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Abstract 

Design and Simulation of Advanced Fault Tolerant Flight Control Schemes 

Srikanth Gururajan 

This research effort describes the design and simulation of a distributed Neural 

Network (NN) based fault tolerant flight control scheme and the interface of the scheme 

within a simulation/visualization environment. The goal of the fault tolerant flight control 

scheme is to recover an aircraft from failures to its sensors or actuators. A commercially 

available simulation package, Aviator Visual Design Simulator (AVDS), was used for the 

purpose of simulation and visualization of the aircraft dynamics and the performance of 

the control schemes. 

For the purpose of the sensor failure detection, identification and accommodation 

(SFDIA) task, it is assumed that the pitch, roll and yaw rate gyros onboard are without 

physical redundancy. The task is accomplished through the use of a Main Neural 

Network (MNN) and a set of three De-Centralized Neural Networks (DNNs), providing 

analytical redundancy for the pitch, roll and yaw gyros. The purpose of the MNN is to 

detect a sensor failure while the purpose of the DNNs is to identify the failed sensor and 

then to provide failure accommodation. The actuator failure detection, identification and 

accommodation (AFDIA) scheme also features the MNN, for detection of actuator 

failures, along with three Neural Network Controllers (NNCs) for providing the 

compensating control surface deflections to neutralize the failure induced pitching, 

rolling and yawing moments. All NNs continue to train on-line, in addition to an offline 

trained baseline network structure, using the Extended Back-Propagation Algorithm 

(EBPA), with the flight data provided by the AVDS simulation package.  

The above mentioned adaptive flight control schemes have been traditionally 

implemented sequentially on a single computer. This research addresses the 

implementation of these fault tolerant flight control schemes on parallel and distributed 

computer architectures, using Berkeley Software Distribution (BSD) sockets and 

Message Passing Interface (MPI) for inter-process communication.  
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 Nomenclature 

English 
 a Acceleration, ft/sec2 
 a Node in input layer 

b Node in hidden layer 
b Wing span, ft 
B Node in hidden layer 
c Node in output layer 
_

c  Mean aerodynamic chord, ft 
C Node in output layer 
d Target Neural Network output 
e Neural Network training error 
g Acceleration due to gravity, ft/sec2  
J Error cost function 
I  Moment of inertia, slug-ft2 
k Discrete time index 
l Pattern for the neural network input data 
L Rolling moment 
L Lower bound of modified sigmoid activation function 
m Aircraft mass, slugs 
M Pitching moment 
N Yawing moment 
p Aircraft angular velocity, x body axis (roll rate), rad/sec 
q Aircraft angular velocity, y body axis (pitch rate), rad/sec 
r Aircraft angular velocity, z body axis (yaw rate), rad/sec 
R Auto or cross correlation function 
S Wing plan form area, ft2 
t Time, sec 
T Slope of modified sigmoid activation function 
u Velocity along body fixed x-axis, ft/sec  
U Upper bound of modified sigmoid activation function 
v Velocity along body fixed y-axis, ft/sec 
V Interconnection weight vector between input and hidden layer nodes 
w Velocity along body fixed z-axis, ft/sec 
W Interconnection weight vector between hidden and output layer nodes 
y Neural Network output 

Greek 
α  Angle of attack, rad or deg 
α  Neural Network momentum rate 
β  Angle of sideslip, rad or deg 
δ  Control surface deflection, rad or deg 
δ  Neural Network output and hidden layer error term 
∆  Error update term 
η  Neural Network learning rate 
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θ  Pitch Euler angle, rad or deg 
Θ  Neural Network hidden layer neuron threshold 
ρ  Density of aircraft 
ρ  Magnitude of sensor failure 
Γ  Neural Network output layer neuron threshold 
φ Roll Euler angle, rad or deg 
ψ  Yaw Euler angle, rad or deg 

Subscripts 
A Aileron 
A Aerodynamic 
E Elevator 
h Index of nodes in input layer 
i Index of nodes in hidden layer 
m number of nodes in hidden layer 
n number of nodes in input layer 
p number of nodes in output layer 
L Left side 
R Right side 
R Rudder 
T Thrust 
x Along the x-direction 
y Along the y-direction 
z  Along the z-direction 

