
Graduate Theses, Dissertations, and Problem Reports

2006

Design and simulation of advanced fault tolerant flight control Design and simulation of advanced fault tolerant flight control

schemes schemes

Srikanth Gururajan
West Virginia University

Follow this and additional works at: https://researchrepository.wvu.edu/etd

Recommended Citation Recommended Citation
Gururajan, Srikanth, "Design and simulation of advanced fault tolerant flight control schemes" (2006).
Graduate Theses, Dissertations, and Problem Reports. 4230.
https://researchrepository.wvu.edu/etd/4230

This Dissertation is protected by copyright and/or related rights. It has been brought to you by the The Research
Repository @ WVU with permission from the rights-holder(s). You are free to use this Dissertation in any way that is
permitted by the copyright and related rights legislation that applies to your use. For other uses you must obtain
permission from the rights-holder(s) directly, unless additional rights are indicated by a Creative Commons license
in the record and/ or on the work itself. This Dissertation has been accepted for inclusion in WVU Graduate Theses,
Dissertations, and Problem Reports collection by an authorized administrator of The Research Repository @ WVU.
For more information, please contact researchrepository@mail.wvu.edu.

https://researchrepository.wvu.edu/
https://researchrepository.wvu.edu/
https://researchrepository.wvu.edu/etd
https://researchrepository.wvu.edu/etd?utm_source=researchrepository.wvu.edu%2Fetd%2F4230&utm_medium=PDF&utm_campaign=PDFCoverPages
https://researchrepository.wvu.edu/etd/4230?utm_source=researchrepository.wvu.edu%2Fetd%2F4230&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:researchrepository@mail.wvu.edu

Design and Simulation of Advanced Fault Tolerant Flight Control Schemes

Srikanth Gururajan

Dissertation submitted to the
College of Engineering and Mineral Resources

at West Virginia University
In partial fulfillment of the requirements

for the degree of

Doctor of Philosophy
in Aerospace Engineering

Marcello Napolitano, Ph.D., Chair
Giampiero Campa, Ph.D.

Bojan Cukic, Ph.D.
Wade Huebsch, Ph.D.
Gary J. Morris, Ph.D.

Department of Mechanical and Aerospace Engineering
Morgantown, West Virginia

2006

Keywords : Fault Tolerance, Neural Networks, SFDIA, AFDIA, Beowulf Cluster,
Parallel Programming, AVDS

Abstract

Design and Simulation of Advanced Fault Tolerant Flight Control Schemes

Srikanth Gururajan

This research effort describes the design and simulation of a distributed Neural

Network (NN) based fault tolerant flight control scheme and the interface of the scheme

within a simulation/visualization environment. The goal of the fault tolerant flight control

scheme is to recover an aircraft from failures to its sensors or actuators. A commercially

available simulation package, Aviator Visual Design Simulator (AVDS), was used for the

purpose of simulation and visualization of the aircraft dynamics and the performance of

the control schemes.

For the purpose of the sensor failure detection, identification and accommodation

(SFDIA) task, it is assumed that the pitch, roll and yaw rate gyros onboard are without

physical redundancy. The task is accomplished through the use of a Main Neural

Network (MNN) and a set of three De-Centralized Neural Networks (DNNs), providing

analytical redundancy for the pitch, roll and yaw gyros. The purpose of the MNN is to

detect a sensor failure while the purpose of the DNNs is to identify the failed sensor and

then to provide failure accommodation. The actuator failure detection, identification and

accommodation (AFDIA) scheme also features the MNN, for detection of actuator

failures, along with three Neural Network Controllers (NNCs) for providing the

compensating control surface deflections to neutralize the failure induced pitching,

rolling and yawing moments. All NNs continue to train on-line, in addition to an offline

trained baseline network structure, using the Extended Back-Propagation Algorithm

(EBPA), with the flight data provided by the AVDS simulation package.

The above mentioned adaptive flight control schemes have been traditionally

implemented sequentially on a single computer. This research addresses the

implementation of these fault tolerant flight control schemes on parallel and distributed

computer architectures, using Berkeley Software Distribution (BSD) sockets and

Message Passing Interface (MPI) for inter-process communication.

 iii

Dedicated to my Family

 iv

Acknowledgements

I would like to begin by thanking my parents and my sister for their unwavering

support, love, encouragement and patience during all the years I was working on my

dissertation. Thank you for putting up with me, I know I have been difficult to handle

sometimes. I would like to thank my wife for being understanding, encouraging and

patient with me through thick and thin. Without all your support, I would not be where I

am today. I love you all.

I would like to thank my committee chairman and research advisor Dr. Marcello

Napolitano for his mentoring, guidance, and support throughout my doctoral program. I

am grateful to you for giving me the opportunity to work on varied and challenging

research opportunities. You have always been there to help me and show me the way.

Thank You.

I would like to acknowledge and thank my committee members Dr. Bojan Cukic

and Dr. Giampiero Campa, for their invaluble advice, guidance and support throughout

my doctoral program.

I would like to thank Dr. Gary Morris and Dr. Wade Huebsch for taking time

from their busy schedules to review and contribute their thoughts towards this research

effort.

I would like to extend my heartfelt thanks to my colleagues in the lab Dr. Brad

Seanor, Dr. Yu Gu, Larry Rowe, Josh Effland and Jason Jarell for all their help and

thoughtful inputs to my dissertation. All the time we spent arguing back and forth about

important and mundane issues made life more lively and interesting.

I would like to thank John Mathews and Eric Saunders for all their help in setting

up my cluster. I would also like to thank Chuck Coleman, David Estep, Lee Metheney,

and Clifford Judy from the MAE department for their help with equipment and other

issues.

Last but not the least, I would like to thank my friends, especially Bala and

Sushant, who were there to support and encourage me when I needed it most. Thank you

very much.

 v

 Nomenclature

English
 a Acceleration, ft/sec2
 a Node in input layer

b Node in hidden layer
b Wing span, ft
B Node in hidden layer
c Node in output layer
_

c Mean aerodynamic chord, ft
C Node in output layer
d Target Neural Network output
e Neural Network training error
g Acceleration due to gravity, ft/sec2
J Error cost function
I Moment of inertia, slug-ft2
k Discrete time index
l Pattern for the neural network input data
L Rolling moment
L Lower bound of modified sigmoid activation function
m Aircraft mass, slugs
M Pitching moment
N Yawing moment
p Aircraft angular velocity, x body axis (roll rate), rad/sec
q Aircraft angular velocity, y body axis (pitch rate), rad/sec
r Aircraft angular velocity, z body axis (yaw rate), rad/sec
R Auto or cross correlation function
S Wing plan form area, ft2
t Time, sec
T Slope of modified sigmoid activation function
u Velocity along body fixed x-axis, ft/sec
U Upper bound of modified sigmoid activation function
v Velocity along body fixed y-axis, ft/sec
V Interconnection weight vector between input and hidden layer nodes
w Velocity along body fixed z-axis, ft/sec
W Interconnection weight vector between hidden and output layer nodes
y Neural Network output

Greek
α Angle of attack, rad or deg
α Neural Network momentum rate
β Angle of sideslip, rad or deg
δ Control surface deflection, rad or deg
δ Neural Network output and hidden layer error term
∆ Error update term
η Neural Network learning rate

 vi

θ Pitch Euler angle, rad or deg
Θ Neural Network hidden layer neuron threshold
ρ Density of aircraft
ρ Magnitude of sensor failure
Γ Neural Network output layer neuron threshold
φ Roll Euler angle, rad or deg
ψ Yaw Euler angle, rad or deg

Subscripts
A Aileron
A Aerodynamic
E Elevator
h Index of nodes in input layer
i Index of nodes in hidden layer
m number of nodes in hidden layer
n number of nodes in input layer
p number of nodes in output layer
L Left side
R Right side
R Rudder
T Thrust
x Along the x-direction
y Along the y-direction
z Along the z-direction

Vectors

O Neural network output
Y Parameters to be estimated

Acronyms
AFA Actuator Failure Accommodation
AFDI Actuator Failure Detection and Identification
AFDIA Actuator Failure Detection, Identification, and Accommodation
AVDS Aviator Visual Design Simulator
BPA Back Propagation Algorithm
BSD Berkeley Software Distribution
COTS Commodity Off The Shelf
DAEE Decentralized Neural Network Error Estimation Mean
DVEE Decentralized Neural Network Error Estimation Variance
DNN De-Centralized Neural Network
DQEE De-Centralized Quadratic Estimation Error
EBPA Extended Back Propagation Algorithm
FCS Flight Control System
FDI Failure Detection and Identification
GR Generalized Likelihood Ratio
GUI Graphical User Interface
MIMD Multiple Instruction/Multiple Data
MIMD Multiple Instruction/Single Data

 vii

MLP Multi Layer Perceptron
MMKF Multiple Model Kalman Filter
MNN Main Neural Network
MPI Message Passing Interface
MQEE Main Quadratic Estimation Error
NN Neural Network
NNC Neural Network Controller
OQEE Output (of NN) Quadratic Estimation Error
PVM Parallel Virtual Machine
ROC Receiver Operating Characteristic
SFA Sensor Failure Accommodation
SFDI Sensor Failure Detection and Identification
SFDIA Sensor Failure Detection, Identification, and Accommodation
SISD Single Instruction/Single Data
SIMD Single Instruction/Multiple Data
UDSCB User Defined Simulation Code Block

 viii

Table of Contents

Abstract ... ii
Acknowledgements.. iv
Nomenclature.. v
Table of Contents... viii
List of Figures .. ix
List of Tables .. xii
Chapter 1 - Introduction.. 1

1.1 Research Objectives.. 4
Chapter 2 - Literature Review... 9
Chapter 3 - Visualization Environment .. 17

3.1 Aviator Visual Design Simulator (AVDS) ... 17
3.2 Architecture of AVDS .. 18
3.3 Interactive Simulation... 20
3.4 User Defined Simulation Code Blocks ... 21

Chapter 4 - Theoretical Framework.. 23
4.1 Mathematical Modeling and Aircraft Equations of Motion 23
4.2 Neural Network Theory .. 27
4.3 Neural Network Architectures .. 29
4.4 Extended Backpropagation Algorithm ... 30
4.5 Flynn’s Taxonomy and Message Passing Interface.................................. 36

Chapter 5 - Design of the Experimental Setup ... 42
5.1 Matlab GUI ... 42
5.2 AVDS Interface .. 48
5.3 Beowulf Cluster Setup .. 49
5.4 Modeling of Parallelization... 56

Chapter 6 - Sensor and Actuator Failure Detection Identification and Accommodation . 62
6.1 Types of Sensor Failures... 63
6.2 Sensor Failure Detection Identification and Accommodation.................. 64
6.3 Results of Offline Training for SFDIA purposes...................................... 68
6.4 SFDIA On-line Simulation and Implementation Results 81
6.5 Actuator Failure Detection Identification and Accommodation............... 94
6.6 AFDIA On-line Simulation and Implementation Results......................... 98

Chapter 7 - Conclusions and Recommendations .. 119
7.1 Recommendations for Future Work.. 122

References... 123
Appendix A... 129

A.1 Sample Three Dimensional Lookup Table ... 129
A.2 User Defined Simulation Code Block Header Information.................... 130

Appendix B ... 132
B.1 Sample User Defined Simulation Code Block.. 132

 ix

List of Figures

Figure 2-1 : Tailless Fighter Aircraft X-36... 12
Figure 2-2 : Boeing RESTORE Controller... 13
Figure 2-3 : IFCS Gen-1 Test bed Aircraft (NASA 837) ... 14
Figure 2-4 : Architecture of IFCS Gen-1 Controller .. 14
Figure 2-5 : Architecture of IFCS Gen-2 Controller .. 15
Figure 2-6 : WVU YF-22.. 16
Figure 3-1 : AVDS Simulation/Visualization Environment... 17
Figure 3-2 : Simulation Configuration Window... 21
Figure 4-1 : 3-View Drawing of F4 Aircraft .. 24
Figure 4-2 : Airplane Orientation with Euler Angles ... 24
Figure 4-3 : Non-Linear Model of a Neuron .. 27
Figure 4-4 : Multilayer Perceptron with One Hidden Layer... 31
Figure 4-5 : Feedforward Multilayer Perceptron .. 33
Figure 4-6 : Classic von Neumann Computer Architecture.. 37
Figure 4-7 : Generic Shared Memory Architecture .. 38
Figure 4-8 : Generic Distributed Memory Architecture ... 38
Figure 4-9 : Example of a MPI Based Program.. 40
Figure 4-10 : Result of the MPI “greetings” Program .. 41
Figure 5-1 : Main User Interface .. 42
Figure 5-2 : Change Parameters Window... 43
Figure 5-3 : Choose Variables .. 45
Figure 5-4 : SFDIA Task Window.. 46
Figure 5-5 : AFDIA Task Window... 47
Figure 5-6 : Cluster - Matlab Interface ... 48
Figure 5-7 : Cluster – AVDS Interface ... 49
Figure 5-8 : Cluster for Parallel Implementation of FDIA ... 51
Figure 5-9 : Details of Matlab-Master Node-AVDS communication scheme 54
Figure 5-10 : Sequential Implementation of Adaptive Flight Control System Schemes.. 55
Figure 5-11 : Sequential Algorithm .. 57
Figure 5-12 : Parallel Implementation Timing Chart ... 58
Figure 5-13 : Execution times for Sequential and Parallel Implementations 61
Figure 6-1 : Block Diagram of SFDIA Scheme.. 67
Figure 6-2 : MNN Output, Cycle 0, Roll Rate.. 68
Figure 6-3 : MNN Output, Cycle 0, Pitch Rate .. 69
Figure 6-4 : MNN Output, Cycle 0, Yaw Rate ... 69
Figure 6-5 : MNN Output, Cycle 10, Roll Rate.. 70
Figure 6-6 : MNN Output, Cycle 10, Pitch Rate .. 70
Figure 6-7 : MNN Output, Cycle 10, Yaw Rate ... 71
Figure 6-8 : MNN Output, Cycle 5, Roll Rate (Testing) .. 71
Figure 6-9 : MNN Output, Cycle 5, Pitch Rate (Testing)... 72
Figure 6-10 : MNN Output, Cycle 5, Yaw Rate (Testing) ... 72
Figure 6-11 : MNN Output, Cycle 10, Roll Rate (Testing) .. 73
Figure 6-12 : MNN Output, Cycle 10, Pitch Rate (Testing)... 73
Figure 6-13 : MNN Output, Cycle 10, Yaw Rate (Testing) ... 74

 x

Figure 6-14 : P-DNN Output, Cycle 0 .. 75
Figure 6-15 : P-DNN Output, Cycle 10 .. 75
Figure 6-16 : P-DNN Output, Cycle 5 (Testing) .. 76
Figure 6-17 : P-DNN Output, Cycle 10 (Testing) .. 76
Figure 6-18 : Q-DNN Output, Cycle 0 ... 77
Figure 6-19 : Q-DNN Output, Cycle 10 ... 77
Figure 6-20 : Q-DNN Output, Cycle 5 (Testing).. 78
Figure 6-21 : Q-DNN Output, Cycle 10 (Testing).. 78
Figure 6-22 : R-DNN Output, Cycle 0.. 79
Figure 6-23 : R-DNN Output, Cycle 10.. 79
Figure 6-24 : R-DNN Output, Cycle 5 (Testing) .. 80
Figure 6-25 : R-DNN Output, Cycle 10 (Testing) .. 80
Figure 6-26 : Error Thresholds for Failure on Q (8 deg/s Bias) 83
Figure 6-27 : MNN Outputs for Failure on Q (8 deg/s Bias) ... 84
Figure 6-28 : DNN Outputs for Failure on Q (8 deg/s Bias) .. 84
Figure 6-29 : Velocity, Alpha, and Beta ... 85
Figure 6-30 : Euler Angles.. 85
Figure 6-31 : Control Surface Deflections.. 86
Figure 6-32 : Error Thresholds for Failure on R (8 deg/s Bias).. 87
Figure 6-33 : MNN Outputs for Failure on R (8 deg/s Bias).. 87
Figure 6-34 : DNN Outputs for Failure on R (8 deg/s Bias) .. 88
Figure 6-35 : Velocity, Alpha and Beta .. 88
Figure 6-36 : Euler Angles.. 89
Figure 6-37 : Control Surface Deflections.. 89
Figure 6-38 : Error Thresholds for Failure on P (8 deg/s Bias) .. 90
Figure 6-39 : MNN Outputs for Failure on P (8 deg/s Bias) .. 91
Figure 6-40 : DNN Outputs for Failure on P (8 deg/s Bias)... 91
Figure 6-41 : Velocity, Alpha and Beta .. 92
Figure 6-42 : Euler Angles.. 92
Figure 6-43 : Control Surface Deflections.. 93
Figure 6-44 : Block Diagram of the AFDIA Scheme... 98
Figure 6-45 : ROC Curve for Aileron Failure .. 103
Figure 6-46 : ROC Curve for Elevator Failure ... 103
Figure 6-47 : Error Thresholds for Failure on Left Elevator (5 deg, 50% eff.) 105
Figure 6-48 : Control Surface Deflections, Failure on Left Elevator (5 deg, 50% eff.) . 106
Figure 6-49 : Angular Rates of the Aircraft, for Failure on Left Elevator (5 deg, 50% eff.)

... 106
Figure 6-50 : Euler Angles, for Failure on Left Elevator (5 deg, 50% eff.) 107
Figure 6-51 : Euler Angles, for Failure on Left Elevator (5 deg, 50% eff.) 107
Figure 6-52 : MNN Outputs, for Failure on Left Elevator (5 deg, 50% eff.) 108
Figure 6-53 : Error Thresholds for Failure on Left Elevator (0 deg, 50 % eff.) 109
Figure 6-54 : Control Surface Deflections, for Failure on Left Elevator (0 deg, 50 % eff.)

... 109
Figure 6-55 : Aircraft Angular rates, for Failure on Left Elevator (0 deg, 50 % eff.) 110
Figure 6-56 : Euler Angles, for Failure on Left Elevator (0 deg, 50 % eff.) 110
Figure 6-57 : Velocity, Alpha and Beta, for Failure on Left Elevator (0 deg, 50 % eff.)111

 xi

Figure 6-58 : MNN Outputs, for Failure on Left Elevator (0 deg, 50 % eff.) 111
Figure 6-59 : Error Thresholds for Failure on Left Aileron (5 deg, 50% eff.) 112
Figure 6-60 : Control Surface Deflection, for Failure on Left Aileron (5 deg, 50% eff.)

... 113
Figure 6-61 : Aircraft Angular Rates, for Failure on Left Aileron (5 deg, 50% eff.) 113
Figure 6-62 : Euler Angles, for Failure on Left Aileron (5 deg, 50% eff.).................... 114
Figure 6-63 : Velocity, Alpha and Beta, for Failure on Left Aileron (5 deg, 50% eff.) 114
Figure 6-64 : MNN Outputs, for Failure on Left Aileron (5 deg, 50% eff.).................. 115
Figure 6-65 : Error Thresholds, for Failure on Left Aileron (0 deg, 50 % eff.) 116
Figure 6-66 : Control Surface Deflection, for Failure on Left Aileron (0 deg, 50 % eff.)

... 116
Figure 6-67 : Aircraft Angular rates, for Failure on Left Aileron (0 deg, 50 % eff.) 117
Figure 6-68 : Euler Angles, for Failure on Left Aileron (0 deg, 50 % eff.).................... 117
Figure 6-69 : Velocity, Alpha and Beta, for Failure on Left Aileron (0 deg, 50 % eff.) 118
Figure 6-70 : MNN Outputs, for Failure on Left Aileron (0 deg, 50 % eff.).................. 118

 xii

List of Tables
Table 5-1 : Specifications of Beowulf Cluster.. 50
Table 6-1 : Mean of Training and Testing Errors on MNN Outputs 81
Table 6-2 : Mean of Training and Testing Errors on P-DNN Output............................... 81
Table 6-3 : Mean of Training and Testing Errors on Q-DNN Output 81
Table 6-4 : Mean of Training and Testing Error on R-DNN Output................................ 81
Table 6-5 : Structures of NN for SFDIA .. 82
Table 6-6 : Post Failure Estimation Error Analysis for MNN and DNNs 94
Table 6-7 : Structures of NN for AFDIA.. 99
Table 6-8 : Results of Failure Detection and Identification on Left Elevator and Aileron

... 102
Table 6-9 : 2 by 2 Table for Determining Failure Detection Rates 102
Table 6-10 : Post Failure Tracking Error Analysis for Failures on Left Elevator and

Aileron .. 104

Chapter 1 - Introduction

Operational safety is of paramount importance for both commercial and military aircraft

and more recently for Unmanned Aerial Vehicles. Over the last decade a significant research

effort has been directed towards increasing operational safety by developing fault tolerant flight

control schemes that would assist the pilot in recovering the aircraft from failures to sensor

systems and more importantly, structural damage to the onboard actuator systems.

The idea of Sensor Failure Detection, Identification and Accommodation (SFDIA) is an

important concept in the implementation of fault tolerant flight control algorithms, especially if

measurements from the onboard sensors are used in the feedback loop of flight control laws. In

fact, if failures in the sensors used in feedback loops are left undetected and unaccounted for,

they may lead to closed loop instabilities and even catastrophic flight conditions. To avoid this

problem, most modern commercial and military aircraft feature triple physical redundancies on

their sensors and use polling schemes to obtain correct sensor values. Analytical redundancy of

sensor systems on-board such aircraft could lead to a reduction in the extra weight attributed to

the physical redundancy on sensors, effectively increasing the payload capacity of the aircraft.

