor prob-

lem, satisfying conditions with both preprocessing and postprocessing, is solved in linear

time given that the preprocessing and postprocessing execute in linear time. In passing, we

briefly mention that our pLPF construction can solve various other p-matching problems

by setting extend =false in Algorithm 3-3. (These problems can be grouped into a sepa-

rate classification within the taxonomy.) We use this technique to construct the p-border

array. Throughout the remainder of this chapter, we consider variations of the pLPF data

structure that can be addressed with the pLPF construction algorithm.

3.4 Variations on a Theme - Parameterized Strings

Our taxonomy of longest factor problems provides a way to view these problems in groups

or classes. In terms of the pLPF problem, such a classification gives insight into a group

of related problems that may be solved with the same general framework. Earlier in the

chapter, we discussed the capability to solve related variations of the pLPF array with the

same construction algorithm. This was formalized in Proposition 3.3.5. In this section,

we construct popular p-string data structures (such as the pLCP and the p-border array)

and newly proposed data structures defined for p-strings with the same framework used to

construct the pLPF array. Note that throughout this section, we are able to dynamically

and efficiently construct all p-suffixes from prevT = prev(T ), as utilized in the construction
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of the pLPF array (see the p-matcher Λ in Algorithm 3-4). For flow of discussion and

clarity, where appropriate, we choose to simply represent these dynamically constructed p-

suffixes by the suffix under the prev encoding, i.e. prev(T [i...n]), rather than rehashing the

relationship between prevT = prev(T ) and the individual p-suffixes prev(T [i...n]).

3.4.1 Preprocessing

The preprocessing used by the algorithms throughout this chapter is handled by Algo-

rithm 3-5. Since the preprocessing does not depend on the individual symbols of a string, we

may use this algorithm for either traditional strings or p-strings. So, the following discussion

applies to both p-strings with the pSA and traditional strings with SA. The algorithm is

used by providing a suffix array SA for a string (or alternatively a p-suffix array pSA for a

p-string) and the constant d representing the array to construct (see the constants later). Al-

gorithm 3-5 has the ability to construct each of the following preprocessed arrays: before<,

before>, after<, after>, neq<, neq>, rev<, and rev>. In the algorithm, each of these arrays

are identified by the respective readable constants BEFORE<, BEFORE>, AFTER<,

AFTER>, NEQ<, NEQ>, REV<, and REV>. A trivial analysis of the algorithm given a

valid suffix array will prove that any of these arrays are clearly computed in time linear to

the length of the string.

Now, we briefly discuss the makeup of each array given an n-length string T . The before<

and before> arrays were previously discussed in this research (see the example in Table 3.2)

since they play a significant role in our computation of the pLPF data structure. Recall

that before< and before> store a list for each index i in T of the lexicographically closest

suffixes before i in T ; if no such index exists, this is signified in the array by −1. In the case

of before<, when we say lexicographically closest, we are referring to such a suffix at h with

h < i that precedes the location of i in the SA. Similarly, when we say lexicographically

closest in the case of before>, we are referring to a suffix at h < i that succeeds the location

of i in SA. All of the arrays share the form X< and X> where the subscript determines if the

array refers to indices that precede or succeed the element in terms of the SA. The after<

and after> arrays are defined exactly the same as before< and before> respectively, except
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that we are reporting the suffix j after i, namely j > i. The following arrays are slightly

different. The neq< and neq> arrays relax the conditions regarding the index of the suffix

and instead, simply store a list of the preceding and succeeding suffixes in the SA. The rev<

and rev> arrays store the indices of a suffix in T [n− 1]...T [2]T [1]$ that is lexicographically

closest to a suffix in T . Table 3.3 provides a basic example of these arrays.

Table 3.3: Preprocessed arrays for p-string T = AAAwBxyyAAAzwwB$
i pSA[i] after<[pSA[i]] after>[pSA[i]] neq<[pSA[i]] neq>[pSA[i]] rev<[pSA[i]] rev>[pSA[i]]

1 16 -1 -1 -1 6 -1 1
2 6 16 12 16 12 1 14
3 12 16 13 6 7 1 14
4 7 12 13 12 13 9 5
5 13 16 14 7 8 9 5
6 8 13 14 13 14 5 13
7 14 16 15 8 4 13 7
8 4 14 11 14 11 13 7
9 11 14 15 4 3 2 10
10 3 11 10 11 10 10 3
11 10 11 15 3 2 3 11
12 2 10 9 10 9 11 4
13 9 10 15 2 1 4 12
14 1 9 15 9 15 12 16
15 15 16 -1 1 5 12 16
16 5 15 -1 15 -1 12 16

3.4.2 Parameterized LCP and Permuted Parameterized LCP

In this section, we identify the connection between the pLCP and the pLPF . We show a

construction of the pLCP (identified by the readable constant PLCP ) and propose/construct

the permuted-pLCP array (identified by constant PERMUTED PLCP ), a permuted-LCP

array for p-strings.

It was discovered in [61] that the LCP data structure for a traditional n-length string

W may be computed in linear time by extending each element of the array in the order

that the suffixes appear in the string. More specifically, each element at index i of the

LCP array is defined of neighboring suffixes, i.e. the suffixes at i and i − 1 for i > 1

in the suffix array SA. This means that the elements of the LCP array are defined in

same order as the SA. However, since the suffixes of a string are related, Kasai et al. [61]

identified that the following property holds: LCP [R[i]] ≥ LCP [R[i − 1]] − 1 for i > 1

where R is the rank array, the inverse of the SA. This is the very same relationship that

we term as the extension property in Definition 3.3.4. Rather than constructing the LCP

array elements in order LCP [1], LCP [2], ..., LCP [n], it is advantageous to reuse comparisons
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Algorithm 3-5. Preprocessing algorithm
1 int [ ] preprocess( int SA[ h ] , int n , int d) {
2 int q [ n ] , i , j = 1 , c = −1, s = 1 , e = h
3 Node * ptr [ h ]
4 i f (d = BEFORE< ∨ d = BEFORE> )
5 q = preprocess1(SA, d)
6 else i f (d = REV< ∨ d = REV> ){
7 i f (d = REV> ) {
8 s = h
9 e = 1

10 } for ( i = s to e ) {
11 i f (SA[ i ] > n)
12 c = SA[ i ] − n
13 else
14 q [SA[ i ] ] = c
15 }
16 } else {
17 init( )
18 insert(−1)
19 for ( i = 1 to h)
20 ptr [SA[ i ] ] = insert(SA[ i ] )
21 insert(−1)
22 for ( i = h to 1) {
23 switch (d) {
24 case AFTER< :
25 q [ j ] = ptr [ j ]−>previous−>su f
26 delete( ptr [ j ++])
27 break
28 case AFTER> :
29 q [ j ] = ptr [ j ]−>next−>su f
30 delete( ptr [ j ++])
31 break
32 case NEQ< :
33 q [ i ] = ptr [ i ]−>previous−>su f
34 break
35 case NEQ> :
36 q [ i ] = ptr [ i ]−>next−>su f
37 break
38 }
39 }clear( )
40 }return q
41 }
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at previous stages by constructing adjacent elements in the order that they appear in the

string: LCP [R[1]], LCP [R[2]], ..., LCP [R[n]]. This particular ordering was later defined as

the permuted-LCP data structure in [59]. Earlier, we defined the traditional permuted-

LCP in Definition 2.1.14. Now, we are the first to define the analogous permuted-pLCP

data structure for p-strings.

Definition 3.4.1 Permuted parameterized longest common prefix (permuted-pLCP )

array: The permuted-pLCP array for a p-string T of length n stores the length of the

parameterized longest common prefix of neighboring p-suffixes in the order that they ap-

pear in T . More formally, permuted-pLCP [i] = pLCP [R[i]] or alternatively, permuted-

pLCP [pSA[i]] = pLCP [i], 1 ≤ i ≤ n.

In retrospect, Kasai et al. [61] actually constructed the LCP array by filling in elements

as they appear in the permuted-LCP array. Deguchi et al. [53, 40] studied the problem

of constructing the pLCP array given the pSA. They showed a construction algorithm to

compute the pLCP array via a non-trivial modification of the traditional LCP construction

by Kasai et al. [61] that executes theoretically in O(n2) time. By reusing the same construct

algorithm used by our compute pLPF routine, we introduce a way to construct the pLCP

array in linear time. This linear time construction is possible because of two key observations.

First, the p-matcher Λ in Algorithm 3-4 shows how we can reuse elements from a single

encoding prev(T ) to access the individual symbols of the dynamically changing p-suffixes.

Second, by Proposition 3.3.5, if we can view the permuted-LCP and also, the permuted-

pLCP data structure as a longest factor problem with type-1 pre-satisfied restrictions, then

we can construct the data structure in linear time.

In terms of the pre-satisfied conditions, we can mirror the array construction used by the

compute pLPF algorithm. The only true difference is in the content of the arrays. Consider

the arrays before<, which for each i in the p-string T stores the p-suffix h < i positioned

prior to the p-suffix i in pSA, and after<, which for each i in T stores the p-suffix j > i also

positioned prior to the p-suffix i in pSA. Since h and j are both positioned prior to i in pSA,

we can guarantee that either h or j must be the nearest neighbor to i. So, the maximum factor

determines the nearest neighbor and thus, the element pLCP [R[i]] or permuted-pLCP [i] is

constructed – no additional restrictions are needed on the way that the longest factors are

found. Rather, we only need to transition the array from the permuted-pLCP to the pLCP .

From Definition 3.4.1, this transition is accomplished with a simple linear time reordering
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Algorithm 3-6. pLCP and permuted-pLCP computations
1 int [ ] compute pLCP1(char T[ n ] , int pSA [ n ] , int d) {
2 int pLCP[ n ] , X[ n ] , Y[ n ] , R[ n ] , prevT [ n]=prev(T) , i
3 for ( i = 1 to n)
4 R[ pSA [ i ] ] = i
5 X = construct(preprocess(pSA, n ,BEFORE< ) , null , prevT , prevT )
6 Y = construct(preprocess(pSA, n ,AFTER< ) , null , prevT , prevT )
7 for ( i = 1 to n) {
8 switch (d){
9 case PERMUTED PLCP:

10 pLCP[ i ] = max{X[ i ] ,Y[ i ]}
11 break
12 case PLCP:
13 pLCP[R[ i ] ] = max{X[ i ] ,Y[ i ]}
14 break
15 }
16 }return pLCP
17 }

of elements. The construction of the arrays before< and after< is shown in Algorithm 3-5.

Theorem 3.4.2 proves that the pLCP and permuted-pLCP constructions can be performed

in linear time.

Theorem 3.4.2 Given an n-length p-string T , prevT = prev(T ), the prev encoding of T ,

and pSAT , the parameterized suffix array for T , the construct algorithm can be used to

construct the pLCP and permuted-pLCP arrays in O(n) time.

Proof We can clearly relax the p-suffix selection restrictions enforced by the pLPF problem

in Lemma 3.3.2 to exploit the idea of extending factors. Subsequently, only the parameters

of Algorithms 3-3 and 3-4 impose such restrictions. Let R[1...n] be the rank array represent-

ing the inverse of pSAT . Let before<[1...n] and after<[1...n] store, for all the i in T , the

p-suffixes at h < i at position R[h] in pSAT and j > i at position R[j] in pSAT , respectively,

that are positioned prior to the p-suffix i at position R[i] in pSAT ; when no such p-suffix ex-

ists, the element is denoted by −1. Let X = construct(preprocess(pSAT , n, BEFORE<),

null, prevT, prevT ) and Y = construct(preprocess(pSAT , n, AFTER<),null, prevT, prevT ).

We prove that the pLCP is constructed by the statement pLCP [R[i]] = max{X[i], Y [i]}.
The permuted-pLCP result is readily obtained from the computation. Without loss of gen-

erality, suppose that both h and j exist and 2 < i ≤ n, so we have either R[h] = R[i] − 1

or R[j] = R[i]− 1 as the neighboring p-suffix. When x = plcp(h, i, T ) and y = plcp(j, i, T )
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Algorithm 3-7. Improved pLCP and permuted-pLCP computations
1 int [ ] compute pLCP(char T[ n ] , int pSA [ n ] , int d) {
2 int pLCP[ n ] , M[ n ] , prevT [ n]=prev(T) , i
3 M[ pSA [ 1 ] ] = −1
4 for ( i = 2 to n)
5 M[ pSA [ i ] ] = pSA [ i −1]
6 M = construct(M, null , prevT , prevT )
7 switch (d){
8 case PERMUTED PLCP: return M
9 case PLCP:

10 for ( i = 1 to n)
11 pLCP[ i ] = M[ pSA [ i ] ]
12 }return pLCP
13 }

then max{x, y} distinguishes which p-suffix at h or j is closer to i, identifying the near-

est neighbor and in turn, pLCP [R[i]], which by Definition 3.4.1 is the value of permuted-

pLCP [i]. Since it is the case that X[i] = x and Y [i] = y, then it follows that permuted-

pLCP [i] = max{X[i], Y [i]}. Thus, maintaining the natural ordering of the elements yields

the permuted-pLCP . By Definition 3.4.1, a simple and clear linear time reordering of the

elements will transform the permuted-pLCP to the pLCP . Since the parameters before<

and after< are clearly computed in O(n) steps via Algorithm 3-5, the routine construct ex-

ecutes in O(n) time given a p-suffix array via Theorem 3.3.3, and the reordering of elements

is clearly linear, the theorem holds. 2

For discussion purposes, Algorithm 3-6 uses a rank array R to index with the arrays

before< and after< to determine the neighboring p-suffix. Further, notice that from Theo-

rem 3.4.2, exactly one of the elements in either before< or after< is guaranteed to be the

neighboring p-suffix. In practice, we do not need to indirectly go through the preprocessed

arrays to find the neighboring p-suffixes since this can be found trivially with a p-suffix array.

These observations are incorporated into the improved solution shown in Algorithm 3-7. The

improved solution also eliminates the need for the rank array R and similar to Algorithm 3-6,

permits the computation of the permuted-pLCP array – a direct result of the construct

method. For further improved space consumption, the implementation of Algorithm 3-7

may incorporate a variation of the LCP indexing contributions of [73]. Even though the

pLCP and permuted-pLCP data structures are defined differently from their traditional

counterparts, they are still arrays of integers. We acknowledge the possibility that these
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data structures may benefit from the other LCP contributions in [59, 80, 84, 41]. In this

research, we are strictly concerned with the relationship between the data structures. It is

apparent from Algorithm 3-7 that the pLCP and permuted-pLCP data structures are very

closely related to the pLPF array in terms of the problem, restrictions, and construction.

3.4.3 pLneF , pLrF , and pLF

Parameterized Longest Not-Equal Factor

Consider the n-length p-string T = AAAwBAAy$. In the case that we want to find

the longest p-match or duplication within the p-string, we can view the problem naturally

as a longest factor problem. Suppose that we wish to find the longest factor in common

with the p-suffix prev(T [6...n]) = AA0$, not including the p-suffix itself. Exhaustively, we

find that the length of the longest factor is 3, since it is the case that the longest factor

is at index 2 and prev(T [2...n]) = AA0BAA0$ =3 AA0$ = prev(T [6...n]). We define this

particular problem as the parameterized longest not-equal factor (pLneF ).

Definition 3.4.3 Parameterized longest not-equal factor (pLneF ): For an n-length

p-string T , the pLneF is defined for each index 1 ≤ i ≤ n such that pLneF [i] = max({0} ∪
{k | prev([i...n]) =k prev(T [j...n]), 1 ≤ j ≤ n, i 6= j}) = max{plcp(i, neq<[i], T ),

plcp(i, neq>[i], T )}.

Similar to the other variants in this chapter, the pLneF data structure has much in

common with the pLPF array and may be computed with the same construction algorithm.

A general example is given in Table 3.4. As shown in Definition 3.4.3, the pLneF data

structure is defined in terms of the preprocessed arrays neq< and neq>, which for each

position i in the p-string, respectively store the lexicographically closest p-suffix preceding

and succeeding i. These preprocessed arrays handle all of the restrictions of the pLneF

problem in a similar fashion as the pLPF . Lemma 3.4.4 proves that the pLneF array is

constructed in linear time with the same construction algorithm used for the pLPF array.

Algorithm 3-8 displays this computation.

Lemma 3.4.4 Given an n-length p-string T , prevT = prev(T ), and pSAT , the param-

eterized suffix array for T , the algorithm construct computes the pLneF array in O(n)

time.
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Algorithm 3-8. pLneF computation
1 int [ ] compute pLneF(char T[ n ] , int pSA [ n ] ) {
2 return construct(preprocess(pSA ,n ,NEQ< ) ,preprocess(pSA ,n ,NEQ> ) ,
3 prev(T) ,prev(T) )
4 }

Proof It is clear that the pLneF problem is a type of longest factor problem. Let prevT1 =

prevT2 = prevT . Suppose that pLneF [a] = u > 0 is known and pLneF [b] is unknown

for any a ≥ 1 with b = a + 1 ≤ n, then pLneF [a] = max({c, d | prev(T [a...n]) =c

prev(T [neq<[a]...n]), prev(T [a...n]) =d prev(T [neq>[a]...n])}) = u. Consequently, pLneF [b] =

pLneF [a + 1] = max({c, d | prev(T [a + 1...n]) =c prev(T [neq<[a + 1]...n]), prev(T [a +

1...n]) =d prev(T [neq>[a+1]...n])}) ≥ u−1⇒ pLneF [a+1] ≥ pLneF [a]−1⇒ pLneF [b] ≥
pLneF [b− 1]− 1. Hence, the pLneF problem has the extension property in Definition 3.3.4.

Further, Definition 3.4.3 defines the pLneF problem restrictions in terms of the preprocessed

arrays neq< and neq>, which are clearly computed in O(n) time from Algorithm 3-5. Thus,

it follows from Proposition 3.3.5 that the construct routine (Algorithm 3-3) on prevT1 and

prevT2, which executes in O(n) time via Theorem 3.3.3, also computes the pLneF data

structure in O(n) time. 2

Parameterized Longest Reverse Factor

Perhaps the longest factor computation is to be considered between a p-suffix and

some reversed p-suffix in the p-string T . For example, consider the n-length p-string T =

aabayzyy$1 and in particular, the p-suffix at i = 1. The longest factor between prev(T [1...n])

and a p-suffix in the set {prev(T [1...n − 1]R$2), prev(T [1...n − 2]R$2), ..., prev(T [1]$2)} is

prev(T [1...n− 1]R$2) = 01020021$2 =8 01020021$1 = prev(T [1...n]). We define this longest

factor variant as the parameterized longest reverse factor (pLrF ) problem.

Definition 3.4.5 Parameterized longest reverse factor (pLrF ): For an n-length p-

string T , let Q1 = T [1...n − 1]$1, Q2 = T [1...n − 1]R$2, and Q = Q1 ◦ Q2. The pLrF is

defined for each index 1 ≤ i ≤ n such that pLrF [i] = max({0} ∪ {k | prev(T [i...n]) =k

prev(T [1...j]R), 1 ≤ j < n}) = max{plcp(i, rev<[i] + n,Q), plcp(i, rev>[i] + n,Q)} =

max{plcp(Q1[i...n], Q2[rev<[i]...n]), plcp(Q1[i...n], Q2[rev>[i]...n])}.
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This problem compares with the text reverse data structures in [38, 37], but is different

since we do not require the match to be overlapping or non-overlapping. A general example

is provided in Table 3.4. The pLrF problem is similar to the pLPF problem because it may

be defined through preprocessed arrays. These preprocessed arrays rev< and rev> provide

for each forward p-suffix at i in the p-string T , the index of the reverse p-suffix preceding

and succeeding i in pSAQ. Algorithm 3-5 constructs the arrays rev< and rev> by exploiting

the lexicographical closeness between the forward p-suffixes in Q1 and the reverse p-suffixes

in Q2, which are both contained in pSAQ. Notice that from Definition 3.4.5, the pLrF

problem is described in terms of preprocessed arrays in multiple ways. First, the pLrF

problem is defined by taking the plcp between the questioned p-suffix at i and the p-suffixes

at (rev<[i]+n) and (rev>[i]+n) in Q. Also, the problem is defined by the plcp between the

questioned p-suffix at i and the p-suffixes at rev<[i] and rev>[i] in Q1 and Q2, respectively.

These definitions are the same since any plcp computation on Q or the pair Q1 and Q2 is

identical because Q[n] = $1 6= Q[y] ∀ y, n+ 1 ≤ y ≤ 2n and hence, it is guaranteed that any

plcp result, say r, is such that 0 ≤ r < n. The advantage of considering the definition of

the pLrF array in terms of rev< and rev> with the pair of p-strings Q1 and Q2 is the direct

setup of the problem to make use of the construct framework, also used to construct the

pLPF array. Lemma 3.4.6 proves that Algorithm 3-9 constructs the pLrF data structure in

linear time.

Lemma 3.4.6 Given an n-length p-string T , Q1 = T [1...n − 1]$1, Q2 = T [1...n − 1]R$2,

Q = Q1 ◦ Q2, prevT1 = prev(Q1), prevT2 = prev(Q2), and pSAQ, the parameterized suffix

array for Q, the algorithm construct computes the pLrF array in O(n) time.

Proof This proof is similar to that of Lemma 3.4.4. The pLrF problem is clearly a longest

factor problem. Algorithm 3-5 constructs the arrays rev< and rev> in O(n) time to store the

index of the lexicographically closest p-suffix of Q2 preceding and succeeding a p-suffix of

Q1 within pSAQ. These preprocessed arrays are the only restrictions of the pLrF prob-

lem in Definition 3.4.5 and hence, the pLrF problem is a longest factor problem with

pre-satisfied restrictions. Suppose that pLrF [a] = u > 0 is known and pLrF [b] is un-

known for any a ≥ 1 with b = a + 1 ≤ n, then pLrF [a] = max({c, d | prev(Q1[a...n]) =c

prev(Q2[rev<[a]...n]), prev(Q1[a...n]) =d prev(Q2[rev>[a]...n])}) = u. Consequently, pLrF [b] =

pLrF [a + 1] = max({c, d | prev(Q1[a + 1...n]) =c prev(Q2[rev<[a + 1]...n]), prev(Q1[a +

1...n]) =d prev(Q2[rev>[a + 1]...n])}) ≥ u − 1 ⇒ pLrF [a + 1] ≥ pLrF [a] − 1 ⇒ pLrF [b] ≥
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Algorithm 3-9. pLrF computation
1 int [ ] compute pLrF(char T[ n ] , int pSAQ [ |Q | ] ) {
2 return construct(preprocess(pSAQ ,n ,REV< ) ,preprocess(pSAQ ,n ,REV> ) ,
3 prev(Q1 ) ,prev(Q2 ) )
4 }

pLrF [b − 1] − 1. So, the pLrF problem has the extension property in Definition 3.3.4.

Therefore, it follows from Proposition 3.3.5 and Theorem 3.3.3 that the construct routine

(Algorithm 3-3) uses O(n) operations to compute the pLrF data structure. 2

Parameterized Longest Factor

Consider an example n-length p-string T = AabcBCxyzA$. From the surface, we may

find that the longest factor is between the p-suffix at i = 2 and the p-suffix at j = 7,

i.e. prev(T [i...n]) = 000BC000A$ =3 000A$ = prev(T [j...n]). If we analyze further, we

can find a longer factor since prev(T [1...10]$1) = A000BC000A$1 =4 A000CB000A$2 =

prev(T [1...10]R$2). In the case where we are trying to find the longest factor in a p-string,

whether that be in the forward or reverse direction, it is beneficial to observe both the

pLneF and pLrF arrays. We define this problem as the parameterized longest factor (pLF )

problem.

Definition 3.4.7 Parameterized longest factor (pLF ): For an n-length p-string T , the

pLF is defined for each index 1 ≤ i ≤ n such that pLF [i] = max({0}∪{k | prev(T [i...n]) =k

prev(T [j...n]), 1 ≤ j ≤ n, i 6= j} ∪ {k | prev(T [i...n]) =k prev(T [1...j]R), 1 ≤ j < n}) =

max{pLneF [i], pLrF [i]}.

From the definition, the pLF problem is indirectly related to the pLPF problem. This

is due to the fact that the pLF data structure is broken down into a simple computation

between elements of the pLneF and pLrF arrays, which are two longest factor arrays that we

recently computed with the same construction algorithm used for the pLPF array. See Ta-

ble 3.4 for a general example. Algorithm 3-10 constructs the pLF array and the computation

is formalized in Lemma 3.4.8.

Lemma 3.4.8 Given an n-length p-string T , prevT = prev(T ), pSAT , Q1 = T [1...n−1]$1,

Q2 = T [1...n− 1]R$2, Q = Q1 ◦Q2, prevT1 = prev(Q1), prevT2 = prev(Q2), and pSAQ, the

algorithm construct computes the pLF array in O(n) time.
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Algorithm 3-10. pLF computation
1 int [ ] compute pLF(char T[ n ] , int pSAT [ n ] , int pSAQ [ |Q | ] ) {
2 int pLF [ n ] , pLneF [ n ] , pLrF [ n ] , i
3 pLneF = compute pLneF(T, pSAT )
4 pLrF = compute pLrF(T, pSAQ )
5 for ( i = 1 to n)
6 pLF [ i ] = max{pLneF [ i ] , pLrF [ i ]}
7 return pLF
8 }

Proof The correctness and running time of the algorithm follow directly from Definition 3.4.7,

Lemma 3.4.4, and Lemma 3.4.6. 2

We summarize the foregoing results in the following theorem:

Theorem 3.4.9 Given an n-length p-string T , prevT = prev(T ), pSAT , Q1 = T [1...n −
1]$1, Q2 = T [1...n − 1]R$2, Q = Q1 ◦ Q2, prevT1 = prev(Q1), prevT2 = prev(Q2), and

pSAQ, the pLneF , pLrF , and pLF data structures are each constructed in O(n) time.

Proof The proof follows from Lemma 3.4.4, Lemma 3.4.6, and Lemma 3.4.8. 2

3.4.4 Parameterized Border Array

The p-border array [56] is a data structure that stores the length of the maximum border

between a prefix of a p-string T and a proper p-suffix of the prefix (see Definition 2.1.18).

The challenge of the problem, not involved in the traditional border array [87], is that all

prefixes and suffixes are under the prev encoding.

In the closing comments of the section discussing our longest factor taxonomy, we mention

that the pLPF construction may also be used to solve other p-matching oriented problems by

setting extend = false. We view the construction of the p-border array in this way – as a spe-

cial p-matching problem with some postprocessing. By independently computing the longest

factor (maximum p-match length) between p-suffixes 1 and 2, between p-suffixes 1 and 3,

between p-suffixes 1 and 4, etc., the result will be non-extendable p-matches. These partic-

ular p-matches happen to be lengths of longest proper p-suffixes with a prefix of T – select

elements in the p-border array. The other p-border elements are obtained by removing the

rightmost symbols from the end of the non-extendable p-matches, since removing rightmost
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Algorithm 3-11. p-border array computation
1 int [ ] compute p-border(char T[ n ] , int pSA [ n ] ) {
2 int f i x e d [ n ]={ −1 ,1 , . . . , 1} , b [ n ] = { 0 , 0 , . . . , 0 } , b2 [ n ] i , c
3 extend=fa l se
4 b2 = construct( f i xed , null , prev(T) ,prev(T) )
5 for ( i = 2 to n) {
6 c = b2 [ i ]
7 while ( c > 0 ∧ c > b [ i+c−1]) b [ i+c−1]=c−−
8 } extend=true
9 return b

10 }

symbols of a prev encoding does not modify previous parameter distances in the encoding.

Since p-border[1] = 0 by Definition 2.1.18, consider initially i = 2. Let c > 1 be the length

of the non-extendable p-match between the p-suffixes 1 and i. Then, p-border[i+ c− 1] = c

is the current longest p-match and hence, an element in p-border. Also, while c = c− 1 > 0,

we have p-border[i + c − 1] = c. After this initial match, we can consider successive non-

extendable p-matches beginning with i = i + 1. These successive p-matches cannot replace

the elements already populated in p-border because these previously populated elements

are from an earlier, longer p-match. We obtain these non-extendable p-matches from the

pLPF construction and use the aforementioned observations to construct the p-border array.

We give the construction algorithm of the p-border array in Algorithm 3-11 and prove its

correctness and complexity in Theorem 3.4.10.

Theorem 3.4.10 Given an n-length p-string T , prevT = prev(T ), the prev encoding of T ,

and pSAT , the parameterized suffix array for T , the algorithm compute p-border computes

the p-border array in O(n) expected time.

Proof Let extend = false, fixed[1...n] = {−1, 1, ..., 1}, and p-border[1...n] = {0, 0, ..., 0}.
By following Algorithm 3-3, we know that b2 = construct(fixed,null, prevT, prevT ) yields

b2 = {b2[1] = 0, b2[2] = plcp(T [1...n], T [2...n]), ..., b2[n] = plcp(T [1...n], T [n])}, in which

each b2[i] corresponds to the length of the longest factors: 0, prev(T [1...n]) =b2[2] prev(T [2...n]),

..., prev(T [1...n]) =b2[n] prev(T [n]). (Note that extend = false only changes the way in

which previous p-matches are used to assist in future p-matching and since fixed[2...n] is

always a fixed p-suffix, we need to always restart p-matches from the beginning.) Since

p-border[1] = 0 by definition, consider the value b2[i] = J (obviously J < n) for 1 < i ≤ n

beginning with i = 2. Assume that J > 1 without loss of generality. This signifies that
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prev(T [1...n]) =J prev(T [i...n]), where J is the length of the longest factor and thus,

prev(T [1...n])[J +1] 6= prev(T [i...n])[J +1] is the case. In particular, this longest factor im-

plies that the p-match is not extendable to the left (since p-border[1] = 0 and p-border[i = 2]

is the first element to consider a p-match) and clearly not extendable to the right (i.e. the

longest factor). Hence, the value b2[i] = J generated from construct is actually the length

of the longest proper p-suffix (since 1 < i ≤ n) that matches a prefix ending at (i+ J − 1),

which is the element p-border[i + J − 1] = b2[i] = J from Definition 2.1.18. Further,

it is also the case that this b2[i] result tells us about the other longest proper p-suffixes

that match a prefix of T , namely p-border[i + J − 2] = J − 1 (since prev(T [1...n]) =J−1

prev(T [i...n])), p-border[i + J − 3] = J − 2 (since prev(T [1...n]) =J−2 prev(T [i...n])), ...,

p-border[i+ J − k − 1] = J − k (since prev(T [1...n]) =J−k prev(T [i...n])) for (J − k) > 0

and non-negative k. Since this p-match between the p-suffixes at 1 and i = 2 cannot be

extended to the left or right, it is guaranteed that b2[i = 2] = J will imply the elements

p-border[i = 2] through p-border[i + J − 1 = 1 + J ] since removing rightmost p-matched

symbols will not change any encodings earlier in the p-suffix by Definition 2.1.4 and hence,

will not be subject to the p-suffix intricacies formalized in Lemma 2.1.10. It is not possible

for the elements at b2[i + 1...i + J − 1] and even b2[i + 1...n] to provide longer p-matches

for the elements p-border[1...i+J − 1] since the earlier p-matches that populated these ele-

ments are clearly longer because we considered earlier, longer p-suffixes in T . However, the

elements b2[i + 1...i + J − 1] may still provide non-populated p-border elements for entries

at some j, j > i + J − 1. Consider now, i = 3, ..., n, b2[i] = K, and let K2 = K. While

K2 > p-border[i + K2 − 1] and K2 = K2 − 1, there are new longer p-matches identified. If

these p-matches could be extended to the left, it would have been previously identified in

earlier b2[h] for h < i and already recorded in p-border. Now considering the current b2[i],

we know that K gives the length of the longest factor between the p-suffixes 1 and i and

thus, cannot be extended to the right. These facts clearly indicate that this new longest

factor gives the elements p-border[i + K − 1] = K, p-border[i + K − 2] = K − 1, etc. while

p-border[i + K − k − 1] < K − k for non-negative k. Since successive b2[i] give the lengths

of the longest factors between the p-suffixes 1 and i, it follows from the previous discussion

that the compute p-border construction generates the p-border array.

In terms of time, the notion that extend = false forces the construct algorithm to

require B steps to construct the array b2 where B = b2[1] + b2[2] + ... + b2[n] = 0 +

plcp(T [1...n], T [2...n]) + ...+ plcp(T [1...n], T [n]). Since Σ and Π are finite, each σ ∈ Σ and
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π ∈ Π are reused within a general p-string and the prev encoding is composed of various

distances. The first p-suffix prev(T [1...n]), in particular, is composed of each unique distance.

The successive p-suffixes that are compared with prev(T [1...n]) have numerous parameter

distances replaced with the distance 0, which decreases the likeliness of long individual b2[i].

The same is true for the occurrence of infrequent constant sequences in the first p-suffix.

Thus, it is expected that B ∈ O(n). Further, the use of b2 to compute p-border requires

O(n) time since each element of p-border is populated at most once. Therefore, the algorithm

constructs p-border in O(n) expected time. 2

Table 3.4: Arrays for p-string T = AAAwBxyyAAAzwwB$ (* denotes newly proposed; +

denotes new construction algorithm)
i pLneF [i] * pLrF [i] * pLF [i] * permuted-pLCP * p-border +

1 4 4 4 4 0
2 3 3 3 3 1
3 2 2 2 2 2
4 2 3 3 2 0
5 1 2 2 1 0
6 3 2 3 0 0
7 2 2 2 1 0
8 1 5 5 1 0
9 4 4 4 2 1
10 3 3 3 1 2
11 2 2 2 0 3
12 3 2 3 3 4
13 2 2 2 2 0
14 2 2 2 1 0
15 1 1 1 0 0
16 0 0 0 0 0

3.5 Variations on a Theme - Traditional Strings

Recall that we have constructed the following p-string data structures using the same

construct algorithm: pLPF , pLCP , permuted-pLCP , pLneF , pLrF , pLF , and the p-

border array. In this section, we construct these same data structures for traditional strings.

For concision, we exploit a special relationship between p-strings and traditional strings

to address traditional string data structures with the same algorithms used for their p-

string counterparts. This further adds to the power and utility of the construct algorithm.

Lemma 3.5.1 formalizes the special relationship between p-strings and traditional strings.
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Lemma 3.5.1 Given a p-string alphabet Σ and Π as the set of constant and parameter

symbols respectively, let Σ = Σ ∪ Π and afterwards, Π = ∅. For an n-length p-string T , the

p-suffixes of T are traditional suffixes.

Proof Since T [i] ∈ Σ ∀ i, 1 ≤ i < n and T [n] ∈ {$}, then by Definition 2.1.1 we have

T ∈ (Σ∪Π)∗$, which classifies T as a valid p-string. In this special case, T consists of no such

symbol π ∈ Π so Lemma 2.1.10 identifies that prev(T [i...n]) = prev(T )[i...n] and further

T = prev(T ) by Definition 2.1.4, so T [i...n] = prev(T [i...n]) = prev(T )[i...n] ∀ i, 1 ≤ i ≤ n.

2

Lemma 3.5.1 formalizes the power of defining problems in terms of p-strings. By solving

a p-string problem, we also solve the same problem for traditional strings since a string

is a special case of a p-string. This generalization allows us to offer solutions to multiple

problems with a single algorithm based on p-strings. Due to this generalization and the

analogous definitions of the p-suffix array and the standard suffix array, our preprocessed

arrays constructed in Algorithms 3-1 and 3-5 are also still valid for traditional strings.

We now, where necessary, redefine the data structures of this chapter using traditional

strings and formalize the construction of the arrays. All of the following proofs use Lemma 3.5.1

to confirm that traditional strings are specific cases of p-strings and the corresponding p-

string theorems still hold. These now trivial proofs are omitted. Let us begin by redefining

the LPF data structure originally defined in [35] in terms of the before< and before> arrays.

Definition 3.5.2 ([35]) Longest previous factor (LPF ): In addition to Definition 2.1.15,

the LPF is defined for each index 1 ≤ i ≤ n of an n-length traditional string W such that

LPF [i] = max{lcp(i, before<,W ), lcp(i, before>,W )}.

The LPF data structure is also computed in linear time with the compute pLPF algo-

rithm.

Theorem 3.5.3 Given an n-length traditional string W , the compute pLPF algorithm con-

structs the LPF array in O(n) time.

Similar to the generalization of the pLPF problem to solve the LPF problem, it is also

the case that the permuted-LCP array in Definition 2.1.14 and the traditional LCP array,

analogous to Definition 2.1.12, are also constructed with the generalized p-string solution.
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Theorem 3.5.4 Given an n-length traditional string W , the compute pLCP algorithm con-

structs the LCP and permuted-LCP arrays in O(n) time.

Further, we can define our newly proposed p-string data structures pLneF , pLrF , and

pLF for traditional strings.

Definition 3.5.5 Longest not-equal factor (LneF ): For an n-length traditional string

W , the LneF is defined for each index 1 ≤ i ≤ n such that LneF [i] = max({0}∪{k |W [i...n] =k

W [j...n], 1 ≤ j ≤ n, i 6= j}) = max{lcp(i, neq<,W ), lcp(i, neq>,W )}.