Vectors 
  

O Neural network output 
Y Parameters to be estimated 

Acronyms 
AFA  Actuator Failure Accommodation 
AFDI  Actuator Failure Detection and Identification 
AFDIA Actuator Failure Detection, Identification, and Accommodation 
AVDS  Aviator Visual Design Simulator  
BPA  Back Propagation Algorithm 
BSD  Berkeley Software Distribution 
COTS  Commodity Off The Shelf 
DAEE  Decentralized Neural Network Error Estimation Mean 
DVEE  Decentralized Neural Network Error Estimation Variance 
DNN  De-Centralized Neural Network 
DQEE  De-Centralized Quadratic Estimation Error 
EBPA  Extended Back Propagation Algorithm 
FCS  Flight Control System 
FDI  Failure Detection and Identification 
GR  Generalized Likelihood Ratio 
GUI  Graphical User Interface 
MIMD  Multiple Instruction/Multiple Data 
MIMD  Multiple Instruction/Single Data 
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MLP  Multi Layer Perceptron 
MMKF Multiple Model Kalman Filter 
MNN  Main Neural Network 
MPI  Message Passing Interface 
MQEE  Main Quadratic Estimation Error 
NN  Neural Network 
NNC  Neural Network Controller 
OQEE  Output (of NN) Quadratic Estimation Error 
PVM  Parallel Virtual Machine 
ROC  Receiver Operating Characteristic 
SFA  Sensor Failure Accommodation 
SFDI  Sensor Failure Detection and Identification 
SFDIA  Sensor Failure Detection, Identification, and Accommodation 
SISD  Single Instruction/Single Data 
SIMD  Single Instruction/Multiple Data 
UDSCB User Defined Simulation Code Block 
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Chapter 1 - Introduction 

Operational safety is of paramount importance for both commercial and military aircraft 

and more recently for Unmanned Aerial Vehicles. Over the last decade a significant research 

effort has been directed towards increasing operational safety by developing fault tolerant flight 

control schemes that would assist the pilot in recovering the aircraft from failures to sensor 

systems and more importantly, structural damage to the onboard actuator systems.  

The idea of Sensor Failure Detection, Identification and Accommodation (SFDIA) is an 

important concept in the implementation of fault tolerant flight control algorithms, especially if 

measurements from the onboard sensors are used in the feedback loop of flight control laws. In 

fact, if failures in the sensors used in feedback loops are left undetected and unaccounted for, 

they may lead to closed loop instabilities and even catastrophic flight conditions. To avoid this 

problem, most modern commercial and military aircraft feature triple physical redundancies on 

their sensors and use polling schemes to obtain correct sensor values. Analytical redundancy of 

sensor systems on-board such aircraft could lead to a reduction in the extra weight attributed to 

the physical redundancy on sensors, effectively increasing the payload capacity of the aircraft.  

Aircraft actuator systems on board typically include drive servos for the control surfaces, 

landing gear, hydraulic subsystems and throttle. Actuator Failure Detection Identification and 

Accommodation (AFDIA), refers to failures on the on-board actuator systems. Failures on 

actuator systems for elevators, ailerons or rudder, could involve the surfaces being stuck at some 

angular deflections. Actuator failures also include the scenarios wherein there is a physical loss 

of either a part of or the entire control surfaces, resulting in a loss of efficiency of the failed 

control surface and/or a combination of the two.  

Typically, actuator failures result in changes in the aircraft trim conditions leading to 

dynamic coupling between lateral and longitudinal modes, and could potentially lead to 

unrecoverable flight conditions. Although, some aircraft might be equipped with redundant 

actuator systems that could handle failures on drive servos, typically, aircraft do not have 

physically redundant control surfaces, unlike redundant sensor systems. Therefore, the need for 

analytical methods to compensate for failures on any of the control surfaces is much more 

critical. 
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The fundamental task of a fault tolerant flight control system is the detection, 

identification, and accommodation of the previously mentioned sensor and actuator failures. The 

task of dealing with sensor failure is delegated to the SFDIA scheme, which can be split into two 

distinct parts as Sensor Failure Detection and Identification (SFDI), designed to monitor the 

sensor systems without physical redundancy for signs of failure and the corresponding 

identification and isolation of such failures. Typical failures on sensor subsystems include the 

introduction of a sudden bias in the sensor outputs, flat line sensor outputs at magnitude, or slow 

moving drift in the sensor outputs. The Sensor Failure Accommodation (SFA) phase of the task 

would be responsible for taking over the function of the failed sensor, providing analytical 

redundancy and alternate inputs to the flight control system to accommodate for the failed 

sensor. 