Aircraft actuator systems on board typically include drive servos for the control surfaces,

landing gear, hydraulic subsystems and throttle. Actuator Failure Detection Identification and

Accommodation (AFDIA), refers to failures on the on-board actuator systems. Failures on

actuator systems for elevators, ailerons or rudder, could involve the surfaces being stuck at some

angular deflections. Actuator failures also include the scenarios wherein there is a physical loss

of either a part of or the entire control surfaces, resulting in a loss of efficiency of the failed

control surface and/or a combination of the two.

Typically, actuator failures result in changes in the aircraft trim conditions leading to

dynamic coupling between lateral and longitudinal modes, and could potentially lead to

unrecoverable flight conditions. Although, some aircraft might be equipped with redundant

actuator systems that could handle failures on drive servos, typically, aircraft do not have

physically redundant control surfaces, unlike redundant sensor systems. Therefore, the need for

analytical methods to compensate for failures on any of the control surfaces is much more

critical.

 2

The fundamental task of a fault tolerant flight control system is the detection,

identification, and accommodation of the previously mentioned sensor and actuator failures. The

task of dealing with sensor failure is delegated to the SFDIA scheme, which can be split into two

distinct parts as Sensor Failure Detection and Identification (SFDI), designed to monitor the

sensor systems without physical redundancy for signs of failure and the corresponding

identification and isolation of such failures. Typical failures on sensor subsystems include the

introduction of a sudden bias in the sensor outputs, flat line sensor outputs at magnitude, or slow

moving drift in the sensor outputs. The Sensor Failure Accommodation (SFA) phase of the task

would be responsible for taking over the function of the failed sensor, providing analytical

redundancy and alternate inputs to the flight control system to accommodate for the failed

sensor.

Similarly, the task of dealing with actuator failures is split into two distinct sections as

Actuator Failure Detection and Identification (AFDI), which detects and identifies any failure on

the actuators and the Actuator Failure Accommodation (AFA) phase, which would determine the

control actions needed to compensate for the identified actuator failure and restore the aircraft

back to a stable flight condition with acceptable handling characteristics. In this research effort,

actuator failures refer to physical failures on the control surfaces on an aircraft with or without a

loss of control surface. The issues of failure detection, identification, and accommodation on the

electrical, electro-mechanical or hydraulic subsystems are not addressed. Following control

surface failures and subsequent identification, the accommodation phase is designed to be

achieved by making use of the remainder of the functional and healthy control surfaces.

Failure detection and accommodation schemes based on theoretical schemes such as the

Generalized Likelihood Ratio [18] and Multiple Model Kalman Filtering (MMKF) [18] have

been utilized in the past, but have a significant drawback in that the applicability of such

schemes are limited to linear time invariant systems, with the system model identical to the

Kalman filter or the observer model.

An aircraft can be considered as a time varying, non-linear system with system and

measurement noise. Based on this characteristic, different approaches have to be taken in

designing the failure detection and accommodation scheme. One of the approaches is the use of

Artificial Neural Networks (ANN), which are capable candidates for the task, mainly due to their

inherent non-linear nature and learning and adaptation capabilities. The selection of ANN as the

 3

basis of the adaptive scheme comes with its own advantages and limitations in that the networks

can be trained either off-line, with pre-recorded flight data, or on-line with currently available

flight data. With off-line learning and no subsequent updating of the network architecture with

current data, a network would have a frozen architecture once training cycles are completed,

thereby losing the advantage of learning from the newer on-line information. If such a network is

implemented in the adaptive scheme, it might not be able to detect, identify or accommodate for

a failure situation it had not been trained for, making the entire approach inadequate. This tilts

the balance in favor of training a network on-line; however in this situation, care needs to be

taken when implementing such a scheme as on-line learning has its own set of advantages and

disadvantages. The obvious advantage of on-line learning is that the network can adapt itself to

the real-time data from the aircraft, giving it a better knowledge of current conditions. On the

other hand, the issues of concern are the amount of training that would be necessary for a

network to reach acceptable levels of learning, the time required to do so and the complexity of

network structure. There is also an increased potential for on-line learning to drive the neural

network unstable, leading to catastrophic conditions. Therefore, on-line training of NN for use in

an adaptive scheme for fault tolerance in flight control systems should at the least be a

compromise between learning accuracy and the total time taken for achieving the required level

of accuracy.

In recent years, there has been an increase in the use of Unmanned Aerial Vehicles

(UAV) in both civilian as well as military sectors for a wide range of applications including

aerial reconnaissance of military targets, monitoring traffic, geological mapping, search and

rescue among others. Typically with the use of UAVs, there is a premium on total weight and

cost, in order to maximize their payload potential and as a consequence, the use of redundant

sensors is uncommon.

With the added interest in UAVs, significant amount of research effort has been directed

towards practical implementations of experimental fault tolerant flight control schemes.

Unmanned Aerial Vehicles and Micro Aerial Vehicles have been the more popular platforms of

choice for such experimental research programs. UAV/MAVs provide flexibility and a distinct

advantage as compared to manned aircraft in terms of cost, weight and time and human factors.

They are not expensive, do not take much time to build, and are easier to rebuild, easier to

transport and require minimal to no certification from the Federal Aviation Administration.

 4

Typically, these aerial platforms feature Commodity, Off The Shelf (COTS) computational

platforms as well as sensor and actuator systems. Due primarily to the strict limitations on the

power available for such onboard systems, the computational power of the on-board processors

are much less than the traditional power available on desktop computational platforms. As a

result, the extent of the complexity of NN based fault tolerant flight control schemes is severely

limited. A workaround for this computational bottleneck is to take the “divide and conquer”

approach. By making use of a computational cluster, made of COTS components, with lower

individual computational capacity and a smaller appetite for power consumption, more complex

fault tolerant flight control schemes can be implemented. This research effort addresses this issue

by decomposing a fairly complex sequential implementation of a NN based fault tolerant flight

control scheme onto a cluster of interconnected computers and executing it in parallel.

1.1 Research Objectives

The objectives of this research effort are to design and simulate Neural Network based

Sensor Failure Detection Identification and Accommodation (SFDIA) and Actuator Failure

Detection Identification and Accommodation (AFDIA) schemes, within an aircraft simulation

and visualization environment. Furthermore, the NN based fault tolerant flight control schemes

are implemented on a distributed computation platform, based on a Beowulf cluster of individual

commodity computers.

The SFDIA scheme focuses on providing analytical redundancy to three important

sensors onboard an aircraft, namely the pitch, roll and yaw rate gyros. It is assumed that these

rate gyros onboard the aircraft are without physical redundancy and the NNs are designed to

provide the requisite analytical redundancy. It is also assumed that all the other sensor systems

on board are reliable and perform without failures of any kind, for the purposes of this research,

although this concept of analytical redundancy can be extended to any number of sensor systems

without any loss of generality.

The AFDIA scheme will focus on providing fault tolerance following failures on two sets

of primary control surfaces, namely the elevators, and the ailerons. For the purpose of this

research, it is assumed that the airplane does not have any unconventional control surfaces such

as differential or symmetric canards, thrust vectoring, differential stabilators, etc.

This research effort is broken into different phases as described below:

 5

1. Initial development of the neural network based adaptive control schemes;

2. Design and development of an interface within the Matlab environment to provide

flexibility in the creation of the NN structures for the fault tolerant flight control

schemes;

3. Design and implementation of a communication and data transfer scheme between

the Matlab interface, the graphics visualization package, which allows the user to fly

an aircraft model interactively, and the distributed implementation of the fault tolerant

flight control scheme;

4. Implementation of the fault tolerant flight control schemes on the Beowulf cluster

based parallel computational platform;

A more detailed description of the different phases of this research is provided below.

Phase #1:

This phase deals with the initial development of the NN based adaptive flight control

algorithms for the purposes of SFDIA and AFDIA. This included the selection of the aircraft

model, the learning algorithm for the NN, the number of individual networks to train for each

sensor without physical redundancy (pitch, roll, yaw rate), the selection of inputs to each of the

network structures, the failure detection and identification scheme, and finally the failure

accommodation scheme.

Within this phase, the overall structure of the SFDIA scheme was designed to have a

Main Neural Network (MNN) and a set of three Decentralized Neural Networks, DNNs, for each

of the three rate gyros, roll, pitch and yaw rate gyros, assumed to be without physical

redundancy, and named as the P-DNN, Q-DNN and the R-DNN respectively. The individual

DNNs are designed to produce estimates of the respective rate gyros only, while the MNN

produces the estimates of all the three rate gyros. The errors between the estimates from the

DNN and the MNN are continuously monitored and provide a means for detecting and

identifying failures on the sensors as well as accommodating for such failures.

The structure of the AFDIA scheme was built similar to the SFDIA scheme, with the

MNN designed to produce the estimates of the roll, pitch and yaw rate gyros. Three

decentralized neural networks, named as the roll-controller, pitch-controller and the yaw-

controller produce estimates of the ailerons, elevators and rudder deflections. When a failure is

 6

injected on either the elevator or the aileron, it produces a measurable change in the auto and

cross- correlation terms, which are then used to detect and identify the failures. Upon detection

and identification of an actuator failure, these NNCs provide the compensating deflections to the

remainder of the “healthy” control surfaces, to accommodate for the failure.

Phase #2:

Within this phase, a Graphical User Interface (GUI) was designed in Matlab, to provide

the user with an interactive tool to choose the parameters that define the structure of the NNs,

and set the various parameters associated with the SFDIA, AFDIA and the SFDIA+AFDIA

schemes. This GUI tool gives the grater flexibility to choose the input variables to the NNs,

change the time history window of the inputs, the learning and momentum rates for each network

and the number of hidden layer neurons. These parameters are typically hard coded into any

implementation of MLP based NN based schemes, with flexibility limited to selecting the

learning and momentum rates and the number of neurons in the hidden layers.

Phase #3:

Phase 3 of the research study involved the design and implementation of a data

communication and exchange structure to facilitate the flow of information between the Matlab

GUI, the graphical simulation/visualization environment and the Beowulf cluster based

implementation of the fault tolerant flight control schemes. A commercially available

simulation/visualization package, Aviator Visual Display Simulator (AVDS) is chosen for this

purpose. The choice of AVDS over others such as X-Plane, Microsoft Flight Simulator was

influenced primarily by the vast experience in using this package among various members of our

research group. This phase also involved the design and implementation of a Berkeley Software

Distribution (BSD) socket based communication channel and data exchange scheme, between

the NNs and the AVDS environment to facilitate two way data transfer between the nodes

executing the network learning and the node executing the simulation/visualization. The

interface between the Beowulf cluster and the AVDS environment was designed to make use of

TCP/IP sockets. AVDS package runs on a Microsoft Windows 2000 based computer, designated

as “node8” with a private IP address of 192.168.1.8/255.255.255.0. The primary node in the

cluster named as “node1” is designated as the master node and has an IP address of

192.168.1.1/255.255.255.0 with the other nodes having IP addresses in the order

 7

192.168.1.2/255.255.255.0 – 192.168.1.6/255.255.255.0 and named as “node2”, “node3”,

“node4”, “node5”, “node6” and “node7”. Message Passing Interface is used to facilitate

communication and synchronization between the nodes on the cluster. Chapter 5 discusses the

setup of the cluster and the communication schemes in detail.

Phase #4:

In Phase 4, a sequential execution mode was built and tested for training the NNs with

the on-line data from AVDS environment. This served as a testbed for validating the

communication schemes between the Matlab interactive GUI, the Beowulf cluster and the AVDS

environment, which was designed and implemented in Phase 3. This process involved the

implementing the NNs in a sequential execution mode, with all the NN modules in the scheme

executing on the same local machine with AVDS running on a dedicated computing node. A

TCP/IP socket based communication channel is used to transfer data from AVDS simulation

environment into the dedicated computing node on which the NNs are implemented. The NNs

that were used for this training purpose were the MNN, P-DNN, Q-DNN and the R-DNN.

Within this structure, the order of execution of the NNs was hard coded with the MNN executing

first, followed by the P-DNN, Q-DNN and the R-DNN, for each frame of data received from

AVDS.

The structure of the sequential execution of the SFDIA/AFDIA algorithm leads to

intuitive decomposition of the tasks for parallel implementation. The next part of phase 4

involved analyzing the sequential SFDIA/AFDIA algorithm and identifying the tasks that could

be parallelized. The algorithm was then broken up into fairly independent and separate tasks that

could be executed in parallel, dealing primarily with the issues of data transfer and

synchronization between the individual tasks.

The initial setup of this parallel implementation is similar to that of the sequential

implementation, with the structure of the NNs set using the Matlab based GUI. This information

about the structures of the NN is then sent to the computer supporting the MNN, the master

node, using TCP/IP sockets. The master node then sends this data to all the other computers on

the cluster, designated as the slave nodes, using MPI directives. The DNNs for both the

SFDIA/AFDIA purposes are then created using the corresponding information. After the

initialization phase, the MNN sends across the parameters of the simulation to AVDS, using a

 8

separate TCP/IP socket. Thus during each simulation run, there are two TCP/IP sockets open,

one connecting the master node to Matlab and the other connecting the master node to AVDS.

Once the simulation starts, AVDS sends back frames of data at a pre-specified frequency to the

MNN, through socket and MNN consequently distributes this data frame to all the slave nodes in

the cluster, using MPI directives. The MNN as well as the individual nodes then begin executing

the NN code, the outputs of which are communicated back to the MNN using MPI directives.

The MNN then computes the corresponding training error and performs the Failure Detection,

Identification and Accommodation (FDIA) functions. In case of actuator failures, the

compensating control surface deflections, as computed by the AFDIA scheme are then

transmitted back to AVDS simulation using the appropriate socket.

This document is organized as follows. Chapter 2 describes approaches/methods adopted

by other researchers to address the issues of fault tolerance in flight control systems, with respect

to failures on both the sensor and actuator systems. Chapter 3 describes the AVDS

simulation/visualization environment; Chapter 4 presents the derivation of the aircraft equations

of motion, Neural Network theory, the Extended Back-Propagation Algorithm and background

information on parallel computing. Chapter 5 describes the design and development of the

structure of the sequential and parallel implementations. Chapter 6 describes the SFDIA and

AFDIA algorithms and the results from the parallel implementations on the Beowulf cluster.

 9

Chapter 2 - Literature Review

The task of recovering from failures to various sub-systems on-board an aircraft and the

associated issues of detecting, identifying and accommodating them has serious implications on

the performance of airplanes, both manned and unmanned. Considering the avionics, power,

engine, hydraulics and communication sub-systems to be fully functional and free from failure,

the on-board failures can be classified into two broad categories as sensor and actuator failures.

Typical military and commercial aircraft have multiple redundant sensor systems and use

polling methods, among other schemes to get the actual sensor measurements. While this

approach is the traditional safeguard against failed sensor systems, restrictions on the payload

capacity, the power available on board aircraft and the desire to reduce complexity has spurred

researchers towards the development of analytical redundancy wherein computational methods

are used to provide estimates of the outputs of the sensor systems without analytical redundancy.

This approach is attractive especially when applied to low cost UAVs that in recent years have

gained wide acceptance in applications like surveillance and monitoring, search and rescue,

reconnaissance among others.

This section will give a brief overview of techniques developed by other researchers for

sensor failure detection, identification and accommodation. Typically, a sensor failure detection

scheme involves observing the measurements from sensors, which under nominal conditions

follow known and predictable patterns in the presence of system and measurement noise.

Conventional failure detection mechanisms are based on hardware redundancy, using a voting

scheme [16, 17], where the measurements from three identical sensors are compared to each

other. If the measurement metrics from one of the redundant sensors is significantly different

from the other two, it is then classified as failed and thus removed from consideration among the

redundant sensors and a statistical mean of the measurements from the other two sensors is then

used as representing the sensor output in the flight control system. Such a voting scheme is

simple to implement and capable detecting hard failures fast, but has the drawback of increased

hardware complexity, power requirements, and increased weight on board the aircraft. These

disadvantages render this scheme unsuitable in situations such as low cost and low weight

UAVs, where reduced cost, power and weight are critical factors. Analytical redundancy

presents itself as an attractive alternative in such situations. Analytical redundancy refers to the

 10

use of mathematical models of the sensors to estimate their outputs. The estimates of the actual

signals that are computed by these analytical methods are then compared against the sensor

outputs, generating an error signal, which can then be used to signal a failure.

Analytical approaches to failure detection and accommodation have included the use of

Multiple Model Kalman Filtering (MMKF) [17, 18] with ‘n’ observation models generated

offline and stored in the onboard computer. Of the ‘n’ models, ‘n-1’ represent different types of

sensor failures and one represents the nominal condition. Monitoring the Bayesian probability

statistics of the outputs from all the models and checking which of the models matches with the

actual output, provides failure detection and identification of the failure mode. The drawback of

this method is that its effectiveness depends on a pre-determined set of failure models, making it

less effective in case of failures that are not previously modeled. Furthermore, this is based on

the operation of a Kalman filter and is limited to a linear model of the aircraft, making it

sensitive to modeling errors. NNs are interesting analytical tools as they can be applied to

systems that are either linear or non-linear. Over the last decade, several schemes have been

proposed using NN as a tool for FDI [19-25]. An adaptive NN augmented observer by Sreedhar

[21] uses a sliding mode observer to characterize the un-modeled dynamics to train the neural

network while a new approach for sensor failure detection identification and accommodation

using a neural network by Guo and Nurre [19] is useful when the relationship between the

sensors is too complex to be modeled by a Kalman filter estimator. The use of NN for the system

identification and control of non-linear systems is discussed in Narendra [22,23]. Also,

Polycarpou [24,25] discusses systematic procedures for constructing non-linear estimation

algorithms and stable learning schemes using the Lyapunov synthesis approach. The technical

literature [26-35] discusses the use of neural networks in aircraft flight control.

Previous work at West Virginia University [33-39] has addressed the issue of sensor and

actuator failure detection, identification and accommodation, using various approaches including

Neural Networks, Fuzzy Logic, Kalman predictor and Eigenstructure Assignment. An [1]

addresses the issue of improving the NN based SFDIA schemes for detecting soft failures which

are characterized by accumulation of errors in the sensors over a period of time, and also the

integration of the sensor failure and actuator failure scenarios. This task was divided into two

sub-divisions, namely Sensor Failure Detection and Identification (SFDI), to monitor the extent

of deterioration of the sensor systems and Sensor failure accommodation (SFA), to deal with the

 11

accommodation of the failed sensor by means of the NN scheme. Similarly, the actuator failure

section is divided into two tasks as Actuator Failure Detection and Identification (AFDI),

monitoring the extent of the cross coupling of the longitudinal and lateral direction dynamics, a

situation that indicates a loss of symmetry corresponding to an actuator failure and Actuator

Failure Accommodation (AFA) task, which deals with the controller actions to recover from

failure. The SFDIA scheme is important particularly when the inputs from the sensors are used in

feedback loops of the flight control systems. If left undetected and uncompensated, such

inaccuracies would eventually build up in the system, resulting in closed loop instability and

potentially unrecoverable flight conditions. Current solutions to overcome this problem have

been to have multiple physical redundancies, typically triple physical redundancy, but this has its

own drawbacks in terms of the weight of the redundant sensors, the power required to maintain

them and increased hardware complexity.

Although accommodating for sensor failures is an important issue, the task of identifying

and accommodating for failures to the actuator systems, particularly the control surfaces on

aircraft take a higher precedence. Actuator failures during flight more often than not lead to

catastrophic and unrecoverable flight conditions. Since there are limitations on the forms of

physical redundancy that can be incorporated into an aircraft to compensate for actuator failures,

software based approaches that attempt to compensate for the failures using the remainder of the

healthy control surfaces have been extensively studied in recent years. Aircraft dynamics are

non-linear in nature, especially after failures on the actuator systems. Solutions to the control of

such non-linear systems has been to decompose the non-linear system into a number of linear

systems, around various operating points, allowing for control schemes using gain scheduling.

On-line parameter estimation based gain scheduling approaches [51] have been used for

implementing fault tolerant flight control systems.

Gain scheduling approach to fault tolerance relies on the reconfiguration and re-

computation of controller gains for the predetermined set of linear models. The dependence on a

set of predefined models and the extensive computational burden in the redesign of the controller

gains is a drawback for this method.

In recent years, several experimental programs have addressed the issue of fault tolerance

through flight testing. The Reconfigurable Control for Tailless Fighter Aircraft (RESTORE) [52-

54] program and the Intelligent Flight Control System (IFCS) [55-65] are two examples of many

 12

such experimental programs. The purpose of the RESTORE program was the development and

evaluation of reconfigurable flight control algorithms. Unlike traditional control systems, the

control laws within the RESTORE project were designed to compensate for unknown failures on

aircraft control surfaces by adapting themselves to the changing aircraft dynamics. The controller

designed by the Boeing team, within the RESTORE project is designed to be modular and is

based on dynamic inversion and the neural network designed to regulate the inversion errors

between the pre-determined aircraft model and the true aircraft dynamics. This error in inversion

could be caused by an actuator failure or damage to the aircraft structure. The response from the

control algorithms to compensate for the failures onboard the aircraft was distributed to the

remainder of the functional surfaces by means of a control allocation module. Two flights were

flown in December 1998 proving the feasibility of the adaptive control approach. The Tailless

Fighter Aircraft X-36 is shown below in Figure 2-1.

Figure 2-1 : Tailless Fighter Aircraft X-36

The modular control architecture of the RESTORE project is as shown in the following

figure.

 13

Figure 2-2 : Boeing RESTORE Controller

The Intelligent Flight Control System was established at NASA Dryden Flight Research

Center to design aircraft flight controls that can optimize aircraft flight performance

characteristics under both nominal and failure modes. The IFCS is designed to use the self

learning concepts of NNs into flight control software to enable the pilot to maintain control of

aircraft with major systems failure or combat damage. The first generation of the IFCS, referred

to as the GEN-1 approach is based on a direct adaptive neural network based flight control

system. The Gen-1 controller was designed to estimate the changes in the aircraft aerodynamics

as a result of failure modes. This information is provided to the flight control scheme which then

identifies the stability and control derivatives of the aircraft, as an indicator of the aircraft

dynamic characteristics and is then used to stabilize the aircraft. Flight tests of the Gen-1

controller were flown onboard a test-bed aircraft, the NASA NF-15B (NASA 837) shown below

in Figure 2-3.