Definition 3.5.6 Longest reverse factor (LrF ): For an n-length traditional string W ,

let Q1 = W [1...n−1]$1, Q2 = W [1...n−1]R$2, and Q = Q1 ◦Q2. The LrF is defined for each

index 1 ≤ i ≤ n such that LrF [i] = max({0} ∪ {k | W [i...n] =k W [1...j]R, 1 ≤ j < n}) =

max{lcp(i, rev<[i] + n,Q), lcp(i, rev>[i] + n,Q)} = max{lcp(Q1[i...n], Q2[rev<[i]...n]),

lcp(Q1[i...n], Q2[rev>[i]...n])}.

Definition 3.5.7 Longest factor (LF ): For an n-length traditional string W , the LF is

defined for each index 1 ≤ i ≤ n such that LF [i] = max({0} ∪ {k | W [i...n] =k W [j...n], 1 ≤
j ≤ n, i 6= j} ∪ {k | W [i...n] =k W [1...j]R, 1 ≤ j < n}) = max(LneF [i], LrF [i]).

The aforementioned data structures are respectively constructed with the pLneF , pLrF ,

and pLF construction algorithms.

Theorem 3.5.8 Given an n-length traditional string W , the algorithms compute pLneF,

compute pLrF, and compute pLF respectively construct the LneF , LrF , and LF data struc-

tures in O(n) time.

Finally, the p-border array [56] is a general case of the border array [87], so we can

likewise prove that the p-border array construction theorem still holds for the traditional

border array.

Theorem 3.5.9 Given an n-length traditional string W , the compute p-border algorithm

constructs the border array in O(n) expected time.

Lastly, we note that during Theorem 3.4.10, the b2 array (see Algorithm 3-11 line 4)

generated for the construction of p-border is another important string data structure for the

n-length T . Since each b2[i], for 2 ≤ i ≤ n, has the length of the longest prefix common
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between T and T [i...n], then b2[i] = PA[i], where PA is the prefix array (Definition 2.1.19).

So by setting b2[1] = n, we have that the prefix array is constructed via the pLPF framework

under the same constraints as the p-border.

Theorem 3.5.10 Given an n-length traditional string W , the compute p-border algorithm

constructs the prefix array (PA) in O(n) expected time.

3.6 Experiments

In this chapter, we develop theory that establishes a connection between the parame-

terized longest previous factor (pLPF ) data structure and popular data structures, such as

LCP and the border array. We also show the connection between pLPF and other newly

introduced data structures. Our core contribution is a single construction algorithm that

can develop data structures related to pLPF . For ease of discussion in this chapter, we con-

sider the most common case of p-strings – where the lexicographical relationship between

p-suffixes is like that of traditional suffixes (Figure 1(a) of [19]). In our implementation of

the algorithms, we handle all of the p-string scenarios/details in the work [19]. The imple-

mentations are written in C. We have executed our algorithms in the Cygwin environment

running on a Dell Inspiron 570 desktop with 3.10 GHz clock speed and 8 GB RAM. This

section discusses experimental results of our programs on various files from the Large Corpus

(http://corpus.canterbury.ac.nz/descriptions/#large), the theoretical Fibonacci string, and

strings from random distributions. Table 3.5 contains details that describe the nature of

the data. We discuss the experimental results and compare them with our theoretical re-

sults. We then implement traditional algorithms that construct LCP and LPF and compare

them with our newly introduced parameterized constructions. For each experiment, we do

not consider the construction of the p-suffix array (pSA), the rank array (R), or prev(T )

in the execution time because it is assumed that these data structures are readily available

to a prior to construction of pLPF variants. Other auxiliary data structures needed in the

construction, such as those from Algorithm 3-5, are considered in the execution time. In

terms of practical space, we consider the resident memory used by the process.

Let us first consider the Ecoli sequence from the Large Corpus. In our experiment, we

constructed the pLPF variants for prefixes of the text. For this text, we considered the

entire alphabet to be parameters: Σ = ∅ and Π = {a, c, g, t}. In Figure 3.1, we display the
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Table 3.5: Select data attributes
Attribute Ecoli Bible Fibonacci N (24, 12)

n = 4638690 n = 3445275 n = 200000 n = 1000000
|Σ| = 0,|Π| = 4 |Σ| = 27,|Π| = 14 |Σ| = 0,|Π| = 2 |Σ| = 0

permuted-pLCPmax 2815 487 121391 29
permuted-pLCPµ 19.3 13.3 52287.6 16.6
pLCPmax 2815 487 121391 29
pLCPµ 19.3 13.3 52287.6 16.6
p-bordermax 15 14 121391 15
p-borderµ 2.3 0.3 52287.6 5.4
pLPFmax 2815 487 121391 29
pLPFµ 19.3 13.3 52287.6 16.6
pLneFmax 2815 487 121391 29
pLneFµ 24.1 15.7 69681.4 17.3
pLrFmax 3027 15 196415 31
pLrFµ 22.7 4.0 97888.8 17.3
pLFmax 3027 487 196415 31
pLFµ 26.2 15.7 97889.0 17.7

execution time for the construction of each pLPF variant. Each data structure is created

in linear time, which confirms our theoretical results. We notice that indeed, the pLF data

structure requires more time to construct since it primarily requires the construction of both

pLrF and pLneF . For pLCP and permuted-pLCP , we display results using the construction

of Algorithm 3-7. For concision, we omit the construction of Algorithm 3-6 from the results

since we observe that indeed Algorithm 3-7 is a practical improvement. We notice that the

quickest algorithms construct the pLCP , permuted-pLCP , and p-border data structures.

This is the case since these particular constructions (Algorithm 3-7 and Algorithm 3-11) do

not require the preprocessing of Algorithm 3-5. That is, the light preprocessing is apparent

in the overall execution time.

Next, we considered the Bible text from the Large Corpus. Since the Bible is composed of

words, it is inappropriate to use individual symbols as parameters. So, the original Bible text

was preprocessed and transformed into a text more suitable for p-matching and our program.

First, only letters and spaces in the original text remained in the transformed text. All letters

were forced to lowercase letters. Next, a unigram was constructed and each word appearing

in the new text with a frequency f ≥ 7500 was replaced with a unique uppercase symbol.

(Thus, the size of the transformed Bible is slightly smaller than the original.) For example,

the word in was replaced with the letter G and the word the was replaced with the letter

L. These 14 frequent words were considered parameters. Since the parameter words are

now replaced with unique symbols not used by constants, there is no real need to adjust
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the remaining words since the remaining symbols must match anyway to detect a constant.

So, we have constructed a new p-match problem where frequent words may be substituted.

We constructed the pLPF variants on prefixes of the processed Bible sequence. Figure 3.2

shows the results, which are nearly identical to the linear time results of the previous Ecoli

experiment. The p-border construction on the Bible sequence is so quick because of the fact

that the first p-suffix consists of the introductory sequence G L beginning , which does not

p-match with any longer sequences in the text. Overall, we also notice the same results for

random strings from Normal and Uniform discretized distributions. Figure 3.3 shows the

construction times for the pLPF variants on random input strings with symbols from the

Normal distribution. Very similar results were obtained for sequences with symbols from the

Uniform distribution.

The qth Fibonacci sequence (or Fibostring) [87] is denoted by fq and satisfies the re-

currence f0 = b, f1 = a, and fq = fq−1fq−2 for q ≥ 2. The recurrence relation makes the

resulting string naturally repetitive. We see from Table 3.5 that the maximum and mean

values of each data structure is significant when compared to the text length. This would

classify a Fibonacci sequence as a worst case string for a p-matching application. In terms

of time, Figure 3.4 shows the pLPF variants are constructed very quickly. For the prefixes

considered, we see that even some constructions do not add noticeable time to the plots when

increasing prefix length. We note from Table 3.5 and the plots that the Fibonacci sequence

is shorter than the other sequences (n = 200000). Considering sequences at around the same

prefix size, there is typically more time required for the construction of pLPF variants on

the Fibonacci sequence. This very relationship can be viewed more clearly when consider-

ing the Ecoli and Bible results, in which the slopes of the linear time results of Ecoli are

greater than that of the Bible. This is due to the nature of the resulting arrays of the pLPF

variants, detailed in Table 3.5. The resident memory required by the data structures on the

Fibonacci sequence is displayed in Figure 3.5. Similar to the time of pLF , the construction

of pLF also requires more space than the other constructions. The space required for the

other experiments is similar.

Throughout this research, we are focused on relating the constructions of data structures

to the pLPF construction. This includes traditional data structures with |Π| = 0. The

LPF and LCP are popular traditional data structures that our algorithms can construct.

For purposes of comparison, we have implemented the direct LPF construction presented

in [35]. This particular algorithm was chosen since it influenced this work. We also imple-
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mented the LCP construction algorithm of [61]. We compared these constructions with our

parameterized constructions on the Fibonacci sequence in terms of time and memory re-

quired. Figure 3.6 displays the execution time. We see that the parameterized constructions

do not add significantly to the constructions of the traditional algorithms. That is, there is

a very small cost for using a parameterized construction. As the prefix size increases, this

cost becomes smaller. We observed that the parameterized constructions do require more

memory, which is expected since p-string solutions also require additional data structures

such as prev(T ).

First and foremost, this research considers the theoretical relationship between data

structures and the linear time pLPF construction. Our experimental results confirm the

linear time construction of pLPF variants. The fact that solutions to p-string data struc-

tures support constructions for traditional data structures is an important feature. To be

viable in practice, a p-string solution needs to be efficient when considering the traditional

counterpart. Even though our codes are not optimized, our experimental results still show

that our construction algorithms are competitive with standard algorithms for construct-

ing the popular data structures LCP and LPF . This gives practical significance to our

algorithms as a foundation for solving numerous combinatorial problems for p-strings and

standard strings.

3.7 Conclusions

In this chapter, we consider the pLPF array and prove that its construction algorithm

is strongly connected with other string data structures. The framework that is used to solve

the pLPF problem is also proven to construct the pLCP array and the newly proposed

permuted-pLCP data structure. We also define a multitude of variations of the pLPF data

structure that are computed with the same basic framework. We implement our algorithms

and confirm our theoretical results on various texts. In terms of applications, our pLPF

construction framework is a viable option for computing the LCP , LPF , and border arrays,

which are prominent data structures in efficient pattern matching. In this work, we are

considering longest factor problems that yield arrays with the lengths of the longest factors.

We can easily define parallel arrays to also point to the position of the longest factor to per-

mit easy access to these factors. Direct applications of our introduced data structures may

include pattern substitution, detecting duplication [12], LZ decomposition in text compres-
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sion [100], studying periodicity in strings [70, 87], biological sequence compression [3, 44],

and analysis of repetition structures in DNA sequences [47, 2]. Specifically, our pLF data

structure may be used to identify how to best substitute a pattern or even determine if

duplication is “hidden” by reversal or with parameterization. Moreover, the choice of the Π

alphabet adds to the possibilities of string analysis, a step beyond traditional exact match-

ing. Since we have defined our data structures for p-strings, we have the ability to answer

traditional string problems and also address more sophisticated applications like analyzing

parameterized duplication in source code, DNA, and RNA.



Richard Beal Chapter 3. Variations of the Parameterized Longest Previous Factor 57

0 1 2 3 4

x 10
6

0

1

2

3

4

5

6

7

8

9
x 10

6

Size of Prefix (bytes)

Construction of pLPF Variants on Ecoli

 

 
                                   permuted-pLCP
pLCP
p-border
pLPF
pLneF
pLrF
pLF

E
xe

cu
tio

n 
T

im
e 

(m
ic

ro
se

co
nd

s)

Figure 3.1: Time for construction of pLPF vari-
ants on Ecoli sequence with |Σ| = 0 and |Π| = 4

0 0.5 1 1.5 2 2.5 3

x 10
6

0

1

2

3

4

5

x 10
6

Size of Prefix (bytes)

Construction of pLPF Variants on Bible

 

 
permuted-pLCP
pLCP
p-border
pLPF
pLneF
pLrF
pLF

E
xe

cu
tio

n 
T

im
e 

(m
ic

ro
se

co
nd

s)

Figure 3.2: Time for construction of pLPF
variants on Bible with |Σ| = 27 and |Π| = 14
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Figure 3.3: Time for construction of pLPF vari-
ants on random sequence from N (24, 12), where
N (a, b) is a discretized Normal distribution with
mean a and variance b, and |Σ| = 0
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Figure 3.4: Time for construction of pLPF
variants on Fibonacci sequence with |Σ| = 0
and |Π| = 2
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Figure 3.5: Space for construction of pLPF vari-
ants on Fibonacci sequence with |Σ| = 0 and
|Π| = 2
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the same data structures built using parame-
terized constructions
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Chapter 4

The Structural Border Array

The work reported in this chapter yielded the following publications.

• Beal, R., Adjeroh, D.: Border array for structural strings. In: Arumugam, S., Smyth,

W.F. (eds.), International Workshop on Combinatorial Algorithms (IWOCA) 2012.

LNCS, vol. 7643, pp. 189-205. Springer, Heidelberg (2012)

• Beal, R., Adjeroh, D.: The structural border array. Journal of Discrete Algorithms,

23, 98-112 (2013)

4.1 Introduction

The border array is a fundamental data structure in string theory used for pattern match-

ing, classifying strings, etc. [87]. A parameterized string (p-string), as identified by Baker

[11], is a generalized string from the constant alphabet Σ and the parameter alphabet Π.

The parameterized border array (p-border) is the traditional border array problem observed

in terms of p-strings [56, 54, 55]. Similarly, p-border is also useful in parameterized pattern

matching (p-matching), which is a type of pattern matching where constant symbols σ ∈ Σ

match and there exists a bijection between the parameter symbols π ∈ Π. Consider the

example p-strings that represent program statements z=y ∗ f/++y; and a=b ∗ f/++b; over

the alphabet sets Σ = {∗, /,+,=, ; } and Π = {a, b, f, y, z}. Here, a p-match exists because

constant symbols σ ∈ Σ match and parameter symbols π ∈ Π properly align, namely in the

first statement z, y, and f are consistently substituted by a, b, and f respectively in the

second statement. The p-match problem offers a new way to address pattern matching in
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significant applications regarding the identification of plagiarism in academia and industry

[12] and also, detecting unauthorized use of source code [98].

A variation of the p-match problem is known as structural matching (s-matching) between

structural strings (s-strings) [86]. The s-string adds the notion of complementary pairs of

parameter symbols in some alphabet Γ. Detecting an s-match requires identifying a p-match

and ensuring that the parameter complements are consistent. For instance, consider the

alphabets Σ = ∅, Π = {A,U,C,G}, and Γ = {(A,U), (C,G)} and consider the sequences

S = UAUAU and T = GCGCG. Notice that where parameters U and A exist in S, there

exist substitutions of parameters G and C respectively in T . Also, notice that where the

complements U and A exist in S, the complement symbols G and C align in T . These

observations identify that S and T s-match. This type of matching is relevant for analyzing

biological data such as RNA sequences or secondary structures, since the complementary

base pairing can be analyzed using the s-match [86]. Currently, the s-match problem is

handled via structural suffix trees (s-suffix trees) [86]. In many situations, the huge practical

space of an s-suffix tree poses a significant problem, which led to the development of the

structural suffix array (s-suffix array) [16]. In this work, we are motivated to introduce yet

another significant data structure for the s-match problem: the structural border array.

Main Contributions: We introduce the structural border array (s-border) as defined

for an n-length structural string (s-string) T . Initially, we provide constructions that execute

in time O(n3) and O(n2) to build the s-border array. We establish theory to improve the

result to O(n) by proving particular properties of the s-border data structure. Using the same

construction algorithm, we show how to modify the s-string alphabets to also construct both

the parameterized border (p-border) and the traditional border array in linear time. Our

solution to the p-border problem is a symbol-based approach different from the automaton-

oriented solution presented in [56]. The following formalizes our main results.

Theorem 4.3.7. Given an n-length s-string T , there is an algorithm that constructs the

s-border array Bs in O(n) time.

Theorem 4.4.3. Given an n-length s-string T , the algorithm construct Bs constructs the

p-border array Bp and the traditional border array B each in O(n) time.
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4.2 Background

Baker [12] identifies three types of pattern matching: (1) exact matching, (2) parame-

terized matching (p-match), and (3) matching with modifications. The first p-match break-

throughs, namely, the prev encoding and the parameterized suffix tree (p-suffix tree), were in-

troduced by Baker [11]. Additional improvements to the p-suffix tree are given in [65, 32, 68].

Like the traditional suffix tree [87, 47, 1], the p-suffix tree [11] implementation suffers from

a large practical memory footprint. One p-matching solution to address the space problem

is the parameterized suffix array (p-suffix array) in [53, 40]. An expected linear time p-suffix

array construction is given in [20]. The work of [21] proves the existence of sub-quadratic and

near-linear time worst case p-suffix array constructions. Other solutions that address the

p-match problem without the space limitations of the p-suffix tree include the parameterized-

KMP [6] and parameterized-BM [14], variants of traditional pattern matching approaches.

These particular approaches use a variety of heuristics for shifting the matches to p-match

efficiently. Further, the p-match problem is addressed via the Shift-OR mechanism in [42].

Idury et al. [56] studied a heuristic known as the pfail function to address the multiple

p-match problem using an automaton. This pfail function is now known as the parame-

terized border array (p-border), analogous to the traditional border array [87], and has been

studied in a variety of combinatorial problems in [54, 55]. Other p-match data structures are

studied in [19]. A closely related variant of the p-match problem is the structural pattern

matching (s-match) problem, introduced by Shibuya [86]. The s-match is used in [86] for

RNA analysis by a structural suffix tree (s-suffix tree). An s-suffix tree is similar in nature

to the p-suffix tree [11] and constructed in similar time. The practical space used by the

s-suffix tree was the motivation to introduce a more lightweight data structure known as the

structural suffix array (s-suffix array) [16]. In this work, we introduce the structural border

array (s-border) for the s-match problem and provide a linear time construction. We show

how to use our algorithm to also construct, in linear time, the p-border and the traditional

border arrays.

4.3 Structural Border Array

The traditional border array as defined in Definition 2.1.17 for traditional strings com-

pares prefixes of a string, say W , with proper suffixes of those prefixes. Working with the
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individual symbols of the prefixes and suffixes of W is trivial because W [j...n] is always a

suffix of W [1...n] for any j, 1 ≤ j ≤ n. This trivial use of symbols is not the case with

the parameterized border (p-border) of Definition 2.1.18. In the case of a p-string, the p-

border identifies the maximum p-match between borders, in which these borders are under

the prev encoding by Theorem 2.1.9. The challenge of working with the p-border is the dy-

namic nature of prev (see Lemma 2.1.10), which is fundamentally different from the suffixes

in traditional border construction. As a result, the way in which symbols are handled in the

traditional border construction is not correct for the p-border.

We define the s-border array using the encoding sencode, which is the encoding that

identifies a structural match (s-match) by Theorem 2.2.6.

Definition 4.3.1 Structural border array (s-border or Bs): For an n-length s-string

T , the s-border array is defined for each index 1 ≤ i ≤ n such that Bs[1] = 0 and otherwise

Bs[i] = max({0}∪{k | sencode(T [1...k]) = sencode(T [i−k+ 1...i]), k ≥ 1∧ i−k+ 1 > 1}).

The substrings T [1...k] and T [i − k + 1...i] in the definition are referred to as borders.

When these borders are under the encoding sencode, they are known as structural borders or

s-borders. Since s-border is defined on sencode, which from Definition 2.2.4 is a combination

of symbols from the text T , prev(T ), and compl(T ), we encounter the same difficulties as

p-border. The difference this time is that the pair of encodings prev and compl dynamically

change depending on the locations of parameters in an s-suffix (see Lemma 2.2.8).

4.3.1 Näıve Algorithm

Without investigating properties of our defined s-border array, we can still compute the

data structure in a näıve way as shown in Algorithm 4-1. For an n-length s-string T , the

algorithm computes s-border in roughly O(n3) time, since the O(n) sencode construction by

Lemma 2.2.7 is nested within a while loop that is bounded by n iterations and this O(n2)

computation is nested within a for loop with n iterations. This particular algorithm makes

the case for just how difficult it can be to compute s-border.

To improve this algorithm, we introduce the s-match related functions Ψ and ψ in Algo-

rithm 4-2. Note that the Ψ and ψ functions correctly implement s-matching by incorporating

elements of Definition 2.2.2, Theorem 2.2.6, Definition 2.2.9, and Definition 2.1.2. Specifi-

cally, function ψ(a, b, j) compares the symbols T [a] and T [b] as they occur in s-suffixes at
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Algorithm 4-1. Näıve construction of Bs
1 int [ ] construct Bs naive( char T [ n ] ) {
2 int i ,k ,m ,Bs [n ] ={ 0 , 0 , . . . , 0}
3 for i=2 to n {
4 k=1, m=0
5 while ( i−k+1>1) {
6 i f (sencode(T [ 1 . . . k ])=sencode(T [ i−k+ 1 . . . i ] ) ) m=k
7 k++
8 }Bs [ i]=m
9 }return Bs

10 }

symbol j, where true is returned when the symbols s-match. This comparison is accom-

plished in constant time.

Lemma 4.3.2 Each call to ψ executes in O(1) time.

The Ψ(i, j, k) function, which uses a sequence of constant time calls to ψ, returns the

number of symbols m such that sencode(T [i+ k− 1...i+ k +m− 2]) = sencode(T [j + k−
1...j + k +m− 2]).

Lemma 4.3.3 Each call to Ψ executes in O(m) time, where m is the length of the current

s-match.

We emphasize the inability to obtain a correct s-border solution by trivially plugging an s-

string into a border or p-border construction algorithm. To put this problem into perspective

for an s-string T , let U = sencode(T [1...n]) ◦ $1 ◦sencode(T [2...n]) ◦ $2 ◦sencode(T [3...n]) ◦
$3 ◦ ... ◦ $n−1 ◦ sencode(T [n]) where {$1, $2, ..., $n−1} is the set of unique terminal symbols

where $i /∈ {Σ∪Π∪ {$}}. Notice that U contains each s-suffix and thus, Lemma 2.2.8 does

not apply. Let B = border(U) compute the traditional border array B for text U . Since

U clearly represents each s-suffix, the resulting array B contains the correct results for Bs
within the multitude of elements in B. However, the problems with this approach are (1)

computing the s-border elements Bs[i] will require us to postprocess the resulting B to find

the maximum border ending at symbol i in the original T and (2) the construction of Bs
can do no better than the length of U , which is of length O(n2). Note that the s-border

array only has n elements. From the previous example with running time O(n2) and the

näıve O(n3) approach in Algorithm 4-1, we are motivated to further investigate properties

of s-border. This leads to an improved algorithm for constructing the s-border.
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Algorithm 4-2a. s-matching
function Ψ

1 char T [n ] /* g iven */
2 char prevT [n]=prev(T )
3 char complT [n]=compl(T )
4 char αT [n]=α(T )
5
6 int Ψ( int i , int j , int k ){
7 int a ,b ,m=−1,q=k−1
8 do{
9 q++

10 a=i+q−1,b=j+q−1
11 m++
12 }while (ψ (a ,b ,q ) ) ;
13 return m
14 }
15

Algorithm 4-2b. s-matching function ψ
boolean ψ ( int a , int b , int j ){

booleanmatch= fa l se
i f (1≤a≤n ∧ 1≤b≤n ∧ αT [ a]=αT [ b ] ) {

i f (αT [ a]=SIGMA∧T [ a]=T [ b ] ) match=true
else i f (αT [ a]=PI ){ /* d i s t anc e s */

i f (prevT [ a]=prevT [ b ]=0) match=true
else i f (prevT [ a]<j ∧ prevT [ b]<j ∧

prevT [ a]=prevT [ b ] ) match=true
else i f (prevT [ a ]≥j∧prevT [ b ]≥j ) match=true
else i f (complT [ a]<j ∧ complT [ b]<j ∧
complT [ a]=complT [ b ] ) match=true
else i f (complT [ a ]≥j∧complT [ b ]≥j ) match=true

}
}return match

}

4.3.2 Improved Algorithm

A key property used to construct the traditional border array B is the property that

B[i + 1] ≤ B[i] + 1. This property helps progress matches by oracling the previous array

element and comparing the subsequent symbols. We prove that even though the s-suffixes

change from Lemma 2.2.8, this property still holds when considering the s-border array, which

is defined on prefixes of suffixes under sencode. That is, the way in which the sencode is

defined, which is a combination of prev and compl, does not invalidate this traditional

border property. In Figure 4.1, we illustrate that a prefix named prefix of an s-suffix is such

that prefix = sencode(T )[1...|prefix|]. More specifically, the way in which distances refer

previously in the text allows us to treat prefix as a valid encoding itself. This is exactly

what is needed for the s-border construction. Such is not true for encodings like forw from

Definition 2.1.7. For construction algorithms, we emphasize that one must always consider

the impact of the encoding scheme (see [21, 19]).

Lemma 4.3.4 Given an s-string T of length n, the individual s-border elements Bs[i] are

such that Bs[i+ 1] ≤ Bs[i] + 1 ∀ i, 1 ≤ i < n.

Proof Initially, Bs[1] = 0 by Definition 4.3.1. Consider that Bs[i] = k for some i, 1 < k < n.

Without loss of generality, assume that k > 2. Then, by Definition 4.3.1, sencode(T [1...k]) =

sencode(T [i− k + 1...i]) is the maximum s-border of T [1...i]. Consider j = i+ 1. What we
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baba b bdcbaba b bdc

2210 3 1102210 3 110

T

sencode(T)

prefix=sencode(T[1…4])

dcba f aefdcba f aef

nnn7 n nn2nnn7 n nn2

T

forw(T)

prefix≠forw(T[1…4])=nnnn

Figure 4.1: Displaying the intricacies of prefixes for s-string encoded suffixes using Σ = ∅,
Π = {a, b, c, d, e, f}, and Γ = {(a, b), (c, d), (e, e), (f, f)}, where n is fixed: n = 8

know is that (1) already sencode(T [1...k]) = sencode(T [i − k + 1...i]) and (2) prev (from

Definition 2.1.4) and compl (from Definition 2.2.3) are defined such that the dynamically

changing elements T [i] ∈ Π of Lemma 2.2.8 are encoded to point to previous elements

in the s-suffix, which means that appending elements to the s-suffix does not modify the

encodings of the already existing s-suffix (see Figure 4.1). From (2) and Definition 4.3.1,

there cannot exist any s-border of T [1...j] longer than one symbol beyond the maximum s-

border at i, that is, the s-match of length Bs[i] + 1. Let a = sencode(T [1...1 + k])[k+ 1] and

b = sencode(T [j − k...j])[k + 1]. It follows that if a = b, then also sencode(T [1...1 + k]) =

sencode(T [j−k...j]). Thus, Bs[j] = k+1. If a 6= b, then it follows that 0 ≤ Bs[j] ≤ Bs[i] = k.

Therefore, Bs[j] ≤ k + 1. 2

The previous lemma gives us the ability to offer the improvement construct Bs improved
in Algorithm 4-3. This algorithm makes use of the s-match related functions in Algorithm 4-

2. Using the Ψ and ψ functions, the technique behind Algorithm 4-3 is to start from the left

of the s-string, find the longest s-matches, and populate the elements of Bs. A heuristic is

used to determine whether or not s-matching may yield new elements of Bs. The following

theorem formalizes the algorithm and its running time.

Theorem 4.3.5 Given an n-length s-string T , the algorithm construct Bs improved con-

structs the s-border array Bs in time O(max{n, bφ}), where b is the length of the longest

s-border and φ is based on the s-string.

Proof We first prove that the technique behind the algorithm is correct. Let Bs = {0, 0, ..., 0}.
Maintain a pointer to index h such that the s-border subarray Bs[1...h − 1] is always com-

plete. Initially, h = 2 since Bs[1] = 0 by Definition 4.3.1. Next, we find the longest s-match

of say m symbols between T [1...n] and T [j...n] where j = 2. Let q = m. By Lemma 4.3.4,

we know that while m > 0, then we can assign Bs[j +m− 1] = m and let m = m− 1. The
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previously populated elements are the longest s-borders for indices j + q − 1, j + q − 2, etc.

because we have started at j = 2 and no s-border can be longer for these elements. Thus,

Bs[1...j + q − 1] is now complete. Set h = j + q. We continue at j = 3 considering the

following cases.

• If j = h, we continue the same process to find Bs[j] and populate other Bs elements

exactly like the initial part of the proof for j = h because only Bs[1...h− 1 = j − 1] is

complete.

• When j < h and an s-match exists between the symbols at h−j+1 in the s-suffixes at 1

and j, i.e. sencode(T [1...n])[h−j+1] = sencode(T [j...n])[h−j+1], then the following

s-match of m symbols can be conducted: sencode(T [1...m]) = sencode(T [j...j +m−
1]). (Otherwise, no longer s-border is possible.) Since Bs[1...j...h− 1] is already com-

plete with the longest s-borders, only when the m exceeds the complete section of Bs is

there a newly introduced s-border, i.e. when j +m− 1 ≥ h. So, any newly introduced

s-border to the incomplete part of Bs must be maximum because in previous steps j−1,

j − 2, etc. we have considered, but not found, s-borders that could be only longer.

Considering s-borders for future j + 1, j + 2, etc. will only introduce shorter s-borders

than the current s-border of length m. Now that we have new maximum s-borders,

populate only the new findings. It follows from Lemma 4.3.4 that we can let q = m

and assign the other known maximum s-borders, that is, while m > 0 ∧ j+m−1 ≥ h,

assign Bs[j+m− 1] = m and let m = m− 1. Finally, set h = j+ q to signify that now

Bs[1...h− 1 = j + q − 1] is complete.

• Otherwise, no s-matching is necessary because it is not possible to introduce a longer

s-border with the current s-suffixes considered.

The previous cases are considered for subsequent j = 4, 5, ..., n. In each case, we are

finding the longest s-matches between the s-suffixes at 1 and j with each Bs element populated

at most once using the first appropriate value. Since j increases and we populate Bs using

the earliest relevant s-match found, subsequent j will only produce smaller s-borders in

sencode due to the fact that appending symbols in prev (from Definition 2.1.4) and compl

(from Definition 2.2.3) does not modify the encodings of the already existing s-suffix (see

Figure 4.1). Thus, the algorithm correctly computes Bs.
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We now analyze the running time via the displayed Algorithm 4-3. Assume an indexed

alphabet. Then, prev(T ), compl(T ), sencode(T ), and α(T ) are constructed in O(n) time

by Lemma 2.2.7. Since ψ executes in constant time via Lemma 4.3.2, the running time

of the entire algorithm is clearly dependent on the s-matching of Ψ in line 9. This line

is responsible for a sequence of symbol comparisons to conduct s-matches of which will

require O(b) comparisons in the worst case with b as the length of the maximum s-match

by Lemma 4.3.3 and in this case, b is the also the longest s-border. This line is called when

either (1) j = h or (2) j < h and there exists an s-match between two symbols. In case (1),

at most b symbols may be matched, but h will be incremented so h = j + b will force case

(2). Case (2) is where any additional rematching is performed, that is, matching symbols

in T that may have already been visited in case (1). So, the total comparisons by line 9

during an execution of the algorithm in case (1) is in O(n). Further, the time required for

the comparisons in case (1) is absorbed by the time bound required by the construction of

the initial encodings. Let φ be the number of times that case (2) is executed. Then, the

algorithm executes in O(max{n, bφ}) time. 2

Depending on the s-string, there are cases in which Algorithm 4-3 will execute in linear

time. That is, when either b or φ is small, the construct Bs improved algorithm executes

in O(n) time for an n-length s-string T . This is a significant improvement from the previ-

ously discussed solutions requiring time O(n2) and O(n3), but there are still cases when the

algorithm will require more than linear time. Below, we discuss yet a further improvement

to the Bs construction algorithm.

4.3.3 Further Improvement

We now investigate another fundamental property used in the traditional border con-

struction. That is, the way in which the next longest border is found. Consider the longest

border b1 of T . If b2 is the longest border of b1, then b2 is the next longest border of T . With

this property, we can oracle previous border elements, B[e] with e = B[i] > 0, to find the

next longest border of T [1...i]. This property is used when the current longest border cannot

be extended further and so, we can try the next longest border of which the final symbols

may possibly match. Should the last symbol of the second longest border not match, we

can oracle the third longest border, etc. So, the oracle may be recursive to the vth level:

B1[i] = B[i], B2[i] = B[B[i]],..., Bv[i] = B[Bv−1[i]]. Even with the changing s-suffixes by
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Lemma 2.2.8, we prove that this property also holds for s-strings and the s-border.

Lemma 4.3.6 Given an s-string T of length n, we find the length qv of the vth longest

s-border by qv = Bvs [i] while Bs[i] > 0 and qv = 0 otherwise.

Proof Consider the s-border array Bs for some element Bs[i] = q1 > 0. Then, sencode(T [1...q1]) =

sencode(T [i− q1 + 1...i]) is the maximum s-border, i.e. the first longest s-border, of T [1...i]

by Definition 4.3.1. Now, consider the second longest s-border of T [1...i] of length q2,

0 < q2 < q1. Let Bs1 = sborder(T [1...q1]) compute the s-border array for the input s-

string. From the previous discussion of Figure 4.1, it follows now that the first longest

s-border of T [1...q1] is also the second longest s-border of T [1...i], i.e. Bs1 [q1]. Since

sencode(T [1...Bs1 [q1]]) = sencode(T [1...Bs[q1]]) by Definition 2.2.4 and Theorem 2.2.6, the

element is already known from the original Bs array element Bs[q1], i.e. Bs[Bs[i]] = B2
s [i].

Thus, additional constructions of Bsj via sborder are excessive and unnecessary. For the vth

longest border of T [1...i], we must take the first longest s-border of T [1...i], i.e. q1 = Bs[i] > 0,

then the first longest s-border of T [1...q1], i.e. q2 = Bs[q1] > 0, then the first longest s-

border of T [1...q2], i.e. q3 = Bs[q2] > 0, ..., then the first longest s-border of T [1...qv−1], i.e.

qv = Bs[qv−1] > 0. Overall, qv = Bvs [i]. In any case, when Bs[j] = 0 for some j, then no such

longest s-border and subsequent s-borders can exist. So, qv = 0. 2

With the previously proven properties in Lemma 4.3.4 and Lemma 4.3.6, we are now able

to propose a further improved solution in Algorithm 4-4 to compute the s-border. This is

analogous to traditional border construction with the core difference being how the individual

s-suffix symbols are observed and compared. Essentially, the proofs of Lemma 4.3.4 and

Lemma 4.3.6 in addition to the s-match related functions in Algorithm 4-2 “evolve” the

traditional border properties and construction algorithm to now construct the s-border array

in O(n) time.

Theorem 4.3.7 Given an n-length s-string T , there is an algorithm that constructs the

s-border array Bs in O(n) time.

Proof Algorithm construct Bs builds the required s-border array. The correctness of the

algorithm follows from the proofs relating s-border properties to traditional border construc-

tion properties in Lemma 4.3.4 and Lemma 4.3.6 and also, the correctness of the s-matching

functions in Algorithm 4-2, which are developed using the theoretical foundations in Defini-

tion 2.2.2, Theorem 2.2.6, Definition 2.2.9, and Definition 2.1.2. We now analyze the running
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time of construct Bs from Algorithm 4-4. The key to the analysis is observing how many

times Ψ in line 7 executes in relation to how quickly the array Bs is filled. Respectively, the

variables that correspond to these events are m and h. Initially, h = 2, j = 2, and k = 1. Say

that originally Ψ executes m1 comparisons. Then, by Lemma 4.3.3, there exists a current

longest s-match of length m1, i.e. sencode(T [1...m1]) = sencode(T [j...j + m1 − 1]). Now,

m1 elements of Bs are populated and then h is advanced beyond the populated elements:

h = j +m1. Since sencode(T [1...m1 + 1]) 6= sencode(T [j...j +m1]), then either (1) line 12

is executed as an attempt to extend the next longest s-border starting at element k or (2)

line 13 resets the algorithm to consider the s-suffix starting at h because no longer s-border

exists. When case (1) executes, there are at most m1 next longest s-borders to try. From

Lemma 4.3.6, the next longest s-border is known to match and so Ψ continues the s-match at

k so that no rematching is done. That is, now j = h−k+1 and subsequent s-matches of length

m2, m3, etc., generally mg, via Ψ are performed by s-matching the substrings of the encodings

sencode(T [i...i+k+mg−2])[k...k+mg−2] = sencode(T [j...j+k+mg−2])[k...k+mg−2]

rather than rematching the complete encodings, including the already known s-border by

sencode(T [i...i + k + mg − 2]) = sencode(T [j...j + k + mg − 2]). In other words, each mg

is the number of symbols that the s-match is extended, rather the the complete length of

the s-match. When case (2) executes, even less work is done. Thus, Ψ performs a total of

O(n) comparisons during the execution of the construct Bs algorithm. Since advances in h

directly correspond to the s-match comparisons by Ψ and since there are at most a total of

O(n) next longest s-borders amortized across the O(n) total work by Ψ, then the theorem

holds. 2

4.4 Generalization

From the previous section, the facts that s-suffix symbols are oracled efficiently and s-

border shares fundamental construction properties used in traditional border construction

leads to a O(n) construction of s-border for an n-length s-string T . This result is significant

not only for the s-border, but also for p-border and the traditional border. Such is the case

because by modifying the alphabet for s-strings, the s-match problem becomes tailored for p-

matching and even traditional matching. The following lemmas formalize the generalization

possibilities for the construct Bs algorithm.
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Algorithm 4-3. Improved Bs construction
1 char prevT [n ] , complT [n ] ,αT [n ]
2 int [ ] construct Bs improved(char T [n ] ) {
3 int h=2,i=1,j ,k=1,m ,q ,x
4 int Bs [n ] = { 0 , 0 , . . . , 0 }
5 prevT=prev(T ) , complT=compl(T ) ,αT=α(T )
6 for j=2 to n {
7 x=h−j+1,m=q=0
8 i f (j=h ∨ (j<h ∧ ψ ( i+x−1,j+x−1,x ) ) ){
9 q=m=Ψ( i ,j ,k )

10 while (m>0 ∧ j+m−1≥h){
11 Bs [ j+m−1]=m , m−−
12 }h=j+q
13 }
14 }return Bs
15 }

Algorithm 4-4. Further improved Bs
construction
char prevT [n ] , complT [n ] ,αT[n ]
int [ ] construct Bs (char T [n ] ) {
int h=2,i=1,j=2,k=1,m ,q ,w=0
int Bs [n ] = { 0 , 0 , . . . , 0 }
prevT=prev(T ) , complT=compl(T ) ,αT=α(T )
while (h≤n){
q=m=Ψ( i ,j ,k )
while (m>0 ∧ j+m−1≥h){
Bs [ j+m−1]=m+w , m−−
}h=j+q
i f (w+q>0 ∧ Bs [w+q ]>0){
k=Bs [w+q ]+1 ,j=h−k+1,w=k−1
} else { k=1,j=h ,w=0 }
}return Bs
}

Lemma 4.4.1 Given an n-length s-string T , the algorithm construct Bs constructs the

p-border array Bp in O(n) time.