Similarly, the task of dealing with actuator failures is split into two distinct sections as 

Actuator Failure Detection and Identification (AFDI), which detects and identifies any failure on 

the actuators and the Actuator Failure Accommodation (AFA) phase, which would determine the 

control actions needed to compensate for the identified actuator failure and restore the aircraft 

back to a stable flight condition with acceptable handling characteristics. In this research effort, 

actuator failures refer to physical failures on the control surfaces on an aircraft with or without a 

loss of control surface. The issues of failure detection, identification, and accommodation on the 

electrical, electro-mechanical or hydraulic subsystems are not addressed. Following control 

surface failures and subsequent identification, the accommodation phase is designed to be 

achieved by making use of the remainder of the functional and healthy control surfaces. 

Failure detection and accommodation schemes based on theoretical schemes such as the 

Generalized Likelihood Ratio [18] and Multiple Model Kalman Filtering (MMKF) [18] have 

been utilized in the past, but have a significant drawback in that the applicability of such 

schemes are limited to linear time invariant systems, with the system model identical to the 

Kalman filter or the observer model.   

An aircraft can be considered as a time varying, non-linear system with system and 

measurement noise. Based on this characteristic, different approaches have to be taken in 

designing the failure detection and accommodation scheme. One of the approaches is the use of 

Artificial Neural Networks (ANN), which are capable candidates for the task, mainly due to their 

inherent non-linear nature and learning and adaptation capabilities. The selection of ANN as the 
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basis of the adaptive scheme comes with its own advantages and limitations in that the networks 

can be trained either off-line, with pre-recorded flight data, or on-line with currently available 

flight data. With off-line learning and no subsequent updating of the network architecture with 

current data, a network would have a frozen architecture once training cycles are completed, 

thereby losing the advantage of learning from the newer on-line information. If such a network is 

implemented in the adaptive scheme, it might not be able to detect, identify or accommodate for 

a failure situation it had not been trained for, making the entire approach inadequate. This tilts 

the balance in favor of training a network on-line; however in this situation, care needs to be 

taken when implementing such a scheme as on-line learning has its own set of advantages and 

disadvantages. The obvious advantage of on-line learning is that the network can adapt itself to 

the real-time data from the aircraft, giving it a better knowledge of current conditions. On the 

other hand, the issues of concern are the amount of training that would be necessary for a 

network to reach acceptable levels of learning, the time required to do so and the complexity of 

network structure. There is also an increased potential for on-line learning to drive the neural 

network unstable, leading to catastrophic conditions. Therefore, on-line training of NN for use in 

an adaptive scheme for fault tolerance in flight control systems should at the least be a 

compromise between learning accuracy and the total time taken for achieving the required level 

of accuracy. 

In recent years, there has been an increase in the use of Unmanned Aerial Vehicles 

(UAV) in both civilian as well as military sectors for a wide range of applications including 

aerial reconnaissance of military targets, monitoring traffic, geological mapping, search and 

rescue among others. Typically with the use of UAVs, there is a premium on total weight and 

cost, in order to maximize their payload potential and as a consequence, the use of redundant 

sensors is uncommon. 

With the added interest in UAVs, significant amount of research effort has been directed 

towards practical implementations of experimental fault tolerant flight control schemes. 

Unmanned Aerial Vehicles and Micro Aerial Vehicles have been the more popular platforms of 

choice for such experimental research programs. UAV/MAVs provide flexibility and a distinct 

advantage as compared to manned aircraft in terms of cost, weight and time and human factors. 

They are not expensive, do not take much time to build, and are easier to rebuild, easier to 

transport and require minimal to no certification from the Federal Aviation Administration. 
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Typically, these aerial platforms feature Commodity, Off The Shelf (COTS) computational 

platforms as well as sensor and actuator systems. Due primarily to the strict limitations on the 

power available for such onboard systems, the computational power of the on-board processors 

are much less than the traditional power available on desktop computational platforms. As a 

result, the extent of the complexity of NN based fault tolerant flight control schemes is severely 

limited. A workaround for this computational bottleneck is to take the “divide and conquer” 

approach. By making use of a computational cluster, made of COTS components, with lower 

individual computational capacity and a smaller appetite for power consumption, more complex 

fault tolerant flight control schemes can be implemented. This research effort addresses this issue 

by decomposing a fairly complex sequential implementation of a NN based fault tolerant flight 

control scheme onto a cluster of interconnected computers and executing it in parallel. 

1.1  Research Objectives 

The objectives of this research effort are to design and simulate Neural Network based 

Sensor Failure Detection Identification and Accommodation (SFDIA) and Actuator Failure 

Detection Identification and Accommodation (AFDIA) schemes, within an aircraft simulation 

and visualization environment. Furthermore, the NN based fault tolerant flight control schemes 

are implemented on a distributed computation platform, based on a Beowulf cluster of individual 

commodity computers. 