 14

Figure 2-3 : IFCS Gen-1 Test bed Aircraft (NASA 837)

The general block diagram of the IFCS Gen-1 controller is shown below in Figure 2-4.

Controller

control
commands

pilot
inputs

+

derivative
correction

Online
Neural
Network

Real-Time
PID

derivative
estimate

derivative
error

Sensors

Baseline
Neural
Network

baseline
derivative

Figure 2-4 : Architecture of IFCS Gen-1 Controller

The IFCS Gen-2 controller concept is based on a dynamic inversion controller with a

model following command path. The general block diagram of the Gen-2 IFCS flight controller

is shown in Figure 2-5.

 15

Dynamic

control
commands

pilot
inputs

correction

Online
NN

Sigma-Pi

Sensors

Baseline
NN

PTNN

baseline
derivative

Inversion

error

Reference
Model

-

+

Figure 2-5 : Architecture of IFCS Gen-2 Controller

The feedback errors that are generated are controlled with a Proportional + Integral (PI)

controller and this basic system is augmented with an adaptive NN that operates directly on

feedback errors. The NN then adjusts the system for the erroneous behavior or changes in the

aircraft characteristics after failure. The dynamic inversion part of the control system produces

acceleration commands that are translated into control surface deflections by a control allocation

scheme. Initial PID test flights with IFCS NNs pre-trained to the F-15’s aerodynamic database

was test flown in the spring of 1999. It must be noted that a portion of the current flight testing

activities at West Virginia University is directed towards the implementation of the Gen-2

controller scheme on the WVU YF-22 UAV research platform.

Flight controls research at West Virginia University has addressed the issues of flight

testing fault tolerant flight control laws [50]. Gu describes the “design development and flight

testing of a Neural Network based Fault Tolerant flight Control System to accommodate for

actuator failures”. Within the research effort, the author demonstrates the ability of a set of flight

control systems to maintain aircraft handling qualities in the presence of failures on actuators.

The author describes actuator failures on the Ailerons as the Right Aileron locked at Trim

position and the failures on the Elevator as the Right Elevator locked at Trim position. The test

bed aircraft used in that research effort is shown in Figure 2-6.

 16

Figure 2-6 : WVU YF-22

Conventionally, NN based fault tolerant flight control schemes are implemented on a

standalone computational platform, although the inherent structure of the NN makes it a prime

candidate for implementation on parallel computer architectures. Implementing the neural

networks in parallel is effective in reducing the training time and also paves the way for

incorporating more complex training algorithms. Recent work [40,41], among many others, has

addressed the topic of implementation of NN on parallel computers by splitting the network

structure into component modules and executing them concurrently. This research effort attempts

to decompose a sequential implementation of a NN based fault tolerant flight control scheme into

a set of high level modules, with each module executing an independent task. This differs from

the network level decomposition approach of other researchers [40,41].

 17

Chapter 3 - Visualization Environment

3.1 Aviator Visual Design Simulator (AVDS)

An important segment of this research is the use visualization environment to graphically

display the results of the simulation. The demands on the visualization environment are that it

should be able to render three-dimensional images of the aircraft and at the same time be capable

of supporting an interactive simulation, accepting user-generated inputs via a joystick. The

Aviator Visual Design Simulator (AVDS) is a commercially available flight simulation package

[6] that satisfies the above requirements and provides desirable configuration options such as

user definable aircraft models and dynamics. The AVDS software package is a product of a joint

research effort between Artificial Horizons Inc. and the United States Air Force and is a set of

PC based simulation and visualization tools, designed for use by students, teachers, engineers

and designers for aircraft research and development purposes. A typical AVDS

simulation/visualization screen is shown in Figure 3.1.

Figure 3-1 : AVDS Simulation/Visualization Environment

Some of the appealing features of the AVDS simulation package are:

• AVDS can be used interactively to simulate aircraft design and provide animated

results of batch simulations;

 18

• AVDS can be used for testing flight control systems design with the user-

definable interactive simulation model;

• AVDS contains user definable aircraft images including articulated control

surfaces;

• AVDS is designed to accept user defined aircraft models, by means of three-

dimensional lookup tables;

• AVDS is capable of interactive simulation with external hardware inputs and

hardware-in-the-loop simulations;

• AVDS is capable of distributing simulation and visualization tools over a network

of computers, forming a rudimentary distributed computing and simulation

network.

The recommended system configuration for supporting the AVDS simulation package are

listed below:

• PentiumR processor based personal computer;

• MicrosoftR Windows 95/98, WinNTR or later operating system;

• A graphics accelerator;

• At least 32 MB RAM;

• At least 110 MB of disk space.

3.2 Architecture of AVDS

This section describes the architecture of the AVDS simulation environment as installed

on a Microsoft Windows based personal computer. When AVDS is installed, it creates seven sub

directories under the installation directory. The following section describes each of the seven

directories and its file contents.

• “bin” directory

The “bin” directory contains three files, namely, “avds.exe”, “avds.std.ini” and

“avds.ini”. The avds.std.ini is a text file written in the standard windows “ini” format,

and is used to store the multicast addresses, while the avds.ini file contains the file and

path names for the AVDS setup files.

• “craft” directory

 19

This directory contains a file named “craftcap”, that is used to identify the

aircraft image definition files and sample aircraft image definition files. This enables the

user to change the appearance of existing aircraft images and add new aircraft image

files.

• “model” directory

This directory contains a file “modelcap” that is used to identify user-defined

models, a “makefile” used to compile user-defined code into a dynamic linked library, a

sample flight control system file and a file with the aircraft model source code. The

sample source code enables the user to modify the structure of the existing aircraft

models or add new flight control system or aircraft files. This modified source code is

then compiled into a “dll” using the “makefile” and added to the simulation using the

“modelcap” file.

• “ports” directory

Similar to the craft and model directories, the ports directory contains files that

define the airport and other structural images used in the simulation. In addition, this

directory contains the “portscap” file that is used to identify the airport image definition

files, and the airport image definition files themselves.

• “terrain” directory

This directory contains data files that AVDS uses in rendering the terrain, with the

latitude and longitude of the terrain blocks derived from the name of the respective files.

• “userfiles” directory

The “userfiles” directory contains files that can be used to configure the

simulation or playback on the AVDS window. Among other files, this directory contains

the files, “fighter.ply” and “file.ply”, which are sample configuration files used for

aircraft initialization and playback configuration window, “fighter.av”, which is a

parameter lookup table that can be updated between simulation runs. This directory also

contains the “avds.init” file, a global setup file that saves all the default settings for

AVDS.

 20

• “utilities” directory

The utilities directory contains files and tools that used to convert AutoCAD files

to AVDS format, for incorporating new aircraft images into AVDS, sample code and

libraries to develop networked AVDS simulations.

3.3 Interactive Simulation

The interactive simulation mode gives the user the tools to simulate the aircraft dynamics

in near real time while representing the vehicle dynamics graphically and interactively passing

commands to the simulation. The interactive simulation model consists of two parts, namely the

model structure and model parameters. The model structure can either be pre-defined or user

defined and is built up with subroutines that define how the model parameters produce the

vehicle dynamics. The model parameters are specified in a parameter file and read into AVDS

when the interactive simulation begins, allowing the user an extra degree of freedom to change

the model parameters at any time between simulations, without the need to recompile the

program. A text file specifies the model parameters in the form of a lookup table and are

scheduled based on the aircraft velocity, in Mach number, but can be based on other parameters

as well. The lookup table can be extended to be multi-dimensional; up to three dimensions, but is

restricted to be one dimensional within this research effort.

The interactive simulation parameters can be set before the start of the simulation, by

using the simulation configuration window, shown in Figure 3.2, from the Configure menu of

AVDS. A representation of the simulation configuration window is shown below.

 21

Figure 3-2 : Simulation Configuration Window

The simulation configuration window has two smaller windows within it, with the

window on the left indicating the “OUTPUTS” from the simulation environment and the window

on the right representing the “INPUTS” to the simulation environment. On the right hand side,

the ‘Inputs’ window represents the inputs that are fed into the simulation, the FCS, aircraft

model, to a file for recording and the strip charts. These are similar to the parameters in the

“OUTPUTS” window. The FCS and the aircraft drop down menus offer the user a range of

choices in the type of the flight control system to be integrated with the type of aircraft. These

“FCS” and “AIRCRAFT” options can be pre-defined with options that come packaged with

AVDS or be user-defined, according to the systems and approach that the user designs. These

extra options can be incorporated into the AVDS scheme using user defined simulation code

blocks. The following section describes the procedure associated with creating or modifying user

defined simulation code blocks and including them in the AVDS scheme.

3.4 User Defined Simulation Code Blocks

Both the aircraft models and flight control systems can be modified in several ways, first,

by either changing the aircraft parameter values in the lookup tables or second, by re-writing the

simulation code blocks. This section describes in some detail the process of modifying the

simulation code blocks.

 22

To redefine the structure of the FCS or the aircraft, the user must add new code or modify

the existing User Defined Simulation Code Blocks (UDSCBs), written in C or a language that

can interface with C. Once these files are written, they are compiled into object files and are

loaded dynamically by the AVDS at runtime for use within the interactive simulations. The

AVDS user manual [6] describes the steps for adding a user defined simulation code block as

follows:

1. Construct the source code to reflect the desired behavior of the flight control system or

the aircraft model, remembering to include the header file usr_cblock.h. This header file

contains information about the user defined simulation code block structure.

2. Define and set the number of user defined simulation code blocks in the variable

‘nBlocks’.

3. Define the user defined simulation code blocks.

4. Add the simulation code blocks to the execution list. Thus, the user defined simulation

code block will be reflected as an option to choose from in the simulation configuration

window.

5. Prototype the initialization and the update functions. These functions will be executed

during the initialization of the model and during the run time, respectively.

6. Declare the user defined simulation code blocks.

7. Add the simulation initialization and update functions using the output[], input[] and

param[] arrays for simulation inputs, outputs and lookup parameters respectively.

8. Compile and link user defined simulation code block source code into a dynamic link

library (dll).

9. Add the name of the dll to the modelcap file. AVDS is designed to recognize the dynamic

link library modules from the modelcap file.

10. Configure the interactive simulation from the simulation configuration window.

Appendix A contains detailed descriptions of the three dimensional lookup tables, and the

user defined simulation code block header information. Appendix B shows a sample of the User

Defined Simulation Code Block header information.

 23

Chapter 4 - Theoretical Framework

4.1 Mathematical Modeling and Aircraft Equations of Motion

Simulation and visualization of aircraft dynamics on personal computers requires that a

set of mathematical equations model the dynamics of the aircraft under review. This section

addresses that issue and derives the equations of motion of a rigid aircraft, within the earth’s

atmosphere. There are a few assumptions that are made during the process of deriving the

equations of motion, and are noted accordingly. The derivations are handled in extensive detail

in texts on aircraft dynamics [2, 3].

The first step towards deriving the rectilinear and rotational equations of motion of an

aircraft is the choice of coordinate systems in which the equations hold true. The first reference

frame, namely the earth fixed system, is assumed to be an inertial reference system, where

Newton’s laws of motion hold true. The assumption is that the earth fixed axis system is an

inertial frame which allows us to neglect of the rotational velocity of the earth, a result that

would be acceptable for even supersonic flight. The earth fixed axis system is oriented in such a

way that the x-axis is directed due north, the y-axis is directed due east and the positive z-axis is

directed into the x-y plane, according to the right hand rule. The next reference frame, referred to

as the aircraft carried vertical axis system, is obtained by translating the origin of the earth fixed

reference frame to coincide with the center of gravity of the aircraft. The positive directions of

each axis in this system are parallel to the directions of the respective axes within the earth fixed

reference frame. The third reference frame, called the body fixed axis, is attached to the airplane

itself, with the origin coinciding with the center of gravity of the airplane. The positive direction

of the body fixed x-axis is then oriented to pass through the nose of the aircraft, the positive y-

axis through the right wing of the aircraft and the positive z-axis is directed into the x-y plane,

according to the right hand rule. The fourth reference frame is called the wind reference system

and is used to describe the aircraft’s flight path. The positive x-axis in this reference frame is

oriented in the direction of the total velocity vector of the aircraft, with the angle of attack α, and

the angle of sideslip β, defined by the orientation of this reference frame with respect to the body

fixed axes. Thus, the airplane dynamics can now be described using these reference frames. For

the purpose of this research, the F4 aircraft model is selected, primarily due to the benign nature

 24

of its dynamics and the fact that the stability and control derivatives that describe the aircraft are

readily available [2]. Figures 4.1 and 4.2 show a three view of a F4 aircraft and the relative

orientations of the reference frames.

Figure 4-1 : 3-View Drawing of F4 Aircraft

Flight Path

1Y

2 3Y and Y

Y

3Z

Z

1 2Z and Z

3X and X

2X

1X

Φ Θ

Ψ
ΦΨ

Θ

'X

'Y

'Z

Earth Fixed Axis

Figure 4-2 : Airplane Orientation with Euler Angles

The equations of motion for an aircraft are developed from the Newton’s second law of

motion, which states that “the time derivatives of linear and angular momentum are equal to

 25

the externally applied forces and moments respectively [2]”. This results in a vector-integral

equation of motion, given as:

'

A Av v S

d d r
dv g dv Fds

dt dt
ρ ρ

→
→ →

= +∫ ∫ ∫ Eq. 4.1

for linear momentum and

'
' ' '

A Av v S

d d r
r dv r g dv r F ds

dt dt
ρ ρ

→
→ → →→ →

× = × + ×∫ ∫ ∫ Eq. 4.2

for angular momentum.

The integrals
V∫ and

S∫ represent the total volume and surface area of the airplane. The

above equations are for rigid aircrafts whose external geometry is known. Also, the total mass

and mass distribution of the airplane are assumed to be constant with time and the forces A g dvρ
→

and F ds
→

 assumed to be the only external forces acting on the airplane.

The vector-integral equations Eq. 4.1 and Eq. 4.2 can be further reduced to the following

form with respect to the earth frame:

.

()P P A Tm V V m g F Fω
→

→ → → → →
+ × = + + Eq. 4.3

and
.

A A TV
r r r dv M Mω ω ω ρ

→
→ → → → → → →   × × + × × = +  

   
∫ Eq. 4.4

These equations are the vector forms of the aircraft equations of motion with respect to the earth

reference frame. However, this form is not very friendly to express the steady state and time

history response of the system and so, has to be written in the scalar component forms. Thus, the

scalar component representation of the linear and angular momentum equations with respect to a

the body reference frame is given as

 26

.

()
x xx A Tm U VR WQ mg F F− + = + + Eq. 4.5

.

()
y yy A Tm V UR WP mg F F+ − = + + Eq. 4.6

.

()
z zz A Tm W UQ VP mg F F− + = + + Eq. 4.7

and

. .

()xx xz xz zz yy A TI P I R I PQ I I RQ L L− − + − = + Eq. 4.8

.
2 2() ()yy xx zz xz A TI Q I I PR I P Q M M+ − + − = + Eq. 4.9

. .

()zz xz yy xx xz A TI R I P I I PQ I QR N N− + − + = + Eq. 4.10

The above equations are not sufficient to solve for the time histories of motion, primarily

because of the fact that the gravity components of Eq. 4.5, Eq. 4.6 and Eq. 4.7 depend on the

orientation of the airplane with respect to the earth fixed coordinate system.

The flight path of an airplane relative to the earth fixed axis system can be determined

from the knowledge of the velocity components U, V and W in the body fixed axis system and

the Euler angles. Thus, the relationship between the earth fixed axes velocity components and the

body fixed axes velocity components of the airplane is given as:

.

1
.

1

.
1

'
cos sin 0 cos 0 sin 1 0 0

sin cos 0 0 1 0 0 cos sin'

0 0 1 sin 0 cos 0 sin cos
'

x
U U

V Vy

WW
z

ψ ψ θ θ
ψ ψ φ φ

θ θ φ φ

 
  −         
         = = −          

          −          
 

 Eq. 4.11

The flight path of the airplane in terms of '()x t , '()y t and '()z t is found by integrating

the terms in equation 4.11. The Euler angles in Eq.4.11 are functions of time and are determined

by integrating the following equations:

.

sin tan cos tanP Q Rφ φ θ φ θ= + + Eq. 4.12

.

cos sinQ Rθ φ φ= − Eq. 4.13

.

(sin cos)secQ Rψ φ φ θ= + Eq. 4.14

Also, the components of the gravitational force are given as:

 27

sinxg g θ= − Eq. 4.15

sin cosyg g φ θ= Eq. 4.16

cos coszg g φ θ= Eq. 4.17

Using the set of equations 4.5-4.17, the time history of the aircraft dynamics can be

obtained by numerical integration.

The following section discusses the theoretical basis of Neural Networks and the learning

algorithms used to train the networks.

4.2 Neural Network Theory

A Neural Network can be defined as “A massively parallel distributed processor that has

a natural propensity for storing experimental knowledge and making it available for use” [4,

42]. They are also commonly referred to in literature as neurocomputers, connectionist networks,

parallel-distributed processors etc. Neural Networks derive their flexibility and computing

power through their ability to learn and generalize, producing reasonable outputs for inputs not

encountered during the learning phase, and the presence of a massively parallel, distributed

structure of individual neurons. A schematic representation of the non-linear model of a neuron

is shown below in figure 4.3.

Input Signals

1x

2
x

x
p

1w
k

2
w

k

w
kp

∑

Summing Junction

Synaptic Weights

Threshold

Activation Function

Output

u
k

k
θ

y
k

(.)ϕ

Figure 4-3 : Non-Linear Model of a Neuron

 28

The fundamental elements of a neuron include the synapses, the summing junction and

the activation function. The nature and functionalities of each element are described in the

following section:

• Synapses are the connecting links between two individual neurons i and j in adjacent

layers in the network architecture, and are characterized by an interconnection weight

ijw . The input signal at the neuron j is the product of the output of the neuron i and the

interconnection weight ijw .

• The summing junction is essentially a linear combiner, and sums all the input signals to

the neuron, weighted by the respective synaptic weights.

• The activation function is used to limit the amplitude of the output from the neuron and is

also sometimes referred to as the squashing function. Typically, the activation function

normalizes the output of the neuron to a closed interval [0,1] or sometimes [-1,1].

• The model of the neuron also includes an externally applied threshold constant, kθ , that

has the effect of lowering the net input of the activation function.

Mathematically, a neuron can be described using the relationship

1

p

k kj j
j

u w x
=

=∑ Eq. 4.18

and ()k k ky uϕ θ= − Eq. 4.19

 where 1 2, px x x are the inputs to each neuron in the input layer and 1 2,k k kpw w w are the

synaptic weights associated with each input. The value ku is the output of the linear combiner or

the summer, kθ is the threshold value, (.)ϕ is called the activating function and ky is the final

output of the individual neuron. The activation function defines the output of the neuron and can

be classified into three basic types as Threshold, Piecewise-Linear and Sigmoid functions.

• A Threshold function is mathematically defined as

1 0
()

0 0

if v
v

if v
ϕ

≥
=  ≤

 Eq. 4.20

• The mathematical representation of the Piecewise-Linear function is given as

 29

1 0

() 0 0

1 0

if v

v if v

if v

ϕ
>

= =
− <

 Eq. 4.21

• The Sigmoid function is the most common form of activation function used in

neural networks and is defined as a strictly increasing function that is smooth and

asymptotic. Mathematically, a typical sigmoid function can be expressed as

1
()

1 av
v

e
ϕ −=

+
 Eq. 4.22

where the parameter a is called the slope of the sigmoid function. By varying the

slope parameter, we can obtain various sigmoid functions.

The following section discusses some of the more common neural network architectures

and their properties.

4.3 Neural Network Architectures

The architecture of a neural network is the order of the interconnections between the

individual neurons that make up the overall network. In general, there are four different classes

of network architectures, namely Single Layer Feedforward networks, Multilayer Feedforward

networks, Recurrent networks and Lattice Structures.

• Single Layer Feedforward networks are the simplest form of a layered neural

network, and have their component neurons organized in a single layer. This is

strictly a feedforward network, where the source nodes of the ‘Input’ layer project

onto the nodes in the ‘Output’ layer, but not vice versa. An example of a single

layer feedforward network would be the linear associative memory, in which an

output pattern is associated with an input pattern by adapting the interconnection

weights between the neurons.

• Multilayer Feedforward network architectures have more than one layer of

interconnected neurons, referred to as the Hidden Layer, between the ‘Input’ layer

and ‘Output’ layer. The computation nodes associated with the ‘Hidden’ layer are

called as hidden neurons or hidden layer neurons and the presence of these

neurons enables a network to extract higher order statistics and approximate non-

linear functions effectively. The inputs to the activation function of each neuron

 30

in the ‘Hidden’ layer are then the weighted sum of the outputs from the neurons in

the ‘Input’ layer. These inputs are then passed through the activation function

giving the corresponding output at each node in the Hidden layer, which then

serve as inputs to the neurons of the next layer, until the ‘Output’ layer is reached

where the output from each neuron gives the overall response of the network to

the input pattern.

• Recurrent networks are distinct from a feedforward network in the aspect that

they have at least one feedback loop in the network architecture. In this

architecture, the output of a neuron is fed back as an input to other neurons in the

same layer, resulting in a feedback network. The output of a neuron is fed to itself

and all the other neurons in the same layer, results in a self-feedback network

architecture.