Proof Set the alphabet of complement symbols to Γ = {(π1, π1), ..., (π|Π|, π|Π|)}, πi ∈ Π.

Now, compl(T ) = prev(T ). So, either sencode(T )[i] = T [i] for T [i] ∈ (Σ ∪ {$}) or

sencode(T )[i] = prev(T )[i] for T [i] ∈ Π by Definition 2.2.4. Already prev(T )[i] = T [i]

for T [i] ∈ (Σ ∪ {$}) by Definition 2.1.4. So, under these conditions sencode(T ) = prev(T )

and s-matching by Theorem 2.2.6 is equivalent to p-matching by Theorem 2.1.9. Then,

the s-border problem of Definition 4.3.1 becomes the p-border problem of Definition 2.1.18.

Therefore, construct Bs constructs the p-border array Bp in O(n) time by Theorem 4.3.7.

2

Lemma 4.4.2 Given an n-length s-string T , the algorithm construct Bs constructs the

traditional border array B in O(n) time.

Proof Collect the parameter symbols into the set of constant symbols: Σ = Σ ∪ Π. Now,

set the alphabets of parameter and complement symbols to null: Π = Γ = ∅. In these

conditions, sencode(T )[i] = T [i] for T [i] ∈ (Σ ∪ Π ∪ {$}) by Definition 2.2.4. Then, s-

matching by Theorem 2.2.6 simplifies to traditional matching and the s-border problem of

Definition 4.3.1 becomes the traditional border of Definition 2.1.17. Therefore, construct Bs
constructs the border array B in O(n) time by Theorem 4.3.7. 2
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We summarize the foregoing results in the following theorem:

Theorem 4.4.3 Given an n-length s-string T , the algorithm construct Bs constructs the

p-border array Bp and the traditional border array B each in O(n) time.

4.5 Conclusions

In this chapter, we introduce the structural border array (Bs) for structural strings (s-

strings). We provide numerous algorithms that continually improve our Bs construction for

the n-length text T by exploiting the properties of the s-border array, ultimately arriving to

an O(n) solution. Finally, we provide a connection between Bs, the traditional border array

(B), and the parameterized border array (Bp) by showing that each array can be constructed

with the same Bs construction algorithm.
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Chapter 5

Compressed Parameterized Pattern

Matching

This work resulted in the following publication.

• Beal, R., Adjeroh, D.: Compressed parameterized pattern matching. IEEE Data Com-

pression Conference (DCC). pp. 461-470. IEEE. (2013)

5.1 Introduction and Background

Consider a pattern P and a text T , where T is compressed to form Tc. In applications

where we wish to detect similar biological sequences [86] or identify plagiarism [11, 98]

between P and T , we can solve the problem with parameterized pattern matching (p-match)

[11]. To some extent we can address this problem following the work of Apostolico et al. [8, 7]

for p-matching between P and T compressed via run-length encoding. There is currently no

work to support p-matching between an uncompressed P and compressed T for arbitrary

compression schemes.

The p-match problem was introduced by Baker [11] as a special form of inexact matching

not correctly and efficiently supported by approximate matching schemes. More specifically,

the p-match compares strings considering both exact symbols from the constant alphabet Σ

and potentially inexact symbols from the parameter alphabet Π. The first p-match solutions

revolved around the parameterized suffix tree (p-suffix tree) [11]. Various works, including

[68], have improved the p-suffix tree construction. Due to the large memory footprint of the

p-suffix tree [11] implementation, the p-match was also solved using extensions of traditional
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pattern matching schemes by Baker [11] and Amir et al. [6]. The multiple p-match problem

is addressed by Idury et al. [56]. The parameterized suffix array (p-suffix array) was intro-

duced by I et al. [53] as a lightweight alternative to the p-suffix tree. We offer theoretical

improvements to p-suffix array construction in [21] and study other p-match data structures

in [19, 17].

In this work, we focus on lossless compression. Denote the length of Tc, the compressed

form of T , as nc and denote the number of p-matches of the m-length P in the n-length T

as nocc. Consider the LZ family. Navarro et al. [76] perform compressed exact matching in

O(min{n,mnc}+nocc) time for LZ77 whereas Kärkkäinen et al. [60] address the compressed

approximate matching problem in O(mknc + nocc) time for LZ78, where k is the permitted

number of edits, insertions, and deletions. Matching in LZW compressed text is studied in

[43]. Other compression schemes have been studied on similar grounds. The relationship

between the BWT and pattern matching is detailed in [1]. Dictionary based compression is

the focus of the compressed matching of [63, 64]. Variable-to-fixed length coding is studied in

[64, 97, 62, 92, 91]. Apostolico et al. [8] address the p-match in terms of fully compressed run-

length encodings in O(n+(rP×rT )α(rT ) log(rT )) time, where α is the inverse of Ackermann’s

function and rT and rP respectively denote the number of runs in the encodings for T and

P . In [7], Apostolico et al. provide an alternative solution in O(rP × rT ) time.

Main Contributions: We formally define the compressed parameterized pattern match-

ing (compressed p-matching) problem to find all of the p-matches between a pattern P and

text T , using only the uncompressed P and the compressed text Tc. Initially, we intro-

duce parameterized compression (p-compression) as a way to losslessly compress a text to

support p-matching. Experimentally, it is shown that p-compression is competitive with

standard lossless compression schemes. Our solution to the compressed p-matching problem

is developed using a general partial decompression method ∂. With the recent interest in

variable-to-fixed length coding [64, 97, 62, 92], we show how to define ∂ for Tunstall codes.

Our main results are formalized below.

Theorem 5.2.5. Given Tc, the compressed form of the n-length text T , and P , an m-length

pattern, compressed p-matching can be performed in O(nµ) time with O(max{m, υ}) extra

space, where the partial decompression function ∂ executes in O(µ) time with O(υ) extra

space.

Theorem 5.3.2. Given Tc, the compressed form of the n-length text T using Tunstall codes,
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and P , an m-length pattern, compressed p-matching can be performed in O(n) time with

O(m) extra space.

5.2 Compressed Parameterized Pattern Matching

In the case of identifying similar biological sequences or detecting plagiarism, we may wish

to compress the underlying data, say T , and conduct p-matching between the compressed

form of T , say Tc, and some arbitrary pattern P . This is the notion of the compressed

parameterized pattern matching (compressed p-matching) problem, which cannot be directly

supported by current compressed matching schemes. We now define the cppm function to

formalize the compressed p-matching problem.

Definition 5.2.1 Compressed p-matching function (cppm(Tc, P )): Consider a tradi-

tional n-length string T with T [1...(n − 1)] ∈ X for the alphabet X = {x1, x2, ..., x|X|}
and T [n] = $. Let T be compressed into Tc of length nc. Given a pattern P of length

m where each symbol P [i] (1 ≤ i ≤ m) is from either the chosen parameter alphabet

Π ⊆ X or the chosen constant alphabet Σ ⊆ X where (Σ ∪ Π) = X and (Σ ∩ Π) = ∅,
the compressed p-matching problem is to use P and Tc to compute the following array:

atIndex = {i | prev(T [i...i+m− 1]) = prev(P [1...m]) ∀ i, 1 ≤ i ≤ n−m+ 1}.

5.2.1 Windowed-Previous Encoding

We introduce parameterized compression as the compression of a p-string encoding. Con-

ducting parameterized compression on the prev encoding may appear counter-intuitive at

first, given that for an n-length T , the number of distances in prev(T ) may be in O(n). The

fact that the alphabet may be of the same order as the uncompressed string itself is not

beneficial for dictionaries or symbol representation and heavily limits compression. Now, we

introduce the windowed-previous encoding scheme (wprev) to encode a p-string with limited

and finite distances up to a maximum distance d. As a result, wprev is a transformation of

T that can be compressed.

Definition 5.2.2 Windowed-previous encoding (wprev) function: Let function J (y, Y )

return the lexicographical order (1, 2, ..., |Y |) of the symbol y in alphabet Y . Let K reverse

the process, i.e. K(J (y, Y ), Y ) = y. Then, function wprev generates a set of integers for

each i, 1 ≤ i ≤ n = |T | where:
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wprev(T, q, d)[i] =



J (T [i],Σ ∪ Π ∪ {$}) + d, if T [i] ∈ (Σ ∪ {$}) ∨ (T [i] ∈ Π ∧
((d < min{k | T [i− k] = T [i], (i− k) ≥ 1 ∧ k = 1, 2, ...})
∨ (q = true ∧ T [i] 6= T [j] for every 1 ≤ j < i)))

0, if q = false ∧ T [i] ∈ Π ∧ T [i] 6= T [j] for every 1 ≤ j < i

i− k, if T [i] ∈ Π ∧ k = max{j | T [i] = T [j], 1 ≤ j < i}

Omitting the terminal for brevity, consider Σ = ∅,Π = {x → 1, y → 2}, and T =

xyxyyyyyx, where prev(T ) = 002211116. Here, we have wprev(T, true, 3) = 452211114

and wprev(T, false, 3) = 002211114. The parameter d identifies the number of parameter

distances 0, 1, ..., d that are used in wprev. In practice, d is chosen based on the alpha-

bet size and the underlying data type used. The boolean variable q determines how to

encode the parameters in the transformation. When q = true, all of the data is encoded

in wprev(T, true, d) that is necessary to obtain the original T since constants are encoded

verbatim and distances are used to reconstruct the parameters. When q = false, we need to

prepend a header h to wprev(T, false, d) to identify the order of occurrence of the (at most

|Π|) parameters that are encoded by 0. The header h tells us how to replace the 0 distances

when converting wprev(T, false, d) to T .

To compress and decompress the wprev transformation, we derive the following rou-

tines: (1) p compress in Algorithm 5-1 which uses T to prepare the wprev encoding to be

compressed by some standard compression scheme compress and (2) p decompress in Algo-

rithm 5-2 to decompress the compressed sequence into the original wprev encoding used to

reconstruct the original T . The advantage of Tc = p compress(T ) for p-matching is that (1)

a number of parameter distances in prev(T ) are already identified for p-matching and (2)

a compressor may exploit the transformation to discover “hidden” patterns within a text,

reveal relationships between the distances of like-symbols, and alter symbol probabilities

based on the way in which the parameters are chosen by choose(Σ,Π, q, d). It is assumed

that these values are relayed between p compress and p decompress. Since wprev can be

constructed in linear time for an indexed alphabet with O(1) mapping operations J and K,

then functions p compress and p decompress clearly execute in the time of the underlying

compress and decompress routines, respectively. Thus, the cost of p-compression in terms

of time is negligible.

To see how the wprev compression compares to the compression of T , we performed

experiments using numerous compression schemes on various ASCII data sets and identified
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Algorithm 5-1. Compressing an encoding.
1 choose(Σ ,Π ,q ,d)
2 String p compress(String T ){
3 String y = wprev(T ,q ,d ) ,h=null
4 int i
5 i f (q ) return compress(y )
6 for i=1 to | y |
7 i f (y [ i ]=0)
8 h = h ◦ (J (T [ i ] , Σ ∪Π ∪ {$})+d)
9 return compress(h ◦ SEPARATOR ◦ y )

10 }

Algorithm 5-2. Decompressing an encoding.
1 choose(Σ ,Π ,q ,d)
2 String p decompress(String z ){
3 String y=decompress(z ) ,T=null
4 int i ,j=1,k=max{1 ,y . indexOf(SEPARATOR)+1} ,p=1
5 for i=k to | y | {
6 i f (y [ i ]=0){ T = T ◦ K (y [ p]−d ,Σ ∪Π ∪ {$} ) , p++ }
7 else i f (y [ i ]≤d) T = T ◦ T [ j−y [ i ] ]
8 else T = T ◦ K (y [ i]−d ,Σ ∪Π ∪ {$})
9 j++

10 }return T
11 }
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the number of bytes required for the compression of T and the number of bytes required

for the compression of wprev transformations. The compression schemes used were winrar

from win-rar.com, Tunstall developed by Yoshida and Kida [97, 62], and lzma, bzip2,

and ppmd from 7-zip.org. We tested on the Ecoli sequence, the Bible text, and a random

sequence U(1, 32) where U(a, b) is on the range [a, b]. Each sequence was appended with a

terminal symbol. The Bible sequence was altered for p-matching in the following way: only

letters and spaces remained in the text, all uppercase letters were converted to lowercase,

and the most frequently occurring 14 words, considered parameters, were replaced with a

corresponding unique uppercase letter. The experimental results are shown in Table 5.1.

We observe that T and the wprev transformation have very similar compression results in

most cases, especially for small d. In the case of Bible and winrar, for example, we see that

the transformation wprev(T, true, 2) achieves better compression than T . In the case of the

Ecoli sequences with Tunstall, we see that wprev transformations do not compress as well

as T , even though the compressions of T and wprev are nearly identical for the other cases

of Tunstall. We attribute this to the very small alphabet of the Ecoli sequence and the fact

that the wprev scheme introduces additional elements to this alphabet for a variable-to-fixed

length coder to handle. In the case of U(1, 32), we note that the compression schemes do

not compress the random data. Nonetheless, the results suggest that compressing the wprev

transformation does not deter much from traditional compression and in fact, may even offer

better compression.

5.2.2 Challenges

Earlier, we discussed how to construct the compressed Tc, i.e. T
wprev→ W

compress→ Tc or

T
p compress→ Tc. We now focus on devising a solution to cppm(Tc, P ) by first identifying the

differences between compressed p-matching and compressed matching that require a new

approach: (1) our compressed p-matching problem uses a compressed transformation Tc and

(2) finding all p-matches of P in the n-length T requires handling parameterized suffixes

(p-suffixes) prev(T [i...n]), which are dynamic since prev(T [i...n]) = prev(T )[i...n] is not

always true for each i, 1 ≤ i ≤ n (see Lemma 2.1.10).

Consider for example Σ = {A}, Π = {v, w}, T = wAww$, and so, prev(T ) = 0A21$.

Unlike the traditional suffixes wAww$ → Aww$ → ww$ → w$ → $ , the p-suffixes

are dynamically changing: 0A21$ → A01$ → 01$ → 0$ → $ . Now, consider finding
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all p-matches of P = v in T . This problem requires that we first determine prev(P ) = 0.

We report an occurrence at i of P in T when prev(T [i...i+ |P | − 1]) = prev(P ) = 0, which

yields the occurrences {1, 3, 4}. In this example, we see that taking substrings directly from

prev(T ) will overlook the occurrences {3, 4}. For compressed texts, the p-matching task

is even more difficult since we are analyzing O(n) p-suffixes with a total of O(n2) p-suffix

symbols in a compressed form. This gives further merit to efficient solutions for compressed

p-matching.

5.2.3 Algorithm

Before we begin the discussion of our cppm algorithm, we list some initial notes and

assumptions. Consider the indexed alphabet A = {a1, a2, ..., a|A|}. For ease of discussion,

assume that Tc = p compress(T ) is such that the function choose(ΣT ,ΠT , q, d) uses ΣT = ∅
and ΠT = A as the wprev alphabets for the T transformation prior to compression, q = true,

and a fixed d. By extending our future discussion, other cases can also be supported. Now, let

the m-length pattern P have alphabets Σ and Π from A such that Σ ⊆ A and Π ⊆ A where

(Σ∪Π) = A and (Σ∩Π) = ∅. These particular alphabets determine how the compressed p-

matching is to be performed. To avoid unnecessary complications to the discussion, we do not

append a terminal $ to P . Finally, we assume the existence of a special partial decompression

function ∂(Tc, i) that, using Tc, will retrieve the original wprev encoded symbol at i, say W [i].

It is assumed that ∂ will be called sequentially for i = 1, 2, ..., n. The actual development of

∂ is a core contribution discussed later.

Consider an m-length pattern P and an n-length text T . Algorithm 5-3 addresses the

compressed p-matching (cppm) problem by constructing the set: atIndex = {i | prev(T [i...i+

m−1]) = prev(P [1...m]) ∀ i, 1 ≤ i ≤ n−m+1}. The algorithm accepts the compressed text

Tc, the uncompressed pattern P , and the array A, which determines the pattern alphabets:

A[l] = 0 if the pattern alphabet symbol mapped to l is a constant and A[l] = 1 if the

symbol mapped to l is a parameter. We initially generate Bp, the p-border array for P ,

and also, prevP , the prev encoding for P . Let L[|Σ| + |Π|] = {0, 0, ..., 0} and j = 0.

The algorithm iterates through each original symbol at i = 1, 2, ..., n and works with one

decompressed wprev symbol W [i] at a time. That is, we retrieve the symbol sym = ∂(Tc, i).

This sym is now the original W [i] and so, the next task will be to convert the sym to

a prev encoded symbol for p-matching purposes. This is done by observing the integer
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ranges in Definition 5.2.2. When sym > d, we are working with an encoded symbol (not a

distance) and so, we can decrement sym to determine the integer that represents the symbol:

val = sym−d. When sym ≤ d, we are working with a distance and so, we must look through

L to determine the symbol in which the distance refers: val. At this point, we have obtained,

in val, the actual integer representation of the symbol T [i].

We continue by adjusting val to the valid encoded value prev(T [i − j...i])[j + 1] with

two cases. (1) If A[val] = 0, we are working with a constant in P , so the correct encoding

is the symbol itself: Cg = σval (recall notation from Chapter 2). (2) Otherwise, val refers to

a parameter. Initially, say that the parameter is the first occurrence, so simply let Cg = z0.

Now, if the value occurred before, L[val] ≥ 1, and if the distance is such that (i− L[val]) <

j + 1, then the distance is valid and belongs in the p-suffix prefix: Cg = zi−L[val]. In both

cases, record the location of this symbol: L[val] = i. At this point, we have the current

prev encoded symbol Cg from the j + 1 symbol of the p-suffix at i − j in T and we can

begin the p-match with prevP . A p-match exists by Theorem 2.1.9 iff all of the prev

encoded symbols match. So, if Cg = prevP [j + 1], then we know that j++ symbols p-

match. However, a mismatch must halt the process because a p-match cannot exist between

P and the current p-suffix in T . So, we now need to find the length b of the longest p-

suffix that is a prefix of the failed p-match, which will assist in advancing the p-match.

That is, when j > 0 ∧ b > 0, find the maximum b where prev(T [i − j...i − j + b − 1]) =

prev(T [i − b...i − 1]) = prevP [1...b] = prev(P [1...b]). By Definition 2.1.18, b = Bp[j].
So, we set j = Bp[j] and appropriately reset Cg for parameters considering a new p-suffix

prev(T [i − j...i]) until either j = 0 or Bp[j] = 0 or Cg = prevP [j + 1]. If we reach a

point where indeed Cg = prevP [j + 1], set j++ to signify a new matching symbol. As we

oracle elements in Bp, we are “attempting” to begin the next p-match with the 1st longest

p-border, and if this fails, the 2nd longest p-border, etc. At any time, when m symbols

match, i.e. j = m, then we can report a p-match: atIndex = atIndex ∪ (i − m + 1).

In this situation, we know that the prefix of the p-suffix in T p-matches fully with P , i.e.

prev(T [i− j+1...i]) = prevP = prev(P ), and so, we know that Bp[j] gives us the maximum

known p-match to continue at the next iteration, i.e. if Bp > 0, then the maximum p-border

is prev(T [i− Bp[j] + 1...i]) = prevP [1...Bp[j]] = prev(P [1...Bp[j]]). When a p-match exists,

let j = Bp[j]. In any case, continue to the next iteration i++.

Essentially, the aforementioned cppm computation (see Algorithm 5-3) performs three

major tasks. (1) Each wprev compressed symbol is decompressed and converted to a prev
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Algorithm 5-3. Parameterized pattern matching using pattern P and Tc = p compress(T ),
the compressed form of T , where n = |T | and m = |P |.

1 // f o r b r e v i t y , assume no use o f t e rmina l $
2 List cppm(String Tc ,String P , bit A [ |Σ |+ |Π | ] ) {
3 int Cg ,val ,sym ,h , i ,j=0,L [ |Σ |+ |Π | ] = { 0 , 0 , . . . , 0 }
4 int Bp [m]=pborder(P ) ,prevP [m]=prev(P )
5 List atIndex ; boolean flag
6 for i=1 to n {
7 // A − prepare new symbol
8 Cg=$ , sym=∂ (Tc , i ) , val=sym−d
9 i f (sym≤d) {

10 h=1, val=−1, Cg=zsym
11 while (h≤ ( |Σ |+ |Π | ) ∧ val=−1) {
12 i f (L [h]=i−sym) val=h
13 h++
14 }
15 } // B − ad j u s t prev encoded va lue
16 i f (A [ val ]=1) { // symbol i s parameter in P
17 Cg=z0

18 i f (L [ val ]≥1 ∧ ( i−L [ val ])<j+1) Cg=zi−L[val]

19 } else // symbol i s cons tant in P
20 Cg=σval
21 L [ val]=i
22 // C − p−match
23 i f (Cg=prevP [ j+1]) // . . . match
24 j++
25 else { // . . . mismatch
26 flag=true
27 while (flag ∧ j>0 ∧ Bp [ j ]>0) {
28 j=Bp [ j ]
29 i f (C=z ∧ g≥j+1) Cg=z0

30 i f (Cg=prevP [ j+1]){ flag=false , j++ }
31 } i f (j>0 ∧ Bp [ j ]=0) j=0
32 } i f (j=m) { // . . . r epor t p−match
33 atIndex=atIndex ∪ ( i−m+1) , j=Bp [ j ]
34 }
35 }return atIndex
36 }



Richard Beal Chapter 5. Compressed Parameterized Pattern Matching 81

Algorithm 5-4. Partial decompression ∂kTC for Tunstall codes when W = wprev(T, true, d)
and Tc=p compress(T )=compress(W )=Tunstallk(W ).

1 // g iven d i c t i ona r y D = {d1, d2, ..., dD}
2 // l e t li = |di| and L =

∑D
i=1 li

3 struct pa i r { int start , int length }
4 int start=0,length=0,u=0,r = 0 ,S [L ]
5 pa i r DT [D ] ; bit index [ k ]
6
7 int ∂kTC ( bit Tc [nc ] , int i){
8 int s=i*k−k ,h ,j ,q=1,sym
9 i f (r=0){

10 // cons t ruc t i on o f DT and S
11 for j=1 to D {
12 DT [ j ]=(q , lj )
13 for h=1 to lj
14 S [ q+h−1]=dj [h ]
15 q=q+lj
16 }
17 } i f ( i=1)
18 r++
19 sym=0
20 i f ( length=0 ∧ i≤n){
21 // l o c a t e new D s u b s t r i n g
22 for j=1 to k
23 index [ j ]=Tc [ j+s ]
24 (start , length)=DT [ index ]
25 u=0
26 }// r e t r i e v e one symbol
27 i f (u<length){
28 u++
29 sym=S [ start+u ]
30 }// cons ider new D s u b s t r i n g
31 i f (u=length)
32 start=length=u=0
33 return sym
34 }
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encoded symbol for future p-matching purposes. (2) Each prev encoded symbol is adjusted in

terms of the p-suffix considered. (3) All p-matches are performed by comparisons between

prev as in Theorem 2.1.9 and p-matches are advanced with the p-border array Bp. The

correctness of the algorithm follows from the fact that each symbol in the original text T is

accessed left-to-right, p-matches are made via Theorem 2.1.9, and p-matches are advanced

by successive next longest candidates via Bp in Definition 2.1.18. The following lemma

formalizes the time complexity of the algorithm. The proof uses an amortized analysis.

Lemma 5.2.3 For the n-length text T , Algorithm 5-3 executes in O(nµ) time, where the

function ∂ executes in O(µ) time.

Proof Let the notation tfun denote the time required to execute function fun. Given the

function parameters Tc and the m-length P , the algorithm clearly executes in O(tpborder +

tprev +n× (t∂ + (|Σ|+ |Π|) +G)) time, where G denotes the number of times that lines 28-30

execute. By Lemma 2.2.7 and [17], tpborder = tprev = O(m) on P . Let t∂ = O(µ). Finally,

we must determine G. The while loop at line 27 is true for nonzero j and nonzero Bp[j],
where successively j = Bp[j]. It readily follows from Definition 2.1.18 that for nonzero

Bp[j], strictly Bp[Bp[j]] < Bp[j] because the next longest p-border must be shorter than

the longest p-border. So, the loop terminates because successive p-border lengths decrease.

Further, there is a relationship between the number of successful matches (incrementing j) in

lines 23-24 and the execution of lines 28-30. Since n symbols are each processed exactly once

in the for loop (lines 6-35), then there are at most n successful matches by lines 23-24 that

increment j during the entire algorithm. It follows that there are at most (n− 1) p-borders

used throughout the entire algorithm by lines 28-30. So, the total number of executions of

lines 28-30 amortize so that O(1) time is contributed to each iteration of the for loop (lines 6-

35). Then, G = O(1). Thus, the overall time of the algorithm is O(m + n × µ) ∈ O(nµ)

since m ≤ n. 2

Below, we formalize the space required by cppm.

Lemma 5.2.4 For the nc-length compressed text Tc and the m-length pattern P , Algo-

rithm 5-3 requires O(max{nc,m, nocc, υ}) space, where nocc is the total number of p-matches

that exist and where the function ∂ demands O(υ) space.

Proof Let the notations svar and sfun respectively denote the total space of the variable

var and the extra space, beyond function parameters and return values, required to execute
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function fun. Thus, the algorithm requires O(sTc + sP + sprevP + sA + sL + sBp + satIndex +

sprev + spborder) space. Collectively, we know that sTc = O(nc) and sP = sprevP = sBp =

O(m). By [17], spborder = O(1). Also, sA = sL = O(|Σ| + |Π|) from the algorithm and

sprev = O(|Π|) by Lemma 2.2.7, and if we consider the alphabets as practical constants,

sA = sL = sprev = O(1). Let satIndex = O(nocc) and s∂ = O(υ). Therefore, the overall space

is O(nc +m+ nocc + υ) ∈ O(max{nc,m, nocc, υ}). 2

Since O(υ) space is used by ∂ and both Bp and prevP are extra declarations, only

O(max{m, υ}) extra space is required. The results are summarized below.

Theorem 5.2.5 Given Tc, the compressed form of the n-length text T , and P , an m-length

pattern, compressed p-matching can be performed in O(nµ) time with O(max{m, υ}) extra

space, where the partial decompression function ∂ executes in O(µ) time with O(υ) extra

space.

Earlier, we stated that the compressed p-matching problem is combinatorial because we

need to detect occurrences of P in a total of O(n2) symbols over n dynamically changing

p-suffixes in the n-length T . The p-border expedites the time required and also attributes to

the extra space required by our algorithm. The time required for our compressed p-matching

solution is linear in T when the partial decompression function ∂ is done in a constant number

of steps per symbol. Our solution requires extra space linear in P when ∂ is done with at

most |P | space. Even though [8] addresses a different problem, i.e. fully compressed p-

matching, we also achieve a time result based on |T |. In the case of [7], the time complexity

is a term based on the number of runs in the encodings for P and T . These results are

different from traditional compressed matching solutions that can achieve time results based

on |Tc|. In contrast, our approach is more general, applicable for any compression scheme

where ∂ can be defined. If we define ∂ as the catenate utility, we achieve regular p-matching

in O(n) time with O(1) extra space, which is analogous to the conventional p-matching of

[11, 6]. Given the recent interest and pattern matching abilities of variable-to-fixed length

coding [64, 97, 62, 92], we define ∂ for Tunstall codes, i.e. ∂kTC , in the following section.

5.3 Tunstall Code Partial Decompression

A Tunstall code [91] is devised by developing a dictionary D = {d1, d2, ..., dD} of variable

length sequences for the originally uncompressed string T . Each di ∈ D is represented
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with a fixed k-length code from 2k sequential codes, where k is chosen in practice so that

k mod 8 = 0. The original sequence T is divided into substrings, which are candidates to

be entries in D. The construction of D is beyond the scope of this work. We denote this

compression scheme as Tunstallk.

Klein and Shapira [64] provide an algorithm to decompress text encoded with Tunstall

codes, making use of the aforementioned variables in addition to a dictionary table DT

of pairs (start, length) used to locate text within the string S = d1 ◦ d2 ◦ ... ◦ dD. Their

algorithm reads the compressed sequence of Tunstall codes k bits at a time and assigns

this value to i. Then, the Tunstall code is decoded from the substring S[start...start +

length − 1] by simply indexing S with DT [i] = (start, length). By repeating this process,

the concatenation of the individual S[start...start + length − 1] will produce the original

sequence. The problem of using the described decompression scheme directly in Algorithm 5-

3 is the rate of decompression. Recall that the ∂ function is designed to be called sequentially

i = 1, 2, ..., n and use Tc to retrieve the symbol originally compressed at i within the n-length

wprev encoding. So, we develop ∂kTC in Algorithm 5-4 to work left to right in Tc, partially

decompress Tc, and return a single symbol sequentially. The following lemma formalizes the

time and extra space required to execute each call to ∂kTC .

Lemma 5.3.1 Each call to ∂kTC requires O(k) time and O(D) extra space, where D is the

number of substrings in the dictionary D.

Proof Consider the time analysis first. It is clear that DT and S are constructed only once

in O(L) time, where L = l1 + l2 + ... + lD. This construction time is amortized across all n

calls to the function. During each execution in the worst case, we must read a Tunstall code

that requires O(k) time, so O(k + L
n

) time is required. Since the construction of Tunstall

codes is designed to make L negligible with respect to the uncompressed text size n, then

O(k + L
n

) ∈ O(k). Now consider space. Since Tc of length nc is required for any partial

decompression function, it is clear from Algorithm 5-4 that only the extra structures DT , S,

D, and index are significant. The D is utilized in the compression routines, so we can omit

this as extra space due to ∂. Further, we may replace D with the concatenated representation

of S and DT , which can perform the same functions. Since we can replace D with S of the

same total elements O(L), then only DT of length O(D) and index of length O(k) are

considered extra space. Since D > k, then the extra space is in O(D). 2

Since k is chosen in practice as a fixed bit length and D ≤ 2k, we can consider both k
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and D as constants. Thus, each call to ∂kTC requires O(1) time and O(1) extra space. The

next theorem specializes Theorem 5.2.5 to the case of Tunstall coding.

Theorem 5.3.2 Given Tc, the compressed form of the n-length text T using Tunstall codes,

and P , an m-length pattern, compressed p-matching can be performed in O(n) time with

O(m) extra space.

5.4 Conclusion

We formally define the compressed parameterized pattern matching (compressed p-

matching) problem to find all of the p-matches between a pattern P and text T , using

only the uncompressed P and the compressed text Tc. We introduce the idea of parame-

terized compression – a way to losslessly compress T via a new p-string encoding wprev to

better support p-matching. It is shown experimentally that T and wprev on T have similar

compression performance. Our solution to the compressed p-matching problem is provided

for any compression scheme via a general partial decompression function ∂. We then de-

velop ∂ for Tunstall coding as an example. By more closely investigating other compression

schemes to define ∂, we can add to the utility of our compressed p-matching result.
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Chapter 6

Parameterized Strings with

Indeterminate Symbols

In this chapter, we pioneer the notion of indeterminate symbols with parameterized

strings, which are composed of symbols from the constant alphabet Σ and the parameter

alphabet Π. Below, we propose and address two new variations of the parameterized match

(p-match) with indeterminate symbols: the indeterminate parameterized match (ip-match)

and the equivalence parameterized match (e-match). The ip-match allows constant and

parameter holes in a string. The e-match allows disjoint groups of symbols from Σ or Π

to be indeterminate. While the p-match itself is a special type of inexact matching, we

propose, in this chapter, to extend the inexact capabilities of the p-match via matching with

indeterminate symbols.

6.1 Parameterized Prefix Array

A parameterized string (p-string) is composed of symbols from a constant alphabet Σ and

a parameter alphabet Π. Two p-strings S and T are parameterized matches (p-matches)

if (1) all of the constant symbols match exactly and (2) the parameter symbols form a

bijection. In other words, the p-match is a special form of inexact pattern matching, where

the constants match exactly and the parameters consistently correspond. While the already

inexact p-match framework has been taken to further inexact forms such as approximate

matching [49] and matching with mismatches [8, 7], the research in this area is very limited.

Currently, the notion of allowing indeterminate symbols in p-strings with indeterminate
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pattern matching is not supported.

We are motivated to study this area because of the generalization of the p-match and

the intricate applications that the p-match naturally addresses. By using only the Σ alpha-

bet, any p-match algorithm/result also applies to traditional string theory [87, 47, 1], the

foundation of solutions to various applications. Further, the p-match naturally addresses

problems in biology [86], software engineering [12], academia [11], and music. Various music

applications have been approached from the perspective of string theory and pattern match-

ing [30, 4]; we will later make the connection between music and the p-match. By allowing

another level of inexactness to the p-match, we will add to the capability of the p-match

framework and support more sophisticated applications.

Here, we consider the prefix array (PA), which was used to find repetitions in [71], used

within the Z-algorithm for pattern matching [47], used in algorithms by [34], and formally

defined as a data structure in [88]. For an n-length T , PA[i] is the length of the longest prefix

common between T and T [i...n]. The PA computation is powerful for traditional pattern

matching applications and, unlike the related border array [87], where each border[i] is the

length of the longest prefix of T [1...i] that matches a suffix of T [1...i], the PA also supports

indeterminate pattern matching [88, 26]. The PA is represented more compactly in [88].

Currently, there is no PA or compact PA for p-strings.

Main Contributions: In this section, we introduce the parameterized prefix array

(pPA) and a succinct form, the compact parameterized prefix array (cpPA), whose length

η is the number of nonzero entries in pPA. This extension is challenging because prefixes

and suffixes of p-strings do not necessarily behave like traditional strings. Our constructions

make use of the longest previous factor (LPF ) data structure, which was primarily used for

LZ factorization [36] and has recently motivated much research [35, 37, 38, 19, 23, 24]. We

introduced the parameterized longest previous factor (pLPF ) [19], which for an n-length p-

string T , each pLPF [i] for 1 ≤ i ≤ n is the length of the longest parameterized prefix common

between T [i...n] and some T [h...n] with 1 ≤ h < i. The array L (see Definition 2.1.16) keeps

the index of this occurrence, i.e. L[i] = h. We show in [23] the power of the pLPF/LPF data

structures, as they can be used to construct many data structures such as the longest common

prefix (LCP ), parameterized longest common prefix (pLCP ), border, parameterized-border,

etc. In this section, we show a connection between pLPF , L, and pPA. We exploit this

connection to construct the pPA via the pLPF . We then directly construct the cpPA via

the pLPF to conserve space. Next, we introduce the indeterminate parameterized string
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(ip-string), a p-string with indeterminate symbols, and further define the indeterminate

parameterized pattern matching (ip-match) problem, i.e. the matching of ip-strings. We

then propose and construct the compact indeterminate parameterized prefix array (cipPA).

The construction of cPA data structures on indeterminate strings is a difficult problem. We

note that cPA construction is not simply searching for a pattern T in T [2...n]$$...$ and

recording an element prior to a mismatch. When a mismatch occurs, an efficient search will

shift the result to the next best place to continue matching, which can skip necessary cPA

computations. The addition of indeterminate symbols complicates the cPA construction

on strings [88, 27] and p-strings; so the cipPA, like the cPA on indeterminate strings, is

constructed in quadratic time in the worst case [88]. Further, the (compact) prefix array

is a staple for indeterminate pattern matching because the linear space data structure can

be used to obtain all borders of each suffix with indeterminate symbols, which is a problem

that is also solved in quadratic time in the very worst case (for strings with wildcards) [57].