The SFDIA scheme focuses on providing analytical redundancy to three important 

sensors onboard an aircraft, namely the pitch, roll and yaw rate gyros. It is assumed that these 

rate gyros onboard the aircraft are without physical redundancy and the NNs are designed to 

provide the requisite analytical redundancy. It is also assumed that all the other sensor systems 

on board are reliable and perform without failures of any kind, for the purposes of this research, 

although this concept of analytical redundancy can be extended to any number of sensor systems 

without any loss of generality. 

The AFDIA scheme will focus on providing fault tolerance following failures on two sets 

of primary control surfaces, namely the elevators, and the ailerons. For the purpose of this 

research, it is assumed that the airplane does not have any unconventional control surfaces such 

as differential or symmetric canards, thrust vectoring, differential stabilators, etc. 

This research effort is broken into different phases as described below: 
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1. Initial development of the neural network based adaptive control schemes; 

2. Design and development of an interface within the Matlab environment to provide 

flexibility in the creation of the NN structures for the fault tolerant flight control 

schemes; 

3. Design and implementation of a communication and data transfer scheme between 

the Matlab interface, the graphics visualization package, which allows the user to fly 

an aircraft model interactively, and the distributed implementation of the fault tolerant 

flight control scheme; 

4. Implementation of the fault tolerant flight control schemes on the Beowulf cluster 

based parallel computational platform; 

A more detailed description of the different phases of this research is provided below. 

Phase #1:  

This phase deals with the initial development of the NN based adaptive flight control 

algorithms for the purposes of SFDIA and AFDIA. This included the selection of the aircraft 

model, the learning algorithm for the NN, the number of individual networks to train for each 

sensor without physical redundancy (pitch, roll, yaw rate), the selection of inputs to each of the 

network structures, the failure detection and identification scheme, and finally the failure 

accommodation scheme.  

Within this phase, the overall structure of the SFDIA scheme was designed to have a 

Main Neural Network (MNN) and a set of three Decentralized Neural Networks, DNNs, for each 

of the three rate gyros, roll, pitch and yaw rate gyros, assumed to be without physical 

redundancy, and named as the P-DNN, Q-DNN and the R-DNN respectively. The individual 

DNNs are designed to produce estimates of the respective rate gyros only, while the MNN 

produces the estimates of all the three rate gyros. The errors between the estimates from the 

DNN and the MNN are continuously monitored and provide a means for detecting and 

identifying failures on the sensors as well as accommodating for such failures.  

The structure of the AFDIA scheme was built similar to the SFDIA scheme, with the 

MNN designed to produce the estimates of the roll, pitch and yaw rate gyros. Three 

decentralized neural networks, named as the roll-controller, pitch-controller and the yaw-

controller produce estimates of the ailerons, elevators and rudder deflections. When a failure is 
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injected on either the elevator or the aileron, it produces a measurable change in the auto and 

cross- correlation terms, which are then used to detect and identify the failures. Upon detection 

and identification of an actuator failure, these NNCs provide the compensating deflections to the 

remainder of the “healthy” control surfaces, to accommodate for the failure.  

Phase #2: 

Within this phase, a Graphical User Interface (GUI) was designed in Matlab, to provide 

the user with an interactive tool to choose the parameters that define the structure of the NNs, 

and set the various parameters associated with the SFDIA, AFDIA and the SFDIA+AFDIA 

schemes. This GUI tool gives the grater flexibility to choose the input variables to the NNs, 

change the time history window of the inputs, the learning and momentum rates for each network 

and the number of hidden layer neurons. These parameters are typically hard coded into any 

implementation of MLP based NN based schemes, with flexibility limited to selecting the 

learning and momentum rates and the number of neurons in the hidden layers. 

Phase #3: 

Phase 3 of the research study involved the design and implementation of a data 

communication and exchange structure to facilitate the flow of information between the Matlab 

GUI, the graphical simulation/visualization environment and the Beowulf cluster based 

implementation of the fault tolerant flight control schemes. A commercially available 

simulation/visualization package, Aviator Visual Display Simulator (AVDS) is chosen for this 

purpose. The choice of AVDS over others such as X-Plane, Microsoft Flight Simulator was 

influenced primarily by the vast experience in using this package among various members of our 

research group. This phase also involved the design and implementation of a Berkeley Software 

Distribution (BSD) socket based communication channel and data exchange scheme, between 

the NNs and the AVDS environment to facilitate two way data transfer between the nodes 

executing the network learning and the node executing the simulation/visualization. The 

interface between the Beowulf cluster and the AVDS environment was designed to make use of 

TCP/IP sockets. AVDS package runs on a Microsoft Windows 2000 based computer, designated 

as “node8” with a private IP address of 192.168.1.8/255.255.255.0. The primary node in the 

cluster named as “node1” is designated as the master node and has an IP address of 

192.168.1.1/255.255.255.0 with the other nodes having IP addresses in the order 



 7 

192.168.1.2/255.255.255.0 – 192.168.1.6/255.255.255.0 and named as “node2”, “node3”, 

“node4”, “node5”, “node6” and “node7”. Message Passing Interface is used to facilitate 

communication and synchronization between the nodes on the cluster. Chapter 5 discusses the 

setup of the cluster and the communication schemes in detail. 