• A lattice structure network architecture is characterized by the presence of one,

two or ‘N’ higher dimensional array of neurons with a corresponding set of input

layer neurons. The lattice structure can be considered to be a feedforward

network with the neurons in the output layer arranged in rows and columns, where

the dimension of the lattice characterizes the number of dimensions in space in

which the graph lies.

For the purpose of this research, a multilayer feedforward network was with one hidden

layer chosen as the structure of the neural network. The next section discusses the multilayer

feedforward network in more detail, with respect to its architecture and the learning algorithm

used to train the networks.

4.4 Extended Backpropagation Algorithm

The multilayer feedforward network architecture, also referred to as Multilayer

Perceptrons (MLPs), is one of the more important network architectures. Typically it consists of

an input layer of sensory units, one or more hidden layers of computation nodes and one output

layer of computational neurons. A popular approach to training the MLPs in a supervised

manner is the error-backpropagation algorithm, based on the error-correction learning rule. The

purpose of this rule is to minimize a cost function based on the error () () ()k k ke t d t y t= − , where

()kd t is the desired output from the network and ()ky t is the actual response of the network, to

 31

the input presented, such that the actual response of each neuron in the output layer approaches

the target response in some statistical sense. Figure 4.4 shows a schematic representation of a

multilayer feedforward neural network.

.

.

.

Input LayerInputs Hidden Layer

Output Layer

Figure 4-4 : Multilayer Perceptron with One Hidden Layer

The error-backpropagation training process consists of two distinct phases, namely the

forward phase and the backward phase. In the forward phase, an input pattern is applied to the

nodes in the input layer, which then propagates through the each of the hidden layers, till it

reaches the output layer, where the output at the computational nodes is the overall response of

the network to the input pattern that was presented. Once the overall response of the network is

obtained, it is then compared to the target output and the difference between the two produces an

error term. This error is then propagated backwards, leading to the term backpropagation,

through the network structure and the corresponding interconnection weights are adjusted to

make the response of the network move closer to the desired response. A detailed theoretical

explanation of the derivation of the back propagation algorithm is provided in the text “Neural

Networks: A Comprehensive Foundation” [4].

Although the back propagation algorithm is popular for training multilayer perceptrons, it

has a few drawbacks that make the general algorithm unsuited for the current research. This

section describes a few of the drawbacks of the backpropagation algorithm, particularly with

reference to its activation function, the sigmoid function
1

1 jsum
e

−+
, and also suggests solutions to

overcome these drawbacks:

 32

• The backpropagation algorithm, applied to a multilayer perceptron, is not

guaranteed to converge to the global minimum, even when the learning rate is

properly selected, as the performance index may have many local minima;

• Although the backpropagation algorithm can approximate any non-linear

function, it requires extensive training, which makes it unsuitable for on-line

applications.

A few approaches, among others, to overcome the above drawbacks of applying the

backpropagation algorithm to train a multilayer perceptron are:

• Backpropagation algorithm with a momentum term used in updating the

interconnection weights;

• Backpropagation with a variable learning rate;

• Backpropagation with batch training, network pruning and complexity penalty.

A different solution, the Extended Back Propagation Algorithm (EBPA), to overcome

these problems was developed at WVU [43], based on a significantly modified sigmoid

activation function

1
net

T

U L
L

e
−

− +
+

. This uses a heterogeneous network, wherein each neuron in the

hidden and the output layer has its own set of free parameters, namely the upper and lower

bounds of the output range, as well as the slope of the sigmoid activation function. With respect

to the multilayer perceptron architecture shown in Figure 4.5, the following derivations for the

training the multilayer perceptron, using the EBPA, hold good. The modified schemes for the

outputs at each neuron in the hidden and the output layers is given as

1

n

i h hi i
h

sum A V
=

= + Θ∑ Eq. 4.23

(, , ,) ; 1,2,

1
i

i

i i
i i i i i isum

T

U L
B f sum U L T L i m

e
−

−= = + =
+

… Eq. 4.24

for the hidden layer neurons, and

 33

1

m

j i ij j
i

sum BW
=

= + Γ∑ Eq. 4.25

(, , ,) ; 1,2,

1
j

j

j j
j j j j j jsum

T

U L
C f sum U L T L j p

e
−

−
= = + =

+

… Eq. 4.26

for the output layer neurons. This would constitute the forward phase of training, where the

overall response of the network is given by jC .

Output Layer

Hidden Layer

Input Layer

b1

c1 cp

bi bm

aha1 an

a1 ah an

V11 Vh1

Vn1 V1i

Vhi

Vni
V1m

Vhm

Vnm

W11

W1p

Wi1 Wip

Wm1 Wmp

Figure 4-5 : Feedforward Multilayer Perceptron

 34

In the backpropagation or the updating phase, the overall outputs of the network are

compared to the target outputs the network is designed to track, and the error

() () (),k k ke t d t y t k neurons in the output layer= − ∀ is propagated backwards, to update the

values of the interconnecting weights and thresholds at each neuron in both the hidden and

output layers, as a means to minimize the difference between the overall output of the network

and the actual parameter being tracked.

The first step in the back propagation step is to determine the partial derivatives of the

network with respect to each of the parameters in the network. For the output layer, taking the

partial derivatives with respect to the upper bound, lower bound and the gradient results in the

following expressions:

' (, , ,) ()()

()j

j j j j j j j j
sum

j j j j

f sum U L T C U C L
f

sum T U L

∂ − −
= = −

∂ −
 Eq. 4.27

' (, , ,) 1

1
j j

j

j j j j
U sum

j T

f sum U L T
f

U
e

−

∂
= =

∂
+

 Eq. 4.28

' '(, , ,) 1
1 1

1
j jj

j

j j j j
L Usum

j T

f sum U L T
f f

L
e

−

∂
= = − = −

∂
+

 Eq. 4.29

'

'

2

(, , ,) ()()

()
j

j

j sumj j j j j j j j j
T

jj j j j

sum ff sum U L T sum C U C L
f

T T U L T

∂ − −
= = = −

∂ −
 Eq. 4.30

Similarly, at the hidden layer:

' (, , ,) ()()

()i

i i i i i i i i
sum

i i i i

f sum U L T B U B L
f

sum T U L

∂ − −= = −
∂ −

 Eq. 4.31

' (, , ,) 1

1
i i

i

i i i i
U sum

i T

f sum U L T
f

sum
e

−

∂= =
∂

+
 Eq. 4.32

' '(, , ,) 1
1 1

1
i ii

i

i i i i
L Usum

i T

f sum U L T
f f

sum
e

−

∂= = − = −
∂

+
 Eq. 4.33

'
'

2

(, , ,) ()()

()
i

i

i sumi i i i i i i i i
T

ii i i i

sum ff sum U L T sum B U B L
f

sum T U L T

∂ − −= = = −
∂ −

 Eq. 4.34

 35

Once the partial derivatives are computed, the next step is the formulation of the error

term to be minimized. At the output layer, the difference between the overall network output and

the target network output constitutes the error term and are given as:

' ()
j jsum sum j jf Y Cδ = − Eq. 4.35

' ()
j jU U j jf Y Cδ = − Eq. 4.36

' ()
j jL L j jf Y Cδ = − Eq. 4.37

' ()
j jT T j jf Y Cδ = − Eq. 4.38

These errors are then propagated back to the neurons in the hidden layer, where the

formulation of the error term at each neuron is not straight forward as they are at the output

layer, as there are no well-defined target values at any neuron. Thus, the error terms at the hidden

layer are computed using the chain rule, by multiplying the delta terms from the output layer

with the interconnecting weights between the neurons in the hidden and the output layers:

'

1
i i j

o

sum sum sum ij
j

f wδ δ
=

= ∑ Eq. 4.39

'

1
i i j

o

U U U ij
j

f wδ δ
=

= ∑ Eq. 4.40

'

1
i i j

o

L L L ij
j

f wδ δ
=

= ∑ Eq. 4.41

'

1
i i j

o

T T T ij
j

f wδ δ
=

= ∑ Eq. 4.42

Once the errors and delta terms are determined at both the hidden and the output layers,

the bias terms and interconnecting weights are then updated using the following relationships:

() (1) ; 1, 2,
jj sum sum sum jk k j oη δ α∆Γ = + ∆Γ − = … Eq. 4.43

() (1); 1,2,
ii sum sum sum ik k i mη δ α∆Θ = + ∆Θ − = … Eq. 4.44

and the weights are updated as

() (1)
jij sum sum i sum ijw k B w kη δ α∆ = + ∆ − Eq. 4.45

() (1)
ihi sum sum h sum hiv k A v kη δ α∆ = + ∆ − Eq. 4.46

Now the upper and lower bounds as well as the temperatures on all the neurons in both

the hidden layer and the output layer are updated using:

 36

() (1)
jj u U u jU k U kη δ α∆ = + ∆ − Eq. 4.47

() (1)
jj L L L jL k L kη δ α∆ = + ∆ − Eq. 4.48

() (1)
jj T T T jT k T kη δ α∆ = + ∆ − Eq. 4.49

() (1)
ii i U U iU k U kη δ α∆ = + ∆ − Eq. 4.50

() (1)
ii L L L iL k L kη δ α∆ = + ∆ − Eq. 4.51

() (1)
ii T T T iT k T kη δ α∆ = + ∆ − Eq. 4.52

In the above equations, the terms η and α represent the learning rate and the momentum

rates. The learning rate is a factor that determines the amount by which each parameter is

updated at each time step. The momentum term controls the extent of the contribution of the

weights in the previous time step on the current weights. Additional degrees of freedom can be

achieved by having different learning and momentum rates for each of the parameters. This

learning algorithm has a few advantages over the traditional backpropagation algorithm, such as

a more degrees of freedom with regards to learning due to the presence of the parameters U, L,

and T in the activation function. Also, this learning algorithm is more likely to avoid the local

minima problem that is traditionally associated with the backpropagation algorithm and

potentially learn faster and more accurately than the traditional backpropagation algorithm.

There are some downsides to this learning method in that this takes approximately 30%-50%

more computations, due to the presence of the extra degrees of freedom in U, L and T, although

this issue is of concern only when the method is applied to on-line learning.

4.5 Flynn’s Taxonomy and Message Passing Interface

Enough! That is an expression hardly used by researchers in the same sentence as

computational power. Ever since the dawn of the computer era, researchers and scientists have

been clamoring for increased computational capacity, something that has not been satisfied even

with the recent advances in semiconductor technology. Therefore, to meet the requirements for

higher computational power, with the existing microprocessor technology, a new computing

paradigm, parallel computing, was developed, wherein more than one distinct processor would

work together, forming a parallel computer, to solve a given task. The parallel computer

architectures were originally classified according to a popular scheme known as Flynn’s

taxonomy, developed by Flynn in 1966 [44]. This classified the parallel computers into four

 37

distinct classes, based on the number of instruction and data streams, as single instruction single

data (SISD), multiple instruction multiple data (MIMD), single instruction multiple data (SIMD)

and multiple instruction single data (MISD) architectures.

The classical von Neumann computer is an example of the SISD architecture and has just

a single instruction stream and a single data stream.

Input

Memory

Central Processing Unit Output

Figure 4-6 : Classic von Neumann Computer Architecture

The SIMD computer architecture has a single central processing unit exclusively

dedicated to control and a bunch of slave arithmetic and logic units, each with its own memory.

During each instruction cycle, the central processing unit sends an instruction to all the

subordinate processors, which then execute it or remain idle. The general MIMD architecture is

different from the SIMD architecture in the aspect that each processor in a MIMD system is a

fully autonomous central processing unit, with its own control unit as well as arithmetic and

logic unit. Thus, the MIMD systems are asynchronous in nature and are capable of executing its

own set of instructions at its own pace.

The MIMD architecture is further divided into two distinct groups as shared memory and

distributed memory architectures. The shared memory architecture consists of a collection of

distinct processors and distinct memory modules, interconnected by a communication network.

Figure 4.6 shows a schematic representation of generic shared memory architecture.

 38

Interconnection Network

CPU

Memory

CPU CPU

MemoryMemory

Figure 4-7 : Generic Shared Memory Architecture

On the other hand, with distributed memory architecture, each processor has its own

private memory, and is connected to other processors by a common communication network.

Figure 4.7 shows the schematic representation of generic distributed memory architecture.

Figure 4-8 : Generic Distributed Memory Architecture

The more popular methods of programming shared memory systems involves one of the

various forms of message passing, Message Passing Interface or Parallel Virtual Machine,

where the individual processes coordinate their activities by explicitly sending and receiving

messages. The popularity of the message passing paradigm can be attributed to a large extent to

its portability and its ability to run on heterogeneous systems, from distributed memory systems,

shared memory systems, network of workstations, or a combination of the above. The Message

Passing Interface (MPI) is described as “a standardized portable message passing system,

designed by a group of researchers from academia and industry, to function on a wide variety of

parallel computers” [45]. MPI standard provides efficient and reliable communication interface

between processes, avoiding memory-to-memory copying, and facilitates overlap of computation

and communication, with the ability to offload the communication to a secondary processor. The

 39

Parallel Virtual Machine (PVM) can be described as a software package that allows the user to

create and access a concurrent computing system created from a network of loosely coupled

processing elements including standalone workstations, vector processors or even parallel

supercomputers. The distinguishing factor of PVM is that it makes the heterogeneous collection

of computers appear as a single virtual machine, leading to its name [46].

In recent years, the publication of the OpenMP standard for shared memory parallelism

has provided developers with another portable and scalable API for writing parallel programs.

Salient features of OpenMP are that it is made up of a simple set of directives and can provide

incremental parallelism and does not have to deal with message passing and allows the use of

shared data.

For the purpose of this research, MPI is chosen as the communication paradigm, due

mainly to the ease of programming and the availability of extensive support. MPI is portable and

does not require any special compilers to work. Within this research effort, SIMD architecture is

followed, with source code written as a single chunk of instruction sequence with each node on

the cluster executing a section of the code, based on its rank. The individual processes execute in

its own address space communicate with each other via calls to MPI primitives. This is a

substantial advantage when applied to the adaptive flight control system scheme as different

modules of the scheme can be programmed to attain its own goals and execute on different

computers. Figure 4.8 shows an example of a parallel program written in C using MPI for

communication [47]. In this example, six distinct processes, one of which is designated as the

root process, are spawned on six different machines. The non-root processes send a greeting to

the root, which then displays it as its output. The result of the program is shown in Figure 4.9.

 40

 greetings.c -- greetings program

 Send a message from all processes w ith rank != 0 to process 0.
 Process 0 prints the messages received.

 Input: none.
 Output: contents of messages received by process 0.

/
include <stdio.h>
include <string.h>
include "mpi.h"

ain(int argc, char* argv[]) {
 int my_rank; /* rank of process */
 int p; /* number of processes */
 int source; /* rank of sender */
 int dest; /* rank of receiver */
 int tag = 0; /* tag for messages */
 char message[100]; /* storage for message */
 MPI_Status status; /* return status for receive */

 /* Start up MPI */
 MPI_Init(&argc, &argv);

 /* Find out process rank */
 MPI_Comm_rank(MPI_COMM_WORLD, &my_rank);

 /* Find out number of processes */
 MPI_Comm_size(MPI_COMM_WORLD, &p);

 if (my_rank != 0) {
 /* Create message */
 sprintf (message, "Greetings f rom process %d!", my_rank);
 dest = 0;
 MPI_Send(message, strlen(message)+1, MPI_CHAR, dest, tag, MPI_COMM_WORLD);

 }
 else
 {
 /* my_rank == 0 */
 for (source = 1; source < p; source++) {

MPI_Recv(message, 100, MPI_CHAR, source, tag, MPI_COMM_WORLD, &status);
printf("%s\n", message);
}

 }

 /* Shut dow n MPI */
 MPI_Finalize();

Figure 4-9 : Example of a MPI Based Program

 41

----PBS Prologue Report----
Bef ore running, there are 8 IPC semaphores and IPC shared memory segments on node4
Greetings f rom process 1!
Greetings f rom process 2!
Greetings f rom process 3!
Greetings f rom process 4!
Greetings f rom process 5!
node4
node4
node3
node3
node2
node2
PBS Epilogues Report
PBSJOB(10126.energy):managed by node4
/usr/spool/PBS/aux/10126.energy

Figure 4-10 : Result of the MPI “greetings” Program

 42

Chapter 5 - Design of the Experimental Setup

5.1 Matlab GUI

This chapter discusses the experimental setup that was used for the implementation of the

NN based fault tolerant flight control system addressed within this research effort.

The experimental setup covers subtasks includes the design and implementation of a

Matlab based Graphical User Interface (GUI) that allows the user to interactively setup the task

at hand, the setup of the graphical simulation/visualization environment to allow for data

exchange between itself and the flight control schemes, followed by the setup of the Beowulf

cluster based computation platform.

The first sub-task involved the development of the GUI and was developed within the

Matlab 5.3 environment for this research study. The initial GUI screen is shown below.

Figure 5-1 : Main User Interface

On this initial screen, when the “Initialize Parameters” button is clicked, it calls an

initialization script which then initializes the handles for all the graphics objects on this screen,

and sets the default parameters for all the seven NNs, including the MNN, P-DNN, Q-DNN, R-

 43

DNN, ROLL-NNC, PITCH-NNC and the YAW-NNC. Once the graphics object handles are

initialized, the script then activates the buttons that presents the user an option to select between

pre-trained NNs or un-trained NNs. Once the choice of the networks are made, the script then

activates the graphics objects on the main GUI and displays the current settings of the NN

structures that were chosen. This GUI is setup in such a way that the user can scroll through the

different NN structures using the scroll buttons.

The inner workings of the GUI can be explained with the help of an example. Taking the

MNN as the test case, in order to alter its structure, the user has to scroll forward or backward to

display the current setting of the MNN. Once this is done, clicking on the “Change Parameters”

button will bring up the second layer of the GUI. The second layer of the GUI is shown below.

Figure 5-2 : Change Parameters Window

Within this GUI, when the “Initialize Window” button is clicked, the script determines

which network was selected in the previous screen and then brings up the current setting of the

 44

network structure and displays the parameters in the appropriate fields. Traditionally, MLP based

neural network structures have been hand coded into the program code. This makes it

cumbersome to alter the structure of the networks if the need arises. This GUI based approach

makes the design of the network structure flexible and the user can choose to vary any of the

parameters that define the network. The first parameter in this window is the number of input

variables that are used to estimate the outputs from the NN. The default setting for the MNN is 8

variables. The other parameters are the number of Hidden layer neurons, the input data pattern,

the learning rate of the network and the momentum rate of the network. The input data patters in

the value that determines the number of time steps back in time that the NN reaches to gather its

input data, to estimate its outputs at the current time step. After changing any of these

parameters, clicking on the “Apply” button sets the appropriate values in memory. The user also

has an option to choose the input variables to the NN. When the “New” button is clicked, a

popup window presents the user with a list of variables that are sent across from the simulation

environment. The user can choose the inputs to the NN from this popup window. The variables

that are chosen from this popup window are identified by their indexes and are stored in an array

in the order that they were chosen. The popup window that allows the user to choose the input

variables is shown below.

 45

Figure 5-3 : Choose Variables

Once the variables for the NN are chosen and “Apply Settings” button is clicked, the user

is taken back to the main GUI window. On the main GUI, once all the network parameters are

set to the user’s satisfaction, clicking on the “Ok” button would activate the buttons to select the

task to be executed. The tasks that can be selected are “Simulation”, “Train”, “SFDIA”, “AFDIA”

and “SFDIA+AFDIA”. “Simulation” allows the user to run a simulation of the aircraft dynamics

within AVDS with predefined maneuvers that are generated offline. The “Train” option allows

the user to train the networks for the purpose of the SFDIA or the AFDIA tasks. This training

can be done either offline or on-line with data from the AVDS environment. If the “Offline”

training option is chosen, then the user is allowed to “fly” the aircraft within AVDS and the

resulting data is then stored on the computer. This data can then be accessed offline and used to

train the NN. If the “On-line” training option is chosen, the user can “fly” the aircraft within

AVDS and simultaneously train the NN with on-line data. The difference between the scheme

 46

training the NN offline and the scheme training the NNs on-line are in the way the inter-process

communication schemes are setup. In the case of on-line training, data frames are sent across

from the AVDS environment where the aircraft is flown to the NN structures at a pre defined

frequency of 30 Hz. On the other hand, for training the networks offline, the aircraft is flown and

the data store on the computer. This data is then used independently of AVDS to train the

networks.

The “SFDIA” option brings up another GUI, shown below, wherein the user can set the

parameters for the SFDIA task. This GUI allows the user to select between pre-defined failure

scenarios or custom defined failure scenarios. The parameters of the failure scenarios include the

gyro which is set to fail, the type of failure on the selected gyro and the magnitude of the failure.

The user can then choose the time of injection of the failure on the rate gyros. The types of

failure include step and ramp type failures. This also allows the user to set the thresholds for

failure detection and identification sub-tasks.

Figure 5-4 : SFDIA Task Window

 47

Clicking on the “Ok” button on this GUI window sets the parameters for the SFDIA task

in memory and returns control to the Main GUI.

Similar to the GUI for the SFDIA task, the “AFDIA” button on the main GUI brings up

another window that allows the user to set the parameters for the AFDIA task. The GUI for this

is shown below. The parameters for the failure scenarios in this case include the control surface

that is set to fail on the aircraft, the magnitude of the failure and the effectiveness of the failed

surface which defines the amount of surface that is assumed to be lost.

Figure 5-5 : AFDIA Task Window

Within the AFDIA task window, the user has a choice to selecting between predefined

failure scenarios or custom defined scenarios. With both options, the user has to set the time of

injection of the failure and the thresholds for the detection and identification of the actuator

failures. Clicking on the “Ok” button sets the parameters for the AFDIA task in memory and

returns control to the main GUI.