Lastly, we identify applications for our data structures in music and software engineering.

Our main theoretical results are formalized below.

Theorem 6.1.6. Given the pLPF and L on the n-length text T , the pPA on T can be

constructed in O(n) time and O(1) extra space.

Theorem 6.1.8. Given the pLPF and L on the n-length text T , the η length cpPA on T

can be constructed in O(n log η) time and O(1) extra space.

Theorem 6.1.14. For the n-length ip-string T , the cipPA on T can be constructed in O(n2)

time and O(|Π|) extra space.

6.1.1 Background

Baker [12] identifies three types of pattern matching: (1) exact matching, (2) parameter-

ized matching (p-match), and (3) matching with modifications. In this section, we focus on

(2) and a new fusion between (2) and (3). The first p-match breakthroughs revolved around

suffix structures on the previous (prev) encoding. The parameterized suffix tree (p-suffix

tree) was proposed and constructed in [11]. Additional improvements to the p-suffix tree are

given in [65, 32, 68]. Like the traditional suffix tree [87, 47, 1], the p-suffix tree [11] implemen-

tation suffers from a large practical memory footprint. One p-matching solution to address

the space problem is the parameterized suffix array (p-suffix array) in [53, 40]. The work
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in [21] gives sub-quadratic and near-linear time worst-case p-suffix array constructions. The

structural string (s-string) was introduced by Shibuya [86] as an extension to the p-match

that incorporates complementary symbols to support structural matching (s-matching) of

RNA secondary structures. Originally, the structural suffix tree was constructed in [86] to

perform the s-match. The structural suffix array was proposed in [16] as an alternative suffix

structure for the s-match.

Other solutions that address the p-match without the space limitations of the p-suffix

tree include the parameterized-KMP [6] and parameterized-BM [14], variants of traditional

pattern matching schemes. Further, the p-match problem is addressed via the Shift-OR

mechanism in [42]. Idury et al. [56] studied a heuristic known as the pfail function to

address the multiple p-match problem using the traditional Aho-Corasick automaton. This

pfail function is viewed as the parameterized border array (p-border), analogous to the

traditional border array [87], and has been used for p-matching and studied in a variety of

combinatorial problems in [54, 55]. In [22], we construct the structural border (s-border)

array, a border array with respect to the s-string, and provide the first s-match algorithm

without suffix structures.

The aforementioned p-matching is specifically for uncompressed texts. In [8, 7], fully

compressed p-matching is proposed on run-length encodings. In [22], we showed how to

p-match on run-length encoded strings as an application of the s-border array. Compressed

p-matching between a compressed text and an uncompressed pattern is addressed in [18].

While the problem of p-matching with mismatches is studied in [49, 8, 7], the existence of

indeterminate symbols in p-strings is currently not examined. Even though the border array

supports standard pattern matching [87] and extensions support p-matching/s-matching [22],

the border definition fails to support indeterminate symbols [88]. However, the prefix array

(PA) [71, 47, 34, 27], though closely related to the border array, does support indeterminate

pattern matching [88, 26]. Indeterminate pattern matching can also be addressed without

the prefix array [47, 52]. In this section, we propose and address indeterminate parameterized

pattern matching via an extention of the PA and the compressed prefix array (cPA) [88] –

data structures not currently supported for p-strings. In [23], we showed how to build various

data structures with the construction of the parameterized longest previous factor (pLPF )

[19], a p-string data structure related to the longest factor data structures by Crochemore

et al. [35, 37, 38]. In this section, we show how to construct our new data structures

via the pLPF array. We then introduce p-strings with indeterminate symbols, a form of
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indeterminate matching for these p-strings, and construct a prefix array data structure to

support the proposed match.

6.1.2 Parameterized Prefix Array

The prefix array is a core data structure in string processing that is used to solve tradi-

tional exact string matching problems and can be extended to support indeterminate strings.

To address both exact matching problems and more challenging inexact matching scenarios

dealing with complex biological strings [86], source code [12], prose (detecting academic pla-

giarism [11]), and music theory, the p-string and the p-matching problem naturally provide

the necessary capabilities. To extend the prefix array data structure to support p-matching,

we introduce the parameterized prefix array below by encoding all prefixes under prev.

Definition 6.1.1 Parameterized prefix array (pPA): The pPA for the p-string T of

length n is defined for each position 1 ≤ i ≤ n, such that pPA[i] is the length of the

longest common prefix between the p-suffixes, prev(T ) and prev(T [i...n]). i.e. pPA[i] =

plcp(1, i, T ) for 1 ≤ i ≤ n.

For an example p-string T = AcbcAzazAb from the working alphabets Σ = {A,B,C}
and Π = {a, b, c, w, x, y, z}, we have pPA = {10, 0, 0, 0, 6, 0, 0, 0, 2, 0}. Following [88], we

define the compact parameterized prefix array below to represent the nonzero elements of

the pPA.

Definition 6.1.2 Compact parameterized prefix array (cpPA): Given the pPA for

the n-length T , the cpPA is a pair of integer arrays (pPOS, pLEN) that represent the left-

to-right nonzero elements of pPA, i.e. pPA[pPOS[i]] = pLEN [i] ≥ 1 for 1 ≤ i ≤ n.

For the example T = AcbcAzazAb, we have pPOS = {1, 5, 9} and pLEN = {10, 6, 2}.
Note that converting between cpPA and pPA only requires a linear scan. Also note that

by first computing η = |pPOS| = |pLEN |, we can algorithmically decide to construct the

compact data structure over the full-fledged prefix array when 2η < n.

Construction

To put the cpPA construction into perspective, first consider the PA/cPA construction

on traditional strings with no indeterminate symbols. Two types of solutions are available:
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(a) direct constructions of the cPA and PA are provided in [88, 27] and (b) the B is used

to construct the PA in [27]. In this section, we construct our new p-string data structures

(pPA and cpPA) using different methods.

First, we identify a simple way to construct the pPA/cpPA via parameterized suffix

structures. With these data structures, the length of the prefixes common between the prefix

of the n length T and all p-suffixes of T is readily available. Consider the parameterized

suffix tree (pST ) [11]. We walk the path T [1], T [2], ..., T [n] and when at symbol T [i], we

say that each p-suffix (say at k) that differentiates at this node have plcp(1, k, T ) = i. The

problem with the pST approach is that like the traditional suffix tree [87, 47, 1], the pST

suffers from a large practical footprint. While using the lightweight pST alternative, i.e. the

pSA and pLCP , will resolve this issue, powerful mechanisms [25] to yield arbitrary plcp

computations can require heavy processing.

Here, we will identify more interesting constructions of the pPA/cpPA via the parame-

terized longest previous factor (pLPF ) [19]. The pLPF is a p-string extension of the longest

previous factor (LPF ) data structure [35]. Traditionally, the LPF was used for LZ fac-

torization [36]. However, the LPF ’s utility in string matching has yielded various related

data structures [38, 37, 23]. Further, we show in [23] that one pLPF construction algorithm

can also construct many data structures, including the LPF , pLCP , LCP , p-border, and

border. Now, we look at the contents of the pLPF data structure and identify a connection

with the pPA/cpPA.

For the n-length text T , each pLPF [i] is defined as the maximum prefix length common

between prev(T [i...n]) and prev(T [h...n]) for some 1 ≤ h < i, where the pPA[i] is the

maximum prefix common between prev(T [i...n]) and prev(T ). So, in the case that h = 1,

we have pPA[i] = pLPF [i]. For other cases, h > 1 and thus 0 ≤ pPA[i] ≤ pLPF [i]. To

determine these other cases, we establish further theory. Recall that L[i] stores the position

in T of the longest previous p-match with the p-suffix at i (see Definition 2.1.16). The

observation, formalized below, is that we can use the L to successively “hop” along the

pLPF and compute an element of pPA.

Lemma 6.1.3 Given the n-length text T , the pLPF and L on T , let Hi = {pLPF [i], pLPF [L[i]],

pLPF [L2[i]], ..., pLPF [Lf [i]]} be the elements visited during the hop-from-i. If Lf [i] = 1 then

pPA[i] = min(Hi), else pPA[i] = 0.

Proof Define the hop-from-i as the act of starting at pLPF [i], proceeding to pLPF [L[i]],
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proceeding to pLPF [L2[i]], etc. until a non-existing entry is accessed (when i = 0 or

Ly[i] = 0 for y ≥ 1). Thus, the list of elements visited during the hop-from-i is Hi =

{pLPF [i], pLPF [L[i]], pLPF [L2[i]], ..., pLPF [Lf [i]]}, where pLPF [Lf [i]] is the last element

visited.

In words, the hop-from-i is an operation to successively visit the length of longest pa-

rameterized prefix common with the current prefix until no such prefix exists. So, pLPF [i]

is the length and L[i] is the location in T of the longest prefix common with prev(T [i...n]).

By Definition 2.1.16, pLPF [L[i]] must then be the length and L2[i] must be the location

of the longest prefix common with prev(T [i...i + pLPF [i] − 1]). Further, pLPF [L2[i]]

must then be the length and L3[i] must be the location of the longest prefix common

with prev(T [i...i + pLPF [L[i]] − 1]), etc. Thus, Hi is the list of lengths of longest pre-

fixes common with prev(T [i...n]) occurring before i in T . So, Lf [i] 6= 1 means that, by

Definition 2.1.16, prev(T [i...n]) does not share any common symbols with prev(T ) and we

must have pPA[i] = 0. Otherwise, Lf [i] = 1 and we have pPA[i] > 0. When |Hi| = 1,

pPA[i] = Hi[1]. When |Hi| > 1, we have L[i] 6= 1, and so the longest prefix matching with

prev(T [i...n]) did not occur directly with prev(T ). Thus, the minimum of Hi is the longest

prefix common between prev(T [i...n]) and prev(T ), i.e. pPA[i] = min(Hi). 2

Algorithm 6-1 constructs each element pPA[i] by calling the hop function, which uses

Lemma 6.1.3 to compute pPA[i]. In the following, we formalize the running time of the

algorithm.

Theorem 6.1.4 Given the pLPF and L on the n-length text T , the pPA on T can be

constructed in O(nu) time and O(1) extra space, where u = unique positive(L) is the

number of unique positive integers in L.

Proof The correctness of Algorithm 6-1 follows from Lemma 6.1.3. The running time is

clearly bounded by the n calls in line 3 to the function hop. In hop, the running time

is bounded by the number of “hops”, or iterations of the loop in lines 10-13. Suppose

the maximum number of iterations is h. Then the running time is in O(nh). We now

bound h. So, pLPF [i] is visited during the first iteration, pLPF [L[i]] is visited at the

second iteration, pLPF [L2[i]] at the third iteration, etc. until no such element exists or

L[i] = 0. By Definition 2.1.16, we know that each L[i] points to a previous longest factor

or zero when one does not exist, i.e. 0 ≤ L[i] < i. Since the loop stops when a previous
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factor does not exist, then clearly h ∈ unique positive(L). Thus, the running time is in

O(n × unique positive(L)), Since the algorithm does not allocate any space beyond the

required pPA, the extra space is in O(1). 2

The previous approach shows a new and interesting connection between the pLPF and

the pPA, albeit the running time is not on par with the traditional PA linear time con-

structions [88, 27]. The bottleneck of Algorithm 6-1 is the need to construct each pPA[i] by

visiting/hopping multiple indices of pLPF via L. Notice that each hop moves to previous

elements in the pLPF . With this, we consider the relationship between the elements visited

during the computations of say pPA[i] and pPA[j]. We observe that the computations from

the hop from j, needed to compute pPA[j], can help solve pPA[i] when i > j and pLPF [j]

is visited during the hop from i. The observation is formalized in the following lemma.

Lemma 6.1.5 Given the n-length text T , the pLPF and L on T , let Hi and Hj be the

elements visited during the hop-from-i and hop-from-j, respectively. If j = L[i], then

pPA[i] = min(pLPF [i], pPA[j]).

Proof Following Lemma 6.1.3, the list of elements visited during the hop-from-i is Hi =

{pLPF [i], pLPF [L[i]], pLPF [L2[i]], ..., pLPF [Lf [i]]}. Similarly, the list of elements visited

during the hop-from-j is Hj = {pLPF [j], pLPF [L[j]], pLPF [L2[j]], ..., pLPF [Lg[j]]}. By

Lemma 6.1.3, we know how to compute pPA[j], i.e. if Lg[j] = 1 then pPA[j] = min(Hj)

and otherwise pPA[j] = 0. In the case when j = L[i], we have Hi[2...f + 1] = Hj and thus

pPA[i] = min(Hi[1], pPA[j]) = min(pLPF [i], pPA[j]). 2

By Lemma 6.1.5, we can first compute a pPA element and then use the value to compute

another. We implement this in Algorithm 6-2. By Definition 6.1.1, we know that pPA[1] = n,

so the algorithm uses a single left-to-right scan of the pLPF from i = 2...n to compute each

element pPA[2...n]. When we reach an i with a previous matching prefix, i.e. a nonzero

L[i], we compute pPA[i] by taking the minimum of the current longest prefix value, i.e.

pLPF [i], and the minimum of the old longest prefixes, i.e. the elements visited during the

hop-from-L[i] already computed in pPA[L[i]] (line 6). The running time and extra space

complexities are formalized below.

Theorem 6.1.6 Given the pLPF and L on the n-length text T , the pPA on T can be

constructed in O(n) time and O(1) extra space.
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Algorithm 6-1. Construct pPA via pLPF and L.
1 int [ ] construct pPA( int pLPF[ n ] , int L [ n ] ) {
2 int pPA[ n ] = { 0 , 0 , . . . , 0 } , i
3 for ( i=1 to n) pPA[ i ]=hop( i , pLPF,L)
4 return pPA
5 }
6 // Construct plcp(1, i, T )
7 int hop( int i , int pLPF[ n ] , int L [ n ] ) {
8 int plcp=n
9 i f ( i≥2){

10 do{
11 plcp=min ( plcp , pLPF [ i ] )
12 i=L [ i ]
13 }while ( i 6=0 ∧ L [ i ] 6=0)
14 i f ( i 6=1) plcp=0
15 }
16 return plcp
17 }

Algorithm 6-2. Improved pPA construction via pLPF and L.
1 int [ ] construct pPA imp( int pLPF[ n ] , int L [ n ] ) {
2 int pPA[ n]={n , 0 , . . . , 0 } , i , v
3 for ( i=2 to n){
4 i f (L [ i ]≥1) v=pPA[L [ i ] ]
5 else v=0
6 pPA[ i ]=min (v ,pLPF [ i ] )
7 }
8 return pPA
9 }

Algorithm 6-3. Count length of each array of the cpPA.
1 int get cppa length(char T[ n ] , bit αT[ n ] ) {
2 int η=0, i , sym=T[ 1 ] , type=αT[ 1 ]
3 for i=1 to n {
4 i f ( ( type=SIGMA ∧ sym=T[ i ] ) ∨ ( type=PI ∧ αT[ i ]=PI ) ) η++
5 }
6 return η
7 }



Richard Beal Chapter 6. Parameterized Strings with Indeterminate Symbols 95

Algorithm 6-4. Construct cpPA = (pPOS, pLEN) via pLPF and L.
1 ( int [ ] , int [ ] ) construct cpPA(char T[ n ] , bit αT[ n ] , int pLPF[ n ] , int L [ n ] ) {
2 int η=get cppa length(T,αT)
3 i f (2*η<n){ // when more e f f i c i e n t to cons t ruc t cpPA
4 int pPOS[ η ] = { 1 , 0 , . . . , 0 } , pLEN[ η ]={n , 0 , . . . , 0 } , i , j =1, v , w
5 for ( i=2 to n){
6 v=0
7 i f (L [ i ]≥1) {
8 w=binary search(pPOS,L [ i ] )
9 i f (w≥1) v=pLEN[w]

10 }
11 v=min (v , pLPF [ i ] )
12 i f ( v≥1) {
13 pPOS[ j ]= i
14 pLEN[ j ]=v
15 j++
16 }
17 }return (pPOS,L)
18 } else return (construct pPA imp(pLPF,L ) , null )
19 }

Proof The correctness of our pPA construction in Algorithm 6-2 follows from Lemma 6.1.5.

Since the algorithm uses a single scan of the n-length pLPF and L arrays and does not

allocate any arrays in addition to the pPA, then the algorithm requires O(n) time and O(1)

extra space. 2

At this point, we have constructed the pPA. We can very easily generate the cpPA

by running Algorithm 6-2 to obtain the pPA first and making a cpPA element for each

pPA[i] > 0. While this has the same O(n) construction time as Algorithm 6-2, we have used

the n-length pPA to construct the η-length cpPA. Thus, construction of the cpPA in this

manner will use O(n) extra space.

Theorem 6.1.7 Given the pLPF and L on the n-length text T , the cpPA on T can be

constructed O(n) time and O(n) extra space.

To resolve the excessive extra space of Theorem 6.1.7, in Algorithm 6-4, we construct the

cpPA = (pPOS, pLEN) data structure directly, i.e. without first allocating/constructing

the pPA. The algorithm first, in line 2, computes the length η of the cpPA via Algorithm 6-

3. When T [i] is a constant, η is simply the count of all exact T [i] symbols in T , which is

necessary to begin a p-match. When T [i] is a parameter, η is the total of all parameter
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symbols in T because any length-1 prefix beginning with a parameter will p-match with any

other parameter by Definition 2.1.4. Following the η computation, line 3 determines, for the

given T , if the compact pPA representation is better than just pPA, i.e. when 2η < n. If

not, we compute the pPA in the regular way (line 18). Otherwise, we allocate the arrays

pPOS and pLEN with the known first entries (line 4), i.e. pPOS[1] = 1 and pLEN [1] = n.

The remainder of the algorithm (lines 5-17) operates in the same manner as Algorithm 6-2

using Lemma 6.1.5 (line 11); the key modification is replacing the n-length pPA with the

η-length arrays pPOS and pLEN , i.e. removing the excessive extra space of Theorem 6.1.7.

In line 8, we need to find the location in cpPA of pPA[L[i]], so we first find the location of

L[i] in pPOS via a binary search in order to find the position of the element pPA[L[i]] in

pLEN . We compute the current cpPA value v in line 11 (Lemma 6.1.5). Finally in lines 12-

16, we only store the current value v in pPOS and pLEN if v ≥ 1. The complexities of the

algorithm follow.

Theorem 6.1.8 Given the pLPF and L on the n-length text T , the η length cpPA on T

can be constructed in O(n log η) time and O(1) extra space.

Proof The correctness of Algorithm 6-4 follows from that of Algorithm 6-2 and Lemma 6.1.5.

We now consider the time complexity. Since line 2 is an O(n) operation, the running time

is bounded by the time of line 8, which is called (n− 1) times. Let binary search(A, a), in

O(log |A|) time, return the location of a in the sorted array A or return 0 when a does not

exist. Since |pPOS| ∈ O(η), then line 8 requires O(log η) time and the entire algorithm is

bounded by O(n log η). Lastly, the algorithm operates with O(1) extra space since only the

required pPOS and pLEN arrays are allocated. 2

In passing, we note that by manipulating the alphabets, i.e. using only the Σ alphabet,

all of our algorithms and results apply to the PA and cPA for traditional strings.

6.1.3 A Prefix Array for Indeterminate p-strings

In this section, we introduce a variation of the p-match with indeterminate symbols

and propose/construct analogous prefix array data structures. The notion of indeterminate

strings and indeterminate pattern matching is traditionally described in the following way

[52]. Indeterminate strings contain symbols from Σ and holes. These holes are represented

by another symbol, say a placeholder Z. Each placeholder corresponds to a subset of symbols
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from Σ, i.e. z ⊆ Σ. Two indeterminate strings match when all of the corresponding symbols

match in the following way: two symbols from Σ match exactly, two identical holes can

match, or a hole Z can match with any symbol s ∈ z.

For parameterized strings, incorporating indeterminate symbols can take many forms.

We can allow each hole to correspond to symbols from only Σ, only Π, or Σ ∪ Π. The way

this is defined can impact how the holes and symbols are matched. We can allow holes and

symbols to match in the traditional way. Alternatively, we can enforce another parameter

bijection on only the indeterminate matches within the strings. While applications may exist

for each variation, we will propose the most direct way to introduce indeterminate symbols

into p-strings, which is useful in various applications (discussed later). Now, we define the

indeterminate parameterized string, which consists of constants from Σ, parameters from Π,

and holes from I = {ÎΣ, ÎΠ}.

Definition 6.1.9 Indeterminate parameterized string (ip-string): An ip-string is a

production T of length n from (Σ ∪ Π ∪ I)∗$, where I = {ÎΣ, ÎΠ}.

To know the alphabet of each symbol in the n-length ip-string T , we redefine the p-string

α encoding (Definition 2.1.2). For each 1 ≤ j ≤ n, (a) iα(T )[j] = SIGMA if T [j] ∈ Σ, (b)

iα(T )[j] = PI if T [j] ∈ Π, (c) iα(T )[j] = ÎΣ if T [j] = ÎΣ, and (d) iα(T )[j] = ÎΠ if T [j] = ÎΠ.

Two ip-strings S and T form an indeterminate parameterized match (ip-match) when a

p-match occurs between the string symbols from Σ and Π, and the holes match or the hole

ÎΣ matches a symbol in Σ or ÎΠ matches a symbol in Π. Definition 6.1.10 formalizes the

ip-match.

Definition 6.1.10 Indeterminate parameterized matching (ip-match): An ip-match

exists between the n-length ip-strings S and T if each 1 ≤ i ≤ n corresponds to one of the

following:

1. S[i], T [i] ∈ (Σ ∪ {$}) ∧ S[i] = T [i]

2. S[i] = S[i− q] iff T [i] = T [i− q] for every 1 ≤ q < i with S[i], T [i] ∈ Π

3. (S[i] = T [i] = ÎΣ) ∨ (S[i] = ÎΣ ∧ T [i] ∈ Σ) ∨ (T [i] = ÎΣ ∧ S[i] ∈ Σ)

4. (S[i] = T [i] = ÎΠ) ∨ (S[i] = ÎΠ ∧ T [i] ∈ Π) ∨ (T [i] = ÎΠ ∧ S[i] ∈ Π)

For example, let Σ = {A,B,C} and Π = {a, b, c, v, w, x, y, z}, S = abbÎΠAbaÎΣ, T =

wxxÎΠAxwÎΣ, U = bcczAcbB, V = bcccAcbB, W = bcczCcbB, and X = ccczAcbb. The
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ip-strings S, T , U , and V are all ip-matches. Our definition of the ip-match generalizes to

many other matching schemes. When no holes are used, the ip-match becomes the p-match.

When no parameters are used, the ip-match becomes exact matching with wildcards. When

no holes and no parameters are used, the ip-match becomes the exact match.

Unlike the p-match (see Definition 2.1.4), we cannot perform the ip-match by creating

a single encoding scheme and blindly comparing the encodings mainly because we do not

know if a symbol will be matched with another symbol or with a hole, i.e. a factor that will

change the parameter distances of prev and thus the bijection. In Algorithm 6-5 (iplcp),

we compute the longest common prefix between any two suffixes at A and B in an ip-string

T by considering each symbol in terms of Definition 6.1.10 (1)-(4).

Lemma 6.1.11 For the ip-string T of length n and iαT = iα(T ), the length of the ip-match

between T [A...n] and T [B...n] is computed in O(n−max(A,B)) time and O(|Π|) extra space.

Proof The iplcp in Algorithm 6-5 compares at most O(n−max(A,B)) symbols via (1)-(4)

of Definition 6.1.10 each in O(1) time with the notated alphabet sets in iαT . The parameter

bijection (2) is supported by two auxiliary size |Π| arrays. Thus, O(n − max(A,B)) time

and O(|Π|) extra space is required. 2

In the following, we define the prefix array and compact prefix array for ip-strings.

Definition 6.1.12 Indeterminate parameterized prefix array (ipPA): The ipPA for

the p-string T of length n is defined for each position 1 ≤ i ≤ n, such that ipPA[i] is the length

of the longest ip-match between the T [1...n] and T [i...n], i.e. ipPA[i] = iplcp(T, iα(T ), 1, i).

Definition 6.1.13 Compact indeterminate parameterized prefix array (cipPA):

Given the ipPA for the ip-string T , the cipPA is a pair of integer arrays (ipPOS, ipLEN)

that represent the left-to-right nonzero elements of ipPA, i.e. ipPA[ipPOS[i]] = ipLEN [i] ≥
1.

As with the cPA, we want to directly construct the cipPA without the ipPA. Algo-

rithm 6-4 cannot construct the cipPA for ip-strings because (1) the length of the cipPA is

different due to the presence of indeterminate symbols, (2) only p-matching is supported,

and (3) the pLPF only supports standard p-strings.

We modify the η calculation get cpPA length (Algorithm 6-3) to get cipPA length

(Algorithm 6-6), which handles the indeterminate cases. For instance, when T [1] is a hole, it
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can ip-match another like hole or a symbol in the respective alphabet. During each iteration

of the scan to find η, when a new length-1 ip-match is found we also find the next value

of ipPOS. For clarity, we show this ipPOS generation in get nextval of Algorithm 6-6.

Our cipPA construction in Algorithm 6-5 first computes η and ipPOS, and uses the iplcp

(Lemma 6.1.11) to ip-match T with each element of ipPOS.

Theorem 6.1.14 For the n-length ip-string T , the cipPA on T can be constructed in O(n2)

time and O(|Π|) extra space.

Proof Our cipPA construction (Algorithm 6-5) computes the length η of the cipPA, com-

putes the ipPOS, and uses the iplcp to perform the ip-matching between T and the indi-

vidual ipPOS. The line 2 computation of η and ipPOS (respectively, get cpPA length and

get nextval in Algorithm 6-6) are scans that clearly require O(n) time. For h = 1 to η,

we loop through all positions of the ipPOS to compute. Each element is computed by ip-

matching (line 4) between T and T [ipPOS[h]...n] via iplcp, which requires O(n−ipPOS[h])

time and O(|Π|) extra space by Lemma 6.1.11. Since η ≤ n, the algorithm requires O(n2)

time and O(|Π|) extra space in the worst case. 2

At this point, we note that while the PA and cPA are constructed in linear time [88, 27]

and the new pPA and cpPA are constructed in linear time in the worst case, the addition of

indeterminate symbols introduces challenges to the theoretical worst case complexity. First,

we highlight that the cPA construction is not as easy as performing an efficient/fast search

of T in T [2...n]$$...$ and reporting a cPA element prior to a mismatch. Simply put, when

a mismatch occurs, we shift the result to the next best place to continue matching, which

can occur after smaller matches; these smaller matches are skipped during efficient pattern

matching, but are valid cPA elements. Even though we can efficiently construct the cPA

for strings and p-strings, the introduction of indeterminate symbols adds complications to

the solution and worst case running time. The compact prefix array data structures are

powerful tools that can be used to find all borders of suffixes of a string with indeterminate

symbols. This difficult computation requires quadratic time in the very worst case and is

linear in the average case for traditional strings with wildcards [57]. For traditional strings

with indeterminate symbols, the cPA is constructed by [88] in quadratic time in the worst

case. In [88], it was shown experimentally that computing the cPA for indeterminate strings

is faster with a standard brute-force approach than when employing more sophisticated
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shifting mechanisms that do not improve the worst case time complexity. Unlike the LPF

definition where a match can occur between a suffix and a previous suffix in the string, the

definition of the prefix array is more restrictive, i.e. requiring a match between a suffix and

only prefixes of the text. Intuitively, this restriction will play a role in the practical running

time. A future research problem is to investigate alternate approaches to improve the worst

case theoretical construction of prefix array-based data structures on indeterminate strings.

6.1.4 Applications

The border cannot be used for strings with indeterminate symbols because its represen-

tation and construction are based on matching transitivity. The prefix array does allow us to

handle indeterminate symbols because we can directly obtain the necessary longest common

prefixes between these strings – the ultimate shifting mechanism. To find a pattern P in the

text T , whether a traditional string, p-string, or ip-string, we can find all instances of the

m-length P in the n-length T , where both can have indeterminate symbols, by constructing

our cipPA = (ipPOS, ipLEN) on P ◦ # ◦ T with # /∈ Σ ∪ Π. For any ipLEN [i] = |P |,
we report that P occurred in T at position (i − |P | − 1). Due to the # symbol, this will

require O(nm) time in the very worst case (and O(|Π|) extra space), but uses the cipPA

data structure to solve the difficult scenario where P and T can have any number of holes.

Indeterminate pattern matching and even matching with wildcards suffer from similar worst

case time bounds and can limit holes to appear exclusively in the pattern P [47].

An advantage of the cipPA, like the cPA as noted in [88], is that it can be used alterna-

tively as a shifting mechanism for pattern matching. The PA based data structures, in at

most n elements, represent all of the borders of suffixes of a string and indeterminate string;

this is a difficult problem that is solved in O(n2) time in the very worst case in [57]. Our

ip-string data structure can be used as a shifting mechanism in the following way. Compute

the cipPA = (ipPOS, ipLEN) for P . From left-to-right in T , independently ip-match the

symbols until we find a mismatch. Suppose that P [1...k] and T [i...i+k−1] are ip-matches for

the max k; there is a mismatch after k symbols. We can then scan the compact ipLEN [1...k]

until we find the smallest j such that ipPOS[j] + ipLEN [j] − 1 ≥ k. We then use this to

determine the longest border of P [1...k] and attempt rematching. This method is a variation

of matching with the border arrays [22] using the prefix array representation.

Due to the multiple alphabets and sophisticated matching scheme, p-string theory is a
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Algorithm 6-5. The cipPA = (ipPOS, ipLEN) construction.
1 ( int [ ] , int [ ] ) construct cipPA(char T[ n ] , char iαT[ n ] ) {
2 int η=get cipPA length(T, iαT) , ipPOS [ η ]=get nextval(T, iαT, η ) , ipLEN [ η ] , k
3 for h=1 to η
4 k=iplcp(T, iαT, 1 , ipPOS [ h ] )
5 ipLEN [ h]=k
6 }return ( ipPOS , ipLEN)
7 }
8
9 int iplcp(char T[ n ] , char iαT[ n ] , int A, int B){

10 boolean val id sym=true
11 int pmap1 [ |Π| ] = { 0 , . . . , 0 } , pmap2 [ |Π| ] = { 0 , . . . , 0 }
12 int k=1,sym1 , type1 , sym2 , type2
13 while ( va l id sym ∧ k≤n){
14 sym1=T[ k+A−1] , type1=iαT[ k+A−1]
15 sym2=T[ k+B−1] , type2=iαT[ k+B−1]
16 i f ( type1=type2=SIGMA ∧ sym1=sym2) k++ // De f i n i t i on 6.1.10 (1)
17 else i f ( type1=type2=PI ∧ pmap1 [ sym1]=pmap2 [ sym2 ] ) {
18 // De f i n i t i on 6.1.10 (2)
19 pmap1 [ sym1]=pmap2 [ sym2]=k
20 k++
21 }
22 else i f ( ( type1=type2=ÎΣ ) ∨ ( type1=ÎΣ ∧ type2=SIGMA) ∨
23 ( type2=ÎΣ ∧ type1=SIGMA) ) k++ // De f i n i t i on 6.1.10 (3)

24 else i f ( ( type1=type2=ÎΠ ) ∨ ( type1=ÎΠ ∧ type2=PI ) ∨
25 ( type2=ÎΠ ∧ type1=PI ) ) k++ // De f i n i t i on 6.1.10 (4)
26 else val id sym=fa l se
27 }return k−1
28 }

Algorithm 6-6. Preprocessing prior to cipPA construction.
1 int get cipPA length(char T[ n ] , char iαT[ n ] ) {
2 int η=0, j , sym=T[ 1 ] , type=iαT[ 1 ]
3 for j=1 to n {
4 i f ( ( ( type=SIGMA ∨ type=ÎΣ ) ∧ (sym=T[ j ] ∨ iαT[ j ]=ÎΣ ) ) ∨
5 ( ( type=PI ∨ type=ÎΠ ) ∧ ( iαT[ j ]=PI ∨ iαT[ j ]=ÎΠ ) ) ) η++
6 }return η
7 }
8
9 int [ ] get nextval(char T[ n ] , char iαT[ n ] , int η ){

10 int j , cur r =1,sym=T[ 1 ] , type=iαT[ 1 ] , nextva l [ η ]
11 for j=1 to n {
12 i f ( ( ( type=SIGMA ∨ type=ÎΣ ) ∧ (sym=T[ j ] ∨ iαT[ j ]=ÎΣ ) ) ∨
13 ( ( type=PI ∨ type=ÎΠ ) ∧ ( iαT[ j ]=PI ∨ iαT[ j ]=ÎΠ ) ) ){
14 nextva l [ cur r ]= j
15 curr++
16 }
17 }
18 return nextva l
19 }
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Figure 6.1: Transpositions of Beethoven’s Ode to Joy, where PF are pitches in the key of F
Major and PG are pitches in G Major. RF and RG are the respective rhythm sequences with
quarter (q), dotted quarter (q.), eighth (e), and half (h) notes.

very powerful field that is utilized to solve all standard string problems and to naturally

address various other problems. In the early beginnings of the p-string, the core applications

were source code cloning and detecting plagiarism in academia [11], which make use of the Π

alphabet as program variable names and particular words, respectively. A decade later, the

p-string was used to help identify the structural similarity of complex RNA secondary struc-

tures [86]. More recently, the p-string was applied as a transformation for data compression

[18]. We now identify music as a new area for p-string theory.

Music is organized sound over time. A score, or sheet music, represents music on

paper as a collection of notes and other symbols/annotations. At the basic level, notes

will have a pitch and a beat. There are 12 pitches that are repeated at different octaves:

P = {A,A]/B[,B,C,C]/D[,D,D]/E[, E, F, F ]/G[,G,G]/A[}. For most musical arrange-

ments, the pitch alphabet will be between A0 and C8 (with po as pitch p at octave o), the

respective low and high pitches of the piano. A musical composition is a collection of several

pitches with beats. The pitches share a tonic (root) note and a key signature, i.e. a collection

of pitches with respect to the tonic. The pitches in the key signature control the relative

sound of a composition. Each pitch is to elapse a certain time determined by the beat, which

is described by the time signature of the piece. A problem in music theory and practice is

the need to transpose a composition from one key signature to another. Simply put, music

is transposed for multiple instruments (pitched differently) to sound correct together in a

band/orchestra setting or music can be transposed to help better support the range of an

instrument/voice. Thus, the same music can exist in many key signatures with variations,

introducing challenges to music analysis and extraction. The method to transpose between

two major or minor key signatures say K1 and K2 is to find the interval between K1 and K2

and move each pitch in the music up/down that exact interval. Computationally, we can

count the number of semitones S that make up this interval and appropriately add/subtract
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S from each note in the sheet music. If we let Σ = ∅ and Π = P, then there is clearly a

one-to-one correspondence, and thus a p-match, between the pitches of transposed pieces. A

sample transposition of Beethoven’s Ode to Joy between F Major and G Major is displayed

in Figure 6.1. Observe that prev(PF ) = prev(PG) = 010013500135131 with pitches in the

same octave Π = {F,G,A,B[,B,C,D}. For simplicity, we can keep the same rhythm, i.e.

time signature; so RF = RG. However, the music can be written in different, but equivalent

time signatures, again requiring a p-match to identify. Our newly proposed data structures

for the ip-match can be of assistance in various music scenarios with indeterminate symbols.

For instance, when music is originally drafted, sometimes a composer may not be certain of a

note or, it may be possible that two notes sound just as pleasing to the ear. These segments

of sheet music will have indeterminate symbols. Indeterminate symbols may also be present

in digital music converted from audio due to background noise. Also, indeterminate symbols

can help us query and extract different variations of a musical segment.

Various other applications of the ip-match are possible. One of the problems of trying to

protect software and detect software infringement is the difficulty of dealing with multiple

languages. When we preprocess these texts for p-matching, we will set Σ as the syntac-

tic elements and Π as the identifiers, and replace all multiple letter entries by an agreed

symbol. In order to work with multiple languages, we must convert to a uniform language

– the problem here is: the lower level the language, the less natural language exists and

so, it can be more difficult to say that code cloning indeed exists. With the ip-match,

we can perform the match on the original processed source code. Suppose are looking for

a proprietary assignment statement in the C language, G=299*sqrt(F+T)+Q*T/F;. If this

statement were present in an unauthorized clone of our system, it would appear in Java as

Y=299*Math.sqrt(Z+T)+R*T/Z;, in Pascal as A:=299*sqrt(B+C)+D*C/B;, and in BASIC as

LET Z=299*SQR(Y+X)+W*X/Y. We can use the ip-match to find all of these clones by searching

for the pattern Y ÎΣ 299*ÎΠ (Z+T)+R*T/Z.

6.1.5 Conclusions

While the p-match problem has been investigated for many years, originating in STOC’93

[11] and SODA’95 [14], the p-match is still lacking the capabilities of the well-studied tra-

ditional exact match. Even though forms of inexactness have been applied to the p-match

[49, 8, 7], the area has limited research. The ability to apply further inexactness to the
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p-match can address sophisticated applications. This motivates our study of indeterminate

symbols, indeterminate pattern matching, and the p-string/p-match, a previously unstud-

ied problem. Leading to our study of indeterminate symbols and parameterized strings,

we study the prefix array (PA) and its succinct representation, the compact prefix array

(cPA) [88], which has been used for indeterminate pattern matching for traditional strings.

In this section, we extend the PA/cPA framework for p-strings and provide a linear time

construction via a new, novel use of the parameterized longest previous factor (pLPF ) [19]

data structure. The results generalize to also yield a new linear time construction of the

PA/cPA data structures. We introduce the indeterminate parameterized string (ip-string)

and a form of indeterminate pattern matching (ip-match) on ip-strings. Next, we propose

the PA and cPA for ip-strings and show a construction that executes in quadratic time in

the worst case. This worst case result compares to other related algorithms on traditional

strings. The cPA construction for traditional strings with indeterminate symbols also has

a quadratic worst case time bound [88]. Further, prefix based data structures compactly

encode the borders of all suffixes of a string and this computation also requires quadratic

time in the worst case, for traditional strings with wildcards [57]. Nonetheless, the ip-match

can address interesting applications with indeterminate symbols in both patterns and texts

of RNA secondary structures [86], source code [12], prose [11], and now music compositions,

as identified in this section. Lastly, we note that our results also apply to traditional strings

when the alphabets only contain constant symbols.

6.2 The Equivalence Parameterized Match

The area of pattern matching has evolved to help support a multitude of applications

requiring different forms of string analyses. Traditional exact matching is useful in many

applications, such as database retrieval. Approximate pattern matching, a helpful scheme

in spell-checking applications, is much less restrictive as two strings S and T can vary

by at most k symbols, which may be added, modified, or deleted to transition between

S and T . Other variations of inexact matching exist, such as matching with wildcards,

indeterminate matching, and degenerate matching, and are helpful in applications from

biology to cryptography. However, there are a number of applications that require a pattern

matching scheme between the strict exact matching and the less-stringent inexact matching.

The parameterized match (p-match) [11] helps solve some of these applications that require
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a combination of traditional exact matching and inexact matching with bijections.

A parameterized string (p-string) is composed of symbols from a constant alphabet Σ

and a parameter alphabet Π. Two p-strings S and T are said to be a parameterized match

(p-match) if (1) all of the constant symbols match exactly, i.e. S[i], T [i] ∈ Σ ∧ S[i] = T [i],

and (2) the parameter symbols form a bijection between S and T , i.e. for S[i], T [i] ∈
Π and possibly S[i] 6= T [i], where parameter S[i] reappears in S say at position j, then

also parameter T [i] reappears in T at position j. This scheme is needed in applications

that involve detecting source code cloning and deep software analysis [12, 98], identifying

academic plagiarism [11], and determining the structural equivalence of RNA sequences as

a component of the structural match (s-match) [86]. In some cases, we may need to add a

level of inexactness to the p-match. Suppose that we are searching natural language source

codes in different programming languages and at the token level, we want to treat all of the

superfluous assignment operators :=, =:, =, <-, etc. in the same manner. Suppose that are

searching vocal music compositions in the bass and baritone range, then we can consider

all corresponding pitches above high-C in the same manner. Thus, we need to employ the

p-match with a group of constant or parameter symbols that behave in the same way, i.e.

to add a form of indeterminacy to the p-match.

Main Contributions: In this section, we propose a form of indeterminate p-matching

known as the equivalence parameterized match (e-match) on equivalence strings (e-strings).

We show how to address the e-match using the parameterized string (p-string) suffix array

framework. Before this section, the main bottleneck of approaching the p-match via the

parameterized suffix array (pSA) and parameterized longest common prefix (pLCP ) was

the theoretical worst-case quadratic time needed to directly construct the data structures,

without the need of the parameterized suffix tree (pST ). The pSA/pLCP open problem

posed by [53] is quoted below.

“From a theoretical viewpoint, a näıve radix sort would give an O(n2) time al-
gorithm. It is an open problem if there exists better worst-case time algorithms
for p-suffix array [pSA] construction. Similarly, for PLCP [pLCP ] arrays, the
P-Kasai algorithm runs in O(n2) time. However, we do not know if this bound is
tight, or if there exist linear time algorithms for PLCP [pLCP ] array construc-
tion.”

The fact that the parameterized suffix (p-suffix) is dynamic and invalidates the properties

of traditional suffixes makes efficient construction of the pSA/pLCP quite difficult. Further,
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it is challenging to tightly bound the construction analysis due to these dynamic p-suffixes.

In fact, following the previous quote in [53], it is difficult to bound novel p-string algorithms

more tightly than näıve solutions! Nonetheless, we show an improved pSA construction in

[21], but with practical considerations. Also, we construct the pLPF in linear expected time

in [19]. However, the theoretical worst-case bound for the pSA/pLCP is still a problem.

In this section, we initially identify a relationship between p-suffixes and then propose

the parameterized cover (p-cover). This newfound relationship and p-cover are exploited to

construct the pSA in stages. The idea is extended to yield O(n|Π|) worst-case constructions

of the pSA and pLCP for an n-length p-string from the constant alphabet Σ and parameter

alphabet Π, breaking the previous O(n2) time barrier. Our main results, formalized below,

are also applicable to the traditional suffix array (SA) and longest common prefix (LCP )

array.

Theorem 6.2.18. Given an n-length e-string E from Σ and Π with uΠ unique parameters,

we can construct the e-suffix array (eSA) in O(nuΠ), or generally O(n|Π|), time and extra

space.

Theorem 6.2.20. Given an n-length e-string E from Σ and Π with uΠ unique parameters,

the RMQ r on LCPprE where prE = prev(rename(E)), and the first parameters data struc-

ture F on E, the equivalence longest common prefix array (eLCP ) is constructed in O(nuΠ)

time and extra space, or generally O(n|Π|) time and extra space.

6.2.1 Background

Baker [12] identifies three types of pattern matching: (1) exact matching, (2) parame-

terized matching (p-match), and (3) matching with modifications. In this section, we focus

on (2) and a new fusion between (2) and (3). The p-match generalizes exact matching with

the parameterized string (p-string), composed of symbols from a constant symbol alphabet

Σ and a parameter alphabet Π. A p-match exists between a pair of p-strings S and T of

length n when (1) the constant symbols σ ∈ Σ match and (2) there exists a bijection of pa-

rameter symbols π ∈ Π between S and T . The first p-match breakthroughs revolved around

suffix structures on the p-string previous (prev) encoding. The parameterized suffix tree

(pST ) was proposed and constructed in O(n(|Π| + log(|Π| + |Σ|))) time in [11]. Additional

improvements to the pST are given in [65, 32, 68]. Like the traditional suffix tree [87, 47, 1],
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the pST [11] implementation suffers from a large practical memory footprint.

One p-matching solution to address the space problem is the parameterized suffix array

(pSA) and parameterized longest common prefix (pLCP ) array. To avoid the memory

footprint of the pST , the pSA and pLCP must be constructed directly, that is, without

the assistance of the pST . Initially, the pSA and pLCP were defined for p-strings from

a binary alphabet and constructed directly in linear time [40]. The same group [53] later

defined the pSA and pLCP for p-strings from any alphabet and proposed direct constructions

requiring quadratic time in the worst-case. The question of whether or not sub-quadratic

direct constructions of the pSA and pLCP exist was also posed as an open problem in

[53]. A transformative approach to pSA construction via arithmetic codes was introduced

in [20]. Later in [21], the arithmetic coding approach was exploited further, with practical

considerations, to construct the pSA in sub-quadratic and near-linear time in the worst-

case. The parameterized longest previous factor (pLPF ) data structure was studied in [19]

and a connection was made between the pLPF and the construction of other p-string data

structures, including the pLCP , in expected linear time for particular p-strings [23]. The

structural string (s-string) was introduced by Shibuya [86] as an extension to the p-match

that incorporates complementary symbols to support matching RNA secondary structures.

Originally, the structural suffix tree (sST ) was constructed in [86] to perform the s-match.

The structural suffix array (sSA) and structural longest common prefix (sLCP ) array were

proposed in [16] as an alternative suffix structure for the s-match. Historically, algorithms

directly constructing the pSA and sSA have suffered theoretical time lags due to the dynamic

nature of encoded suffixes. This is also true for algorithms constructing data structures such

as pLCP and sLCP . In this section, we propose a novel method to address the challenges of

directly constructing the pSA and pLCP for an n-length p-string from Σ and Π in O(n|Π|)
time, breaking the O(n2) previous worst-case theoretical time barrier.

Other solutions that address the p-match without the space limitations of the pST in-

clude the parameterized-KMP [6] and parameterized-BM [14], variants of traditional pattern

matching schemes. These particular approaches use a variety of heuristics for shifting the

comparisons to p-match efficiently. Further, the p-match problem is addressed via the Shift-

OR mechanism in [42]. Idury et al. [56] studied a heuristic known as the pfail function to

address the multiple p-match problem using the traditional Aho-Corasick automaton. This

pfail function is viewed as the parameterized border array (p-border), analogous to the

traditional border array [87], and has been used for p-matching and studied in a variety
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of combinatorial problems in [54, 55]. A relationship between the pLPF and the p-border

was shown in [23]. In [22], we construct the structural border (s-border) array, a border

array with respect to the s-string, and provide the first s-match algorithm without suffix

structures.

The aforementioned p-matching is specifically for uncompressed texts. In [8, 7], fully

compressed p-matching is proposed on run-length encodings. In [22], we show how to p-

match on run-length encoded strings as an application of the s-border array. Compressed

p-matching between a compressed text and an uncompressed pattern is addressed in [18].

The problem of p-matching with mismatches is studied in [49, 8, 7]. In this section, we

propose the equivalence parameterized match (e-match) to integrate indeterminate symbols

with the p-match; we address the e-match via suffix structures.

6.2.2 The Equivalence Parameterized Match

The p-match is helpful in applications involving source code analysis [12], academic

plagiarism [11], and RNA structural similarity [86]. In these applications, there are situations

where we may wish to treat a group of symbols, whether constants or parameters, in the same

way. To implement a form of indeterminacy with the p-match, we propose the equivalence

parameterized match (e-match). Discussion on the e-match begins with formalizing the

notion of an equivalence class for alphabets defined for pattern matching, which closely

follows from mathematics.

Definition 6.2.1 Equivalence class (e-class): Given an alphabet A = {a1, a2, ..., aA}, an

equivalence class on A is a partition of one or more symbols from A, say Â = {ai, aj, ..., ak},
where every pair of symbols ay, az ∈ Â are considered to be inexact matches, i.e. ay ≈ az.

Since an e-class is a partition of symbols from A, then any two e-classes Â1 and Â2 from A

are such that Â1 ∩ Â2 = ∅.

Note that from the preliminaries, the ≈ operator, like the = operator for symbols/strings,

is reflexive, symmetric, and transitive. Using the previous definition, we now define equiva-

lence alphabet sets for our constant alphabet Σ and parameter alphabet Π to group symbols

by e-classes.

Definition 6.2.2 Equivalence alphabet sets (e-alphabet sets): For the constants Σ,

we denote the e-alphabet set as a set of e-classes from Σ, i.e. Σ̂ = {Σ̂1, Σ̂2, ..., Σ̂Ŝ}. For
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the parameters Π, we denote the e-alphabet set as a set of e-classes from Π, i.e. Π̂ =

{Π̂1, Π̂2, ..., Π̂P̂}.

In other words, the e-alphabets Σ̂ and Π̂ are respectively partitions of Σ and Π of symbols

that are considered equivalent. From Definition 6.2.1, we can also have any or all |Σ̂i| = 1 and

|Π̂j| = 1 to model the standard scenario with no indeterminate symbols. In the following,

we define the equivalence parameterized string as a p-string with the e-alphabets Σ̂ and Π̂.

Definition 6.2.3 Equivalence parameterized string (e-string): An e-string E is an

n-length p-string from (Σ∪Π)∗$, where each E[i] ∈ Σ belongs to an e-class Σ̂i ∈ Σ̂ and each

E[i] ∈ Π belongs to an e-class Π̂j ∈ Π̂.

At this point, we highlight that, in addition to composing the e-string, the user is free

to define the p-string alphabet Σ and Π, in addition to the e-alphabets Σ̂ and Π̂ (following

Definition 6.2.2) as desired for the application considered. Below, we define the equivalence

parameterized match to formalize the way that the various alphabets and e-string symbols

are oracled to determine a match.

Definition 6.2.4 Equivalence parameterized matching (e-match): An e-match exists

between pair of e-strings E1 and E2 with n = |E1| if and only if |E1| = |E2| and each 1 ≤ i ≤ n

corresponds to one of the following:

1. E1[i], E2[i] ∈ (Σ ∪ {$}) ∧ E1[i] ≈ E2[i]

2. E1[i], E2[i] ∈ Π ∧ ((a) ∨ (b)) /* parameter bijection */

(a) E1[i] 6≈ E1[j], E2[i] 6≈ E2[j] for every 1 ≤ j < i

(b) E1[i] ≈ E1[i− q] iff E2[i] ≈ E2[i− q] for every 1 ≤ q < i

Consider Σ = {A,B,C,D,E}, Π = {u, v, w, x, y, z}, Σ̂ = {{A,B}, {C}, {D,E}} (where

Σ̂1 = {A,B}, Σ̂2 = {C}, and Σ̂3 = {D,E}), Π̂ = {{u}, {v, w, x}, {y, z}} (where Π̂1 = {u},
Π̂2 = {v, w, x}, and Π̂3 = {y, z}), E1 = AvzuxyE, E2 = BuvzuxE, and E3 = AvzzvzE.

Note that only E1 and E2 are e-matches because the constants match exactly with another

constant in the same e-class and parameters from the same e-class form a bijection. Essen-

tially, the e-match is the p-match where constant symbols can match any respective symbol

in the same e-class from Σ̂ and parameter bijections are formed between symbols from the
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same e-class from Π̂. Notice that the e-match definition is the p-match where the = and

6= symbol based operators are replaced respectively by the ≈ and 6≈ symbol operators. We

observe that since the e-alphabets are partitions of the original alphabets, we can perform a

renaming of the e-string with the following encoding.

Definition 6.2.5 Rename e-string encoding (rename): Given an n-length e-string E

with e-alphabet sets Σ̂, of size Ŝ, and Π̂, of size P̂, we define the alphabets XΣ̂ = {x1, x2, ..., xŜ},
XΠ̂ = {xŜ+1, ..., xŜ+P̂}, and X = XΣ̂ ∪XΠ̂. Define AX as an (Ŝ + P̂ )-length bit array where

AX [i] = PI if xi ∈ XΠ̂ and AX [i] = SIGMA when xi ∈ XΣ̂. The rename(E)[i] function is

defined for 1 ≤ i ≤ n such that:

rename(E)[i] =

{
xi, if E[i] ∈ Σ ∧ E[i] ∈ Σ̂i

xŜ+j, if E[i] ∈ Π ∧ E[i] ∈ Π̂j

The rename(E) will rename each symbol in E according to its e-class. For the working

example, we have XΣ̂ = {x1, x2, x3}, XΠ̂ = {x4, x5, x6}, rename(E1) = x1x5x6x4x5x6x3,

rename(E2) = x1x4x5x6x4x5x3, and rename(E3) = x1x5x6x6x5x6x3. At this point, we notice

that since the e-alphabets are partitions, the rename encoding handles all of the matching of

e-classes from Definition 6.2.4. All that is left is to ensure that the renamed symbols indeed

form a p-match via prev (as Definition 2.1.4). Thus, we perform the e-match by performing

a p-match on the rename encodings.

Lemma 6.2.6 Two e-strings E1 and E2, from Σ and Π with e-alphabets Σ̂ and Π̂ and rename

alphabets XΣ̂ and XΠ̂, are e-matches if prev(rename(E1), XΣ̂, XΠ̂) = prev(rename(E2),

XΣ̂, XΠ̂).

In our example, prev(rename(E1), XΣ̂, XΠ̂) = prev(rename(E2), XΣ̂, XΠ̂) = x100033x3

to verify the e-match, and prev(rename(E3), XΣ̂, XΠ̂) = x100132x3.

Using the previous lemma and the fact that suffixes of rename behave as traditional

suffixes, i.e. rename(E)[i...n] = rename(E[i...n]), we can support efficient e-matching by first

computing prE = rename(E) and constructing standard parameterized suffix structures on

traditional suffixes of the standard string prE, which is the same as handling the equivalence

parameterized suffixes (e-suffix) prev(rename(E[i...n])). Following the trends of handling big

data, we choose to use the more space-friendly parameterized suffix array (Definition 2.1.11)

and parameterized longest common prefix array (Definition 2.1.12) over the parameterized

suffix tree (pST ) since currently, a compressed form of the pST is not directly constructed.

Using the p-string framework, we define the suffix array for e-strings below.
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Definition 6.2.7 Equivalence parameterized suffix array (eSA): Given the n-length

e-string E, the e-suffix array (eSA) is eSA = construct pSA(rename(E), XΣ̂, XΠ̂).

Note that the rank array R on the eSA is defined exactly as the R on the pSA. Now, we

define the eLCP to record the length of the longest prefix common between two neighboring

e-suffixes in the eSA.

Definition 6.2.8 Equivalence longest common prefix array (eLCP ): Given the n-

length e-string E, the eLCP is eLCP = construct pLCP(rename(E), XΣ̂, XΠ̂).

We can now answer e-matching problems via the eSA and eLCP in the same way that

we use the pSA/pLCP and SA/LCP . The standard pattern matching problem is to find

all occurrences of an m-length pattern P in an n-length text T . After constructing the eSA

and eLCP on T , we can find all instances of any e-string pattern P in T by searching for

the encoding prev(rename(P )). As with the p-match, using the eSA and processing on the

eLCP of the n-length e-string T , we can find all of the nocc instances of the m-length e-string

pattern P in T in O(m+ log n+ ηocc) time.

Theorem 6.2.9 Using the eSA and eLCP on the n-length e-string T , all ηocc instances of

the m-length e-string pattern P in T can be found in O(m+ log n+ ηocc) time.

Motivated by the theoretical challenges of directly constructing the pSA and pLCP , we

next explore new, novel construction methods.

6.2.3 eSA Construction

Previously, we discussed the close relationship between the e-string/p-string, e-suffix/p-

suffix, eSA/pSA, and eLCP/pLCP . Recall that handling e-strings involves working with

the p-string encoding prev of the e-string encoding rename; so, we will use the p-string and

e-string terms interchangeably. Below, we address the eSA construction on e-strings via the

pSA construction on p-strings (see Definition 6.2.7). The core challenge of direct p-suffix

sorting is the dynamic nature of the p-suffixes (see Lemma 2.1.10). Thus, the clearest way

to sort the p-suffixes is to first compute each prev(T [i...n]) and sort. The bottleneck with

this approach is that O(n2) time and space is needed to sort the n p-suffixes of T . The

problems with current direct p-suffix sorting approaches are that: (1) they are limited to
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binary strings [40], (2) they identify improved constructions unable to break the O(n2) worst-

case time bound [53], or (3) they exploit finite integral representations and computations to

sort p-suffixes in practice [21].

In [53], the open question was posed whether sub-quadratic worst-case linear time con-

structions of the pSA exist. The research in [21] proposes arithmetic coding approaches to

sort p-suffixes in practice in sub-quadratic time. Here, we propose two new pSA construc-

tions with significantly improved theoretical worst-case time bounds over previous direct

p-suffix sorting approaches.

Relationship between p-suffixes

Both of our p-suffix sorting approaches exploit the following observation. Let prevT =

prev(T ). While Lemma 2.1.10 shows the disconnect between prevT and the p-suffixes of T ,

Lemma 6.2.10 shows the relationship between prevT and all of the p-suffixes of T .

Lemma 6.2.10 Given an n-length p-string T with uΠ unique parameters, let prevT =

prev(T ). Any p-suffix prev(T [i...n]) can be derived from prevT [i...n] in at most uΠ ∈ O(|Π|)
changes.

Proof Let prevT = prev(T ). Recall that in prevT , each parameter is encoded by 0 for the

first occurrence of that parameter or otherwise, is encoded by the distance of the previous

occurrence of that parameter. Let Ti = T [i...n] and prevTi = prevT [i...n]. So, prevTi can

be converted to the p-suffix prev(Ti) by resetting prevTi[j] = DISTANCE 0 if Ti[j] ∈ Π

and Ti[j] is the first occurrence of that parameter in Ti (see Definition 2.1.4). Since there

are uΠ symbols from Π in T , then at most uΠ ∈ O(|Π|) changes are needed. 2

For example, consider T = AxyyzBxyyBzA from Σ = {A,B} and Π = {w, x, y, z}, with

n = 12, prevT = prev(T ) = A0010B541B6A, and prevT4 = prevT [4...n] = 10B541B6A.

To find prev(T [4...n]) from prevT4, we locate the first occurrences of parameters x, y, and z

at positions 4, 1, and 2 respectively in prevT4. Note that the parameter w does not occur in

prevT4 so we do not consider this parameter. Now, we simply set prevT4[1] = prevT4[2] =

prevT4[4] = DISTANCE 0 and then prevT4 = prev(T [4...n]).

To efficiently derive the p-suffix prev(T [i...n]) from suffixes of prevT , we need to know

the first location of each unique parameter for each p-suffix of T in order to reset that

parameter distance in prevTi. We define the first unique parameters (F ) data structure to
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access the unique parameters in their order of occurrence. Note that while this specific order

is not necessary for converting prevT [i...n] to prev(T [i...n]), the order will be important for

future algorithms.

Definition 6.2.11 First unique parameters (F ): For the n-length p-string T , F is a

jagged array where each F [i] has the locations in T [i...n] of each unique parameter. Let

locPI(Y, y) return the index of the first location of the yth occurring unique parameter in Y

or 0 in the case that no such parameter exists. More formally for 1 ≤ i ≤ n, F [i][j] exists if

and only if loc = locPI(T [i...n], j) > 0 and so F [i][j] = loc.

An example F is shown in Figure 6.2. Let uΠ be the number of unique parameters in the

n-length text T . Since there are at most uΠ unique parameters in any T [i...n], then the space

required by F is at most O(nuΠ) for the specific T , or generally O(n|Π|) since uΠ ∈ O(|Π|).
We acknowledge the possibility of further compressing the F due to the fact that F [i+1] does

not add any new parameter information to F [i] when both T [i] and T [i + 1] are constants.

To remove this redundancy, we can define F [i] as before when T [i] is a parameter and when

T [i] is a constant, we set F [i] to the position k > i of the next parameter in T . To make our

algorithms and discussions more readable, we use the F as formalized in Definition 6.2.11.

Given the n-length e-string E and the (|Σ| + |Π|)-length bit array A, where A[i] =

SIGMA if symbol i ∈ Σ and A[i] = PI if symbol i ∈ Π, we construct the F in Algorithm 6-

7, i.e. F = construct F(E,A). The F is constructed via a right-to-left scan of E. As a new

leftmost symbol E[i] is encountered for the suffix E[i...n], we determine how to include this

symbol in the current F [i] based on whether or not E[i] ∈ Π and E[i] already occurred in

E[i + 1...n]. Let W = incr(w) accept array w and return array W where W [i] = w[i] + 1.

(a) When E[i] /∈ Π, we simply have that F [i] = incr(F [i+ 1]). (b) When E[i] ∈ Π and does

not occur in E[i+1...n], we have found the first parameter; let F = F [i+1], F [i][1] = 1, and

F [i][2...(|F| + 1)] = incr(F). (c) Otherwise, E[i] ∈ Π and already occurred in E[i + 1...n],

so we let F ′ = F [i + 1] and delete the entry denoting parameter E[i], i.e. remove F ′[j] if

E[i + F ′[j]] = E[i] and then execute (b) with F = F ′. We do this for i = n, n − 1, ..., 1.

In terms of running time, during each of the i-of-n iterations, at most O(max{1, |F [i+ 1]|})
steps are needed and |F [i + 1]| ∈ O(uΠ) for E with uΠ unique parameters, and generally,

|F [i+1]| ∈ O(|Π|). So, the construction of F clearly requires O(nuΠ) time for E, or generally

O(n|Π|) time.
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Algorithm 6-7. Constructing F .
1 int [ n ] [ ] construct F(char E[ n ] , bit A[ a ] ) {
2 int F[ n ] [ ] , i , k , s i z e =0, v ; bit f ound p i [ a ] = { 0 , . . . , 0 } ; char curr
3 for ( i=n to 1){
4 curr=E[ i ]
5 i f (A[ curr ]=PI ∧ f ound p i [ cur r ]=0){ // new f i r s t parameter
6 found p i [ cur r ]=1
7 s i z e++
8 F[ i ]=new int [ s i z e ]
9 F [ i ] [ 1 ] = 1

10 for ( k=1 to s i z e −1) F [ i ] [ k+1]=F[ i +1] [ k]+1
11 } else i f (A[ curr ]=PI ){ // reoccurr ing f i r s t parameter
12 F [ i ]=new int [ s i z e ]
13 F [ i ] [ 1 ] = 1
14 v=2
15 for ( k=1 to s i z e ){
16 i f (E[ i+F [ i +1] [ k ]−1] 6=curr ){
17 F [ i ] [ v]=F [ i +1] [ k]+1
18 v++
19 }
20 }
21 } else i f ( s i z e >0){ // no new parameters
22 F [ i ]=new int [ s i z e ]
23 for ( k=1 to s i z e ) F [ i ] [ k]=F [ i +1] [ k]+1
24 }
25 }return F
26 }

Lemma 6.2.12 For the n-length p-string T with uΠ unique parameters, F is constructed in

O(nuΠ) time and space for T , or generally, O(n|Π|) time and space.

Construction via Parameterized Cover: A 3-Stage Sort

Our first pSA construction will integrate the notion of traditional static suffix sorting,

i.e. the case where suffixes behave as standard suffixes, and dynamic suffix sorting, i.e. the

case where suffixes behave differently from standard suffixes (see Lemma 2.1.10). We observe

that each p-suffix of the n-length T can be segmented based on the parameterized cover,

which we define in the following.

Definition 6.2.13 Parameterized cover (p-cover): The p-cover for a p-string T is the

length of the contiguous substring required to cover the first occurrence of each unique pa-

rameter within T . Let first(Y, y) (respectively, last(Y, y)) return (a) the index in Y of the
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first (respectively, last) occurrence of symbol of y or (b) 0 in the case that y does not exist.

Let i1 = first(prev(T ), DISTANCE 0) and i2 = last(prev(T ), DISTANCE 0). For-

mally, if i1 > 0, the p-cover substring is prev(T )[i1...i2] and its length is Ci = pcover(T ) =

i2 − i1 + 1. Otherwise, Ci = 0.

In essence, the p-cover is the dynamic part of the p-suffix. We observe that all p-suffixes

can be divided into at most three parts: a static prefix, a static suffix, and the p-cover, i.e.

the dynamic substring between the prefix and suffix.

Lemma 6.2.14 For an n-length p-string T , any p-suffix of T can be segmented into at most

one part that is dynamic and at most two parts that are traditional substrings of prevT =

prev(T ).

Proof There are four possible cases for segmenting a p-suffix prev(Ti) of length ni = n−i+1

with p-cover Ci, where Ti = T [i...n].

1. 1 traditional part and 0 dynamic parts: Suppose that no parameters exist in Ti. Then,

Ci = 0 and so the p-suffix is one traditional suffix of prevT , i.e. prev(Ti) = Ti =

prevT [i...n].

2. 0 traditional parts and 1 dynamic part: Suppose that Ci = ni. Then, the p-suffix has

only one dynamic part.

3. 1 traditional part and 1 dynamic part: There are two possibilities.

(a) Suppose that the p-cover of Ti begins at position j > 1 and ends at position ni.

We know that since the prefix Ti[1...j − 1] is not included in the p-cover, then

these symbols must be constants and thus, Ti[1...j − 1] = prevT [i...i+ j − 2]. So,

one dynamic part and one traditional part divide the p-suffix.

(b) Suppose that the p-cover of Ti begins at position 1 and ends at position k < ni.

Since the prev encoding encodes a parameter π in Ti by either 0 for the first

occurrence of π or otherwise, the distance to the previous π in Ti, then we can

guarantee that prev(Ti)[k+ 1...ni] = prevT [i+k...n] since the nonzero parameter

distances are already represented in prevT [i+k...n], a traditional suffix of prevT .

Thus, one dynamic part and one traditional part exist.
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Figure 6.2: Computing the p-covers (which are shaded) and F data structure for T =
AxyyzBxyyBzA with n = 12. In this example, Cmax = 5.

4. 2 traditional parts and 1 dynamic part: Suppose that the p-cover is such that 0 < Ci <

ni − 1 and begins at position j > 1 and ends at position k < ni. By combining cases

3(a) (Ti[1...j−1] = prevT [i...i+j−2]) and 3(b) (prev(Ti)[k+1...ni] = prevT [i+k...n]),

we have one dynamic part and two traditional parts.

2

We say that the p-cover for T is the length, C ≥ 0, of the substring required to “cover”

each of the first parameters T . Figure 6.2 shows the p-covers for all of the p-suffixes of an

example p-string T . In the figure, you can also see the Lemma 6.2.14 segmentation, that

is, how prefixes prior to the p-cover and suffixes following the p-cover are exactly substrings

from prevT = prev(T ). We now identify the notion of a maximum p-cover. The maximum

p-cover for the p-suffixes of T is Cmax = max{Ci | 1 ≤ i ≤ n}. Using the F data structure

on T , we can trivially find the Ci and thus, easily find Cmax. Algorithm 6-8 computes the

maximum p-cover for T in linear time.

Lemma 6.2.15 Given F , the maximum p-cover for the n-length p-string T is computed in

O(n) time.

We now propose a three-stage sort to sort the e-suffixes of E, i.e. construct the pSA,

by exploiting Lemma 6.2.14 and the partial sorting of the e-suffixes in SAprE, where prE =
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Algorithm 6-8. Finding the maximum p-cover Cmax.
1 int max pcover( int F[ n ] [ ] ) {
2 int i , len , Ci , Cmax=0
3 for ( i=1 to n){
4 l en =|F[ i ] |
5 i f ( len >0){
6 Ci=F[ l en ]−F[1]+1
7 i f (Ci>Cmax ) Cmax=Ci
8 }
9 }return Cmax

10 }

prev(rename(T )). The proposed construction is displayed in Algorithm 6-9 with helper

functions in Algorithm 6-10. Below, we describe the construction.

The first part of the eSA construction initializes data and constructs some data struc-

tures. Let prE = prev(rename(E)). Now, compute the traditional suffix structures SAprE,

LCPprE, and RprE on prE using a standard linear time suffix sort and LCP construction,

i.e. construct SA LCP R. Then, we construct the F data structure, compute the number

of parameters in the string ηΠ, and compute the maximum p-cover Cmax. In the case that

there are no parameters, i.e. ηΠ = 0, then the eSA construction is already complete, i.e.

SAprE = eSA. Otherwise ηΠ ≥ 1 and we need to use perform additional steps to construct

the eSA.

We continue the eSA construction now in step A, which places the traditional prefix-

es/suffixes into the same lexicographical group or bin. That is, we look at the suffixes in

the SAprE and group those neighboring suffixes with a common prefix extending to the first

parameter of each suffix. In other words, the group is a contiguous region in the SAprE

with suffixes that share the same traditional prefix (segment before the p-cover), which is

determined by oracling the LCPprE and F data structures; in SAprE, the traditional suffixes

are grouped since they are indeed special traditional prefixes (with no p-cover). We observe

that since parameter distances lexicographically precede constants, (1) the e-suffixes that

form singleton groups are traditional suffixes (Lemma 6.2.14 Case 1) and are in their final

resting place in the eSA and (2) all other e-suffixes (Lemma 6.2.14 Cases 2-4) can only be

repositioned within the designated contiguous grouping. So, we will complete the sort by

reordering/differentiating the e-suffixes within their respective contiguous groupings found

in step A.
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Recall from Lemma 6.2.14 that e-suffixes can be segmented into a traditional prefix, a

p-cover (dynamic part), and a traditional suffix. At this point in the construction, step A has

given us a partial ordering (ranking) of the e-suffixes with respect to the traditional prefixes

and traditional suffixes. In step B, we prepare the ordering (ranking) of the p-covers. There

are ηΠ total parameters in the string and thus ηΠ different p-covers. For ordering/ranking

purposes, we will compute/store the substrings that represent each p-cover beginning with

the first parameter and extending Cmax symbols; in the case that no such trailing symbol

exists, we pad substring with the TERMINAL symbol. Next, we sort the substrings and

rank the p-covers.

Observe that now, all segments of the e-suffixes are sorted: the traditional prefixes and

traditional suffixes are sorted (SAprE constructed during initialization and grouped in step

A) and we manually sorted the p-covers (step B). At this point, we need to use the afore-

mentioned sortings/rankings in three stages to completely differentiate the e-suffixes and

construct the eSA. First, use the traditional prefix grouping from step A and the goal is

to reorder the e-suffixes within the contiguous group. For each group, we do the following.

For all e-suffixes in the group, i.e. not yet differentiated, resort the group with respect to

the p-cover ranks. In the case that only one e-suffix exists in the group, the e-suffix is in

its final place in the eSA. When e-suffixes have the same p-cover rank, we need to further

differentiate this new contiguous group by the last segment, i.e. the traditional suffix. So,

we collect the traditional suffix ranks and resort these particular e-suffixes. Since all three

segments of the e-suffix have been considered, each e-suffix is in its final position in the eSA

after differentiating with respect to the traditional suffix. In the following, we formalize the

time requirement for this construction.

Theorem 6.2.16 Given an n-length e-string E from Σ and Π with ηΠ parameters and

maximum p-cover Cmax, we can construct the e-suffix array (eSA) in O(max{n|Π|, ηΠCmax})
time and extra space for ηΠ ≥ 1, and O(n) time and extra space for ηΠ = 0.