 48

The next task option that is available on the main GUI is the option for “SFDIA+AFDIA”

task. Within this task, both sensor failures and actuator failures are introduced on the aircraft.

The GUI that allows to user to define the parameters of failure injection, detection and

identification for the SFDIA+AFDIA task is shown below. Within this GUI, the user can select

the failure options, thresholds, and the time of failure injection in the same manner as they were

selected for the individual tasks.

Once the parameters that define the specific task chosen are set, the control returns to the

main window, where the total time of simulation can be entered. The user is now ready to run the

simulation for the task at hand.

The data exchange scheme is based on the client-server model, set in such a way that the

Matlab environment under which this GUI runs is running the client side socket, while the

master node on the Beowulf cluster is running the server side socket. The communication

scheme is shown in the Figure 5-7.

Beowulf Cluster
Master Node

node1

MATLAB
Environment

Server side
sockets

Client side
sockets

BSD Socket Interface

Figure 5-6 : Cluster - Matlab Interface

5.2 AVDS Interface

Towards the goal of creating a graphical front end to the adaptive flight control scheme, a

commercially available visualization package, Aviator Visual Design Simulator (AVDS),

designed as a joint project between Artificial Horizons Inc. and the United States Air Force is

chosen. Although other graphics packages are available, such as X-Plane etc, this package was

chosen mainly due to previous experience in using the package, within the research group. This

 49

AVDS package gives the user the freedom to integrate their own control systems and aircraft

model into the simulation and visualization of aircraft dynamics.

One of the goals of this phase is the creation of a “communication channel” between

AVDS and the adaptive flight control scheme codes to allow a smooth exchange of data. The

communication channel is based on a client-server model and uses BSD sockets for inter-process

communication. The AVDS environment set as the client while the master node in the Beowulf

cluster is set as the master. Figure 5-8 shows a schematic representation of the scheme. Within

the source code that generates the aircraft dynamics and visualization in AVDS, the client side

socket is initialized, during the initialization phase of AVDS. This client side socket then waits

for the server to send the parameters of the simulation that AVDS uses to determine the length of

simulation and the task that the user wants to run. If the task that is to be run is the AFDIA

procedure, then the AVDS client receives the appropriate parameters from the Matlab

environment, via the Beowulf cluster master node.

Beowulf Cluster
Master Node

node1

AVDS
Environment

Server side
sockets

Client side
sockets

BSD Socket Interface

Figure 5-7 : Cluster – AVDS Interface

5.3 Beowulf Cluster Setup

The SFDIA and the AFDIA tasks are designed to be executed on a distributed computing

environment. A Beowulf cluster made up of commodity components is used as the distributed

computing environment within this research effort.

The cluster is made up of seven distinct compute nodes, node1-7and while node8

supports the AVDS simulation/visualization. It must be noted that node8 is not explicitly a part

 50

of the cluster as it does not communicate directly with the compute nodes on the cluster and

communicates with only the main node by means of sockets. The visualization node could

theoretically exist on an entirely different network, although this would not be advantageous

considering the network traffic and congestion it might encounter. Each of the compute nodes is

a standalone computer, running RedHat 9.0 distribution of the Linux operating system, with

kernel version 2.4.20-8. Table 5-1 lists the specifications of the compute nodes on the cluster. As

mentioned earlier in Chapter 4, the inter-node communication on the cluster is based on the

Message Passing Interface. For this research effort, MPICH 1.2.6 is used. Some of the features of

this version of the portable implementation of the MPI standard include

• Complete MPI 1.2 standard compliance, including canceling of send

• Support for MPMD programs and heterogeneous clusters

• Support for a wide variety of computing environments, including clusters of

Symmetric Multi Processors and massively parallel processors.

Table 5-1 : Specifications of Beowulf Cluster

Node O.S CPU Memory Task

node1 Linux 500 MHz 128 MB Master/Compute node

node2 Linux 266 MHz 64 MB Compute Node

node3 Linux 266 MHz 64 MB Computer Node

node4 Linux 266 MHz 64 MB Compute Node

node5 Linux 266 MHz 64 MB Compute Node

node6 Linux 266 MHz 64 MB Compute Node

node7 Linux 266 MHz 64 MB Compute Node

node8 Windows 2000 MHz 1024 MB AVDS

 Each node on the cluster is equipped with a 10/100 Mbps Ethernet card and the nodes

are interconnected via a Cisco Systems, Catalyst 3560G series 48 port switch.

The cluster is setup as a private network with the IP addresses of all the 8 nodes being

192.168.1.1 through 192.168.1.8. The 192.168.1.8 node is the Windows 200 based graphical

interface machine. On the cluster, node1 is set as the master node and is in charge of setting up

 51

the communication channels between the compute nodes on the cluster and the graphics node on

the Windows machine.

The cluster built for the purpose of implementing the fault tolerant flight control systems

in parallel is shown in the following figure.

Figure 5-8 : Cluster for Parallel Implementation of FDIA

The procedure for setting up a simulation for any of the tasks is as follows. The source

code for the task is first transferred to the master node and then compiled into a binary using the

MPI directive

mpicc –o foo foo.c; rm –f foo.o

The compiled binary is then transferred to all the other compute nodes on the cluster. The

compute nodes, including the master node are setup with a similar directory structure. Before the

binary can be executed on the cluster, the mpd daemons have to be started on all the compute

 52

nodes. Once the daemons are started, they are connected in a ring, with the last node entering the

ring between the last previously entered node and the first node. On the first node, the mpd

daemons are started by issuing the command

mpd &

and a subsequent call to mpdtrace gives the port number at which the first daemon is

listening. The other nodes connect to this port on the host machine, node1, using the command

mpd –h node1 –p port_number

Once all the compute nodes are in the ring, the binary can be executed on any number of

processes using the command

mpirun –np number_of_processes foo

This command would set the binary running on all the nodes with the code is setup in

such a way to execute a server side socket on the master node. Once the server socket is up and

running on the master node, by clicking on the “Start Data Transfer” button on the main GUI in

Matlab would create a client side socket within Matlab. This client would then connect to the

server side socket on the master node. Once the master node receives the Initialization flag from

the Matlab client, it sends an acknowledgement back to the client and then waits to receive the

simulation parameters. Once the master node receives the simulation parameters, it distributes

the same to all the compute nodes on the cluster using MPI_Send directive. Upon receiving the

simulation parameters, all the compute nodes in the ring, including the master node, then proceed

to initialize their respective NN structures, extracting whatever parameters they need, from the

simulation parameters that was sent across from the Matlab side.

The master node is now ready to receive the initialization flag from AVDS. Once the flag

is received from AVDS, the master node sends appropriate simulation parameters to the AVDS

environment, including the task identification number and the total time of simulation. If the task

on hand is the AFDIA task, then the master node also sends the parameters that describe the

failure, including the time of failure, the surface that failed, the magnitude of failure and the

effectiveness of the surface after failure. AVDS receives all this information through its client

side socket and then starts the simulation.

The simulation within AVDS is setup so that it allows the “pilot” to “fly” the aircraft to

an altitude of 3000 ft, before data transfer takes place. From the time instant tha the aircraft takes

off till it reaches 3000 ft, there is no transfer of data from AVDS to the main and compute nodes

 53

on the cluster. As a consequence, no NN training takes place. Once the aircraft reaches 3000 ft,

AVDS sends out data frames at a rate of 30Hz across the socket to the master node. The master

node collects the data from AVDS and distributes it to all the compute nodes in the cluster. Once

all the data is distributed to the compute nodes, the master node then proceeds to execute the

code for the MNN while the other compute nodes execute the codes for the DNNs, based on their

individual ranks. For example, in the case of the SFDIA procedure, the node with rank 1 would

execute the code for the P-DNN, the node with rank 2 would execute the code for Q-DNN and

the node with rank 3 would execute the code for R-DNN. Once the forward and backward pass

of each DNN is complete, they send their respective outputs to the MNN. Within the MNN on

the master node, once all the estimates of the rate are received from the DNNs, the MNN

proceeds to compute the error metrics and perform the procedure for failure detection and

identification. Upon failure detection and/or identification, the MNN then proceeds to set

appropriate flags. These flags are then sent across to the DNNs during the next cycle of data

transfer.

In the case of AFDIA, the process is similar to that of the SFDIA, except that once the

error metrics are computed within the MNN and error flags are set or not set, this data is sent

back to the AVDS environment. During the next cycle, AVDS checks the flags to determine if a

failure has been declared and takes appropriate actions, based on the status of the flags.

Figure 5-9 shows the detailed working of the communication scheme between the Matlab

GUI, the Master node on the cluster and the AVDS environments for the parallel implementation

of the SFDIA and AFDIA schemes. Figure 5-10 shows the communication scheme between the

Matlab GUI, the Master node on the cluster and the AVDS environments for the sequential

training implementation of the NNs for SFDIA purposes.

 54

Initialize client side socket
Send INIT flag to server
side socket under Linux

Wait for Ack

Recv Ack
Send Network & Sim

parameters
Wait for Ack

Recv Ack
Close client side socket

Init server side socket
Wait for INIT flag from

Matlab

Initialize client side socket
Send INIT flag to server
side socket under Linux

Wait for Ack

Recv Network & Sim
parameters

End of simulation
Close client side socket

Recv INIT from Matlab
Send Ack

Recv Network & Sim
parameters

Send Ack to Matlab

Recv INIT from AVDS
Send Ack

Send Sim & Network
parameters

Recv Data from AVDS

Send data to all Slave
Nodes

End of sim
Close server side socket

Close MPI communication

Start simulation
Start data transfer

Node #2
Recv data from Master

Node #3
Recv data from Master

Node #7
Recv data from Master

Node #2
Close MPI communication

Node #3
Close MPI communication

Node #7
Close MPI communication

Matlab
Client side Socket

Linux
Server side socket

AVDS
Client side Socket

BSD Socket
communication

BSD Socket
communication

MPI
communication

MPI
communication

Recv data from all Slave
Nodes

AFDIA PROCESS

Figure 5-9 : Details of Matlab-Master Node-AVDS communication scheme

 55

AVDS

MNN

p-DNN

q-DNN

r-DNN

BSD Sockets

Output

Direction of
Program Execution

Flow

Standalone
PC

MATLAB
GUI

Initialization

BSD Sockets

Figure 5-10 : Sequential Implementation of Adaptive Flight Control System Schemes

 56

5.4 Modeling of Parallelization

Parallelization of a sequential algorithm conveys different meanings under different

contexts and cannot be generalized to apply for all contexts. The goals of parallelization differ

from each application and so, different criteria should be used as yardsticks for interpreting the

results of parallelization.

Within this research effort, the goal is to provide a proof of concept implementation of a

parallel distributed computation and control environment for the purpose of realizing a fault

tolerant flight control system. This fault tolerance is geared towards detecting, identifying and

accommodating for failures on systems of sensors without physical redundancy and failures on

the control surfaces of an aircraft. Towards this goal, a Beowulf cluster based parallel computing

environment was built from COTS components. Figure 5-10 gives the logical execution order of

a sequential implementation of the fault tolerant flight control scheme on a single node.

The first stage within this sequential implementation is the initialization of the NN

structures with the data from the Matlab GUI. Once the initialization parameters are received

from the Matlab environment, and the NNs initialized, the node then waits for the AVDS

simulation environment to start and initialize its client side sockets. The AVDS environment is

setup in such a way that it does not transmit data back to the master node until the aircraft is

above an altitude of 3000 feet. Once the aircraft breaches the 3000 ft barrier, it starts to send

frames of data back to the master node.

If TMNN, TPDNN, TQDNN and TRDNN are the times of execution of the MNN, PDNN, QDNN

and the RDNN respectively, then the total time that it takes to go through one cycle of execution

of the forward and backward paths of the NNs is the sum of all the individual execution times. If

xt is a time measure of uncertainties and jitter involved in the transfer of data to and from main

memory, the time taken for startup and other operations, and 1t is the time taken for the socket

communication between AVDS and the master node, then the total time taken for one cycle of

the sequential implementation can be given by

1s MNN PDNN QDNN RDNN ERR xT t T T T T T t= + + + + + + Eq. 5.1

 57

Recv INIT Parameters from MATLAB
Node1

- Create and Initialize MNN
 - Create and Initialize PDNN
 - Create and Initialize QDNN
 - Create and Initialize RDNN

END OF INITIALIZATION. WAIT FOR DATA FROM AVDS

AVDS DATA

GET DATA FROM AVDS

SOCKET COMM.

LOAD MNN DATA
PERFORM MNN FORWARD PATH

LOAD MNN DESIRED DATA
PERFORM BACKWARD PATH

SLIDE TIME WINDOW

LOAD PDNN DATA
PERFORM PDNN FORWARD PATH

LOAD PDNN DESIRED DATA
PERFORM BACKWARD PATH

SLIDE TIME WINDOW

LOAD RDNN DATA
PERFORM RDNN FORWARD PATH

LOAD RDNN DESIRED DATA
PERFORM BACKWARD PATH

SLIDE TIME WINDOW

LOAD QDNN DATA
PERFORM QDNN FORWARD PATH

LOAD QDNN DESIRED DATA
PERFORM BACKWARD PATH

SLIDE TIME WINDOW

COMPUTE TRAINING ERRORS
FOR ALL NETWORKS

K = K+ 1

Figure 5-11 : Sequential Algorithm

 58

Consider the parallel implementation of the SFDIA algorithm. The communication

sequence and the order of execution of the NN structures MNN, PDNN, QDNN and the RDNN

is shown in Figure 5-11.

AVDS

MNN
Node1

Matlab

RDNNQDNNPDNN

MNN
Node1

RDNNQDNNPDNN

LOAD MNN DATA

FORWARD PATH

LOAD DESIRED VALUES

BACKWARD PATH

SLIDING TIME WINDOW

LOAD MNN DATA

FORWARD PATH

LOAD DESIRED VALUES

BACKWARD PATH

SLIDING TIME WINDOW

LOAD MNN DATA

FORWARD PATH

LOAD DESIRED VALUES

BACKWARD PATH

SLIDING TIME WINDOW

LOAD MNN DATA

FORWARD PATH

LOAD DESIRED VALUES

BACKWARD PATH

SLIDING TIME WINDOW

RECEIVE DATA FROM
PDNN -> QDNN -> RDNN

Compute Error Metrics

r pt rqt r rt
Mt

Pt Qt Rt

K = K + 1

INITIALIZATION PHASE

Figure 5-12 : Parallel Implementation Timing Chart

 59

In the following analysis, designating 1t to be the time taken for socket communication

between the AVDS environment and the main node on the Beowulf cluster, , , ,M P Q Rt t t t to be

the time taken by the MNN, PDNN QDNN and the RDNN to complete one cycle of learning and

, ,
p q rr r rt t t the time taken for the MPI based communication between the master node and the

slave nodes on the cluster, we can derive an expression for the maximum time that it would take

to complete one cycle of training for all the networks in the cluster. To begin the analysis,

consider communication between the MNN and the PDNN only, the MNN will have the roll rate

estimate data from PDNN after either
pM rt t+ or

pP rt t+ . Depending on whether the MNN

finished computation earlier than the PDNN or PDNN finishes its computation earlier, the latest

time at which MNN will have the data from PDNN can be given as

max(,)
p pM r P rt t t t+ + Eq. 5.2

Now considering three networks, MNN, PDNN and the QDNN, the MNN will have the

roll rate estimate data from PDNN and pitch rate estimate data from the QDNN after either

p qM r rt t t+ + or
p qP r rt t t+ + or

qQ rt t+ , depending on which of the three processes finish their

computation earliest. Thus the latest time that the MNN will have the data from all the PDNN

and the QDNN can be given as

max(, ,)
p q p q qM r r P r r Q rt t t t t t t t+ + + + + Eq. 5.3

Similarly, considering all the four networks MNN, PDNN< QDNN and the RDNN, the

MNN will have the roll rate estimate data from PDNN, pitch rate estimate data from the QDNN

and the yaw rate estimate data from the RDNN after either
p q rM r r rt t t t+ + + or

p q rP r r rt t t t+ + + or

q rQ r rt t t+ + or
rR rt t+ . Thus the latest time that the MNN will have the data from all the three

DNNs can be given as

max(, , ,)
p q r p q r q r rM r r r P r r r Q r r R rt t t t t t t t t t t t t+ + + + + + + + + Eq. 5.4

And the total time for the parallel implementation to complete one cycle of learning can

be given as

1 max(, , ,)
p q r p q r q r r

MNN PDNN QDNN RDNN

P M r r r P r r r Q r r R r

x x x x

T t t t t t t t t t t t t t t

t t t t

= + + + + + + + + + +

+ + + +
 Eq. 5.5

 60

Since both the sequential and parallel implementations of the algorithms wait for the data

to arrive from AVDS, we can safely remove that wait time from the total time taken by both

implementations.

s MNN PDNN QDNN RDNN ERR xT T T T T T t= + + + + + Eq. 5.6

max(, , ,)
p q r p q r q r r

MNN PDNN QDNN RDNN

P M r r r P r r r Q r r R r

x x x x

T t t t t t t t t t t t t t

t t t t

= + + + + + + + + +

+ + + +
 Eq. 5.7

Thus, the speedup that can be achieved by the parallel implementation of the sequential

algorithm can be expressed as

s

P

T
S

T
= Eq. 5.6

Since the parallel implementation of the fault tolerant flight control schemes for SFDIA

and AFDIA purposes are set to run a predefined frequency of 30 Hz and since data

synchronization is absolutely important, blocking calls for Send and Receive operations are used.

From experimental data, the average time taken for the completion of one cycle of

learning for the sequential implementation is 0.0258 s. the average time for the completion of

one cycle of learning for the parallel implementation is also 0.0258 s. Thus, the speedup is given

by S = 1. Figure 5-12 gives a comparison of the execution times for the sequential and parallel

implementations of the training cycle of four NNs, namely the MNN, PDNN, QDNN and the

RDNN. Within this research work, the timing directives used to measure the time taken to

comple one cycle of NN training for the sequential and parallel implementations included the

time that the MNN waits to receive the frame of data from AVDS. This influences the timing

profile of both the sequential and parallel implementations, leading to similar execution times for

the sequential and parallel implementations.

 61

Figure 5-13 : Execution times for Sequential and Parallel Implementations

 62

Chapter 6 - Sensor and Actuator Failure Detection Identification

and Accommodation

The main objectives of this research are the design and simulation of adaptive flight

control schemes for the purposes of Sensor Failure Detection Identification and Accommodation

(SFDIA) and Actuator Failure Detection Identification and Accommodation (AFDIA) on a

distributed computational architecture. As previously mentioned in Chapter 1, this research effort

is divided into different phases, with incremental goals in each phase, leading to the

implementations of the SFDIA and AFDIA schemes on the distributed computational platform.

This chapter discusses the structure of the SFDIA and AFDIA algorithms, their

implementations and the results from the on-line simulation tests.

As mentioned in Chapter 4, the MLP neural network architecture is used along with the

EBPA as the training algorithm as the adaptive component of the fault tolerant flight control

scheme. The SFDIA scheme consists of four distinct neural networks, namely the Main Neural

Network (MNN), and three De-Centralized Neural Networks (DNNs) P-DNN, Q-DNN and R-

DNN, representing the roll, pitch and yaw gyros.

The functionalities of the networks are designed so that the Main Neural Network will

learn the time histories of pitch, roll and yaw sensors, based on sensor outputs from time instant

‘k-1’ till ‘k-l’, from sensor systems onboard the aircraft. The time interval l is the training

pattern time window and exerts a huge influence on the time needed for training the network.

The overall outputs of the network are the estimates of the roll, pitch and yaw gyros at current

time instant ‘k’. On the other hand, the De-Centralized Neural Networks would estimate the

outputs of their respective sensors at the current time instant ‘k’, based on inputs from other

sensors onboard the aircraft. The most important distinction between the MNN and the DNNs is

that the MNN uses the values of the roll, pitch and yaw gyros, albeit from previous time

instances, among others, to estimate the current values of the roll, pitch and yaw rates. The

DNNs on the other hand, DO NOT use values from the sensor they are representing, to estimate

the current outputs. For example, the Q-DNN can have any measurements from any sensor

onboard the aircraft, except the pitch rate gyro. Similarly for the roll and yaw gyros, the inputs to

the DNNs could be the measurements from any sensor onboard the aircraft, except the roll rate

and the yaw rate respectively. This ensures that spurious inputs from a failed sensor cannot pass

 63

into the network that is trying to estimate the nominal values of the corresponding sensor and

corrupt the training process, keeping it trustworthy. Failure detection and identification is

achieved by monitoring the errors in the estimates of the rate gyro outputs, generated by the

MNN and the DNNs.

6.1 Types of Sensor Failures

This scope of this research in terms of the sensors whose behavior is to be emulated by

the networks is limited to only the rate gyroscopes, namely the pitch, roll and yaw gyros that are

assumed to be without physical redundancy. The output from a typical rate gyro is given as

0(())g rRate K V t K= −

where:

(deg/ sec)Rate Angular Velocity=

((deg/ sec) /)gK is the rate gyro gain volt

0 ()K is the rate gyro offset volt

()V is the voltage offset from rate gyro Volt

The accuracy of rate gyroscopes is characterized by two parameters, namely the drift and

the scale factor. Gyroscope drift is the ability of the gyro to reference all rate measurements to

the nominal zero rate measurement [48] and appears as an additive term in the gyro output. As a

consequence, any drift from the actual value would cause the angular error to accumulate,

resulting in faulty output from the gyroscope. The scale factor describes the ability of the gyro to

accurately sense the angular velocity at different angular rates and describes the sensitivity of the

sensor in deg/sec/volts. The accuracy of this parameter directly translates into the accuracy of the

output as it is used to convert the voltage output from the gyro into angular rate. If system

imperfections are present, it can result in variations of the scale factor and these variations would

appear as errors in the calibration of the output voltage versus the angular rate.