Proof Clearly, a sort of the segments (Lemma 6.2.14) of the n e-suffixes of E yields the

eSA. When ηΠ = 0, only O(n) scans performed and O(n) data structures are construct-

ed/allocated, so the eSA is constructed in O(n) time and O(n) extra space. When ηΠ = 0,

clearly the initialization is dominated by the construction of F , which requires O(n|Π|) time

and O(n|Π|) extra space in addition to the O(n) needed for the eSA. Step A requires one

O(n) scan of the SAprE. Step B allocates space for the ηΠ total Cmax-length p-covers and
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Algorithm 6-9. Constructing the eSA.
1 struct blockZ { int index , char block [ Z ] }
2 struct pa i r { int a , int b }
3 int [ n ] construct eSA(char E[ n ] ) {
4 int SAprE [ n ] , LCPprE [ n ] , RprE [ n ] , rE [ n]=rename(E) , prE [ n]=prev( rE ) , ηΠ=count PI( rE ,AX )
5 (SAprE ,LCPprE ,RprE)=construct SA LCP R( prE )
6 i f (ηΠ=0) return SAprE

7 // −−− when parameters e x i s t in rE (ηΠ>0)
8 int i , j , k , k1 , k2 , q , x , y , suf , len , curr , eSA [ n ] , tmp [ n ] , t1 , t2
9 int YR[ n ] = { 0 , . . . , 0 } , F=construct F( rE ,AX ) , Cmax=max pcover(F)

10 struct blockCmax YS[ ηΠ ] , tmp4 [ n ] ; struct pa i r X[ n ] , Y[ n ] , tmp2 [ n ] , tmp3 [ n ]
11 // −−−A: bin the t r a d i t i o n a l p r e f i x e s and t r a d i t i o n a l s u f f i x e s
12 i=j=1
13 do{
14 tmp [ i ]= j , t1 =|F[SAprE [ i ] ] | , t2 =|F[SAprE [ i + 1 ] ] |
15 while ( i+1≤n ∧ t1>0 ∧ t2>0 ∧ F[SAprE [ i ] ] [ 1 ] = F [SAprE [ i + 1 ] ] [ 1 ]
16 ∧ LCPprE [ i +1]≥F[SAprE [ i ] ] [ 1 ] − 1 ) { i ++, tmp [ i ]= j }
17 i ++, j++
18 }while ( i≤n)
19 x=binning(tmp , n ,X)
20 // −−−B: so r t the p−cover ( dynamic par t ) o f the e−s u f f i x e s
21 for ( i=1 to n){
22 i f (AX [ rE [ i ] ]= PI ){
23 YS[ i ] . index=i
24 for ( j=1 to Cmax ){
25 i f ( i+j−1>n) YS[ i ] . b lock [ j ]=TERMINAL
26 else YS[ i ] . b lock [ j ]=prE [ i+j −1]
27 } for ( j=1 to |F[ i ] | ) YS [ i ] . b lock [F [ i ] [ j ] ]=DISTANCE 0
28 }
29 }sort(YS, 1 ,ηΠ , 2 ) // so r t rows o f YS [ 1 . . . n ] by the 2nd var i ab l e , i . e . b l o c k s
30 for ( i=1 to ηΠ ) YR[YS[ i ] . index ]= i
31 // −−−C: d i f f e r e n t i a t i n g e−s u f f i x e s with t i e b r e a k e r s
32 k=1
33 for ( i=1 to x ){
34 // −−− t i e b r e a k e r 1 : d i f f e r e n t i a t e same p r e f i x e s by the p−covers
35 curr=0
36 for ( j=X[ i ] . a to X[ i ] . b ){
37 curr++
38 tmp2 [ curr ] . a=SAprE [ j ]
39 tmp2 [ curr ] . b=YR[SAprE [ j ]+F [SAprE [ j ] ] [ 1 ] − 1 ]
40 }sort( tmp2 , 1 , curr , 2 ) // so r t rows o f tmp2 [ 1 . . . curr ] by 2nd var i a b l e , i . e . b
41 l en=X[ i ] . b−X[ i ] . a+1
42 for ( k1=k to k+len −1) eSA [ k1]=tmp2 [ k1−k +1] . a
43 // −−− t i e b r e a k e r 2 : d i f f e r e n t i a t e same p r e f i x /p−cover by s u f f i x
44 k1=k
45 for ( j=1 to curr ) { t1=eSA [ k+j −1] , tmp4 [ j ]=YS[YR[ t1 ]+F [ t1 ] [ 1 ] + 1 ] }
46 tmp=same( tmp4)
47 y=binning(tmp , curr ,Y)
48 for ( q=1 to y ){
49 curr=0
50 for ( j=Y[ q ] . a to Y[ q ] . b ){
51 curr++
52 tmp3 [ curr ] . a=eSA [ k1+j −1]
53 su f=eSA [ k1+j−1]+F [ eSA [ k1+j −1 ] ] [ 1 ]+Cmax−1
54 i f ( su f≤n) tmp3 [ curr ] . b=RprE [ s u f ]
55 else tmp3 [ curr ] . b=−su f // handle termina l padding
56 }sort( tmp3 , 1 , curr , 2 ) // so r t rows o f tmp3 [ 1 . . . curr ] by 2nd var i a b l e , i . e . b
57 len2=Y[ i ] . b−Y[ i ] . a+1
58 for ( k2=k1 to k1+curr −1) eSA [ k2]=tmp3 . a [ k2−k1+1]
59 k1=k1+curr
60 }
61 k=k+len
62 }return eSA
63 }
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Algorithm 6-10. Helper functions.
1 // g iven S [ n ] wi th b l o c k a t t r i b u t e sor ted , re turn nondecreas ing
2 // i n t array G, where G[ j ]=G[ j +1] i f f S [ j ] . b l o c k=S [ j +1]. b l o c k
3 int [ n ] same( struct blockC S [ n ] ) {
4 int i =1, G[ n ] , g=1
5 while ( i≤n){
6 G[ i ]=g
7 while ( i+1≤n ∧ match(S [ i ] . block , S [ i +1] . b lock ) ) { i ++, G[ i ]=g }
8 g++
9 }return G

10 }
11
12 // Z has z nondecreas ing i n t s and j d i s t i n c t i n t s ; we e va l ua t e Z [ 1 . . . y ]
13 // and pos t in BP the f i r s t / l a s t i n d i c e s where each d i s t i n c t i n t occurs
14 int binning( int Z [ z ] , int y , struct pa i r BP[ ] ) {
15 int i =1, j =0; struct pa i r curr
16 do{
17 curr . a=curr . b=i
18 while ( i+1≤y ∧ Z [ i ]=Z [ i +1]) { i ++, curr . b=i }
19 i++
20 j++
21 BP[ j ]= curr
22 }while ( i≤y )
23 return j
24 }
25
26 // g iven a l phabe t type i d e n t i f i e r A, which f o r parameter s has A[ s ]=PI
27 // and f o r cons tant s has A[ s ]=CONSTANT, we count the parameters in E
28 int count PI(char E[ n ] , bit A[ a ] ) {
29 int count =0, i
30 for ( i=1 to n){
31 i f (A[E[ i ] ]= PI ) count++
32 }return count
33 }
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sorts them in O(ηΠCmax) time and space. Finally, step C considers each e-suffix at most

twice to differentiate; so the total work required is in O(n). Thus, O(max{n|Π|, ηΠCmax})
time and extra space is needed. 2

In the worst case, ηΠ = Cmax = n and so the algorithm runs in O(n2) time and extra

space. In practice, the resource consumption can vary depending on the alphabets and e-

string composition. For alphabet symbols from a uniform distribution, we expect Cmax ∈
O(|Σ|+|Π|) and ηΠ ∈ O( n|Π|

|Σ|+|Π|), and then, with ηΠ ≥ 1 the algorithm will execute in O(n|Π|)
time and extra space on average.

We acknowledge the opportunity to compute the equivalence longest common prefix array

(eLCP ) during this eSA construction. However, due to the lengthiness of Algorithm 6-9

and the fact that we use this algorithm as motivation for an improved eSA construction, we

omit the eLCP computation at this stage.

Improved Construction: An O(|Π|)-Stage Sort

Historically, it has been challenging to determine a better/different way to bound the

worst case for pSA construction on the n-length T . For instance, in [53] the pSA construction

is said to have a worst case behavior of O(n2). In [21], we propose a different way to bound the

worst case in practice in O(n
2 logn
m

), based on arithmetic codes representing m-length blocks

of the text. From another perspective, the worst case running time analysis of Algorithm 6-9

is an achievement because it bounds the p-suffix sorting in O(nCmax) time, where Cmax is

the length of the maximum p-cover. In this section, we are motivated by Algorithm 6-9 to

propose a better construction with an improved worst case time bound.

Recall that Algorithm 6-9 segments a p-suffix into three parts (i.e. traditional prefix,

p-cover, traditional suffix) and sorts the p-suffixes, i.e. differentiates the segments, in a con-

stant number of steps. The bottleneck is the time to prepare the information necessary for

the p-cover part of the sort. The idea of our improved algorithm is to upgrade the segmenta-

tion concept of Algorithm 6-9 so that we can discard the p-cover bottleneck. In the following,

we formalize a different segmentation based on the zeros of the p-suffix prev(T [i...n]), which

represent the first parameters in T [i...n]. We call this the zeros segmentation or first param-

eters segmentation.

Lemma 6.2.17 For an n-length p-string T with the first parameters data structure F , any

p-suffix of T can be segmented into exactly |F [i]| zeros and at most (|F [i]| + 1) traditional
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substrings of prevT = prev(T ).

Proof Consider segmenting the p-suffix prev(T [i...n]) by the zero distances. By Defini-

tion 6.2.11, prev(T [i...n]) has exactly |F [i]| zero segments. For the other segments, we know

from Lemma 6.2.10 that any p-suffix prev(T [i...n]) can be derived from the single p-suffix

prevT = prev(T ) by resetting the first parameter distances in prevT [i...n]. So, the non-zero

segments must be traditional substrings of prevT . At most (|F [i]|−1) traditional substrings

are between all the zero segments since there can be either one traditional substring or noth-

ing between consecutive zero segments. Since a traditional substring can precede the first

zero segment or follow the last zero segment, then at most (|F [i]|+ 1) traditional substring

segments exist. 2

The aforementioned segmentation (displayed in Figure 6.3) splits a p-suffix by the zero

distances, yielding at most (2|F [i]| + 1) total segments. If we say that T has uΠ unique

parameters, then the most segments existing in any p-suffix will be (2uΠ + 1) ∈ O(uΠ), or

more generally (2|Π| + 1) ∈ O(Π), segments will exist. Our improved pSA construction in

Algorithm 6-11 is a depth-first sort that differentiates the p-suffixes in at most O(uΠ), or

more generally O(|Π|), stages based on the segmentation of Lemma 6.2.17. We describe the

algorithm below.

Given the n-length e-string E, we first perform an initialization step. We prepare the

encoding prE = prev(rename(E)), compute the first parameters data structure F on E,

and compute the number of unique parameters in E, i.e. uΠ = |F [1]|. Now, using stan-

dard suffix array techniques, we compute the suffix array data structures on prE with

(tmp, LCPprE, RprE) = construct SA LCP R(prE), where we call the suffix array tmp be-

cause we will be manipulating this array en route to the desired eSA. The LCPprE and RprE

are respectively the LCP and R arrays on the string prE. Next, we construct the RMQ

r from the LCPprE; this RMQ information is necessary for efficient queries to compare the

traditional substring segments of Lemma 6.2.17. At this point, we note that when uΠ = 0,

then eSA = tmp and even eLCP = LCPprE, so the work is complete; we acknowledge that

additional measures can be taken to make this step more lightweight in terms of memory.

When uΠ ≥ 1, we need additional steps to sort the dynamic e-suffixes.

Initially, tmp will provide a partial ordering of the e-suffixes, specifically by segments prior

to the first zero segment, i.e. the traditional prefix, so that we can refine and continue to sort

via the recursive function pbinning. The pbinning preconditions are: (pre1) some permu-
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tation of the e-suffixes in the partition tmp[intervalL...intervalH] will populate the desired

eSA[intervalL...intervalH], (pre2) the e-suffixes in the partition tmp[intervalL...intervalH]

share the same prefix based on all segments prior to and including the (curr param − 1)st

zero segment, and (pre3) the e-suffixes in tmp[intervalL...intervalH] are currently ordered

by rank of the traditional suffix following the (curr param − 1)st zero segment. The func-

tion postcondition is that the given e-suffixes in the partition tmp[intervalL...intervalH]

will be completely sorted within eSA[intervalL...intervalH]. Now, call pbinning with

intervalL = 1, intervalH = n, and curr param = 1 to signify that we will work to sort all

e-suffixes in tmp starting with the first unique parameter in each e-suffix.

(*1) If curr param > uΠ, we return from the recursive function (goto (*5)) because

no such parameter exists and so the e-suffixes must be completely differentiated/sorted.

Otherwise, we continue to sort the e-suffixes in a depth-first manner based on the zeros

segmentation, formalized in Lemma 6.2.17. Let i = intervalL.

(*2) If the considered suffix tmp[i] has no parameter, i.e. |F [tmp[i]]| = 0, then by (pre3)

this traditional suffix is in its final resting place in the eSA, i.e. eSA[i] = tmp[i]. Otherwise,

we need to identify a subpartition of tmp[intervalL...intervalH] that shares a prefix up until

the (curr param)th zero segment. That is, up until the (off)th symbol, where off = 0 if

curr param = 1 and otherwise, off = F [tmp[i]][curr param − 1]. The partition will start

at iL = i and have at least len = 1 e-suffixes. In lines 27-30, we loop to create a subpartition

with respect to the e-suffix tmp[i], as described in (*3).

(*3) We include the e-suffix tmp[i + 1] into the subpartition if (i) both e-suffixes tmp[i]

and tmp[i + 1] have more than off symbols (otherwise, they are already differentiated),

(ii) have at least curr param parameters (otherwise, they are already differentiated), and

(iii) the currently considered segments preceding the (curr param)th zero segment match

exactly, i.e. rmq(r, tmp[i] + off, tmp[i + 1] + off) ≥ (F [tmp[i]][curr param] − off − 1),

with the (curr param)th zero segment in the same location. If (i), (ii), and (iii) are all true,

then tmp[i] and tmp[i + 1] are indistinguishable and are thus in the same subpartition, so

increment i, increment len, set iH = i, and try to add another e-suffix to this subpartition;

repeat (*3). Otherwise, the subpartition is complete and we process in the following way.

(*4) If len = 1, then the subpartition is a singleton, which by (pre1) means that the

e-suffix is in its final place in the eSA, i.e. eSA[i] = tmp[i]. Otherwise, we have that the

e-suffixes in tmp[iL...iH], which share the same prefix by (pre2), cannot be distinguished

by the (curr param)th zero segment. So, we set off = F [tmp[iL]][curr param] and in
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lines 34-42 reorder the subpartition within tmp with respect to the rank of the currently

unconsidered suffixes following the first off symbols of each e-suffix. This updates the

lexicographical ordering to satisfy the pbinning precondition (pre3) so that the function

can be called recursively (goto (*1)) to distinguish these tmp[iL...iH] e-suffixes with the

same prefix in a depth-first manner, where intervalL = iL, intervalH = iH, and the next

zero is curr param+ 1.

(*5) We return from the recursive function. Now, the subpartition eSA[iL...iH] is com-

pletely sorted. So, we increment i and if i ≤ intervalH, we continue to (*2) to repeat the

same subpartitioning process on tmp[iH + 1...end], where end ≤ intervalH.

After pbinning is complete, the n e-suffixes are sorted into the desired eSA. The re-

sources consumed by this eSA construction are formalized below.

Theorem 6.2.18 Given an n-length e-string E from Σ and Π with uΠ unique parameters,

we can construct the e-suffix array (eSA) in O(nuΠ), or generally O(n|Π|), time and extra

space.

Proof Algorithm 6-11 correctly computes the eSA, since it performs a depth-first sort of the

first parameter segmentations (Lemma 6.2.17) of the n e-suffixes in E. The initialization of

the main function construct eSA improved, lines 6-11, is dominated by the F construction,

which requires O(nuΠ) time by Lemma 6.2.12. (Note that construct SA LCP R requires only

O(n) time [1] and also, setup rmq is only a linear time operation [25, 84, 85].) The last step

(line 12) of construct eSA improved calls the helper function pbinning, which recursively

sorts the n e-suffixes.

Now, consider the function pbinning. Each of the O(uΠ) segments of an e-suffix are

considered at most once by the main loop (lines 19-47). In lines 21-26, the function deter-

mines if and where the next segment occurs in the current e-suffix in O(1) time. Then, in

lines 27-30, the function uses this e-suffix to create a partition of, say len, e-suffixes that share

the same prefix in O(len) time, since the rmq query is an O(1) operation (see [25, 84, 85]).

These partitions are possibly singletons (line 31), which are placed into the eSA in O(1)

time. Otherwise, (lines 32-44) the rank of the next segments are considered in each of the

e-suffixes in the current partition, then we sort the ranks in O(len) time to lexicographically

refine the e-suffix ordering, and finally recursively call pbinning to consider differentiating

the current ordering of the size len partition based on the next segment. Note that in the

aforementioned steps, the work required by each of the len e-suffixes in the partition is in
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O(1). After returning from the recursive call, the aforementioned partition is completely

sorted/stored in the eSA and we continue the procedure by considering the next e-suffix

not yet processed. Further, since the pbinning function clearly processes each of the O(uΠ)

segments of the n e-suffixes at most O(1) times, then pbinning requires O(nuΠ) time. Thus,

the main function construct eSA improved will then require O(nuΠ) time in the worst case.

In terms of the extra space needed, i.e. the memory in addition to the desired eSA, we

require the O(n) data structures prE, LCPprE, r on LCPprE (see [25, 84, 85]), etc. and

the O(nuΠ) sized F data structure (see Lemma 6.2.12). The recursive space needed for

the parameters and local variables of the pbinning function is in O(uΠ) since only O(1)

variables are required at each of the O(uΠ) depths of recursion. Thus, the total extra space

O(nuΠ + uΠ) is in O(nuΠ).

Further, the time and extra space required is in O(n|Π|) since uΠ ∈ O(|Π|). 2

6.2.4 eLCP Algorithm

Due to the connection between the e-string/p-string, e-suffix/p-suffix, eSA/pSA, and

eLCP/pLCP , we will often refer to p-string terms and theory when constructing the eLCP .

While we can construct the eLCP by standard pLCP construction algorithms (see Defi-

nition 6.2.8), the bottleneck is the theoretical worst case time. For example the p-Kasai

algorithm [53] constructs the pLCP for the n-length p-string T in O(n2) time in the worst

case. In [19, 23], the pLCP is constructed in O(n) expected time for certain groups of p-

strings. Like the pSA construction, the pLCP construction suffers from Lemma 2.1.10. Due

to the dynamic nature of p-suffixes from the n-length T , it is not necessarily the case that

the information from pLCP [R[i]] can be used to help compute pLCP [R[i+ 1]] for 1 ≤ i < n

(see [23]). If we compute pLCP [i] individually and independently without using informa-

tion from other pLCP [j], the task is to find the maximum k-length prefix common between

the p-suffixes prev(T [pSA[i]...n]) and prev(T [pSA[i− 1]...n]), which will require O(k) time.

Since n − 1 of these computations are needed and since k ∈ O(n) in the worst case, then

we naively construct the pLCP in O(n2) time. While this result may refrain us from con-

structing the pLCP via individual and independent computations, we show that when using

the data structures created after executing our construct eSA improved in Algorithm 6-11,

each eLCP [i] can be constructed individually and independently in O(|Π|) time. Then, the

eLCP is constructed in O(n|Π|) time, breaking the worst case time barrier.
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Algorithm 6-11. Improved eSA construction for the n-length e-string E.
1 int uΠ , eSA [ n ] , tmp [ n ] , LCPprE [ n ] , RprE [ n ] , prE [ n ] , F [ n ] [ ]
2 struct pa i r ptmp [ n ]
3 struct RMQ r
4
5 int [ n ] construct eSA improved(char E[ n ] ) {
6 tmp=rename(E)
7 prE=prev(rename(tmp ) )
8 F=construct F(tmp ,AX )
9 uΠ=unique PI(F)

10 (tmp ,LCPprE ,RprE)=construct SA LCP R( prE )
11 r=setup rmq(LCPprE )
12 pbinning (1 , n , 1 )
13 return eSA
14 }
15
16 void pbinning( int i n t e rva lL , int interva lH , int curr param ){
17 int i , j , iL , iH , e , o f f , l en
18 i f ( curr param≥1 ∧ curr param>uΠ ) return
19 i=i n t e r v a l L
20 do{
21 i f ( |F[ tmp [ i ] ] |= 0 ){
22 eSA [ i ]=tmp [ i ]
23 } else {
24 iL=i , l en=1
25 i f ( curr param=1) o f f =0
26 else o f f=F [ tmp [ i ] ] [ curr param −1]
27 while ( i+1≤ i n t e rva lH ∧ tmp [ i ]+ o f f≤n ∧ tmp [ i +1]+ o f f≤n
28 ∧ |F[ tmp [ i ] ] | ≥curr param ∧ F[ tmp [ i +1] ]≥curr param
29 ∧ rmq( r , tmp [ i ]+ o f f , tmp [ i +1]+ o f f )≥(F [ tmp [ i ] ] [ curr param]− o f f −1)
30 ∧F[ tmp [ i ] ] [ curr param ]=F[ tmp [ i + 1 ] ] [ curr param ] ) { i ++, l en++,iH=i }
31 i f ( l en =1) eSA [ i ]=tmp [ i ]
32 else {
33 o f f=F [ tmp [ iL ] ] [ curr param ]
34 for ( j=iL to iH ){
35 ptmp [ j−iL +1] . a=tmp [ j ]
36 e=tmp [ j ]+ o f f
37 i f ( e>n) ptmp [ j−iL +1] . b=e
38 else i f ( |F[ tmp [ j ] ] | > curr param ∧ F[ tmp [ j ] ] [ curr param+1]=e ){
39 i f ( e+1>n) ptmp [ j−iL +1] . b=e+n
40 else ptmp [ j−iL +1] . b=RprE [ e+1]+2n
41 } else ptmp [ j−iL +1] . b=RprE [ e ]+3n
42 }sort(ptmp , 1 , len , 2 ) // so r t rows o f ptmp by 2nd type , i . e . b
43 for ( j=1 to l en ) tmp [ iL+j−1]=ptmp [ j ] . a
44 pbinning( iL , iH , curr param+1)
45 }
46 } i++
47 }while ( i≤ i n t e rva lH )
48 }
49
50 int unique PI( int F[ n ] [ ] ) {
51 int u=0
52 i f (n≥1) u=|F [ 1 ] |
53 return u
54 }
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Figure 6.3: The zeros segmentation for each p-suffix of T = BxyyBzyx.

Our proposed eLCP construction is shown in Algorithm 6-12. We describe the ap-

proach in the following. Consider the n-length e-string E. After constructing the eSA

with function construct eSA improved, the following data structures are generated: the

intended eSA on E, the RMQ r on LCPprE where prE = prev(rename(E)), and the

first parameters data structure F on E. Let us now focus on computing the function

elcp(Ta, Tb) = max{k | prev(rename(Ta)) =k prev(rename(Tb))} for elcp(E[i...n], E[j...n])

and any i and j. We use the segmentation in Lemma 6.2.17, which splits the p-suffix by

the zero distances (the first parameters), to compute the elcp. For the purposes of discus-

sion, we segment the p-suffix at i into Ik and the p-suffix at j into Jk. For instance, with

T = AwBzABwz$, the segments of the p-suffixes at i = 1 (prev(T [1...n]) = A0B0AB54$)

and j = 5 (prev(T [j...n]) = AB00$) are respectively I = {A, 0, B, 0, AB54$} and J =

{AB, 0, 0, $}. We highlight that computing/storing the segmentation is unnecessary since

these boundaries are already represented in F (see Definition 6.2.11) and further, our ap-

proach will not need to touch the segment symbols. For convenience, we discuss our elcp

approach in terms of I and J .

Our improved elcp computation is a left-to-right match on the first parameter segments,

i.e. I and J . From Lemma 6.2.10, we can derive any p-suffix from prev(T ) by resetting

only the zero locations. So, when comparing two p-suffixes derived from a common text, we

need to be sure that the zero segments (dynamic segments) are properly aligned. The other
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segments in I and J are then candidates for the exact match, a task that can be done in

O(1) time via the given RMQ r.

Let U = prev(rename(T [i...n])) and V = prev(rename(T [j...n])). Let common = 0,

b = 1, and ∆ = 0. (∗1) Let minseg = min{|Ib|, |Jb|} and maxseg = max{|Ib|, |Jb|}. If both

Ib and Jb are first parameter, zero segments, then we have successfully aligned/matched first

parameters between U and V ; indicate this by extending the match (increment common) and

consider the next position to match (increment ∆ and increment b). Else if either Ib or Jb is a

zero distance segment, then the zero segment cannot match with the other nonzero segment,

so the elcp computation is complete (goto (∗2)). Otherwise, we exact match the segments

via h = min{minseg, rmq(r, i+ ∆, j + ∆)} (in O(1) time) and accumulate the match length

in common, i.e. common = common + h. In the case that h < minseg, then the segments

mismatched at some point so the elcp computation is complete (goto (∗2)). In the case that

h < maxseg, then the segments are of different length, so the elcp is complete (goto (∗2)).

Otherwise, h = minseg = maxseg and the segments matched completely, so we need to

consider the next segment (increment b) starting at positions (i+ ∆) and (j+ ∆) in the text

with ∆ = ∆ + h; if another segment exists (b ≤ min{|I|, |J |}) goto (∗1) and otherwise, goto

(∗2). (∗2) Return common, which contains the maximum prefix common between U and

V . The elcp in Algorithm 6-12 performs the previous procedure by identifying the segment

location on-demand, i.e. iterating the individual F [i] and F [j] to determine where the zero

locations occur, which eliminates the need to construct/store the I and J . The running time

and extra space are formalized below.

Lemma 6.2.19 Given an n-length e-string E with uΠ unique parameters, the RMQ r on

LCPprE where prE = prev(rename(E)), and the first parameters data structure F on E, let

U = prev(rename(T [i...n])) and V = prev(rename(T [j...n])). The computation elcp(U ,V)

requires O(max{|F [i]|, |F [j]|}) time and O(nuΠ) space.

Proof The correctness of the elcp computation (implemented in Algorithm 6-12) follows

from a comparison of the first parameter segmentations (Lemma 6.2.17) of the e-suffixes

U and V of E. The algorithm iterates and attempts to align/compare the O(|F [i]|) first

parameter segments of U and the O(|F [j]|) parameter segments of V ; there are a total

of O(max{|F [i]|, |F [j]|}) iterations. Since the segment comparison performed during each

iteration is a constant time rmq query [25, 84, 85] or another O(1) operation, the running

time of elcp is in O(max{|F [i]|, |F [j]|}). With respect to space, the algorithm only allocates
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O(1) space, so the required space is due to the parameters. Since the RMQ data structure r

has size O(n) [25, 84, 85], the space required is dominated by the O(nuΠ) size data structure

F (see Lemma 6.2.12). 2

Using Lemma 6.2.19, we compute the eLCP array (see construct eLCP in Algorithm 6-

12) with (n − 1) elcp computations: eLCP [i] = elcp(T [eSA[i]...n], T [eSA[i − 1]...n]) for

1 < i ≤ n. Denote the number of unique parameters in T by uΠ, i.e. uΠ = |F [1]|. The eLCP

construction requires (n − 1) elcp operations, each requiring O(uΠ) time. Thus, O(nuΠ)

time is required. In terms of space, construct eLCP allocates the eLCP in addition to O(1)

space. Thus, the extra space is dominated by the O(nuΠ) space of elcp. More generally,

since uΠ ∈ O(|Π|), the algorithm requires O(n|Π|) time and extra space.

Theorem 6.2.20 Given an n-length e-string E from Σ and Π with uΠ unique parameters,

the RMQ r on LCPprE where prE = prev(rename(E)), and the first parameters data struc-

ture F on E, the equivalence longest common prefix array (eLCP ) is constructed in O(nuΠ)

time and extra space, or generally O(n|Π|) time and extra space.

6.2.5 Generalization

The e-match is a powerful matching scheme. By altering the e-match alphabets, we can

also solve the p-match and the traditional match via the same scheme, with the same data

structures and respective constructions. When we compose the e-alphabets of only singleton

e-classes, then no indeterminacy exists and so, the e-match becomes the p-match.

Lemma 6.2.21 The e-match simplifies to the p-match by first letting Σ̂ = Π̂ = ∅ and then,

letting Σ̂i = {Σ[i]} for all 1 ≤ i ≤ |Σ| and Π̂j = {Π[j]} for all 1 ≤ j ≤ |Π|.

By forcing all symbols to be constants and then applying the alphabet rearrangement

of Lemma 6.2.21, we remove indeterminacy and the original e-match scheme becomes the

traditional exact match.

Lemma 6.2.22 The e-match simplifies to exact matching by applying Lemma 6.2.21 to the

alphabets Σ = Σ ∪ Π and Π = ∅.

Further, we can manipulate the Σ̂ and Π̂ alphabets to allow p-matching and exact match-

ing with a form of indeterminacy. The significance of the previous lemmas is that our e-match
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Algorithm 6-12. The eLCP construction.
1 int [ n ] construct eLCP( int eSA [ n ] , struct RMQ r , int F[ n ] [ ] ) {
2 int eLCP [ n ] = { 0 , . . . , 0 } , i , a , b
3 for ( i=2 to n) {
4 a=eSA [ i −1] , b=eSA [ i ]
5 eLCP [ i ]=elcp( a ,F [ a ] , b ,F [ b ] , r )
6 }return eLCP
7 }
8 int elcp( int a , int Fa [ y ] , int b , int Fb [ z ] , struct RMQ r ){
9 int common=0, k=1, min0s=min (y , z ) , l o c0a =0, loc0b =0, pvloc0a , pvloc0b

10 boolean more
11 do{
12 more=fa l se
13 i f ( min0s=0 ∨ k>min0s ){
14 i f ( a+loc0a≤n ∧ b+loc0b≤n) common=common+rmq( r , a+loc0a , b+loc0b )
15 } else {
16 pvloc0a=loc0a , pvloc0b=loc0b
17 loc0a=Fa [ k ] , loc0b=Fb [ k ]
18 i f ( a+pvloc0a≤n ∧ b+pvloc0b≤n)
19 common=min ( loc0a −1, loc0b −1,common+rmq( r , a+pvloc0a , b+pvloc0b ) )
20 i f ( l oc0a=loc0b=(common+1)){ more=true , common++ }
21 }k++
22 }while ( more ∧ k≤min0s+1)
23 return common
24 }
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data structures can be used to address p-matching and traditional matching problems with

the same data structure and approach. For example, the eSA construction can also yield the

pSA and traditional suffix array SA. From a software development standpoint, the e-match

problem has great utility since it can be reused in a variety of applications by simply altering

the alphabet sets.

6.2.6 Conclusions

In this section, we propose the equivalence parameterized match (e-match) as an exten-

sion of the parameterized match (p-match) between parameterized strings (p-strings), from

the constant alphabet Σ and parameter alphabet Π, to add a level of indeterminacy to the

p-match. A rearrangement of the alphabets will generalize the e-match to address the p-

match and the traditional match. Thus, the e-match can address traditional exact matching

problems such as database search, in addition to routine p-match applications such as RNA

structural similarity, software analysis, and plagiarism detection, and also variations of the

aforementioned problems with a form of indeterminate matching. To solve the e-match, we

apply a new encoding with the standard p-string encodings in order to use the parameterized

suffix array (pSA) and parameterized longest common prefix (pLCP ) matching framework.

The historical bottleneck of the pSA and pLCP construction for the n-length text T is the

theoretical worst case O(n2) construction time, due to handling dynamically changing suf-

fixes that can invalidate traditional suffix properties. In fact, an open problem was posed in

[53] of whether or not sub-quadratic, i.e. o(n2), constructions exist. In this section, we in-

troduce new theory leading to an improved O(n|Π|) worst case construction of the pSA and

pLCP to break the time barrier. This result is a breakthrough for directly sorting dynamic

suffixes under encodings, a task required for direct parameterized suffix sorting. Our con-

struction result is comparable to constructing suffix structures on traditional strings, which

can also require a time factor linear in the alphabet.
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Chapter 7

Matching RNA Secondary Structures

In this chapter, we propose/construct data structures and algorithms to address pattern

matching problems involving RNA secondary structures. The work in this chapter was

published/presented in the following.

• Beal, R., Adjeroh, D., Abbasi, A.: The forward stem matrix: An efficient data structure

for finding hairpins in RNA secondary structures. ACM Conference on Bioinformatics,

Computational Biology, and Biomedical Informatics (ACM-BCB). pp. 576-585. ACM.

(2013)

• Beal, R., Adjeroh, D.: Suffix arrays for structural strings. Poster presented at the

International Workshop on Combinatorial Algorithms (IWOCA), Duluth, MN (15-17

October 2014)

7.1 The Structural Suffix Array

RNA (ribonucleic acid) is an important molecule known to mediate transfer of cellular

information from DNA-encoded genes to functional proteins and, in the case of non-coding

RNA, play a role in various cellular processes such as translation and splicing. Like proteins,

RNA can fold into potentially complex three-dimensional structures. The function of a

given RNA, such as in transcription, splicing, cellular localization and translation depends

critically on its structure [15, 90, 93]. Figure 7.1 shows the basic RNA secondary structure

elements.
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Figure 7.1: Basic structural elements of an RNA secondary structure.

A given RNA sequence is made up of four types of nucleotides (bases), namely adenine

(A), cytosine (C), guanine (G), and uracil (U). The Watson-Crick base pairs (A,U) and

(C,G) are complementary bases which pair up to form stacks or stems during RNA folding.

We consider RNA as a string from the alphabet ΣRNA = {A,C,G, U}. Thus, methods used

in string pattern matching can be applied (with appropriate modifications) to the problem

of analysis of RNA sequences and/or structure. For instance, there has been a lot of interest

in predicting RNA secondary and tertiary structures [29, 39], and in alignment of RNA

sequences [95, 9, 47]. Combinatorial properties of RNA secondary structures were studied

in [51, 79], showing the difficulty involved in most problems that require matching RNA

structures.

Let T = T [1...n] and P = P [1...m] be the database and query RNA strings, respectively.

Heyne et al. [50] proposed an algorithm for determining the longest collinear sequence

of substructures common to P and T in O(m2n2) time and O(mn) space. Their method

required exact matches between substructures, while inexact matches are allowed between

structural motifs. Given that the structure of T is known, Bafna et al. [10] inferred the

structure of P using an alignment procedure in O(n2m2 +nm3) time. In [45, 58], algorithms

were proposed for finding arc-preserving common subsequences in arc-annotated sequences.

Special edit distances for matching RNA structures were proposed in [99, 5], whereby edit

operations were performed on both individual bases, and on arcs (complementary base pairs).

The specific problem we address is more closely related to the recent work on pattern

matching on RNA secondary structures [96, 74, 86, 89]. Xu et al. [96] used the notion of

secondary expressions to represent the RNA structures, and proposed an algorithm that finds

exact matches of a given secondary expression in O(nm2) time, where m is the size of the

secondary expression, and n is the size of the text. The affix tree, which allows bidirectional

matches for exact and inexact pattern matching on RNA structures, was studied in [74, 69].
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The more recent use of affix trees in [74] requires worst case time in O(nm) and O(n)

space to find the structural pattern P of length m in a database string T of length n.

Answering similar queries for inexact matching required time in O(HK2p−2spn), where H is

the maximum length of a hairpin loop, K is the maximum length of an interior element, s =

maximum length of a stack or stem, and p is the total number of fragments in the secondary

structure. Though the space complexity is linear, the space requirement for the affix tree is

a practical bottleneck. Influenced by the suffix tree with a memory footprint known to be

quite high [47, 1], the affix tree suffers from the same space problem (requiring about 45 bytes

per node [89]), since it is composed of two suffix trees - one regular suffix tree and the suffix

tree of the reversed sequence. Strothmann proposed a more space efficient variant called the

affix array [89] with the same basic functionality as the affix tree; this new structure was

also used to answer RNA structure queries. Shibuya [86] introduced the notion of structural

strings for RNA-based pattern matching and constructed the structural suffix tree (s-suffix

tree) for related pattern matching problems, i.e. the structural matching (s-match) problem.

Figure 7.2 shows an example of a structural match between RNA sequences. In terms of

matching with the s-suffix tree, the problem of inexact matching for RNA structures was not

considered by Shibuya. The s-suffix trees were constructed by extending the parameterized

suffix trees (p-suffix trees) of Baker [11, 14] to support the complementary base pairs needed

for RNA structures. Like traditional suffix trees [1], the p-suffix tree construction has been

the focus of much work [65, 31, 67, 68]. Further, as with suffix trees and affix trees, the

practical space requirement for the s-suffix tree is a practical bottleneck. In [16], we propose

and construct the structural suffix array (sSA) and structural longest common prefix (sLCP )

array for s-matching via more lightweight data structures. Here, we discuss methods using

the sSA and sLCP to address various pattern matching queries on RNA structures for both

exact and inexact matching. Our results could have applications in prediction and discovery

of RNA structural motifs [81, 78], classification of RNA structures [81], functional annotation

of RNA, etc.

Main Contributions: In this research, we use the sSA and sLCP s-matching frame-

work to address various RNA pattern matching problems, including the detection of exact

RNA sequences, structurally similar RNA sequences, and in answering inexact RNA struc-

tural queries. The following formalizes our main result.

Theorem 7.1.1. Given an n-length RNA database D, an inexact structural query P of
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(a)
UUACAUUAAGCGAUGCGC

AUA GGUAUGCU AGCC CCG

UUACAUUAAGCGAUGCGC

AUA GGUAUGCU AGCC CCG

complementary base pairs

(b)
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Figure 7.2: Example by Shibuya [86] of two RNA sequences with the same structure, despite
having different symbols at each position: (a) shows the relationship between the comple-
mentary bases of the RNA sequences and (b) shows the structure formed by each sequence,
which folds to form touching loops or kissing hairpins.

maximum length m with f fragments Fi, i = 1, 2, . . . f , and the sSA and sLCP for D, it

is possible to determine all locations in D of P in O(η1φ + fm × (log n +Mm)) time and

O(f × n + η) space, where φ represents the work to integrate all possible fragments from

a single matching fragment F1 in D, η = η1 + η2 + ... + ηf , ηi is the number of matching

fragments Fi in D, andM is the maximum number of matches found during the algorithm.

7.1.1 RNA Pattern Matching

In this section, we describe how to use the s-match (Theorem 2.2.6) to solve various

combinatorial queries in RNA pattern matching. The following nucleotides are present in

a strand of RNA: adenine (A), cytosine (C), guanine (G), and uracil (U). We denote an

RNA sequence as an element of (ΣRNA)∗, where ΣRNA = {A,C,G, U}. The Watson-Crick

pairings are such that A and U pair (A ↔ U) and C and G pair (C ↔ G). For symbols

s1, s2 ∈ ΣRNA, we say that pair(s1, s2) returns true when s1 and s2 pair and false otherwise.

Exact Pattern Matching

Problem A: Given an RNA sequence Q and an RNA database of sequences say D =

d1$ ◦ d2$ ◦ ... ◦ dz$ for some z with each di as an RNA sequence, |Q| = m, and |D| = n,

the problem is to determine all nocc locations of Q in D. That is, given an RNA pattern

and a database of sequences (without information on the secondary structures formed), the

problem is to find all sequences in the database that matches the pattern.

We observe that the s-match problem in Definition 2.2.2 with Σ 6= ∅, Π = ∅, and Γ = ∅
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is restricted to only the verbatim matching of constants σ ∈ Σ, which is the essence of

exact matching. With the selection of alphabets as Σ = ΣRNA, Π = ∅, and Γ = ∅, we can

answer the specified problem in O(log n + m + ηocc) time via Theorem 2.2.13, where ηocc is

the number of occurrences of Q in D. This result is analogous to traditional matching using

the provided SA and LCP arrays as discussed in [72, 1]. For similar problems that find all

locations of a match, we can solve related existential problems by answering yes if nocc > 0

and no otherwise.