From the above descriptions, the generic sensor failures can be modeled as

1. Additive sensor failure: In this type of failure, a constant value appears as a bias in

the nominal sensor output and case can be modeled as , ,failure i nom i iX X nρ= + ,

where, in is the direction vector of the faulty sensor and ρ is the magnitude of

the failure, positive or negative.

 64

2. Multiplicative sensor failure: This failure can be modeled by multiplying the

sensor’s nominal value by a constant factor and is given

as , ,(1)failure i i nom iX kn X= + , where k is the multiplying factor for the i th− sensor.

This multiplicative failure can be further divided into two, based on the direction

vector in as

a. Step type sensor failure, where 1in =

b. Ramp type failures, where

1
1 2

2 1

21

f
f f

f fi

f

t t
t t t

t tn

t t

−
≤ ≤ −= 

 >=

 Eq 6.1

and 1ft , 2ft are the initial and final time instants of ramp type failures.

6.2 Sensor Failure Detection Identification and Accommodation

The Sensor Failure Detection Identification and Accommodation process is described in

the following sections. During the training process, the networks produce outputs that estimate

the pitch, roll and yaw gyro measurements at the current time instant and the interconnection

weights and thresholds within the network are adjusted, as described in Chapter 4, in such a

manner as to reduce the estimation error. In the original failure detection scheme, a quadratic

parameter ()MQEE k , the sum of the squares of the difference between the outputs from the

MNN and the corresponding sensor values, is used for sensor failure detection (SFD). The

()MQEE k is given as

#
2

,
1

1
() (() ())

2

ofDNNs

i i MNN
i

MQEE k Y k O k
=

= −∑ Eq 6.2

^ ^

2 2 21
[(() ()) (() ()) (() ())]

2
MNNMNN MNNp k p k q k q k r k r k

∧
= − + − + − Eq 6.3

Under nominal operating conditions, when there is no sensor failure and the networks are

trained well, MQEE, which is a function of time, is close to zero, but when a sensor failure

occurs, the outputs from the networks differs significantly from the sensor values, resulting in

values of MQEE is significantly different from zero. Also, under nominal conditions, the

learning process is active on all the networks, including the MNN and the three DNNs. However,

 65

when the MQEE value exceeds a certain pre-defined threshold, a failure is declared, the learning

processes on all the networks is halted and subsequently, the sensor values are replaced by the

outputs from the DNNs, wherever the sensor measurements are used. This would constitute the

failure detection phase of the adaptive flight control scheme, where the occurrence of a generic

sensor failure is detected, but the actual failed sensor is not identified. The next step is the

identification of the failed sensor and can be achieved by monitoring the absolute value of the

estimation error at each DNN. If this value, at any of the DNNs, exceeds a pre-defined threshold,

the sensor failure is then identified on the corresponding sensor. The estimation error of the

DNNs is given by the following expression

^
21

() (() ())
2xDQEE k x k x k= − Eq 6.4

 where , ,x p q r=

Once a sensor failure is identified, the next step involves the accommodation process for

the failed sensor, where the output from the x-DNN is used to replace the measurement from the

faulty sensor. This output is also used as an input to the MNN and also to any other DNN using

the sensor measurement as an input. This approach of using error statistics of both the MNN and

the DNNs would reduce the rate of false alarms in the failure detection and identification process.

Along with the original scheme for fault detection, a modified scheme is proposed to

improve the detection capabilities of the system for soft failures [49]. In this modified scheme,

the quadratic estimation error MQEE used in the original scheme is replaced by a different

quadratic estimation error, given by

#
2

, ,
1

1
() (() ())

2

ofDNNs

i MNN i DNN
i

OQEE k O k O k
=

= −∑ Eq 6.5

^ ^ ^ ^ ^ ^
2 2 21

[(() ()) (() ()) (() ())]
2

MNN DNNMNN DNN MNN DNNp k p k q k q k r k r k= − + − + − Eq 6.6

The need for an error statistic different from the MQEE can be justified by an analysis of

a typical ramp type sensor failure, for example, when one of the gyros fail, the output
^

MNNx

would tend to track the corrupted sensor value since the MNN has the outputs from the failed

sensor as one of its input. As a result, the parameter MQEE does not provide accurate failure

detection, as the difference between ()x k and
^

MNNx is not significant enough to exceed the pre-

 66

defined threshold. On the other hand, the output of the x-DNN would try to track the “nominal”

value of the x-gyro, as it does not receive any measurement from the faulty sensor as an input.

This difference between the outputs of the MNN and the x-DNN would cause the parameter

OQEE to spike at the instant of failure and so can be used to detect a failure more reliable than

when using the MQEE parameter. A block diagram of the scheme is shown in Figure 6-1.

 67

Monitor MQEE, OQEE and Decentralized QEE

x-gyro fail ?
DQEEx <Thresh#1
(number of times)

Send x-DNN
estimate to flight

computer

Yes

No

MQEE >Thresh_M
or

OQEE >Thresh_O

x-DNN stops learning
send x-DNN estimate instead of x-gyro to flight

computer

DQEEx >Thresh #1
(numner of times)

or
DQEEx >Thresh #2

End of observation period
x-gyro failed !

Send x-DNN estimate to flight computer

Send x-gyro data to
flight computer

No

Yes

Negative

Yes

No

Resume x-DNN Learning
send x-gyro data to flight computer

Yes

End of observation period
Resume x-DNN learning

Send x-gyro data to flight computer

No

Sensor
Failure

Detection

Observation

Sensor
Failure

Identification

Sensor Failure
Accommodation

Figure 6-1 : Block Diagram of SFDIA Scheme

 68

6.3 Results of Offline Training for SFDIA purposes

The NNs MNN, P-DNN, Q-DNN and R-DNN were trained offline for 100 epochs, using

flight data with 5000 data points, generated at 30 Hz, from the AVDS environment. These

trained networks were then tested every 10 epochs, starting from the 50th epoch, with data that it

had not seen during its training cycle. During the training cycle, the weights and thresholds of the

networks were saved after every 10 epochs. These pre-trained network structures were then used

within the on-line Sensor Failure Detection, Identification and Accommodation scheme running

on the cluster. The following figures Figure 6-2 through Figure 6-19 are representative of the

training and testing results for the MNN. Once the training was completed, the last set of weights

and thresholds from each network was saved as the starting point for the on-line learning during

the SFDIA and AFDIA tasks.

Figure 6-2 : MNN Output, Cycle 0, Roll Rate

 69

Figure 6-3 : MNN Output, Cycle 0, Pitch Rate

Figure 6-4 : MNN Output, Cycle 0, Yaw Rate

 70

Figure 6-5 : MNN Output, Cycle 10, Roll Rate

Figure 6-6 : MNN Output, Cycle 10, Pitch Rate

 71

Figure 6-7 : MNN Output, Cycle 10, Yaw Rate

Figure 6-8 : MNN Output, Cycle 5, Roll Rate (Testing)

 72

Figure 6-9 : MNN Output, Cycle 5, Pitch Rate (Testing)

Figure 6-10 : MNN Output, Cycle 5, Yaw Rate (Testing)

 73

Figure 6-11 : MNN Output, Cycle 10, Roll Rate (Testing)

Figure 6-12 : MNN Output, Cycle 10, Pitch Rate (Testing)

 74

Figure 6-13 : MNN Output, Cycle 10, Yaw Rate (Testing)

The Decentralized Neural networks are trained and tested in a similar fashion to that of

the MNN with the same set of training data and testing data. The following figures represent the

training and testing cycle of the P-DNN, Q-DNN and the R-DNNs.

 75

Figure 6-14 : P-DNN Output, Cycle 0

Figure 6-15 : P-DNN Output, Cycle 10

 76

Figure 6-16 : P-DNN Output, Cycle 5 (Testing)

Figure 6-17 : P-DNN Output, Cycle 10 (Testing)

 77

Figure 6-18 : Q-DNN Output, Cycle 0

Figure 6-19 : Q-DNN Output, Cycle 10

 78

Figure 6-20 : Q-DNN Output, Cycle 5 (Testing)

Figure 6-21 : Q-DNN Output, Cycle 10 (Testing)

 79

Figure 6-22 : R-DNN Output, Cycle 0

Figure 6-23 : R-DNN Output, Cycle 10

 80

Figure 6-24 : R-DNN Output, Cycle 5 (Testing)

Figure 6-25 : R-DNN Output, Cycle 10 (Testing)

 81

The RMS value of the training error for the MNN outputs and the P, Q and R DNN

outputs are presented in the following tables.

Table 6-1 : Mean of Training and Testing Errors on MNN Outputs

Trial 001 Cycle 0 Cycle 5 Cycle 10

 Training Testing Training Testing Training Testing

MNN P Output (deg/s) 0.081970 no data 0.004492 0.013770 0.003696 0.012894

MNN Q Output (deg/s) 0.053757 no data 0.004127 0.024169 0.003774 0.023323

MNN R Output (deg/s) 0.025208 no data 0.008697 0.009485 0.000000 0.008345

Table 6-2 : Mean of Training and Testing Errors on P-DNN Output

Trial 001 Cycle 0 Cycle 5 Cycle 10

 Training Testing Training Testing Training Testing

P-DNN P Output (deg/s) 0.070769 no data 0.007452 0.032378 0.019894 0.031356

Table 6-3 : Mean of Training and Testing Errors on Q-DNN Output

Trial 001 Cycle 0 Cycle 5 Cycle 10

 Training Testing Training Testing Training Testing

Q-DNN Q Output (deg/s) 0.038386 no data 0.11570 0.050728 0.11491 0.043032

Table 6-4 : Mean of Training and Testing Error on R-DNN Output

Trial 001 Cycle 0 Cycle 5 Cycle 10

 Training Testing Training Testing Training Testing

R-DNN R Output (deg/s) 0.021021 no data 0.007625 0.010511 0.007132 0.010215

6.4 SFDIA On-line Simulation and Implementation Results

For the purpose of Sensor Failure Detection, Identification and Accommodation, the

MNN, P-DNN, Q-DNN and R-DNN were trained with offline data from the AVDS environment

followed by the on-line simulation. The structures of the NNs used in this task are listed in the

table. As described earlier, the initial settings for the neural network structures are derived from

 82

the offline training process. Using the Matlab GUI, parameters describing the failed gyro, the

time of failure and the type of failure were set. Within this study, the failures on the gyros were

restricted to step type failures of a small (4 deg/s) and large (8 deg/s) bias amplitude. The

following table gives a listing of the structure of the NNs used for this study.

Table 6-5 : Structures of NN for SFDIA

Network No. of Inputs TW ILN HLN Outputs LR MR

MNN 8 5 40 25 3 0.05 0.00

P-DNN 6 3 18 18 1 0.05 0.005

Q-DNN 4 5 20 20 1 0.1 0.00

R-DNN 5 4 20 25 1 0.075 0.005

Once the parameters of the SFDIA procedure were set using the Matlab GUI, they were

sent across the socket communication channel to the main node on the Beowulf cluster. When

the main node receives the simulation parameters data, it distributes the same to all the compute

nodes on the cluster. As described in section 5.3, once this process is complete, the main node

waits for the initialization string from AVDS. Once initialization string from AVDS is received,

the main node sends the task identification number and the total time of simulation across to

AVDS and then waits for the “pilot” to fly the aircraft. Within AVDS, once the task

identification number and the total time of simulation are received, the “pilot” takes off and

climbs to an altitude over 3000 ft. once the aircraft breaches the 3000 ft barrier, AVDS starts its

one-way communication with the main node and sends sensor data at a rate of 30 Hz. Within the

main node, once the data is received from AVDS, it is distributed across the compute nodes to

generate the estimates of the roll, pitch and yaw rates. These estimates are then sent back to the

main node where the error metrics are computed and stored. Once the time of failure is reached,

these error metrics are then used to check for failures on roll rate gyro, pitch rate gyro and the

yaw rate gyros. If a failure is detected on any of the gyros, then a flag indicating such an event is

set and sent as a part of the data stream to the DNNs at the next time step, indicating that a

failure had occurred at the previous step. Within the DNNs, a code segment checks for the status

of these specific flags to determine if the MNN had declared a failure on their respective gyro, at

the previous time step. If the flag is set to indicate a failure, then the DNN suspends it learning

process and begins the recall process. Thus from this time forward, the output from the DNN

 83

representing the failed gyro is used as an estimate of the actual sensor measurement. This trend

can be clearly seen in the plots of the MNN output for the channel representing the failed gyro.

Figures 6-26 to 6-31 show the results from the SFDIA procedure, with a step failure of 8

deg/sec bias occurring on the Q-gyro occurring at 50 sec into the flight. The error threshold on

the MNN is exceeded at 50.066s, indicating a failure on the sensor subsystems. Subsequently,

the error on the Q-DNN exceeds its thresholds at 50.066s, identifying the failure.

Figure 6-26 : Error Thresholds for Failure on Q (8 deg/s Bias)

 84

Figure 6-27 : MNN Outputs for Failure on Q (8 deg/s Bias)

Figure 6-28 : DNN Outputs for Failure on Q (8 deg/s Bias)

 85

Figure 6-29 : Velocity, Alpha, and Beta

Figure 6-30 : Euler Angles

 86

Figure 6-31 : Control Surface Deflections

Figures 6-32 to 6-37 show the results from the SFDIA procedure, with a step failure of 8

deg/sec bias occurring on the R-gyro occurring at 50 sec into the flight. The error threshold on

the MNN is exceeded at 50.066s, indicating a failure on the sensor subsystems. Subsequently,

the error on the R-DNN exceeds its thresholds at 50.066s, identifying the failure.

 87

Figure 6-32 : Error Thresholds for Failure on R (8 deg/s Bias)

Figure 6-33 : MNN Outputs for Failure on R (8 deg/s Bias)

 88

Figure 6-34 : DNN Outputs for Failure on R (8 deg/s Bias)

Figure 6-35 : Velocity, Alpha and Beta

 89

Figure 6-36 : Euler Angles

Figure 6-37 : Control Surface Deflections

 90

Figures 6-38 to 6-43 show the results from the SFDIA procedure, with a step failure of 8

deg/sec bias occurring on the P-gyro occurring at 50 sec into the flight. The error threshold on

the MNN is exceeded at 50.066s, indicating a failure on the sensor subsystems. Subsequently,

the error on the P-DNN exceeds its thresholds at 50.066s, identifying the failure.

Figure 6-38 : Error Thresholds for Failure on P (8 deg/s Bias)

 91

Figure 6-39 : MNN Outputs for Failure on P (8 deg/s Bias)

Figure 6-40 : DNN Outputs for Failure on P (8 deg/s Bias)

 92

Figure 6-41 : Velocity, Alpha and Beta

Figure 6-42 : Euler Angles

 93

Figure 6-43 : Control Surface Deflections

 94

The following table presents the results of post failure analysis of the estimation errors of

the MNN as well as the DNNs for small and large failures on the three gyros. The results are

tabulated from three runs of the failure scenarios.

Table 6-6 : Post Failure Estimation Error Analysis for MNN and DNNs

Failed

Gyro

Magnitude

 MNN (P) MNN (Q) MNN (R) P -DNN Q - DNN R – DNN

 Mean

(deg/s)

Std

(deg/s)

Mean

(deg/s)

Std

(deg/s)

Mean

(deg/s)

Std

(deg/s)

Mean

(deg/s)

Std

(deg/s)

Mean

(deg/s)

Std

(deg/s)

Mean

(deg/s)

Std

(deg/s)

1 0.0025 0.1485 -0.2996 2.4389

2 0.0031 0.2408 -0.3938 3.9541 Small

3 0.0030 0.2710 -0.0820 3.0787

1 0.005 0.2851 -0.2491 2.5425

2 0.0052 0.3011 0.4324 5.3915

P

Large

3 0.0054 0.1741 -0.5300 2.8449

1 0 0.4840 -1.0572 1.9829

2 0 0.6407 -1.3475 1.1470 Small

3 -0.0020 0.4670 -1.4440 0.8234

1 0.0058 0.6535 -1.8091 1.5893

2 -0.0011 0.4177 -2.8651 1.5451

Q

Large

3 -0.0027 0.3587 -3.6574 1.8354

1 -0.0021 0.2452 -0.4275 0.3643

2 0 0.2476 -0.5766 0.4842 Small

3 -0.0011 0.1565 -0.2128 0.2905

1 -0.0037 0.2911 -0.6409 0.5094

2 -0.0019 0.1124 -0.5555 0.1796

R

Large

3 -0.0028 0.1621 -0.7719 0.3424

The following section describes the AFDIA procedures, the setup of the simulation runs

and results from the parallel implementation of the scheme on the Beowulf cluster.

6.5 Actuator Failure Detection Identification and Accommodation

The need for an adaptive flight control scheme is perhaps more acute in the case of

actuator failure as compared to sensor failure, as it is possible to have physical redundancy for

sensors onboard the aircraft, it is not possible to have physical redundancy for the control

surfaces and the lift generating sections of an airplane. The use of neural networks for state

estimation provides an attractive option to develop an analytical control scheme that would

reconfigure the control structure of the aircraft, in the event of an actuator failure. The goals of

 95

this section of the research effort is the detection, identification and accommodation of failures

on the control surfaces of an aircraft, using NN based controllers to drive the remaining

“healthy” control surfaces. Multiple failures on control surfaces, catastrophic failures such the

loss of an entire wing or a portion of the aircraft fuselage on the aircraft structures, and failures

on the propulsion systems onboard an aircraft are not considered within this research effort.

Within the scope of this research effort, actuator failures are defined and simulated as a

drop in surface efficiency, resulting from partial loss of surface, such as a missing part of a

control surface or stuck control surfaces, or a combination of the two and are divided into four

basic configurations as:

1. Stuck Left Elevator at trim/non-trim deflection, without missing surface;

2. Stuck Left Elevator at trim/non-trim deflection, with missing surface;

3. Stuck Left Aileron at trim/non-trim deflection, without missing surface;

4. Stuck Left Aileron at trim/non-trim deflection, with missing surface.

The mathematical modeling of actuator failures in the presence of control surface loss is

derived through a set of closed form expressions for the non-dimensional stability and control

derivatives and is a function of the normal force coefficients of the control surface with the failed

actuator. These equations for longitudinal stability derivatives given below:

1,1 1,2 1,3S SR L
L L Lc K K c K c

α δ δ
= + + Eq 6.7

2,1 2,2 2,3S SR L
m L Lc K K c K c

α δ δ
= + + Eq 6.8

. 3,1 3,2 3,3S SR L
L L Lc K K c K c

δ δ
α

= + + Eq 6.9

. 4,1 4,2 4,3S SR L
m L Lc K K c K c

δ δ
α

= + + Eq 6.10

5,1 5,2 5,3q S SR L
L L Lc K K c K c

δ δ
= + + Eq 6.11

6,1 6,2 6,3q S SR L
m L Lc K K c K c

δ δ
= + + Eq 6.12

The implementation of the AFDIA scheme is similar to the SFDIA scheme and has four

distinct neural networks, namely the Main Neural Network (MNN), the pitch, roll and yaw

Neural Network Controllers (NNCs). The outputs of the MNN are the same as they are for the

SFDIA scheme and are the estimates of the outputs of the pitch, roll and yaw gyros, at a time

instant k. The outputs of the NNCs are the estimates of the control surface deflections at a time

instant k, computed from the time histories of measurements from the onboard sensors. Under

 96

nominal conditions, the controller emulates the nominal deflections of the control surfaces and

does not assume any physical meaning. However, training under nominal conditions would help

improve the transient response of the network, following an actuator failure and the subsequent

actuator failure accommodation process. The error cost function that is minimized during the

training process is given as

,,

^

()L Rnom L R
yx yJ δ δ= − , where }{ , , yawx pitch roll= , }{ , ,y Elev Ail Rud= Eq 6.13

When an actuator failure occurs, it results in a change in the aircraft trim conditions due

to changes in the aerodynamic forces and moments. Failures on the control surfaces could also

lead to a reduction in their effectiveness, especially in cases where there is a loss of surface. With

the occurrence of such failures on the aircraft control surfaces, there results a change in the

angular velocities of the aircraft, consequently inducing a noticeable change in the value of the

quadratic error parameter MQEE in the MNN. If this value exceeds a certain predefined

threshold, a failure is implied. This part constitutes the Actuator Failure Detection (AFD)

component of the fault tolerant flight control scheme. Following AFD, actuator failure

identification is achieved by observing the auto and cross correlation coefficients between the

angular rates p, q and r. In general, for two random processes, the cross correlation coefficient is

defined by

() [() ()]YXR n E Y k X k n= + Eq 6.14

The MNN monitors the error between the estimates of the roll, pitch and yaw rate gyros

and the actual measurements from the sensors themselves. If this error metric exceeds a

predefined threshold, then a flag is raised, indicating the occurrence of a possible failure. Then

MNN then examines the auto and cross correlation coefficients pqR , qrR , prR , ttR , ffR .

The most significant effect of an actuator failure is the loss of symmetry on the aircraft,

which in turn would introduce a dynamic coupling between the longitudinal and lateral

directional aircraft dynamics. This dynamic coupling would result in significant changes in the

cross-correlation functions pqR , prR , qrR and the auto correlation coefficients ttR , ffR , which can

be then used to identify the failed actuator. Once AFI is successfully determined, failure

accommodation is achieved by generating compensating control surface deflections as generated

by the individual NNCs.

In the case of the pitch NNC, an error cost function defined as:

 97

. .

1 2 3() () ()
AFAPitch ref ref refJ k q q k k q qθ θ= − + − + − Eq 6.15

where,
.

0; ; 0ref ref trim refq qθ θ= = =

is minimized in the longitudinal direction to generate the compensating Elevator deflections for

Actuator Failure Accommodation (AFA) in the longitudinal direction. At the same time,

compensating control surface deflections are generated from the roll and yaw NNC so that the

following cost functions are minimized in the lateral direction. These cost functions are defined

as:

4 5() ()
AFARoll ref refJ k p p k φ φ= − + − Eq 6.16

6 ()
AFAYaw refJ k r r= − Eq 6.17

In this research effort, the NNCs are executed in parallel on individual compute nodes on

the cluster and the compensating control surface deflections that are generated by the controllers

are sent to the MNN using the MPI directive MPI_Send. Once all the control surface deflections

are received within the MNN, it sends the same across the other socket interface to the AVDS

environment. The MNN also sends a flag indicating the detection and identification of actuator

failure along with the compensating control surface deflections. Code segments within the

AVDS environment read the status of these flags to determine if the control surface deflections

that are used in the dynamic simulation are to be from the pilot stick inputs or from the

controllers.

Within this research effort, the structure of the AFDIA scheme is built in such a way that

once actuator failures are detected and identified, the outputs from the controller takes over the

control of the aircraft and the pilot input is completely cut off. Improvements to this setup could

be to make use of a combination of the surface deflection commands from the pilot as well as the

commands from controller outputs.

The block diagram of the AFDIA scheme is shown in Figure 5.2

 98

Flight Control System
Sensors Data

Systolic
Memory

Locations
'k-1' to 'k-m'

MNN
for AFD

Systolic
Memory

Locations
'k-1' to 'k-N'

+
-

MQEE > Thresh_M

No

Update
Rpq(k),Rpr(k), Rqr(k)
Rrr(k), Rtt(k), Rff(k)

Update Sum
|Rpq(k)|,|Rpr(k)|, |Rqr(k)|,
|Rrr(k)|, |Rtt(k)|, |Rff(k)|

Rpq,Rpr,Rrq,Rrr, Rtt, Rff
threshold analysis

Actuator Failure Identification through
|Rpq(k)|,|Rpr(k)|, |Rqr(k)|, |Rrr(k)|,

|Rtt(k)|,|Rff(k)|

Actuator Failure Accommodation
using p-NNC,q-NNC,r-NNC

Yes

MNN Inputs

Measurements of
'p','q','r' at time 'k'

Estimates of 'p','q','r'
at time 'k'

k=k+1

Exceed Threshold?

Yes

Nok=k+1

Figure 6-44 : Block Diagram of the AFDIA Scheme

6.6 AFDIA On-line Simulation and Implementation Results

Similar to the procedure followed for the SFDIA purposes, the networks representing the

controllers were trained offline. The NNs ROLL-NNC, PITCH-NNC and YAW-NNC were

trained offline for 100 epochs, using flight data with 5000 data points, generated at 30 Hz, from

the AVDS environment. These trained networks were then tested every 10 epochs, starting from

 99

the 50th epoch, with data that it had not seen during its training cycle. During the training cycle,

the weights and thresholds of the networks were saved after every 10 epochs. The offline training

for the neural network controllers was primarily used to narrow down the structure of the

networks, particularly with regard to the inputs, the history time window, the number of hidden

layer neurons, and the learning and momentum rates. Unlike the SFDIA procedure, these pre-

trained networks were not used within the AFDIA scheme. With respect to the MNN, the

previously trained network structure for the SFDIA procedure was used as the baseline network

architecture for the on-line implementation of the AFDIA process. The following table gives a

listing of the structure of the NNs used for the purpose of actuator failure detection,

identification, and accommodation.

Table 6-7 : Structures of NN for AFDIA

Network
No. of

Inputs

TW
ILN HLN Outputs LR MR

MNN 8 5 40 25 3 0.05 0.005

Roll NNC 5 3 15 12 1 0.1 0.005

Pitch-NNC 3 2 6 20 1 0.1 0.005

Yaw-NNC 5 3 15 20 1 0.1 0.005

Similar to the setup procedure for SFDIA, once the parameters of the AFDIA procedure

were set using the Matlab GUI, they were sent across the socket communication channel to the

main node on the Beowulf cluster. The parameters include the surface that is scheduled to fail,

the time at which the failure is supposed to occur, the magnitude of failure and the resulting

effectiveness of the surface that failed. When the main node receives the simulation parameters

data, it distributes the same to all the compute nodes on the cluster. As described in section 5.3,

once this process is complete, the main node waits for the initialization string from AVDS. Once

initialization string from AVDS is received, the main node sends the task identification number,

the total time of simulation, and the failure specifications across to AVDS and then waits for the

“pilot” to start flying the aircraft. Within AVDS, once the task identification number and the

total time of simulation are received, the “pilot” takes off and climbs to an altitude over 3000 ft.

once the aircraft breaches the 3000 ft barrier, AVDS starts its two-way communication with the

main node and sends sensor data at a rate of 30 Hz. Within the main node, once the data is

 100

received from AVDS, it is distributed across the compute nodes to generate the estimates of the

roll, pitch and yaw rates. These estimates are then sent back to the main node where the error

metrics are computed and stored. Once the time of failure is reached, within the AVDS

environment, failure is injected on the selected surface. After this instant, the failed stops

receiving its input from the pilot stick, and stays fixed at the set position. On the other hand, all

the other surfaces continue to receive their inputs form the pilot stick. The aircraft dynamics are

simulated under this configuration until a failure is declared by the MNN, on the main node. On

the main node, once the failure time is reached, the MNN begins checking these error metrics for

failures.

When an actuator failure occurs, it generates noticeable changes in the aircraft trim

conditions a well as the aerodynamic forces and moments acting on the aircraft. This typically

leads to coupling between the lateral directional dynamics and the longitudinal directional

dynamics. This coupling can be seen in the output generated by the MNN. After the time of

failure is reached, the MNN begins checking the error metrics. When a predefined threshold on

the MNN error metrics exceeds a certain value, a failure condition is declared. Once a failure

condition is declared, the next step is the identification, which is done by monitoring the auto

correlation coefficients Rtt and Rff. if the thresholds on these coefficients are exceeded, and then

the appropriate failure is identified as either failure on the Elevators or Failures on the Ailerons.

Following failure detection and identification, a flag indicating such an event is set and sent as a

part of the data stream to the NNCs at the next time step, indicating that a failure had occurred at

the previous step. Once the MNN completes this section of its task, it sends a vector of 6

elements, ordered as the Pitch-NNC outputs for the elevator deflection in the first two elements,

the Roll-NNC outputs for the aileron deflection in the next two elements, the Yaw-NNC output

for the rudder deflection as the fifth element and a flag indicating the detection and identification

of an actuator failure as the sixth element across the socket to the AVDS environment. At each

time step, within the NNCs, a code segment checks for the status of the failure flag to determine

if the MNN had declared a failure on any control surface, at the previous time step. If the flag is

set to indicate a failure, then the NNCs switch their failure mode error generation configuration.

Unlike the case of SFDIA, the learning of the NNCs is not suspended and continues to generate

the compensating control surface deflections according to the error formulation. Now, within the

AVDS environment, another segment of code checks the vector of data that it received from the

 101

MNN at the previous time step to see if the MNN declared a failure. If the MNN had declared a

failure, then the code segment accordingly switches to the outputs of the controller as the control

surface deflection inputs to the aircraft dynamics.

Once the failure on the control surface is declared and identified, controller takes total

authority of the aircraft and attempts to stabilize the aircraft with the help of the remainder of the

healthy control surfaces. In this setup for this research study, the pilot is totally removed from the

loop.

Within this research effort, as mentioned earlier, failures on only the Elevators and the

Ailerons were considered. Simulations were run on the cluster and the results from the

simulations are tabulated below. The following failure scenarios on the left elevator scenarios

were considered.

• 5 deg failure on Left Elevator, with 50% reduction in efficiency, at 50 sec.

• 5 deg failure on Left Elevator, with 100% reduction in efficiency, at 50 sec.

• 15 deg failure on Left Elevator, with 50% reduction in efficiency, at 50 sec.

• 15 deg failure on Left Elevator, with 100% reduction in efficiency, at 50 sec.

• 0 deg failure on Left Elevator, with 50% reduction in efficiency, at 50 sec.

• 0 deg failure on Left Elevator, with 100% reduction in efficiency, at 50 sec.

On the Left Aileron, the following failures were considered

• 5 deg failure on Left Aileron, with 50% reduction in efficiency, at 50 sec.

• 5 deg failure on Left Aileron, with 0% reduction in efficiency, at 50 sec.

• 15 deg failure on Left Aileron, with 50% reduction in efficiency, at 50 sec.

• 15 deg failure on Left Aileron, with 0% reduction in efficiency, at 50 sec.

• 0 deg failure on Left Aileron, with 50% reduction in efficiency, at 50 sec.

• 0 deg failure on Left Aileron, with 0% reduction in efficiency, at 50 sec.

The results of parallel AFDIA implementation on the cluster can be tabulated as follows.

 102

Table 6-8 : Results of Failure Detection and Identification on Left Elevator and Aileron

Scenario

Elev (L) Ail (L)

Main error threshold

exceeded at

Autocorrelation

threshold exceeded at
Failure Identification

5 deg, 50% 50.133 s 51.866 s Yes

5 deg, 100% 50.125 s 50.00 s -

15 deg, 50% 50.172 s 54.910 s Yes

15 deg, 100% 50.1 s 51.3 Yes

0 deg, 50% 50.133 s 59.133 s Yes

0 deg, 100%

 5 deg, 50% 50.066 s 53.7 s Yes

 5 deg, 0% 50.066 s 51.5 s Yes

 10 deg, 50% 50.066 s 51.766 s Yes

 10 deg, 0% No data No data No data

 0 deg, 50% 50.078 s - No

 0 deg, 0% 50.133 s - No

Statistical analysis was performed on the flight data sets from the simulation environment

to determine the Receiver Operating Characteristic (ROC) curve, to achieve a good trade off

between true positive rates and false positive rates while detecting the presence of actuator

failures. A 2x2 table representing the true and false positives and negatives, used to determine

the ROC curves is shown below in Table 6-9.

Table 6-9 : 2 by 2 Table for Determining Failure Detection Rates

 Failure Present Failure Absent

Failure Detected True Positive False Positive

Failure Not Detected False Negative True Negative

The corresponding ROC curves for failure detection on the Left Aileron and the Left

Elevator are shown in the following figures.

 103

Figure 6-45 : ROC Curve for Aileron Failure

Figure 6-46 : ROC Curve for Elevator Failure

The following table presents the results of post failure analysis of the tracking errors of

the controller for failures on the Ailerons and Elevator. The results are tabulated from three runs

of the failure scenarios.

 104

Table 6-10 : Post Failure Tracking Error Analysis for Failures on Left Elevator and Aileron

Failed Surface Failure Magnitude

(deg)

 P (deg/s) Q (deg/s) R (deg/s)

 Eff. Mean Std Mean Std Mean Std

50% -0.0425 0.2623 0.0359 0.4536 -0.0621 0.1295
0

100% 0.0068 0.2683 0.0208 0.9440 -0.0416 0.1215

50% -0.0071 0.2053 -0.0173 0.4133 0.0303 0.1328
5

100% NA NA NA NA NA NA

50% -0.0035 0.1763 0.0161 0.3372 -0.0882 0.0925

Left Elevator

15
100% 0.0039 0.2735 0.0382 0.6991 -0.0393 0.1176

50% NA NA NA NA NA NA
0

0% NA NA NA NA NA NA

50% -0.0336 2.6439 0.3099 0.6814 0.3204 0.6442
5

0% 5.1164 10.2927 0.7769 2.0945 0.1052 0.7835

50% 4.9556 10.0559 1.1856 3.4311 0.5455 0.7988

Left Aileron

10
0% No data No data No data No data No data No data

 105

The following figures 6-45 to 6-50 represent the results of Actuator Failure detection,

Identification and Accommodation on the Left Elevator for a 5 deg failure with 50% reduction in

the efficiency of the failed surface. The error threshold on the MNN is exceeded at 50.133s,

indicating a failure on the sensor subsystems. Subsequently, the error on the Rtt exceeds its

thresholds at 51.866s, identifying the failure.

Figure 6-47 : Error Thresholds for Failure on Left Elevator (5 deg, 50% eff.)

 106

Figure 6-48 : Control Surface Deflections, Failure on Left Elevator (5 deg, 50% eff.)

Figure 6-49 : Angular Rates of the Aircraft, for Failure on Left Elevator (5 deg, 50% eff.)

 107

Figure 6-50 : Euler Angles, for Failure on Left Elevator (5 deg, 50% eff.)

Figure 6-51 : Euler Angles, for Failure on Left Elevator (5 deg, 50% eff.)

 108

Figure 6-52 : MNN Outputs, for Failure on Left Elevator (5 deg, 50% eff.)

The following figures 6-51 to 6-56 represent the results of Actuator Failure detection,

Identification and Accommodation on the Left Elevator for a 0 deg failure with 50% reduction in

the efficiency of the failed surface. The error threshold on the MNN is exceeded at 50.133s,

indicating a failure on the actuators. Subsequently, the error on the Rtt exceeds its thresholds at

59.133s, identifying the nature of the failure in terms of the failed surface.

 109

Figure 6-53 : Error Thresholds for Failure on Left Elevator (0 deg, 50 % eff.)

Figure 6-54 : Control Surface Deflections, for Failure on Left Elevator (0 deg, 50 % eff.)

 110

Figure 6-55 : Aircraft Angular rates, for Failure on Left Elevator (0 deg, 50 % eff.)

Figure 6-56 : Euler Angles, for Failure on Left Elevator (0 deg, 50 % eff.)

 111

Figure 6-57 : Velocity, Alpha and Beta, for Failure on Left Elevator (0 deg, 50 % eff.)

Figure 6-58 : MNN Outputs, for Failure on Left Elevator (0 deg, 50 % eff.)

 112

The following figures 6-57 to 6-62 represent the results of Actuator Failure Detection,

Identification and Accommodation on the Left Aileron for a 5 deg failure with 50% reduction in

the efficiency of the failed surface. The error threshold on the MNN is exceeded at 50.066s,

indicating a failure on the actuators. Subsequently, the error on the Rff exceeds its thresholds at

53.7s, identifying the failure.

Figure 6-59 : Error Thresholds for Failure on Left Aileron (5 deg, 50% eff.)

 113

Figure 6-60 : Control Surface Deflection, for Failure on Left Aileron (5 deg, 50% eff.)

Figure 6-61 : Aircraft Angular Rates, for Failure on Left Aileron (5 deg, 50% eff.)

 114

Figure 6-62 : Euler Angles, for Failure on Left Aileron (5 deg, 50% eff.)

Figure 6-63 : Velocity, Alpha and Beta, for Failure on Left Aileron (5 deg, 50% eff.)

 115

Figure 6-64 : MNN Outputs, for Failure on Left Aileron (5 deg, 50% eff.)

The following figures 6-63 to 6-68 represent the results of Actuator Failure detection,

Identification and Accommodation on the Left Aileron for a 0 deg failure with 50% reduction in

the efficiency of the failed surface. The error threshold on the MNN is exceeded at 50.078s,

indicating a failure on the sensor subsystems. Although the error threshold on the MNN exceeds

its threshold, the failure is not identified in this case as the auto correlation coefficient Rff stays

within its threshold. This could be the result of the nature of the failure on the aileron, with the

aileron stuck at 0 degrees and with only a 50% loss in efficiency.

 116

Figure 6-65 : Error Thresholds, for Failure on Left Aileron (0 deg, 50 % eff.)

Figure 6-66 : Control Surface Deflection, for Failure on Left Aileron (0 deg, 50 % eff.)

 117

Figure 6-67 : Aircraft Angular rates, for Failure on Left Aileron (0 deg, 50 % eff.)

Figure 6-68 : Euler Angles, for Failure on Left Aileron (0 deg, 50 % eff.)

 118

Figure 6-69 : Velocity, Alpha and Beta, for Failure on Left Aileron (0 deg, 50 % eff.)

Figure 6-70 : MNN Outputs, for Failure on Left Aileron (0 deg, 50 % eff.)

 119

Chapter 7 - Conclusions and Recommendations

This research effort addresses the design and development of an adaptive flight control

scheme to recover an aircraft from failures to its sensor systems and perform the sensor failure

detection, identification and accommodation (SFDIA) and its actuators and perform the actuator

failure detection, identification and accommodation (AFDIA). The fault tolerant flight control

schemes are based on a set of neural network structures named as the Main Neural Network, and

Decentralized Neural Network and Neural Network Controller. For the purpose of SFDIA, a

combination of the MNN and three DNNs called the P-DNN, Q-DNN and the R-DNN are used.

The P, Q, and R DNNs are designed to estimate the outputs of the roll, pitch and yaw gyros at

time instant ‘k’, based on inputs from sensor systems onboard the aircraft from time instant ‘k-1’

till ‘k-l’. The restriction on the DNNs is that the P-DNN cannot have the roll rate as its input, the

Q-DNN cannot have the pitch rate as its input and the R-DNN cannot have the yaw rate as its

input. This is done primarily to ensure that the outputs from these networks are not tainted by

any failures on the rate gyros and thus can be relied upon to provide good estimates of the rates

in case of failures on the gyros. The MNN generates the estimates of the three gyros at time ‘k’

based on inputs from the sensor system from time ‘k-1’ to ‘k-l’. The MNN does not have any

restrictions on the use of the rate gyro measurements to estimate the current values. A quadratic

error parameter, MQEE which is the sum of the squares of the error in the rate estimates from the

MNN and the DNNs is used for the detection of failures on the gyros. Step type failures of two

different magnitudes were introduced on the rate gyros to evaluate the sensor failure detection,

identification and accommodation scheme. Upon the introduction of the failures on the sensor

outputs, the error metric MQEE showed a sudden spike indicating a failure on one of the sensor

systems, while the DQEE parameter, which is the square of the estimation error on each of the

individual DNNs provided the failure identification. Step type failures of 4 deg/s and 8 deg/s

were successfully injected on the sensors, and subsequently detected and identified successfully

on the distributed computational platform.

Although accommodating for sensor failures are important in flight control systems, it

takes a lower priority when compared to the accommodation for failures to the actuator systems

onboard the aircraft. On the other hand, if the outputs from the rate gyros without physical

redundancy are used in closed loop flight control laws, identifying and accommodating for

 120

failures on the gyros becomes as important as accommodating for on-board actuator failures.

Within the scope of this research study, actuator failures refer to failures to the control surfaces

on board the aircraft, especially the left elevator and the left aileron. Failures refer to the

situations in which these control surfaces are locked at a given position, with or without the

added effect of a loss of surface. Such failure conditions introduce a significant coupling of

lateral and longitudinal directional dynamics on the aircraft. The AFDIA scheme is designed

along the lines of the SFDIA scheme, with the MNN and three Neural Network Controllers,

namely the Roll-NNC, Pitch-NNC and the Yaw-NNC. As with the SFDIA scheme, the MNN is

designed to estimate the values of the pitch, roll and yaw rate gyros at time ‘k’, based on inputs

from time ‘k-1’ till ‘k-l’. the NNCs on the other hand provide the estimates of the control surface

deflections at time ‘k’, based on inputs from the sensor systems from time ‘k-1’ till ‘k-l’. Once

failure is detected and identified, the controller takes over the “flying” of the aircraft and restores

it to equilibrium conditions.

Within the goals of this research effort was the design of an interface between the neural

network based fault tolerant flight control schemes and a simulation/visualization environment.

AVDS was chosen as the simulation/visualization environment mainly due to previous

experience in using the commercially available software package among members of Dr.

Marcello Napolitano’s research group and the fact that AVDS allows the user to customize its

code to suit their needs. Towards achieving the goal of interfacing this environment with the

fault tolerant flight control schemes, a TCP/IP socket based communication and data transfer

scheme was designed and successfully implemented. The scheme is based on the client-server

model, with the AVDS environment acting as the client side socket.

Another important phase of this research effort was the successful design and

development of a Matlab based GUI tool that would enable the user to interactively set the

parameters to define the simulation tasks. This GUI tool provides the user with flexibility to

change the structure of the NNs that are used within the fault tolerant flight control schemes.

With the help of this tool, the user can change the inputs to the NN structure, the time history

window of the inputs, the number of hidden layer neurons, and the learning and momentum rates

for the interconnection weights between the nodes of the fully connected NN and the thresholds

at each node. This tool also deploys a client side TCP/IP socket that is later used to transfer the

simulation parameters to the master node on the cluster.

 121

The typical implementations of flight control schemes are on standalone computational

platforms. One of the goals of this research effort was the development of a distributed

computing platform that would enable the fault tolerant flight control schemes to be executed in

parallel. This goal was successfully realized and a Beowulf cluster was built with 7 compute

nodes, nodes1-7 from COTS components. All the compute nodes on the cluster were running the

Linux operating system, kernel version 2.4.20-8 and the cluster communication was based on the

Message Passing Interface. For all the tasks, source code was written in C and was structured in

such a way that different sections of the code were conditionally executed, based on the rank of

the process executing the code, loosely following a SIMD model. The node executing the code

for MNN is designated as the master node and is responsible for coordinating the data

communication between the AVDS environment and all the other compute nodes on the cluster.

The master node coordinates communication between the cluster and Matlab GUI on one

hand and cluster and AVDS on the other hand, using sockets. Once the tasks are initialized on

the cluster, a section of code within the master node creates a server side socket and waits for the

Matlab GUI to initialize itself and create a client side socket. There is exchange of initialization

flags between the master node and the Matlab GUI, followed by the transfer of all the simulation

parameters that were set using the GUI, to the master node. The master node now has all the

parameter that defines the four network structures MNN, PDNN, QDNN and RDNN and other

simulation and task related parameters, such as the time of simulation, and failure specifications.