Problem B: RNA secondary structures are formed by twisting and turning an RNA

sequence to form various structural elements (see Figure 7.1) such as stems, loops, etc. [15].

Given an RNA sequence Q and the RNA database D, |Q| = m, and |D| = n, the problem

is to identify all nocc structurally similar (or the same) occurrences of Q that exist in D.

That is, given an RNA pattern and a database of sequences (without information on the

secondary structures formed), the problem is to find all occurrences in the database that are

structurally similar with the pattern. An example was provided in Figure 7.2.

It is identified in [86] that we can equate RNA structures via the s-match problem with

Σ = ∅, Π = ΣRNA, and Γ = {(A,U), (C,G)}. Using the s-match between Q and D, we

can find structurally similar RNA sequences, including the identical pattern. It follows

from our s-matching theory that the problem is answered in O(log n + m + ηocc) time via

Theorem 2.2.13.

Inexact Pattern Matching

We define an inexact structure query as an inexact pattern that can match several RNA

sequences by allowing varying lengths of structural elements. More specifically, a structure

query is an m-length pattern P that is decomposed into f different structural elements or

fragments (F ), for short, labeled as a stem, loop, etc. Each fragment Fi in P is allowed to be

some sequence of a length in the range (si, ei). In this case of P , each fragment Fi includes

a specified sequence, say Q, of symbols in ΣRNA so that when some l is chosen, such that

si ≤ l ≤ ei, only l-length substrings of Q are permitted to match.

Problem C: Given an inexact structure query P of a known RNA structure with varying

lengths and specified sequences, the RNA database D, |P | = m, and |D| = n, the problem

is to determine all occurrences of P in D. Figure 7.3 shows an example structural query

pattern. Our idea is to (1) use the developed s-matching approach to search for individual
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Figure 7.3: Example definition for an approximate structure pattern. Numbers in brackets
indicate the range for the given fragment length.

fragments Fi in D, (2) integrate the fragment occurrences (F1, F2, ..., Ff ), and (3) validate the

results prior to reporting. In this situation, our s-match needs to detect only complementary

base pairs for stems and exact matches for other structural elements. Since both matches

are reported when comparing prev encodings, we need to construct sSA and sLCP on T

with Σ = ∅, Π = ΣRNA, and Γ = {(A,A), (C,C), (G,G), (U,U)}. In the following, we sketch

the data types and algorithm steps.

Define V as an f × n matrix where the f rows represent the Fi and the n columns

represent the locations in D. Each individual element V (i, j) represents a set of lengths

{l1, l2, ..., lg}, where each lx (si ≤ lx ≤ ei) means that a length-lx fragment Fi exists at

position j in D. Initially, we set V (i, j) = ∅ to denote the existence of no such match.

We also define L to be of f rows where each L[i] consists of a varying number of tuples

(j, {l1, l2, ..., lg}) that correspond to the nonempty set at V (i, j). Let ηi denote the number

of occurrences of the fragment Fi in D and let η = η1 +η2 + ...+ηf . Then, the data structure

V has O(f ×n+η) elements and L has O(η) elements. Let Ξ be an n×|ΣRNA| matrix (with

O(n× |ΣRNA|) elements), with mappings A→ 1, C → 2, G→ 3, and U → 4, that for each

Ξ(i, 1), we are detecting the location (index) of the first occurrence of symbol A in D[i...n]

or −1 if the symbol does not exist. Ξ(i, 2), Ξ(i, 3), and Ξ(i, 4) are defined similarly for the

respective symbols C, G, and U . We also define the following: emax = max{e1, e2, ..., ef},
emin = min{e1, e2, ..., ef}, lmax = e1 + e2 + ...+ ef , and lmin = s1 + s2 + ...+ sf .

In our algorithm, we begin by finding all possible occurrences of Fi in D and logging in

both V and L the resulting length and position in D of the occurrence of Fi. We assume

that we can process P left-to-right as a pattern and for algorithmic concision, we assume

that P does not have start/end biological markers. Also, we assume that P includes a
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pointer from each half of a stem to the other stem half for quick access. We expect RNA

sequences and (si, ei) to be given in P for all such Fi except for the ending half of a stem,

which can be derived easily from the beginning half of the stem. Consider each successive

Fi (i = 1, 2, ..., f) in terms of steps (a) or (b).

(a) Let q = 0 and v = 0. If Fi is any structural element except the ending half of a stem,

we need to begin logging occurrences of sequences of Fi as they appear in D. Say that

the RNA sequence associated with Fi begins at position r and ends at position z in P .

Compute S = sencode(P [r + v...r + si + q + v − 1]). (Note, we always require that

r+ si + q + v− 1 ≤ z.) Next, we use the sSA and sLCP via Theorem 2.2.13 to find all

occurrences of S in D. Since these structural elements must occur exactly, we must filter

the aforementioned results for exact matches only. Say an occurrence of S in D is at

position u. Let the function F(a, b) return true if (Ξ(a, b) = −1) ∨ (r+v+Ξ(a, b)−1 >

z) ∨ (T [a + Ξ(a, b) − 1] = P [r + v + Ξ(a, b) − 1]) and return false otherwise. We

can efficiently detect an exact match by knowing that the first A, C, G, and U align,

i.e. F(u, 1) ∧ F(u, 2) ∧ F(u, 3) ∧ F(u, 4). If the result is true, log in both V (i, u) and

L[i] the length |S| = si + q of each found occurrence of S in D. Next, we extend

the match to q = 1, 2, ..., (ei − si). For each increment of q, walk through each tuple

(y, {l1, l2, ..., lg}) in L[i] and log (in both L[i] and V (i, y)) a longer length result (si + q)

iff T [y+ q] = P [r+ si + q+ v− 1] and r+ si + q+ v− 1 ≤ z. Repeat the step beginning

with the computation of S for v = 1, 2, ..., ei − si to consider remaining substrings that

may possibly match with Fi.

(b) Otherwise, Fi is the ending half of a stem. Via a pointer, we can determine that the other

half of the stem is say Fh and its sequence begins at position w and ends at position x in

P . Since the RNA is a single strand of symbols, the only way for some Fh substring, say

P [w...w+sh−1], to form complementary base pairs with the current structure Fi is if the

sequence loops back. That is, only sequences can pair if they exist as a reverse in D. To

find these results, we need to perform a slight variation of step (a) since that step filters

results for exact matches only and in this scenario, we must consider matching stems

that pair. Recall that we are given sSA and sLCP on D with Σ = ∅, Π = ΣRNA, and

Γ = {(A,A), (C,C), (G,G), (U,U)}. This forces the s-match scheme of Theorem 2.2.6

to simply compare the prev encoding. So, if we search for S, by Definition 2.1.4, we will

also report similar results that are equal under prev, such as AUA, CGC, UGU , etc.
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Now to find the complementary pairing, we need to filter the results by considering the

first A, C, G, and U symbol. Thus, we can perform step (a) except that now, (1) r = w

and z = x, (2) compute S = sencode(reverse(P [r + v...r + si + q + v − 1])), (3) filter

pairings by redefining F(a, b) to return true if (Ξ(a, b) = −1) ∨ (r + v + Ξ(a, b)− 1 >

z) ∨ pair(T [a + Ξ(a, b) − 1], P [r + v + Ξ(a, b) − 1]), and (4) log extensions when

pair(T [y + q], P [r + v − q]) and v − q ≥ 0.

Next, we integrate occurrences of F1, F2, ..., Ff to form a path of indices az and lengths

lz: H = (a1, l1) → (a2, l2) → ... → (af , lf ). Initially, if ηi = 0 for any i, then a fragment

is not found and we can exit, reporting nocc = 0. Otherwise, we integrate the paths in a

depth-first manner. Initially, we are at depth d = 0. Define Ad = 0 and lpathd = 0 for each

depth level. The path H is formed by appending the (index,length) pair at each increment

of d and removing the last pair at each decrement of d. One at a time, consider each length

ld of L[1], for discussion, at position jd. For each ld, compute lpathd = ld and Ad = jd + ld.

Now, let d = d + 1 and consider a length ld of F2 at position jd. If V (2,Ad−1) is empty,

we backtrack to d = d − 1 and explore other lengths in F1. If F2 is the ending part of

a stem, we need to make sure that we choose the same ld at V (2,Ad−1) as the beginning

part of the stem. For any other structural element, choose any ld at V (2,Ad−1). Update

Ad = Ad−1 + ld and lpathd = lpathd−1
+ ld. If at any time, lpathd > lmax or perhaps the V

element is empty, we backtrack and explore other length options; otherwise, we continue

the current path considering successive F . When d = f − 1, a final length is added to the

path, and both Ad and lpathd are updated, we need to verify the correctness of the resulting

structure length, i.e. lmin ≤ lpathd ≤ lmax. Prior to reporting paths as valid occurrences of P

in D, we need to verify that the chosen stem halves, which were chosen to be of equal length,

pair symbol-by-symbol via function pair. We continue this process until all paths from F1

are explored or discounted. Each resulting RNA secondary structure can be subsequently

scanned for further biological validation.

We formalize the running time of the aforementioned algorithm in the following theorem.

Theorem 7.1.1 Given an n-length RNA database D, an inexact structural query P of maxi-

mum length m with f fragments Fi, i = 1, 2, . . . f , and the sSA and sLCP for D, it is possible

to determine all locations in D of P in O(η1φ+ fm× (log n+Mm)) time and O(f ×n+ η)

space, where φ represents the work to integrate all possible fragments from a single matching

fragment F1 in D, η = η1 + η2 + ... + ηf , ηi is the number of matching fragments Fi in D,
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and M is the maximum number of matches found during the algorithm.

Proof The running time of the algorithm can be divided into the summation of the run-

ning time of the following: (1) detecting all occurrences in D of fragments in P and (2)

integrating/validating the fragments. Consider (1) first for Fi. Let M denote the maxi-

mum number of s-match occurrences detected at any part of (1). In this part, we construct

sencode for an si-length string, which requires O(si) time by Lemma 2.2.7. Then, an s-

match is done in O(si + log n +M) time in the worst case by Theorem 2.2.13 and filtered

for matches in O(|ΣRNA|M) ∈ O(M) time. Extending the match for each fragment Fi

requires M(ei − si) work. Collectively, the aforementioned steps are executed a total of

(ei − si + 1) time for the other sequence substrings and then, executed f times for each

Fi. Thus, (1) requires O(femax × (log n +Memax)) time, in O(fm × (log n +Mm)) since

emax = max{e1, e2, ..., ef} ≤ m. Consider (2) next. Let φ represent the work to integrate all

possible fragments from a single matching fragment F1 in D. Variable φ is limited in nature

since at each step, we only continue generating paths if the total path length lpath is such

that 0 ≤ lpath ≤ lmax. Then, the time to find all paths is in O(η1φ). We perform a final scan

to verify that the chosen stem occurrences indeed pair, which takes O(m) time. Thus, the

total time to execute (1) and (2) is then in O(η1φ+ fm× (log n+Mm)). We note that the

space required for the algorithm, aside from the provided D and P , is dominated by |V |,
|L|, |Ξ|, and O(f) space for the depth-first search. Thus, O(f × n + η + n × |ΣRNA| + f)

space is required and since |ΣRNA| = 4, the space required is in O(f × n+ η). 2

7.1.2 Discussion and Conclusion

We acknowledge that it is possible to rank our search results according to energetics to

add a level of biological validation to our procedure [29, 39]. Additionally, we can also use the

solution presented for Problem C as a basis for matching structural queries with no specified

sequences by iteratively populating the structural query with contiguous elements from D

and executing the algorithm. In terms of the original Problem C, we can also handle the

case where wildcard symbols are at the end of a fragment sequence by a slight modification

to our algorithm. Overall, the advantage of addressing RNA pattern matching applications

using the sSA and sLCP as the foundation is the flexibility to propose numerous extensions

to a problem with slight modifications to the solution. Suppose that we complicate the

structure query and allow some structural element sequences, say those for stems, to match
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also sequences with a similar, though inexact, form. To address this situation, we can

simply make a minor adjustment to how our algorithm filters s-matches. Handling such

complications with the traditional SA and LCP will require additional searches to be added

to the algorithm.

In summary, we showed how to use the s-match to handle inexact queries with RNA

structural patterns as the input, which was not considered in [86]. A task of future research

will be to study complementary base pairing schemes beyond the standard Watson-Crick

pairings, and incorporate those into new data structures for other applications in biology.

7.2 The Forward Stem Matrix

RNA secondary structures are sequences composed of nucleotides with different regions

of the RNA strand bonding to form structural elements such as stems, loops, bulges, etc.

The core challenge of finding RNA secondary structures in a sequence is to integrate pattern

matching with structure analysis. A philosophy used to find RNA secondary structures is

to first find the stems and then postprocess the resulting structures. The results of such

an exercise will have significant implications in various problems in computational biology,

such as in prediction of RNA secondary and tertiary structures [28], RNA structure design

[66], functional classification of RNA structures [78], micro RNA target prediction [94], and

discovery of RNA structural motifs [81], among others. The recent interest in long non-coding

RNAs [82] with significantly complicated structures [77] motivates the need to efficiently find

RNA secondary structures.

We introduce the Forward Stem Matrix to efficiently store and permit quick access

to all k-length stem possibilities, for k ∈ K, in an n-length RNA sequence T . Each

FSM [i][j] either (a) contains a set of indices for the K[i]-length closing-stem halves C =

reverse(complement(T [j...j + K[i] − 1])) that correspond to the opening-stem half O =

T [j...j +K[i]− 1] if T [j...j +K[i]− 1] is the first occurrence of O in T , (b) contains ∅ if (a)

yields no such indices, or (c) contains the negated index of the furthest previous occurrence

of O in T , otherwise. In this research, we construct the FSM data structure and provide

example RNA applications.

Other data structures and methods have been proposed to address variations of RNA

secondary structure matching. The Structural Suffix Tree (sST ) [86] data structure was

developed to handle an extension of the exact pattern matching between an RNA pattern P
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and text T , in that the individual symbols are used to determine how the RNA secondary

structure may occur. In cases where we want to specify search for an RNA secondary

structure, we require pattern matching between a text and an approximate structure query.

Along the lines of other suffix structures [1, 72], the Affix Tree [74] and Affix Array [89]

(implemented in the structator system [75]) were constructed specifically for matching with

RNA and shown to apply to matching structure queries (also handled in [75]). In an analysis

of the time and space resources needed to match RNA secondary structures, the use of even

the most elegant data structures still shows the true combinatorial nature of the problem

[51, 79]. For example, the methods reported in [74, 89] require exponential time with respect

to the number of fragments in an RNA structure query to find inexact matches of an input

structure query pattern. This motivates the need for more efficient data structures that more

naturally integrate pattern matching with RNA structure analysis.

Our construction of the FSM makes use of the Furthest Previous Non-Overlapping

Factor (FPnFk) and the Furthest Previous Factor (FPFk). The FPnFk stores, for each k-

length substring at index i in the n-length string T , the minimum index in T where T [i...i+

k−1] occurred in a non-overlapping fashion, i.e. T [min(x)...min(x)+k−1] = T [i...i+k−1]

such that x + k − 1 < i. The Furthest Previous Factor (FPFk) omits the non-overlapping

condition. The FPnFk and FPFk arrays are related to the Longest Previous Factor (LPF )

[35] array that stores information on the longest factors in a string, which is useful in data

compression, string factorization, etc. [36]. From the LPF , a family of data structures

were derived, including the Longest Previous Non-Overlapping Factor (LPnF ) [38], Longest

Previous Reverse Factor (LPrF ) [37], Longest Previous Non-Overlapping Reverse Factor

(LPnrF ) [37], and Prior [47] for traditional strings from the symbol alphabet Σ. This

family was extended in [19] to include the Parameterized Longest Previous Factor (pLPF )

and variations [23] for the parameterized string (p-string) [13] from a constant alphabet Σ

and a parameter alphabet Π. In this section, we provide new constructions for the FPnFk

and FPFk arrays.

Main Contributions: The Forward Stem Matrix (FSM) is proposed to efficiently

store stem options in an RNA sequence for quick access. To assist with the FSM con-

struction, we first introduce the Furthest Previous Non-Overlapping Factor (FPnF ) and

the Furthest Previous Factor (FPF ) arrays. We then provide a construction of the FPnF

and FPF arrays by making an interesting connection with p-string theory. An improved

linear time construction of the FPnF and FPF arrays is shown via suffix trees. Next, the
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aforementioned results are integrated with suffix arrays (SA) to yield a linear time construc-

tion of the FSM . Afterwards, we provide example applications of the FSM : to find hairpin

and pseudoknot structures in an RNA sequence. Our main results are formalized below.

Theorem 7.2.7. Given an n-length T and a constant k, the FPnFk array is constructed

in O(n) time and O(n) space.

Theorem 7.2.9. Given the n-length T and the set of stem lengths K, the Forward Stem

Matrix (FSM) is constructed in O(n|K|) time using O(n) extra space.

In all of our construction algorithms, we avoid data structures that tend to require heavy

preprocessing in practice, such as the processing required to determine the longest prefix

common between any two suffixes of a string via range minimum query (RMQ) or lowest

common ancestor (LCA) computations.

7.2.1 Forward Stem Matrix

An RNA secondary structure, composed of the nucleotides adenine (A), cytosine (C),

guanine (G), and uracil (U), is formed when nucleotides from different regions bond within

a strand of RNA; the Watson-Crick complementary base pairs between the nucleotides are

(A,U) and (C,G). Figure 7.1 shows the basic structural elements [15] that can make up an

RNA secondary structure: single strands, stems (or stacks), loops, and bulges. To search

for an RNA structure in a text, an approximate search query (shown in Figure 7.3) is used.

These queries are composed of the basic structural elements, each of which is a fragment of

the query. For each fragment, we either specify (1) the exact RNA sequence desired, (2) a

range [l, h] of the fragment length, or (3) a hybrid of both (1) and (2) with wildcard symbols.

A philosophy used for matching structure queries is to begin with identifying the stems and

filter the results as appropriate.

A quick look at Figure 7.1 shows that the stem is a fundamental secondary structure.

All of the double stranded RNA structures can basically be viewed in terms of a stem, or

a set of stems. A stem or stack (see Figure 7.1) forms on a single strand of RNA, say T ,

when some k-length substring of RNA at position i in T , i.e. O = T [i...i + k − 1], forms a

complementary base pairing with a forward, non-overlapping, reversed substring in T , i.e.

some j > i+ k− 1 where C = T [j...j+ k− 1] = reverse(complement(O)), reverse reverses

a string, and complement forms the base pairings (see Definition 7.2.1). For discussion, we
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call O the opening-stem half and C the closing-stem half.

Definition 7.2.1 complement function: We define the following function to return a com-

plementary RNA sequence: complement(U [1] ◦ U [2] ◦ ... ◦ U [|U |]) = U [1] ◦ U [2] ◦ ... ◦ U [|U |],
where 1 ≤ i ≤ |U | and each U [i] =‘C’ if U [i] =‘G’, U [i] =‘G’ if U [i] =‘C’, U [i] =‘A’ if

U [i] =‘U ’, and U [i] =‘U ’ if U [i] =‘A’.

The RNA sequence T = ACCCCUGGGGU , for example, has a stem of length k = 5 at

indices i = 1 and j = 7 since ACCCC = reverse(complement(GGGGU)). For a structure

query, we need to find all stems in T of lengths within the ranges for the considered stem

fragments: k1, k2, ..., kc ∈ K. Since a stem is non-overlapping, then bn
2
c ≥ max{k | k ∈ K}.

We define the Forward Stem Matrix (FSM) to find all k-length closing-stem halves in T for

any opening-stem half in T and every k ∈ K.

Definition 7.2.2 Forward stem matrix (FSM): Consider the n-length RNA sequence

T from ΣRNA = {A,C,G, T} and a set of integers K, with 1 ≤ k ≤ bn
2
c for k ∈ K.

From any K[i]-length opening-stem half in T starting at position j, i.e. T [j...j + K[i] − 1],

FSM [i][j] provides access to the indices of all forward, non-overlapping, complementary

closing-stem halves in T , i.e. reverse(complement(T [j...j+K[i]−1]) = T [w...w+K[i]−1]

for j + K[i] − 1 < w. Formally, each FSM [i][j] = y is defined below for 1 ≤ i ≤ |K| and

1 ≤ j ≤ n.

y =


{w | reverse(complement(T [j...j +K[i]− 1])) =

T [w...w +K[i]− 1] ∧ j +K[i]− 1 < w},
if T [j...j +K[i]− 1]6=T [a...a+K[i]− 1] ∀ a < j

−min{x | T [j...j +K[i]− 1] = T [x...x+K[i]− 1] ∧ x < j}, otherwise

Consider using this data structure when we want to find all K [̂i]-length closing-stem

halves for the opening-stem half O = T [̂j...̂j + K [̂i] − 1]. In the case that FSM [̂i][̂j] = ∅,
then there are no such closing-stems. In the case that |FSM [̂i][̂j]| = 1 and FSM [̂i][̂j][1] <

0, then we know that Q = FSM [̂i][−FSM [̂i][̂j][1]] stores all closing-stem halves for an

earlier opening-stem; our only task is to report the appropriate closing-stem halves for O
at ĵ in T , i.e. q ∈ Q such that ĵ + K [̂i] − 1 < q. Otherwise, either |FSM [̂i][̂j]| > 1

or |FSM [̂i][̂j]| = 1 and FSM [̂i][̂j][1] > 0, so we have encountered the furthest previous

occurrence of the opening-stem half O; here, FSM [̂i][̂j] stores the indices of all closing-stem

halves. By accessing closing-stem halves of opening-stem halves O via the results from the
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furthest previous occurrence of O, space is saved. The space complexity of the data structure

is formalized below.

Lemma 7.2.3 Given the n-length string T and the set of considered stem lengths K, the

space required by FSM is in O(n|K|).

Proof Consider one array FSM [i] for some 1 ≤ i ≤ |K|. By Definition 7.2.2, we have

that each FSM [i][j], 1 ≤ j ≤ n, is either (1) a single negated integral index pointing to

the furthest previous occurrence of the opening-stem half T [j...j + K[i] − 1] or (2) a set of

indices denoting the location of all closing-stem halves. Since a unique opening-stem half

O has a unique closing-stem half C by Definition 7.2.1, then, in the worst case, there are

exactly n elements contributed by (2) across all FSM [i][j] for the considered i. In the worst

case that all of the n elements appear in one set FSM [i][j], then exactly n− 1 elements are

contributed by (1) for the remaining FSM [i][h] with 1 ≤ h ≤ n and h 6= j. Therefore, at

most 2n − 1 elements are needed for each array FSM [i]. Since there are |K| such arrays,

then O(n|K|) space is required. 2

A näıve O(n3|K|) algorithm to construct the FSM would, for each of the |K| rows in

FSM , perform an O(nk) search (with k ∈ K) to find the closing-stem halves for a single

opening-stem half, since in the worst case, all of the opening-stem halves are unique in

T and k ∈ O(n). By expediting the pattern matching via the border array [17, 87], the

algorithm can be improved to O(n2|K|). To more efficiently compute the FSM , we must

compute some new data structures. In the following, we introduce and construct the Furthest

Previous Non-Overlapping Factor (FPF ) and the Furthest Previous Factor (FPF ) arrays.

Then, we use these new arrays in our improved construction of the FSM .

Furthest Previous Non-Overlapping Factor

Motivated by string factor related data structures, we define the Furthest Previous Non-

Overlapping Factor (FPnFk) to store, for each k-block in T , the index of the first non-

overlapping occurrence of that k-block in T .

Definition 7.2.4 Furthest previous non-overlapping factor (FPnF ): For an n-length

string T and a chosen integer 1 ≤ k ≤ bn
2
c, the FPnFk array stores an index x, for each

1 ≤ i ≤ n, that locates the furthest previous non-overlapping occurrence of T [i...i+ k− 1] in
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…

[l-h][l-h]

L

… …

Figure 7.4: Hairpin query.

T . More formally, FPnFk[i] = min{x | T [x...x+ k− 1] = T [i...i+ k− 1] ∧ x+ k− 1 < i}.
In the case that no such x exists, define FPnFk[i] = 0.

Omitting the non-overlapping guard yields the Furthest Previous Factor (FPF ).

Definition 7.2.5 Furthest previous factor (FPF ): For a chosen k and an n-length

string T , the FPFk array stores an index x, for each 1 ≤ i ≤ n, that locates the furthest

previous occurrence of T [i...i+ k− 1] in T . More formally, FPFk[i] = min{x | T [x...x+ k−
1] = T [i...i+ k − 1] ∧ x < i}. In the case that no such x exists, define FPFk[i] = 0.

To construct the FPnF and FPF , we can first construct the FPnF and obtain FPF by

omitting the non-overlapping restrictions. In a näıve algorithm, we would compute FPnF

by considering the n− k+ 1 total k-blocks, which begin at i, and compute the earliest exact

match of the k-block in the text via a left-to-right scan. This algorithm would require O(n2k)

time. We can improve this to O(n2) time using a border array for pattern matching [17, 87].

In the following, we improve on this construction time of FPnF and note how to modify

the construction to also obtain the FPF .

—Construction

To construct the FPnFk, we provide a novel application of p-string theory. Consider

a string T from the alphabet A. The FPnFk stores, for each ith k-block T [i...i + k − 1],

the earliest index in T in which the k-block occurred in a non-overlapping fashion. When

Σ = ∅ and Π = A, the prev(T ) stores, for each ith symbol T [i], the distance to the previous

T [i] in T . If the prev would record the first previous occurrence rather than the immediate

previous occurrence, it would be a special flavor of FPnFk where k = 1. Our method,

shown in Algorithm 7-1, exploits the prev encoding to construct FPnFk. Consider a new
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Algorithm 7-1. Constructing FPnFk array.
1 int [n ] construct FPnFk ( int k ,char T [n ] ) {
2 int FPnFk[n] , T̂ [n ] , i=1 ,j ,v ,z=0
3 int SA [n]=construct SA(T ) , LCP [n]=construct LCP(T )
4 do{
5 v=z++, T̂ [SA [ i ] ]=v
6 while ( i<n ∧ LCP [ i+1 ]≥k ){
7 T̂ [SA [ i+1] ]=v , i++
8 }i++
9 }while ( i≤n)

10 Σ = ∅ , Π = A , FPnFk=prev(T̂ )
11 for ( i=1 to n){
12 j=FPnFk[i]
13 i f (j>0){
14 FPnFk[i]=i−j
15 i f (FPnFk[FPnFk[i]]>0)
16 FPnFk[i]=FPnFk[FPnFk[i]]
17 }
18 } for ( i=1 to n){
19 j=FPnFk[i]
20 i f (j>0 ∧ j + k − 1 ≥ i) FPnFk[i] = 0
21 }return FPnFk
22 }

array T̂ where we assign integers to the O(n) k-blocks of T such that two integers are equal

only when the corresponding k-blocks are equal. When Σ = ∅ and Π = A, we can use

prev(T̂ ) to find not only the previous occurrence of the k-blocks, but via a left-to-right scan,

we can successively use the previous occurrences to find the furthest previous occurrence

of each k-block. After we find the first occurrence of the k-block, we only must check the

non-overlapping condition. The following lemma formalizes the complexity of the algorithm,

which is dominated by the computation prev(T̂ ).

Lemma 7.2.6 Given an n-length T from alphabet A and parameter k, the FPnFk array is

constructed in O(n log n) time and O(n) extra space.

Proof The SA and LCP on T require O(n) time and O(n) space to construct (see [1]).

Also, the desired array FPnFk requires O(n) space. Constructing T̂ in lines 4-9 clearly

requires O(n) time since both nested loops are controlled by a variable that is incremented

by both loops. The alphabet assignment in line 10 is simply an O(1) operation via pointers.

Since T̂ is from a new alphabet of size O(n) (because the variable z is incremented at most n
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times), then prev is constructed in O(n log n) time with O(n) extra space by Lemma 2.1.5.

The time required to find the furthest previous indices for each k-block (lines 11-17) and the

time required to check the non-overlapping condition (lines 18-20) clearly require a single

O(n) scan. Thus, FPnFk requires O(n log n) time and O(n) extra space. 2

In passing, we note that by omitting the last loop in Algorithm 7-1, we remove the

non-overlapping condition and construct the FPFk array. Even though we will improve

the time complexity of the FPnF and FPF constructions, we highlight that the previous

construction is a new application of p-string theory, which traditionally deals with detecting

source code redundancy [13, 98] and similar biological sequences [86].

—Improved Construction

We now present a more efficient solution to construct the n-length FPnFk array using

the suffix tree ST for the n-length text T . The idea is to introduce computations in addition

to a typical preorder traversal of the ST , in which, after we reach a k-block, i.e. a collection

of suffixes sharing a prefix of k symbols, we collect these suffix indices and report the first

index (the furthest previous occurrence) for all such k-blocks in T . The algorithm is as

follows:

• Step (1): Initially, set FPnFk = {0, 0, ..., 0}.

• Step (2): Now, construct the suffix tree ST for T .

• Step (3a): Perform a preorder traversal on ST (with the root as depth-0). In addition

to the traversal, when visiting a new node nj at depth-k, do:

– (3a*) Set S = ∅. For each leaf, i.e. the suffix index say i, reached as a descendant

from node nj in the ST , we append this to S via S = S ∪ i. Upon encountering

nj again in the traversal, the array S will have the list of all the suffixes beginning

with the same k-length prefix. By scanning S = {s1, s2, ..., sq}, we can determine

the earliest occurrence of the currently traversed prefix in T at z = min(S). That

is, we can determine elements FPnFk[sv], for each 1 ≤ v ≤ q with sv 6= z, by

setting FPnF [sv] = z if z+k−1 < sv. After these |S|−1 elements are populated,

the preorder traversal of all children of nj is complete. Continue to (3b).
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• Step (3b): Continue with the preorder traversal. When a different nj at depth-k is

encountered, we execute (3a*).

The complexity of the algorithm is analyzed in the following.

Theorem 7.2.7 Given an n-length T and parameter k, the FPnFk array is constructed in

O(n) time and O(n) space.

Proof The time needed for initialization in step (1) is in O(n). The ST construction for T

in step (2) requires O(n) time and O(n) space (see [1]). In step (3), all of the work is clearly

done alongside an O(n) preorder traversal. All that is left to consider is the time required to

scan the S structures for the minimum occurrences z throughout the algorithm. Since the

S is composed of the indices from the O(n) leaves of the ST , then there are exactly n of the

S = S ∪ i operations and so, each leaf node is considered exactly once. So, an O(n) scan

to find the minimum z of each S and populate the other FPnFk[sv] is amortized across the

entire algorithm. Thus, the FPnFk construction requires O(n) time and O(n) space. 2

By omitting the check of z+k−1 < sv in step (3a*), we construct the FPFk array. This

omission does not alter the construction time or space complexity.

Corollary 7.2.8 The FPFk array is constructed in O(n) time and O(n) space.

In passing, we note that, similar to this suffix tree solution, the FPnF and FPF arrays

may also be constructed via the suffix array (SA) and the longest common prefix (LCP )

array.

FSM Construction

By looking at the definitions for FPnF and FPF , and comparing them with FSM , we

see a striking resemblance. In FSM [i][j], we either point to the furthest previous occurrence

of a K[i]-length opening-stem half, i.e. exactly FPFK[i][j], or store the set of indices of

the forward, non-overlapping, complementary K[i]-length closing-stem halves, a variation of

FPnFK[i]. In the following, we use our FPnF related data structures to construct FSM .

Each FSM [i][j] either (a) contains a set of indices for the K[i]-length closing-stem halves

C = reverse(complement(T [j...j + K[i] − 1])) that correspond to the opening-stem half

O = T [j...j + K[i] − 1] if T [j...j + K[i] − 1] is the first occurrence of O in T , (b) contains
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∅ if (a) yields no such indices, or otherwise, (c) contains the negated index of the furthest

previous occurrence of O in T . We construct FSM [i][j] individually by row FSM [i] for

K[i]. Initially i = 1.

• Step (1): Define A = negate(A) to negate each element of A in A. Construct SAT ,

LCPT , and FPF T
K[i] = construct FPFk(K[i], T, SAT , LCPT ). We handle case (c) by

setting FSM [i] = negate(FPF T
K[i]), which will populate all FSM [i][j] for an i and

every j with the negated index of the furthest previous occurrence of the K[i]-length

opening-stem half O in T .

• Step (2): Here, we handle the case (a). Let crT = reverse(complement(T )) and

T̂ = T ◦ $1 ◦ crT . Now, construct SAT̂ and LCPT̂ . Let S be a stack with push and

pop operations, where initially S = ∅. Observation (*): By using T̂ , it is guaranteed

that for each opening-stem from the beginning half of T̂ , there will be at least one

closing-stem located in the ending half of T̂ . The trick is to use the LCPT̂ and (*) to

group closing-stem halves in T with the guaranteed occurrence(s) O in the ending half

of T̂ and use this O to determine where the corresponding opening-stem is in T .

– Step (2.1) Let d = −1. Perform one scan through LCPT̂ to collect all suffixes in

T (suffix indices in the range [1, n]) that match at least K[i] symbols and push

them on S. When we find a suffix in the ending half of T̂ (suffix indices in the

range [n + 2, |T̂ |]), say at t, that matches at least K[i] symbols, set d = SAT̂ [t].

Continue this until we find a suffix that matches less than K[i] symbols to end the

grouping. Now, S has the indices of closing-stems in T that should be paired with

the furthest previous occurrence of T [l...l+K[i]− 1] with l = |T̂ | − d−K[i] + 2.

We can find this using f = l if FPF T
K[i][l] = 0 or f = FPF T

K[i][l] otherwise. Until

S is empty, pop all elements with values less than |T | into V . Only a subset V of

V is actually a closing-stem half for O, i.e. V = {v | v ∈ V ∧ f +K[i]− 1 < v}.
Note that we can collect V from V with a simple scan to yield an unsorted V ;

we will sort this efficiently in step (4). Set FSM [i][f ] = V to enforce (a) and

continue the scan in (2.1) until all elements in LCPT̂ are considered once.

• Step (3): Now, we handle the final case (b). From the previous steps, the elements

where FSM [i][j] = 0 (for the considered i and any j) represent those furthest previ-
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ous opening-stem halves in T where no closing-stem half exists. Thus, we set these

FSM [i][j] = ∅ to uphold (b).

• Step (4): Finally, sort the index sets in the current row FSM [i]. Let M = ∅. For 1 ≤
z ≤ n, when |FSM [i][z]| ≥ 1 ∧ FSM [i][z][1] ≥ 1, let M = M ∪ (FSM [i][z][y], z) for

each y with 1 ≤ y ≤ |FSM [i][z]|, then let FSM [i][z] = ∅. Now M has all pairs (c, o),

within the row FSM [i], with closing-stem half indices c and the corresponding opening-

stem half index o. Perform one radix sort on the c attribute of the pairs in M . Work

left-to-right on the sorted M and set FSM [i][M [w].o] = FSM [i][M [w].o] ∪ M [w].c

with 1 ≤ w ≤ |M |. Now, each set in the row FSM [i] has been sorted. Afterwards,

each condition (a), (b), and (c) is handled for the row FSM [i]. Now increment i and

if i ≤ |K|, consider the next row by (1). Otherwise, FSM is complete.

The time and space complexities of the algorithm are formalized below.

Theorem 7.2.9 Given the n-length T and the set of stem lengths K, the Forward Stem

Matrix (FSM) is constructed in O(n|K|) time using O(n) extra space.

Proof Consider the work performed for each of the |K| rows to construct FSM . Step (1)

requires O(n) time, since SAT and LCPT are constructed in linear time (see [1]), FPF T
K[i]

is constructed in linear time by Corollary 7.2.8, and negate is an O(n) operation. In step

(2), crT is built in linear time due to the O(n) operations reverse and complement. Also,

SAT̂ and LCPT̂ are linear time constructions (see [1]). In this step, a single O(n) scan is

done on the LCPT̂ , pushing indices onto S that represent suffixes that match at least K[i]

symbols. When K[i] symbols do not match, S is popped onto V and the resulting indices

are selected to appear in an element of FSM . Here, exactly n elements are pushed onto S,

popped, and selected to appear in FSM [i][j] throughout the entire scan. Thus, this work

is amortized across the entire O(n) scan. Then, a simple O(n) scan is done in step (3). By

Lemma 7.2.3, step (4) will collect O(n) pairs into M , which are composed of indices from

the alphabet O(n). So, a radix sort of M requires O(n) time. Scanning M to repopulate

the FSM [i] entries is also an O(n) operation. Since there are |K| rows in FSM , then the

algorithm constructs FSM in O(n|K|) time. In terms of extra space (beyond the FSM), the

algorithm shares the following structures when computing each row of FSM : the SA, LCP ,

and FPF arrays based on |T |, |crT |, |T̂ | ∈ O(n) and the S, V , and V based on |T̂ | ∈ O(n).