This node then uses MPI directives to send these parameters to all the compute nodes on the

cluster, which then proceed to initialize their respective network structures. When AVDS is

initialized, it also receives simulation parameters and once the aircraft reaches 3000 ft in altitude,

it starts to send sensor data back to the master node using its client side sockets. The master node

then distributes this frame of data to all the compute nodes in the cluster. Once the learning cycle

is complete on all the compute nodes, the estimates are sent back to the master node wherein

error metrics are computed and failure checking is done. If a failure is detected, appropriate flags

are set and sent along with the frame of sensor data from AVDS, during the next time step, to all

the compute nodes, which tailor their execution responses based on the status of the failure flags.

The AFDIA scheme was successfully implemented on the distributed computation

environment for failures on the Left Elevator and the Left Aileron. The failures on the surfaces

included the surface being stuck at 0 deg deflection, 5 deg deflection and 15 degree deflection,

 122

with a loss of surface. The AFDIA scheme was able to detect the failures and able to

accommodate for them, except in the case of 0 deg failures on the aileron.

7.1 Recommendations for Future Work

This research effort provided a proof of concept implementation of a COTS cluster based

distributed computing environment for the purpose of implementation of a fault tolerant flight

control scheme. Under the current setup, the compute nodes are made up of desktop computers,

running a non real-time version of the Linux operating system. This entire setup can be shrunk

into a more compact physical size by migrating the cluster to PC104 based compute nodes.

Another suggestion would be to make use of real-time extensions to the Linux operating system,

making the entire operation run in real time. With increasing emphasis towards flight tests of

fault tolerant flight control schemes, the logical step forward from this research effort would be

the flight tests on UAV test platforms. Within the fault tolerant flight control scheme, future

work could include the integration of the SFDIA and the AFDIA tasks to detect, identify and

accommodate for failures on both the sensor systems as well as the actuators. Also, the

interactive GUI in Matlab could be expanded to allow the user to choose the learning algorithm

of the neural networks, and possibly even the NN architecture itself.

 123

References

[1] An, Y., “A Design of Fault Tolerant Flight Control Systems for Sensor and Actuator

Failures Using On-Line Learning Neural Networks”, PhD Dissertation, WVU,

Mechanical and Aerospace Dept., Morgantown, WV, 1998.

[2] Roskam, Jan, “Airplane Flight Dynamics and Automatic Flight Controls, Part I”, Design,

Analysis and Research Corporation, Lawrence, Kansas, 1995

[3] Stevens, B.L., Lewis, F.L., “Aircraft Control and Simulation”, John Wiley and Sons,

New York, 1992.

[4] Haykin, S., “Neural Networks: A comprehensive Foundation”, McMillan College

Publishing Company, Inc., 1994.

[5] Motyka, P., Bonnice, W., Hall, S., Wagner, E. “The Evaluation of Failure Detection and

Isolation Algorithms for Restructurable Control”, NASA Contractor Report 177983,

1985

[6] AVDS User Manual, Version 1.2.1, Artificial Horizons Inc. October 1999.

[7] Rumelhart, D. and McClelland, J., “Parallel Distributed Processing”, MIT Press,

Cambridge MA. 1986.

[9] Alfonso C. Paris, “Estimation of the Longitudinal and Lateral-Directional Aerodynamic

Parameters from Flight Data for the NASA F/A-18 HARV”, PhD Dissertation,

Department of Mechanical and Aerospace Engineering, West Virginia University, 1997.

[10] Napolitano, M.R., Dale A. Windon II et. al., “Virtual Flight Data Recorder: A Neural

Extension of Existing Capabilities” Journal of Guidance, Control, and Dynamics, Vol.

21, No. 4, pp.662~664, 1998.

[11] M. Hagiwara, “Theoretical Derivation of Momentum Term in Back-propagation”, In

proceedings of the International Joint Conference on Neural Networks, Vol.I Baltimore,

MD, 1992.

[13] Matlab User’s Guide. Mathworks Inc. Natick, MA.

[14] Douglas E. Comer, Internetworking with TCP/IP Vol.1: Principles, Protocols and

Architecture (4th Edition).

 124

[15] Kerr, T., “False Alarm and Correct Detection Probabilities Over a Time Interval for

Restricted Classes of Failure Detection Algorithms”, IEEE Transactions of Information

Theory, Vol. IT-20, No.4, 1982, pp 619~631.

[16] Kerr, T., “Decentralized Filtering and Redundancy Management/Failure Detection for

Multisensor Integrated Navigation Systems,” IEEE Transactions on Information Theory,

pp.191~208, 1986.

[17] Willsky, A.S., “A Survey of Design Methods for Failure Detection in Dynamic Systems,”

Automatica, Vol. 12, pp.601~611, 1976.

[18] Willsky, A.S., “Failure Detection in Dynamic Systems,” Agard LS-109, Neuilly sur

Seine, France, pp.2.1~2.14, 1980.

[19] T.-H. Guo, J. Nurre, “Sensor Failure Detection and Recovery by Neural Networks,”

Proceedings of the International Joint Conference on Neural Networks, pp. I-221~I-226,

1991.

[20] Petri A. Jokinen, “Comparison of Neural Network Models for Process Fault Detection

and Diagnosis Problems,” Proceedings of the International Joint Conference on Neural

Networks, pp.I-239~I-244, 1991.

[21] R. Sreedhar, B. Fernandez, C.Y. Masada, “A Neural Network Based Adaptive Fault

Detection Scheme,” Proceedings of the American Control Conference, pp.3259~3263,

1995.

[22] Narendra, K.S., Partasarathy, K. “Identification and Control of Dynamical Systems Using

Neural Networks”, IEEE Transactions on Neural Networks, Vol. 1, No 1, pp.4~27, 1990.

[23] Levin, A.U., Narendra, K.S. “Control of Non-Linear Dynamical Systems Using Neural

Networks: Controllability and Stabilization”, IEEE Transactions on Neural Networks,

Vol.4, No.2, pp.192~206, 1993.

[24] M.M. Polycarpou, A.T. Vemuri, “Learning Methodology for Failure Detection and

Accommodation,” IEEE Control Systems, pp.16~24, 1995.

[25] M.M. Polycarpou, A.J. Helmicki, “Automated Fault Detection and Accommodation: A

Learning Systems Approach,” IEEE Transactions on Systems, Man, and Cybernetics,

Vol.25, No.11, pp.1447~1458, 1995.

 125

[26] Kline-Schoder, R.,Rauch, H.,Youssef, “Fault Detection, Isolation, and Reconfiguration

for Aircraft Using Neural Networks,” Proceedings of the AIAA Guidance, Navigation

and Control Conference, AIAA Paper 93-3876, Monterey, Ca, 1993.

[27] S.N. Balakrishnan, Victor Biega, “Adaptive-Critic-Based Neural Networks for Aircraft

Optimal Control,” Journal of Guidance, Control, and Dynamics, Vol.19, No.4,

pp.893~898, 1996.

[28] Huang, C., Tylock, J., Engel, S., Whitson, J., Eilbert, J., “Failure-Accommodating Neural

Network Flight Control,” Proceedings of the AIAA Guidance, Navigation and Control

Conference, AIAA Paper 92-4394, Hilton Head, SC, 1992.

[29] C.M. Ha, “Neural Networks Approaches to AIAA Aircraft Control Design Challenge,”

Journal of Guidance, Control, and Dynamics, Vol. 18, No. 4, pp. 731~739, 1995.

[30] Ha, C.M., Wei, Y.P., Bessolo, J.A., “Reconfigurable Aircraft Flight Control System Via

Neural Networks,” Proceedings of the 1992 Aerospace Design Conference, AIAA Paper

92-1075, Irvine, Ca, 1992.

[31] Chi-Yuan Chiang, H.M. Youssef, “Neural Network and Fuzzy Logic Approach to

Aircraft Reconfigurable Control Design,” Proceedings of the American Control

Conference, pp.3505~3509, 1995.

[32] B.S. Kim, A.J. Calise, “Nonlinear Flight Control Using Neural Networks,” Journal of

Guidance, Control, and Dynamics, Vol.20, No.1, pp.26~33, 1997.

[33] Napolitano, M.R., Chen, C.I.,et. al., “Aircraft Failure Detection and Identification Using

Neural Networks,” Journal of Guidance, Control, and Dynamics, Vol. 16, No. 6,

pp.999~1009, 1993.

[34] Napolitano, M.R., Casdorph, V.,Neppach, C., Naylor, S, “On-line Learning Neural

Architectures and Cross-Correlation Analysis for Actuator Failure Detection and

Identification,” International Journal of Control, Vol.63, No.3, pp.433~455, 1996.

[35] Napolitano, M.R., Steve Naylor et. al., “On-Line Learning Nonlinear Direct

Neurocontrollers for Restructurable Systems,” Journal of Guidance, Control, and

Dynamics, Vol. 18, No. 1, pp.170~176, 1995.

[36] Mascarell, J. C., “Design and Comparison of Neural Network and Fuzzy Logic Actuator

Failure Schemes for Flight Control System,” Master Thesis, Department of Mechanical

and Aerospace Engineering, West Virginia University, 1996.

 126

[37] Napolitano, M.R., Neppach, C. et. al., “Neural-Network-Based Scheme for Sensor

Failure Detection, Identification, and Accommodation,” Journal of Guidance, Control,

and Dynamics, Vol.18, No.6, pp.1280~1286, 1995.

[38] Windon, D.A., “Design and Comparison of Neural Network and Kalman Predictor Based

Sensor Validation Schemes for Implementation on the NASA-Aurora Theseus Aircraft,”

Master Thesis, Department of Mechanical and Aerospace Engineering, West Virginia

University, 1996.

[39] Napolitano, M.R., Swaim, R.L., “New Technique for Aircraft Flight Control

Reconfiguration,” Journal of Guidance, Control, and Dynamics, Vol. 14, No.1,

pp.184~190, 1991.

[40] Coetzee, L., “Parallel approaches to training feedforward neural nets”. Ph.D. Thesis,

University of Pretoria, 1996.

[41] Torrensen, J., “Parallelization of Backpropagation Training for Feed-Forward Neural

Networks”. Ph.D. Thesis, The Norwegian Institute of Technology, 1996.

[42] L. Fausett, “Fundamentals of Neural Networks: Architectures, Algorithms, and

Applications”, Prentice Hall, Englewood Cliffs, NJ, 1994.

[43] Chen, C.L., Nutter, R.S., “An Extended Back-Propagation Learning by Using

Heterogeneous Processing Units,” Proceedings of International Joint Conference on

Neural Networks, pp. III-988~993, Baltimore, Maryland, 1992.

[44] Flynn, M., “Very high speed computing systems”. Proceedings of the IEEE 54:1901-

1909, December 1966.

[45] Marc Snir, M., Otto, S., Huss-Lederman, S., Walker, D., Dongarra, J., “MPI: The

Complete Reference”, MIT press, 1999.

[46] Geist, A., Beguelin, A., Dongarra, J., Jiang, W., Manchek, R., Sunderam, V., “PVM:

Parallel Virtual Machine: A Users' Guide and Tutorial for Networked Parallel

Computing”, MIT Press, 1994.

[47] Pacheco, P.S., “Parallel Programming with MPI”, Morgan Kaufman Publishers, Inc.,

1997.

[48] Crossbow Technology Inc., “Acceleration, Tilt/Angle and Inertial/Gyro”, Product

Catalog.

 127

[49] Napolitano, M.R., An,Y., Seanor, B., “A fault tolerant flight control system for sensor

and actuator failures using neural networks”, Aircraft Design Journal, Vol.3, pp. 103-128.

[50] Gu, Yu, “Design And Flight Testing Actuator Failure Accommodation Controllers on

WVU YF-22 Research UAVs”. PhD thesis, West Virginia University, 2004.

[51] Perhinschi, M.G, Lando, M, Massotti, L., Campa, G., Napolitano, M.R., Fravolini, M.L.,

“On-Line Parameter Estimation Issues for the NASA IFCS F-15Fault Tolerant Systems”.

[52] Brinkre, J., & Wise, K., “Flight testing of a reconfigurable flight control law on the X-36

tailless fighter aircraft”, AIAA GNC Conference, 2000.

[53] Air Force Research Laboratory, “First Flight Test Demonstration of Neural Network

Software”, http://www.afrlhorizons.com/Briefs/0001/VA9904.html

[54] Dryden Flight Research Center, “X-36 Tailless Fighter Agility Research Aircraft in

flight”,http://www.dfrc.nasa.gov/Gallery/Photo/X-36

[55] NASA Dryden Flight Research Center, “Intelligent Flight Control Systems”,

http://www.dfrc.nasa.gov/Newsroom/FactSheets/FS-076-DFRC.html

[56] Perhinschi M. G., Napolitano M.R., Campa G., Seanor B., Gururajan S., "Design of

Intelligent Flight Control Laws for the WVU F-22 Model Aircraft", Proceedings of the

AIAA Intelligent Systems Technical Conference 2004 Chicago IL, AIAA2004-6282

[57] Perhinschi M. G., Napolitano M.R., Campa G., Burke H. E., Larson R. R., Burken J.,

Fravolini M. L., "Design and Testing of a Safety Monitor Scheme on the NASA Gen_2

IFCS F-15 Flight Simulator", Proceedings of the AIAA Intelligent Systems Technical

Conference 2004 Chicago IL, AIAA2004-6284

[58] Perhinschi M. G., Burken J., Napolitano M.R., Campa G., Fravolini M. L.,"Performance

Comparison of Different Neural Augmentation for the NASA Gen_2 IFCS F-15 Control

Laws", Proceedings of the American Control Conference 2004 Boston MA, pp3180-3184

[59] Perhinschi M. G., Napolitano M.R., Campa G., Fravolini M. L., "Integration of Fault

Tolerant System for Sensor and Actuator Failures within the WVU NASA F-15

Simulator", Proceedings of the AIAA Guidance, Navigation, and Control Conference,

August 2003, Austin, Texas, AIAA-2003-5643

[60] Perhinschi M. G., Napolitano M.R., Stolarik B., Hammaker S., Campa G., Rogers S.,

"Design Of Safety Monitor Schemes for a Fault Tolerant Flight Control System",

 128

Proceedings of the AIAA Guidance, Navigation, and Control Conference, August 2003,

Austin, Texas, AIAA-2003-5646

[61] Battipede M., Gili P., Lando M, Napolitano M. R., Perhinschi M. G., Campa G.,

"Comparative Analysis of Neural Control Systems Within the NASA IFCS F-15 WVU

Simulator", Proceedings of the AIAA Guidance, Navigation, and Control Conference,

August 2003, Austin, Texas, AIAA-2003-5643

[62] Perhinschi M. G., Napolitano M.R., Campa G., Fravolini M. L., Massotti L.,Lando M.,

"Augmentation of a Non Linear Dynamic Inversion Scheme Within the NASA IFCS F-

15 WVU Simulator", Proceedings of the American Control Conference 2003, June 4-6,

2003 Denver CO, USA, pp1667-1672

[63] Perhinschi M. G., Campa G., Napolitano M.R., Fravolini M. L., Lando M., Massotti L.,

"Performance Comparison of Fault Tolerant Control Laws Within the NASA IFCS F-15

WVU Simulator", Proceedings of the American Control Conference 2003, June 4-6,

2003 Denver CO, USA, pp1661-1666

[64] Battipede M., Gili P., Napolitano M. R., Perhinschi M. G., Massotti L., Lando M.,

"Implementation of an Adaptive Predictor-Corrector Neural Controller within the NASA

IFCS F-15 WVU Simulator", Proceedings of the American Control Conference 2003,

June 4-6, 2003 Denver CO, USA, pp1302-1307

[65] Perhinschi M. G., Lando M., Massotti L., Fravolini M. L., Campa G., Napolitano M.R.,

“On-Line Parameter Estimation for Real Time Application for the NASA IFCS F-15

Fault Tolerant Systems”, Proceedings of the American Control Conference, Anchorage,

AK, 2002, pp191-196

 129

Appendix A

A.1 Sample Three Dimensional Lookup Table

This section shows a sample of the three dimensional lookup tables for the F4 aircraft

dynamics.

Aero Coefficients for F4 aircraft dynamics

Cdo : basic drag coefficient

:DB 5 0 0 Mach None None 1.0 0.0
 0.0 0.206 0.900 1.800 9.00
 0.0269 0.0269 0.0205 0.0439 0.0439

Cdu : drag coefficient due to translational velocity

:Du 5 0 0 Mach None None 1.0 0.0
 0.0 0.206 0.900 1.800 9.00
 0.0 0.0 0.027 -0.054 -0.054

Cda : drag coefficient due to angle of attack

:Da 5 0 0 Mach None None 1.0 0.0
 0.0 0.206 0.900 1.800 9.00
 0.555 0.555 0.300 0.400 0.400

Cdf : drag coefficient due to flap deflection

:Df 5 0 0 Mach None None 1.0 0.0
 0.0 0.206 0.900 1.800 9.00
 0.0 0.0 0.0 0.0 0.0

Cdg : drag coefficient due to gear deflection

:Dg 5 0 0 Mach None None 1.0 0.0
 0.0 0.206 0.900 1.800 9.00
 0.0 0.0 0.0 0.0 0.0

Clo : basic lift coefficient

:LB 5 0 0 Mach None None 1.0 0.0
 0.0 0.206 0.900 1.800 9.00
 0.43 0.43 0.100 0.01 0.01

 130

Cla : lift coefficient due to angle of attack

:La 5 0 0 Mach None None 1.0 0.0
 0.0 0.206 0.900 1.800 9.00
 2.80 2.80 3.75 2.80 2.80

Clde : lift coefficient due to elevator deflection

:Le 5 0 0 Mach None None 1.0 0.0
 0.0 0.206 0.900 1.800 9.00
 0.24 0.24 0.40 0.25 0.25

Cldf : lift coefficient due to flap deflection

:Lf 5 0 0 Mach None None 1.0 0.0
 0.0 0.206 0.900 1.800 9.00
 0.0 0.0 0.0 0.0 0.0

Clq : lift coefficient with dimensionless pitch rate

:Lq 5 0 0 Mach None None 1.0 0.0
 0.0 0.206 0.900 1.800 9.00
 1.33 1.33 1.80 1.30 1.30

A.2 User Defined Simulation Code Block Header Information

• Blockname - the name of the user code block. This is entered in the

usr_cblock.c file to notify AVDS of this new code block.

• Type - the value in this location is either USR_FCS or USR_AC. The type of the

block determines where it is displayed on the Aircraft Initialization page.

• Description of code block - a textual description of the code block. This

description is displayed in the type menu for the aircraft of FCS on the

Aircraft Initialization.

• in1 in2 in3 in4 in5 in6 ... - a list of the inputs to this block. These are

displayed under FCS In or AC In on the Aircraft Initialization page.

• out1 out2 out3 ... - a list of the outputs from this block. These are displayed

under FCS Out or AC Out on the Aircraft Initialization page.

• param1 param2 param3 param4 ... - a list of the parameters that will have

corresponding look-up tables.

• r - the update rate in Hz is based on this integer number. The actual update

may vary depending on the computer and complexity of the simulation model.

• Init_func - the name of a function that AVDS will call to initialize the code

block.

• update_func - the name of the function that AVDS calls at the rate specified by

"r" to update the simulation.

 131

CBlock blockname = {
type, /* Type */
"description of code block" , /* Description */
"in1 in2 in3 in4 in5 in6...", /* Inputs */
"out1 out2 out3...", /* Outputs */
"param1 param2 param3 param4...", /* Params*/
r, /* Update Rate (Hz) */
init_func /* Init Function*/
update_func /* Update Function */

}

 132

Appendix B

B.1 Sample User Defined Simulation Code Block.

#include <usr_cblock.h>
int nBlocks = 1;
CBlock FBgainFCS;
Cblock *pCBlockx[] = {&FBgainFCS};
void fcs_init();
void fcs_update();
/* Add declaration of code blocks */
CBlock FBgainFCS = {

USR_FCS, /* Type */
"Feedback Gains", /* Description */
"Ps Rs Ys Ts P Q R", /* Inputs */
"de da dr dt", /* Outputs */
"k1 k2 k3 cmd1 cmd2 cmd3", /* Parameters */
20, /* Update Rate (Hz) */
fcs_init, /* Init Function */
fcs_update /* Update Function */
};

enum { STICK_P, STICK_R, STICK_Y, STICK_T, ROLL, PITCH, YAW }; /* Inputs */
enum { D_ELE, D_AIL, D_RUD, D_THR }; /* Outputs */
enum { GAIN_P, GAIN_R, GAIN_Y, GAIN_CP, GAIN_CR, GAIN_CY}; /* Parameters
*/
void
fcs_init(input, output, param)
double *input, *output, *param;
{

output[D_ELE] = input[STICK_P]*param[GAIN_CP]+input[PITCH]*param[GAIN_P];
output[D_AIL] = input[STICK_R]*param[GAIN_CR]+input[ROLL]*param[GAIN_R];
output[D_RUD] = input[STICK_Y]*param[GAIN_CY]+input[YAW]*param[GAIN_Y];
output[D_THR] = input[STICK_T];

}
void
fcs_update(input, output, param)
double *input, *output, *param;
{

output[D_ELE] = input[STICK_P]*param[GAIN_CP]+input[PITCH]*param[GAIN_P];
output[D_AIL] = input[STICK_R]*param[GAIN_CR]+input[ROLL]*param[GAIN_R];
output[D_RUD] = input[STICK_Y]*param[GAIN_CY]+input[YAW]*param[GAIN_Y];
output[D_THR] = input[STICK_T];

}

	Design and simulation of advanced fault tolerant flight control schemes
	Recommended Citation

	Design and Simulation of Advanced Fault Tolerant Flight Control Schemes

		2006-12-12T15:25:52-0500
	John H. Hagen
	I am approving this document