Thus, O(n) extra space is used. 2
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Applications

—Finding Hairpins with a Known Loop Sequence

A hairpin is made up of a stem and a loop (see Figure 7.1). The hairpin structure [90]

is of great significance in guiding RNA folding, assisting in protein recognition, and even

protecting messenger RNA. Consider the hairpin structure query in Figure 7.4 where the

loop pattern is known and the stem sequence is unknown with a length in some range.

Formally, we address the problem of finding all hairpins H in the RNA sequence T , where

H has a known loop sequence L and an unknown stem sequence with length in the range

[l, h] with h ≥ l. Here, we find these hairpins in an RNA sequence using FSM .

Given SAT , LCPT , and FSM with K = {l, l + 1, ..., h− 1, h}, the general method is to

use SAT and LCPT to find all occurrences of the loop L in T and using these occurrences,

oracle FSM elements and report matches when there exists an opening-stem half just before

the occurrence of L and a corresponding closing-stem half just after the occurrence of L.

• Step (1): Use the SAT and LCPT to find the range [occL, occH ] in SAT where all

suffixes have the prefix L. In the case that occH ≤ 0 or occL ≤ 0, there does not exist

a match of L and so, no hairpins H with the given loop exist in T . Otherwise, let

i = occL and continue to step (2).

• Step (2): This step requires that we find some K[j]-length stem surrounding the con-

sidered occurrence L at T [SAT [i]...SAT [i] + |L| − 1]. Observation (*): For any stem

with length u > 1, all of the corresponding length suffixes of the opening-stem half

and prefixes of the closing-stem half are also stems. Since for each L occurrence, there

can be at most one stem of each length [l, h], then the goal is to find the longest such

stem and simply report that also smaller stems exist for this occurrence of L. To do

this, we need nested binary searches: the outer binary search varies the stem length,

say g, and the inner binary search oracles an element of FSM to say whether or not

the stem length g exists around L. Set the boundaries of the outer binary search to

the range of [l, h] in K, i.e. s = 1 and e = h− l+ 1, and initially say that no maximum

stem exists, i.e. k = 0.

– Step (2.1) If s ≤ 0 or e ≤ 0 or s > e, then the outer binary search is complete; now,

report the results by continuing to step (2.2). Otherwise, set m = b s+e
2
c. The next
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task is to see if a stem of length K[m] surrounds the loop L at T [SAT [i]...SAT [i]+

|L|−1], i.e. the opening-stem half of length K[m] must exist at a = SAT [i]−K[m]

and the closing-stem must start at b = SAT [i] + |L|. Let Q = FSM [m][a].

From Definition 7.2.2, we can find a K[m]-length closing-stem starting at b for

a K[m]-length opening-stem starting at a. If |Q| = 1 and Q[1] < 0, then let

S = FSM [−(Q[1])][a]; otherwise, let S = Q. Binary search for b in S. If b exists,

then set k = K[m] if K[m] > k and consider larger possible stem lengths, i.e. set

s = m+ 1 and go back to step (2.1). Otherwise, b does not exist, so we consider

smaller stem lengths, i.e. e = m− 1 and go back to step (2.1).

– Step (2.2): If still k = 0, then no stem of any length was found to surround

this occurrence of loop L; proceed to step (3) to try to find a hairpin for the

next occurrence of L. If the maximum length k = l, then report (l, SAT [i]),

signifying that there exists a hairpin H in T where the opening-stem of length l is

at SAT [i]− l in T that is followed by L and the length l closing-stem. Otherwise,

the maximum length k > l, so, report (l, k, SAT [i]), signifying that there exists

hairpins in T with stem lengths in the range [l, k] with L starting at SAT [i] in

T , i.e. the hairpins with opening-stem length q, for l ≤ q ≤ k, that start at

SAT [i]− q in T are followed by L and a q-length closing-stem.

• Step (3): We increment i and if i ≤ occH , we loop to step (2) to consider finding

stems for T [SAT [i]...SAT [i] + |L| − 1], the currently considered occurrence of loop L.

Otherwise, there are no more occurrences of L to consider and all H in T have already

been reported.

The time complexity for the previously detailed algorithm follows.

Theorem 7.2.10 Given SAT , LCPT , and FSM on T with K = {l, l + 1, ..., h − 1, h},
the act of finding all hairpins H (with a known loop sequence L and an unknown stem

sequence with length in the range [l, h]) in the RNA sequence T can be accomplished in

O(max{|L|, ηL log(h− l) log n}) time with ηL as the number of times that L occurs in T .

Proof Step (1) executes in O(|L| + log n + ηL) time (see [72]). For step (2), each of the

O(log(h − l)) individual iterations from the outer binary search executes the inner binary

search in O(log(max{|FSM [c][d]| | 1 ≤ c ≤ |K| ∧ 1 ≤ d ≤ n})) ∈ O(log n) time (by the
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proof of Lemma 7.2.3). Thus, step (2) executes in O(log(h − l) log n) time. Lastly, step

(3) loops to step (2) a total of ηL times. Collectively, the time is in O(|L| + log n + ηL +

ηL(log(h− l) log n)) ∈ O(max{|L|, ηL log(h− l) log n}). 2

We acknowledge that by scanning the FSM on the stem lengths K and modifying each

index set, i.e. where |FSM [i][j]| ≥ 1 ∧ FSM [i][j][1] ≥ 1 for 1 ≤ i ≤ |K| and 1 ≤ j ≤ n, with

a two-level hash scheme for perfect hashing [33], we can omit the log n work of the innermost

binary search in the previous hairpin detection algorithm, since a query into each index set

will only require O(1) time. Given a satisfactory collection of hash functions, the extra work

to build and store hash tables will not change the time or space complexity of the FSM .

Thus, the hairpin detection algorithm may be improved to require O(max{|L|, ηL log(h− l)})
time. In practice, this improvement uses some extra resources in the FSM construction to

offer faster querying to the FSM for applications.

Without the FSM , the act of finding all H in T would also begin by finding all L in

T (see step (1)). For each of the ηL occurrences, we begin by matching stems with lengths

1, 2, ..., (l−1) that surround L and we continue matching until we have attempted to find an

h-length stem surrounding L. When discovering any stems surrounding L with a length in

the range [l, h], we report an occurrence of H in T during this sequential matching process.

This algorithm requires O(max{|L|, log n, ηLh}) time. There are two key problems here:

(A) for large stem lengths h ∈ O(n), the algorithm executes in time based on |T | and

further, cannot take advantage of cases when both l, h ∈ O(n) and (B) the problems of

(A) are magnified when we extend the result to more complex RNA secondary structures.

The FSM data structure expedites the time to find stems so that matching complex RNA

secondary structures with many fragments like Figure 7.3 becomes a problem of finding non-

stems (bulges, loops, etc.) that align correctly rather than finding a large number of possible

structures and filtering by stems with expensive pattern matching routines.

In passing, we note that the FSM data structure may be augmented with additional data

for validating the RNA structures. For example, each opening-stem and closing-stem in the

FSM can include data on the probability that the stem occurs in nature. When building an

RNA structure, the probabilities of the stems can be assessed to determine how frequently

a structure may exist; those structures with a collection of stems occurring together with

some probability p less than a threshold θ may be removed from further consideration. We

may further include a separate table of conditional stem probabilities to further validate how
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frequently a collection of stems occur together in a structure; this addition will help filter

infrequently occurring and potentially invalid RNA structures. A further study is required

to analyze how the FSM may be augmented to apply more biological approaches to the

validation.

—Finding All Hairpins with Arbitrary Loops

We now find all hairpins in the n-length RNA sequence R with a minimum loop size l and

a stem length in the range [sL, sH ] via the following algorithm. We want to report hairpins

that satisfy three conditions: (a) the stem size is in the range [sL, sH ], (b) the loop size is at

least l, and (c) the stem complementary base pairings are inner maximal, in that the stem

pairing does not extend to the loop. Note that (c) must be true because if the stems may

be extended, these extended base pairs could not be considered part of the hairpin loop.

• Step (1): Identify all possible stems with lengths in the range [sL, sH ] by constructing

the FSM on R with K = {sL, sL + 1, ..., sH} (this handles condition (a)). Define H

as a |K| × n matrix to store in each H[i][j] the hairpins that will be generated from

FSM [i][j], grouped by the opening stem half R[j...j+K[i]−1]. Set i = 1 and j = |K|.

• Step (2): If FSM [i][j] = ∅, then there cannot be any hairpins for this opening stem half;

go to (4). If |FSM [i][j]| = 1 and FSM [i][j] < 0, then we already reported hairpins

with this opening-stem half before, so set Q̂ = FSM [i][−FSM [i][j][1]]. Otherwise, we

need to find hairpins considering these opening-stems, so let Q̂ = FSM [i][j]. In both

cases, we need to binary search in Q̂ to find p = j + K[i] + l and list in a new Q all

elements p̂ ∈ Q̂ such that p̂ ≥ p and go to (3) with this Q (this handles condition (b)).

Continue to (3).

• Step (3): We report hairpins with the K[i]-length opening-stem half at j in R with all

closing-stem halves Q[y] for 1 ≤ y ≤ |Q| only when the complementary base pairing

between the opening-stem half R[j...j + K[i] − 1] and the closing-stem half R[x...x +

K[i]− 1] is inner maximal, where x = Q[y]. Let t be the index of some opening-stem

half, u be the index of some closing-stem half, and v be the length of this stem. We can

determine that the pairing is inner maximal by defining the function imaximal(t, u, v)

to return true if complement(R[t+ v]) 6= R[u−1] and return false otherwise. So, when

imaximal(j, x,K[i]) returns true, the pairing is inner maximal (handles condition (c))
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and we report a hairpin ĥ = (j, x,K[i]) (and record the hairpin viaH[i][j] = H[i][j]∪ĥ),

which signifies that the K[i]-length opening-stem half begins at position j, followed by

the (x− j −K[i])-length loop, followed by the K[i]-length closing-stem half beginning

at position x in R. When all forward stems have been considered in Q, go to (4).

• Step (4): If i < n, then increment i and go to (2). Else, decrement j and if j ≥ 1, reset

i = 1 and go to (2). When j = 0, all hairpin triples have been both reported and also

logged in H.

The analysis of the algorithm follows.

Theorem 7.2.11 Given the n-length RNA string R, all η hairpins with stem size in the

range [sL, sH ] and with loop size at least l can be found in O(n2∆) time and O(n∆ + η)

space, where ∆ = sH − sL + 1.

Proof Step (1) requires O(n∆) time by Theorem 7.2.9. Steps (2), (3), and (4) report all

hairpins by scanning each element of FSM , with the element types (i), (ii), and (iii). (i)

For elements with no forward stem information, i.e. FSM [i][j] = ∅, we omit these in O(1)

time in step (2). (ii) For FSM [i][j] directly containing forward stem information, we binary

search once to find a minimum index p = j + K[i] + l where a forward stem may occur

in (O(log(|FSM [i][j]|)) time since K[j] and l do not impact the binary search time), then

check at most two pairs of elements to ensure that the stem is an inner maximal match

for each of the, say z, indices at least as large as p = j + K[i] + l, and finally report the

hairpins (overall O(z) time). Since small K[j] and l produce a larger z in the worst case, we

can bound all of these operations for one FSM [i][j] by O(|FSM [i][j]|). (iii) For FSM [i][j]

referencing previous forward stem information, we consider FSM [i][−FSM [i][j][1]] in (ii).

Overall, since there are O(n∆) total elements in FSM with O(n) elements in each row by

Lemma 7.2.3, then processing each (ii) or (iii) considers order O(n2) hairpins (compressed

by FSM). So, O(n2∆) time is required. In terms of space, since the FSM on R with K

requires O(n∆) space by Lemma 7.2.3 and since we store the η hairpins in H as they are

reported, then O(n∆ + η) space is required. 2

—Detecting All Pseudoknots

A pseudoknot is an RNA secondary structure with multiple hairpins, which are structures

with a stem and a loop (see Figure 7.1). For a pseudoknot, the hairpin loops, say L1 and
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PSEUDOKNOTS IN RNA SECONDARY STRUCTURES 1201

FIG. 3. Collapsed knot-components in experimentally confirmed ncRNA structures. The orthodox knot-component
(P 1) is the only one that is not a pseudoknot. I let Pn denote denote collapsed knot-components with n stems, and Pn,k

to distinguish between the different types. Replacing the bonds with m1, m2, . . . , mn stems or ladders produces the
pseudoknot P

n,k
m1,...,mn

: for example, the H-pseudoknot displayed in Fig. 2 is P 2
1,3 at the ladder level, P 2

1,2 at the stem
level. Note that far more complex pseudoknots have been predicted in group II introns (Michel et al., 1989; Cannone
et al., 2002) using comparative sequence analyses.

used to help identify the knot-components. Knot-components, like the bonds of an orthodox structure, are
either ordered or nested, and may therefore be put into a tree-like structure. For orthodox structures, this will
be the same as the commonly used tree-representation of secondary structures (Le et al., 1989; Hofacker
et al., 1998). For pseudoknotted secondary structures, however, some of the nodes will be pseudoknots;
and for knot-components nested inside these, one must indicate which of the unbonded regions they are in.

To the right in Fig. 2, the first knot-component is displayed: the light gray pseudoknot. At the ladder level,
this consists of four ladders; at the stem level, it consists of three stems as two of the ladders are consecutive
in the secondary structure. Looking at the entire secondary structure of stems, there are by definition no
consecutive stems; however, looking at the knot-component in isolation, ignoring substructures nested
inside it, there may be consecutive stems, as is the case with the displayed pseudoknot. We collapse all
consecutive bonds in the pseudoknot to produce the collapsed pseudoknot (or collapsed knot-component).

Collapsed pseudoknots represent a convenient scheme for classifying pseudoknots. Collapsed knot-
components from known ncRNA, including the orthodox knot-component consisting of a single bond,
are presented in Fig. 3. The simplest of the pseudoknots is the H-pseudoknot (hairpin pseudoknot) which
consists of two stems; replacing each of the two bonds by a sequence of stems or ladders will produce
larger structures, but which are still H-pseudoknots. I denote by P 2

m1,m2
the H-pseudoknot where the two

bonds are replaced by m1 and m2 ladders or stems, but still refer to these as H-pseudoknots or type P 2

pseudoknots. In Fig. 2, at the ladder level, the first knot-component is a P 2
1,3 H-pseudoknot (light gray); at

the stem level, two of the ladders collapse into one stem making it P 2
1,2; but both belong to the P 2 family

(H-pseudoknots) as represented by the collapsed structure.
There are two different pseudoknots of the P 3 type: the double hairpin pseudoknot and the pseudotrefoil,

which I distinguish between by denoting them P 3,1 and P 3,2 respectively (Fig. 3). The second pseudoknot
in Fig. 2 is a double hairpin pseudoknot: P

3,1
2,1,1 at the ladder level, P

3,1
1,1,1 at the stem level. There are many

more complex pseudoknots. In Fig. 3, only P 4,1 and P 5,1 are presented as these have been experimentally
confirmed.

3.1. Relation to other approaches and pseudoknot families

Gan et al. (2003), Kim et al. (2004), and Pasquali et al. (2005) use a dual graph representation to identify
secondary structure motifs including pseudoknots. Composite structures (i.e., with multiple irreducible
components) correspond to “bridges” (Gan et al., 2003). The pseudoknot motifs, most clearly identified in
Pasquali et al. (2005), correspond to the definition of pseudoknots (i.e., pseudoknotted knot-components)
used in this article. However, the classification of pseudoknots differs in several respects as the dual graph
approach will distinguish between P 2

1,1 and P 2
1,2, but not between P 2

1,2, P 2
2,1 and P

3,1
1,1,1 (Pasquali et al.,

2005); and it will only distinguish between P
3,1
1,1,1 and P

3,2
1,1,1 if directed graphs are used. Also, not all

structures allow a planar graph representation in this manner, though counter-examples (Appendix B) are
so complex they are probably of little practical interest.

Rivas and Eddy (1999) present a dynamical programming algorithm for finding minimal free energy folds
which works for a large family (the R&E family) of pseudoknots; Akutsu (2000), following Uemura et al.

Figure 7.5: Pseudoknot configurations (figure from [83]), where P u and P u,x denote pseudo-
knots with u stems and configuration type x.

L2, form a complementary bond, i.e. L1 and L2 form a stem. In one context, L1 and L2 are

loops of a hairpin and in another context, sections of L1 and L2 are the stems of another

hairpin. This is the essence of a pseudoknot. The process of dealing with all pseudoknots is

a combinatorial challenge with complicated processes and exponential resource complexities.

Due to this difficulty, many contexts do not handle pseudoknots at all, or only consider small

pseudoknots. Here, we provide a string based algorithm answer the following: given an RNA

sequence R of length n, find all pseudoknots that R forms. We address this with a two step

process: (1) find all hairpins with an arbitrary loop and (2) report hairpin configurations

that satisfy a pseudoknot form in Figure 7.5. This process is expedited (and conceptually

simplified) with the assistance of the FSM data structure to find stem structures that form

in R.

To find pseudoknots, we (a) find the hairpins, (b) ensure that the hairpins form the

desired pseudoknot configuration, and (c) identify the segments of the hairpin loops that

form complementary bonds. Consider the case of finding the pseudoknot configuration P 2

in Figure 7.5. Previously, we computed (a) in Theorem 7.2.11. Recall that each hairpin

was reported in the form (x, y, z), signifying that the z-length opening-stem half begins at

position x in the RNA sequence R, followed by the (y − x− z)-length loop, followed by the

z-length closing-stem half beginning at position y in R. For (b), we choose two of these

hairpins H1 and H2 and send them to a configP 2 function to determine if the hairpins form

the correct configuration. We define the function configP 2(H1, H2) to accept two hairpins

where H1.x < H2.x and returns true if H1.x+H1.z−1 < H2.x+H2.z−1 < H1.y+H1.z−1 <

H2.y+H2.z−1 and returns false otherwise. The final step (c) is to determine the hairpin loops

forming complementary base pairs and report the P 2 pseudoknots. We will report/represent

the P 2 pseudoknots in the form (H1, H2;S1, S2, ...), indicating that a P 2 pseudoknot is formed

between hairpins H1 and H2 when one of the SJ = (o, c, g) hairpin loop pairings is made.

To find these hairpin loop pairings, we define the pair function to report all maximal stem
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pairings between the o opening-stem half indices from R[H1.x...H1.x + H1.z − 1] and the c

closing-stem half indices from R[H2.y...H2.y + H2.z − 1] for possible g-length stems. This

can be accomplished via the FSM and imaximal method leading to Theorem 7.2.11. We

omit the details.

In terms of time, step (a) requires O(n2∆) by Theorem 7.2.11. Step (b) executes an

O(h) ∈ O(1) (since the number of hairpins is h = 2) configP 2 function for each pair of

the hairpins. We can bound (b) by O(
(
n2∆

2

)
). Let l1 = H1.y − H1.x − H1.z and l2 =

H2.y −H2.x−H2.z respectively be the lengths of the loops for hairpins H1 and H2. Then,

the time for (c) is O(∆l1(log n+ l2)) for each of the O(
(
n2∆

2

)
) possible hairpin pairs found by

(b). The running time is thus O(∆l1(log n+ l2)
(
n2∆

2

)
) ∈ O(n4∆3l1(log n+ l2)). By analysis,

since step (c) can be done as soon as we find any two hairpins in the proper configuration,

we can immediately store and report the ηp total pseudoknots. So, we require O(n∆+η+ηp)

overall space, where η is the number of hairpins from step (a).

For configuration P h,1 for larger h, we can extend the representation (H1, H2, ..., Hh;

S1
1 , S

1
2 , ...;S

2
1 , S

2
2 , ...; ...;S

h−1
1 , Sh−1

2 , ...) and require that to report a pseudoknot with hairpins

H1, H2, ..., Hh, exactly one hairpin loop pairing from SK, for each K, is chosen such that

none overlap. We can find all P h,1 pseudoknots using the same philosophy as the P 2 case.

Essentially, only the config and pair functions would need to be extended to support

pseudoknot configurations with larger h. We report the general result below.

Theorem 7.2.12 A hairpin requires a stem size in the range [sL, sH ] and loop size at least

l. Let ∆ = sH − sL + 1. Given the n-length RNA string R, all P h,1 pseudoknots with h

hairpins can be found in O(n
2h+2∆h+1

(h−1)!
) time and O(n∆ + η + ηp) space, where η and ηp are

respectively the number of such hairpins and pseudoknots in R.

Note that the space is linear when ∆ is constant and when η and ηp are linear for some

RNA string R. Since all stem lengths may be reported, then possibly ∆ = O(n) and so,

the previous result would require O( n
3h+3

(h−1)!
) time. Rodland [83] showed that although the

number of possible pseudoknots in a random sequence could be exponential with respect

to the sequence length, only a few of the possible configurations are observed in practical

sequences. For instance, most pseudoknots found in real non-coding RNA are of the simpler

types, namely the H-pseudoknots (P 2) and some double hairpin pseudoknots (P 3,1), and only

a few cases with more complex configurations. See also [48]. Most practical pseudoknots

also contained a few more stems than would be expected from a random sequence. These
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observations suggest that we can safely assume that h, the number of hairpins in the pseu-

doknot, is a small constant, relative to n, the length of the sequence. Thus, our pseudoknot

detection requires polynomial time.

—Other Applications

Though different variations of hairpin matching problems have been addressed in [74,

75, 89], our algorithm for detecting hairpins with a known loop sequence via FSM is very

natural. We note that in addition to finding hairpins and pseudoknots, there are a multitude

of other applications that the FSM can help address. For instance, the FSM can also be

used to identify hairpins in an RNA sequence consisting of loops with wildcards, stems with

wildcards, etc. In fact, the FSM can be used to find more sophisticated RNA secondary

structure patterns (such as Figure 7.3) in a large RNA database or even assist in predicting

the structure of an RNA given a sequence of nucleotides. These patterns can be composed

of various RNA structural elements such as stems, loops, bulges, simple hairpins, etc. The

patterns can also specify all, some, or none of the nucleotides present in each structural

element. To find these RNA secondary structure patterns in a large database, we may take

many approaches. One approach is to use the FSM to find a collection of stems matching

between the pattern and areas of the database, and postprocess to determine if these stem

regions coexist with the other structural elements of the pattern. Let us refer to the stems

of an RNA secondary structure pattern and their locations as a stem signature of that

pattern. Another approach is to use the FSM to first process the pattern and identify the

simple hairpins, that is those hairpins that can be extracted from the pattern which look like

Figure 7.4. Let us refer to the simple hairpins of an RNA secondary structure pattern and

their locations as the hairpin signature of that pattern. Next, we can use the FSM to locate

these simple hairpins in the database and finally, postprocess to determine if the locations of

the hairpins allow the other RNA structural elements to coexist. We highlight that with the

latter approach, the FSM is treated as an index to hairpins. That is, the FSM is oracled

for natural and efficient access to simple hairpins with a stem and a loop. In a practical

sense, using the FSM to locate regions of a signature ultimately requires resolving collisions

between RNA secondary structure patterns sharing the same signature. Augmentations to

the signature can reduce the probability of collisions and improve use in practice.



Richard Beal Chapter 7. Matching RNA Secondary Structures 160

7.2.2 Experiments

To show the practical performance of our algorithms, we implemented the FSM con-

struction and the hairpin (with known loop sequence) detection algorithm each in two ways.

First, we implemented the FSM using the proposed algorithm with the SA, LCP , and

FPnF -related arrays. The FPnF -related arrays were constructed using the SA and LCP .

The hairpin detection was also implemented as proposed in this research with the FSM , SA,

and LCP data structures. Second, we implemented the FSM construction in a semi-näıve

way using a Boyer Moore (BM) pattern matcher [47, 87] to find both the first occurrence

of opening-stem halves and all corresponding closing-stem halves. We also implemented the

hairpin (with known loop sequence) detection algorithm, which executes like the proposed

algorithm except that the loop sequence is found with BM and we replace the outer binary

search to find the length of the stem by a sequential search. The programs were written

in Java because of the natural way to represent the FSM with a matrix of jagged arrays.

For convenience, we also use some basic functions from the Arrays and Collections classes;

we could implement these basic utility functions for better performance. The algorithms

were executed in a Cygwin environment running on a Dell Inspiron 570 desktop with 3.10

GHz clock speed and 8 GB RAM. Below, we discuss the performance of the algorithms on

the following sequences from Rfam [46]: V01555.2 Epstein-Barr Virus (EBV), CR548612.1

Paramecium Tetraurelia Macronuclear (PTM), and DQ792504.1 Horsepox Virus (HPOX).

Table 7.1 shows some characteristics of the aforementioned sequences.

First, we discuss the FSM construction time, which is composed of (1) the time for

SA and LCP preprocessing and (2) the time for the FSM algorithm. Figure 7.6 shows

the construction time for the FSM on prefixes of the EBV sequence with K = {1, 2, ..., 10}
using both the proposed approach (SA) and the semi-näıve approach (BM). It is obvious that

over time, the proposed approach, which appears linear, performs better. Further, the EBV

sequence has a large amount of repetition according to Table 7.1, which is quite taxing on the

semi-näıve implementation. The improved construction is not impacted by this repetition.

The FSM is constructed for the PTM sequence on K = {1, 2, ..., 5} and K = {1, 2, ..., 10}
in Figure 7.7 and Figure 7.8, respectively. We see that changing the value of K, i.e. the

considered stem lengths, alters the execution time. Recall that the running time for the

FSM is directly related to the number of elements in the FSM (see Theorem 7.2.9 and

Lemma 7.2.3). This is clear when observing the behavior between the FSM construction
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Table 7.1: Characteristics of sequences, where ||FSM ||K denotes the total number of ele-
ments in the FSM data structure on K = {1, 2, ..., 10}.

T |T | max(LCPT ) mean(LCPT ) ||FSM ||K
EBV 172281 32442 3071.4 2973170
HPOX 212633 71 8.6 3775665
PTM 984602 372 10.4 18746709

time in Figure 7.8 and the respective number of FSM elements in Figure 7.10. Further, we

can bound the FSM construction times by 2n|K|, which is the most possible elements in

the FSM . In practice, we would achieve this bound in the worst case if, at each prefix of

the sequence, the number of elements in the FSM is maximum. In the case of HPOX (see

Figure 7.9), we see that the FSM algorithm actually executes faster than the SA and LCP

linear time preprocessing. In our implementation, the provided Java sort methods are used

along with some other Java utility functions, for convenience. Performance improvements for

the FSM construction are possible by implementing these functions along with an integer

radixsort.

Next, we discuss the time for hairpin detection. In this experiment, we use the FSM

structures on K = {1, 2, ..., 10} to find all hairpins in the form of Figure 7.4 with L = {A}s,
l = K[1] = 1, and h = K[|K|] = 10. In other words, we search for hairpins with a known

loop sequence L as a run of s adenine symbols and with a stem length in the range of

[1, 10]. In the case of the EBV sequence in Figure 7.11, we detect hairpins with both the

proposed approach (SA) and the semi-näıve approach (BM). Notice that for both hairpin

detection approaches, the running time is similar. We observe that the running time for

hairpin detection is fast for all of the sequences considered (see Figure 7.12). In general,

we see that hairpin detection is simple given the FSM . Thus, we may suggest that the

FSM data structure is an index to hairpins in the form of Figure 7.4. In passing, we note

that the way in which we find hairpins is exclusively symbol-based and additional biological

validation may be required. Nonetheless, we can quickly provide a multitude of hairpins to

a biological filter given the FSM . Also, extensions to the hairpin detection algorithm can

identify more sophisticated RNA secondary structures such as Figure 7.3.

7.2.3 Conclusions

In this section, we propose the Forward Stem Matrix (FSM), which stores information

regarding all k-length stem (k ∈ K) options within an n-length RNA sequence. We pro-
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Figure 7.6: FSM construction on EBV sequence.

 

Figure 7.7: FSM construction on PTM sequence.

 

Figure 7.8: FSM construction on PTM sequence.

 

Figure 7.9: FSM construction on HPOX sequence.

 

Figure 7.10: Number of elements in the
FSM , where K1 = {1, 2, ..., 10} and K2 =
{1, 2, ..., 5}. Both the number of elements and
the prefix length are normalized by the length
of each sequence.

 

Figure 7.11: Time to find hairpins in EBV
with L = {A}s, l = 1, and h = 10 (see Fig-
ure 7.4).

 

Figure 7.12: Time to find hairpins with L =
{A}s, l = 1, and h = 10 (see Figure 7.4), nor-
malized by the maximum time to find hairpins
within each sequence.
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vide a linear O(n|K|) construction for the FSM via suffix arrays and arrays related to the

Longest Previous Factor (LPF ), in particular, the Furthest Previous Non-Overlapping Fac-

tor (FPnF ) and Furthest Previous Factor (FPF ) arrays. We provide two new constructions

for the FPnF and FPF including a novel use of parameterized string (p-string) theory and

an improved linear solution with suffix trees. Then, we devise methods to find hairpins and

pseudoknots within an RNA sequence. Experimental results are included to show the em-

pirical performance of the proposed data structure. Using the FSM , other RNA secondary

structure problems can also be addressed. For future work, we are interested in extending

our data structures to support non-Watson-Crick wobble pairings and applying the data

structures to assist in RNA alignment. Also, we wish to investigate how to efficiently filter

discovered RNA structures based on their biological relevance.
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Chapter 8

Conclusions

The parameterized match (p-match) is a generalization of traditional string matching;

the structural match (s-match) is a generalization of the p-match. By developing algorithms

using the p-match/s-match and defining data structures to support the parameterized string

(p-string) and structural string (s-string), we develop powerful solutions with the flexibility

to support numerous problems, including parameterized duplication [12], RNA structural

analysis [86], and traditional pattern matching problems. In this dissertation, we advance

the state-of-the-art for p-string theory by developing data structures for p-strings/s-strings

and using p-string/s-string theory in new and old contexts to address various applications.

8.1 Summary

First, we recall the parameterized longest previous factor (pLPF ) and develop a taxon-

omy for longest factor problems. We show the connection between the construction of the

pLPF and the construction of various data structures in the taxonomy. Using the pLPF

construction as the foundation, we show how to efficiently construct important p-string ori-

ented data structures such as the parameterized longest common prefix (pLCP ) and the

parameterized-border (p-border) array, in addition to the following popular data structures

for traditional strings: the longest common prefix (LCP ), the permuted-longest common

prefix (permuted-LCP ), the border array, and the prefix array (PA). Also, we propose a

number of new data structures including the longest not-equal factor (LneF ), longest re-

verse factor (LrF ), longest factor (LF ), and equivalent p-string extensions. The pLPF

framework is exploited to provide constructions of the aforementioned data structures as
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well. In summary, there is an important connection between the pLPF array and that of

other longest factor problems, including several popular data structures. This allows us to

exploit, i.e. reuse, the efficient pLPF construction for numerous data structures, which is a

transformative result that makes the p-string quite appealing to the string community and

enlightening for software developers.

Next, we extend the border array for the s-string to support s-matching, i.e. construct

the structural border (s-border) array. Earlier, we showed how to construct border-related

arrays with the pLPF . Here, we provide direct constructions of border-related arrays. En

route to improved constructions, we prove that even with the prefix and suffix intricacies

of the s-string encodings, the basic border properties still hold for the s-border. Thus,

we show a progression of constructions of the s-border from requiring a cubic construction

time, to quadratic time, ultimately to linear time. This is a significant result because of

the generalization of the s-string, i.e. we show how to modify the s-string alphabets to also

construct the p-border and the traditional border arrays in linear time. Similar to efficient

left-to-right matching and p-matching, the s-border gives another efficient way to s-match,

in addition to the structural suffix tree [86] and the structural suffix array [16].

Then, we investigate the problem of p-matching on compressed texts, which is well studied

for traditional strings, and for p-strings is studied in a slightly different context in terms of

RLE strings [7]. We define the compressed parameterized pattern matching (compressed

p-matching) problem to find all of the p-matches between a pattern P and text T , using

only P and the compressed text Tc. We support p-matching by introducing parameterized

compression (p-compression). That is, rather than compressing T to form the compressed

Tc, we compress a new p-string encoding of T that is practical for compression. In essence, a

p-string encoding is applied to T as a transformation prior to compression. Experimentally,

we show that compressing this transformation is competitive with compressing T and in

some cases, leads to even better compression. This is a significant contribution because it

is a new application of p-string theory. Using p-compression, we develop a solution to the

compressed p-matching problem for any general compression scheme where a partial symbol

decompression function can be defined. Our results are examined for the specific case of

Tunstall codes; we acknowledge that other compression schemes are possible.

The p-match is already a special and strict form of inexact matching. Next, we add

another form of inexactness to the p-match by introducing/addressing two new variations of

the p-match with indeterminate symbols. First, we propose the indeterminate parameterized
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match (ip-match), which allows indeterminate holes in a p-string. We address this problem

by extending the prefix array, a data structure known for traditional pattern matching with

indeterminate symbols. Prior to addressing the ip-match, we introduce/construct the pa-

rameterized prefix array (pPA) and its succinct representation, the compact parameterized

prefix array (cpPA). We initially construct the cpPA via parameterized suffix structures

and then, improve on the result with a novel construction via the pLPF data structure.

Later, we extend the cpPA to solve the ip-match. Finally, we discuss applications for our

data structures. Second, we propose the equivalence parameterized match (e-match), which

incorporates equivalence classes of symbols within each p-string alphabet. We propose a

method to perform the e-match using the p-match suffix array framework. Historically, the

parameterized suffix array (pSA) and parameterized longest common prefix (pLCP ) have

suffered from direct constructions, i.e. without the use of the parameterized suffix tree, re-

quiring quadratic theoretical time bounds in the worst case. The main problem is dealing

with the dynamic parameterized suffixes (p-suffixes), which differ drastically from traditional

suffixes. Whether or not improved direct pSA and pLCP constructions exist has been posed

as an open problem by the string community. In this research, we first prove a special rela-

tionship between p-suffixes and then propose the parameterized cover (p-cover). Together,

this theory is exploited to construct the pSA in stages. We extend this idea to construct the

pSA and pLCP for an n-length text from alphabets Σ and Π in O(n|Π|) time, breaking the

previous worst-case theoretical time barrier of O(n2). Due to the generality of the e-match,

our results support the e-match, p-match, and traditional matching.

Lastly, we explore applications in computational biology, specifically dealing with RNA

secondary structures. Using the structural suffix array (sSA), we propose a solution to find

RNA secondary structures in a text, based on a complex user query. Next, we define the

Forward Stem Matrix (FSM) on K to permit quick access to RNA stem structures with

length k ∈ K. To more compactly define and efficiently construct the FSM , we develop the

Furthest Previous Non-Overlapping Factor (FPnF ) and Furthest Previous Factor (FPF )

arrays. We show how to first construct the FPnF and FPF with a novel application of

p-string theory. An improved solution is then given with suffix structures. The FPF -related

arrays are then used to construct the FSM in time linear to its length, O(n|K|). Like the

s-string, we can use the FSM to analyze the structure of RNA. We then show how to use

the FSM to find hairpin and pseudoknot structures in an RNA sequence. Experimental

results for the FSM conclude the chapter.
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8.2 Final Remarks

The overall theme of this work is to tackle the challenges of the p-string/s-string encodings

and advocate for more general data structures, in order to support other intricate applica-

tions. Even though we differentiate between traditional and p-string/s-string solutions, we

highlight and exploit the deep connection between traditional string and p-string/s-string

data structures. Before this work, the p-string was mostly known for its role in plagiarism

detection and analysis of biological sequences. Now, the p-string will also be known for ex-

citing applications in compression, music, and inexact matching. In this work, we not only

advance p-string theory and the capabilities of the p-match, but at times, we also present

beautiful and novel applications of p-string theory. Our hope is that this work will trigger

more interest in the use of generalized p-string/s-string solutions to address the myriad of

problems in the string community.

Interesting topics of future work include establishing a connection between data structure

taxonomies and the construction of other p-string data structures. In the way that our

single pLPF construction algorithm can yield many other data structures, we believe that

this scheme can apply to other types of powerful p-string data structures. Also, the p-

match and s-match are special types of inexact matches. In this work, we introduce further

inexactness to the p-match via the e-match and ip-match schemes. A future research problem

is to propose and address other ways to extend the inexactness of the p-match/s-match for

applications in music. Lastly, the relationship between p-string/s-string theory and RNA

analysis is evident in this work. An important research problem is to extend these RNA-

oriented data structures to support non-Watson-Crick base pairings for more complex RNA

queries.
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[7] Apostolico, A., Erdős, P., Jüttner, A.: Parameterized searching with mismatches for
run-length encoded strings. Theor. Comput. Sci. 454(5), 23-29 (2012)
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[56] Idury, R., Schäffer, A.: Multiple matching of parameterized patterns. Theor. Comput.
Sci. 154, 203-224 (1996)

[57] Iliopoulos, C.S., Mohamed, M., Mouchard, L., Perdikuri, K.G., Smyth, W.F., Tsaka-
lidis, A.K.: String regularities with don’t cares. Nordic J. Comput. 10(1), 40-51 (2003)

[58] Jiang, T., Lin, G., Ma, B., Zhang, K.: The longest common subsequence problem for
arc-annotated sequences. J. of Discrete Algorithms. 2(2), 257-270 (2004)
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