Phase #4: 

In Phase 4, a sequential execution mode was built and tested for training the NNs with 

the on-line data from AVDS environment. This served as a testbed for validating the 

communication schemes between the Matlab interactive GUI, the Beowulf cluster and the AVDS 

environment, which was designed and implemented in Phase 3. This process involved the 

implementing the NNs in a sequential execution mode, with all the NN modules in the scheme 

executing on the same local machine with AVDS running on a dedicated computing node. A 

TCP/IP socket based communication channel is used to transfer data from AVDS simulation 

environment into the dedicated computing node on which the NNs are implemented. The NNs 

that were used for this training purpose were the MNN, P-DNN, Q-DNN and the R-DNN. 

Within this structure, the order of execution of the NNs was hard coded with the MNN executing 

first, followed by the P-DNN, Q-DNN and the R-DNN, for each frame of data received from 

AVDS. 

The structure of the sequential execution of the SFDIA/AFDIA algorithm leads to 

intuitive decomposition of the tasks for parallel implementation. The next part of phase 4 

involved analyzing the sequential SFDIA/AFDIA algorithm and identifying the tasks that could 

be parallelized. The algorithm was then broken up into fairly independent and separate tasks that 

could be executed in parallel, dealing primarily with the issues of data transfer and 

synchronization between the individual tasks. 

The initial setup of this parallel implementation is similar to that of the sequential 

implementation, with the structure of the NNs set using the Matlab based GUI. This information 

about the structures of the NN is then sent to the computer supporting the MNN, the master 

node, using TCP/IP sockets. The master node then sends this data to all the other computers on 

the cluster, designated as the slave nodes, using MPI directives. The DNNs for both the 

SFDIA/AFDIA purposes are then created using the corresponding information. After the 

initialization phase, the MNN sends across the parameters of the simulation to AVDS, using a 
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separate TCP/IP socket. Thus during each simulation run, there are two TCP/IP sockets open, 

one connecting the master node to Matlab and the other connecting the master node to AVDS. 

Once the simulation starts, AVDS sends back frames of data at a pre-specified frequency to the 

MNN, through socket and MNN consequently distributes this data frame to all the slave nodes in 

the cluster, using MPI directives. The MNN as well as the individual nodes then begin executing 

the NN code, the outputs of which are communicated back to the MNN using MPI directives. 

The MNN then computes the corresponding training error and performs the Failure Detection, 

Identification and Accommodation (FDIA) functions. In case of actuator failures, the 

compensating control surface deflections, as computed by the AFDIA scheme are then 

transmitted back to AVDS simulation using the appropriate socket. 

This document is organized as follows. Chapter 2 describes approaches/methods adopted 

by other researchers to address the issues of fault tolerance in flight control systems, with respect 

to failures on both the sensor and actuator systems. Chapter 3 describes the AVDS 

simulation/visualization environment; Chapter 4 presents the derivation of the aircraft equations 

of motion, Neural Network theory, the Extended Back-Propagation Algorithm and background 

information on parallel computing. Chapter 5 describes the design and development of the 

structure of the sequential and parallel implementations. Chapter 6 describes the SFDIA and 

AFDIA algorithms and the results from the parallel implementations on the Beowulf cluster. 
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Chapter 2  - Literature Review 

The task of recovering from failures to various sub-systems on-board an aircraft and the 

associated issues of detecting, identifying and accommodating them has serious implications on 

the performance of airplanes, both manned and unmanned. Considering the avionics, power, 

engine, hydraulics and communication sub-systems to be fully functional and free from failure, 

the on-board failures can be classified into two broad categories as sensor and actuator failures. 

Typical military and commercial aircraft have multiple redundant sensor systems and use 

polling methods, among other schemes to get the actual sensor measurements. While this 

approach is the traditional safeguard against failed sensor systems, restrictions on the payload 

capacity, the power available on board aircraft and the desire to reduce complexity has spurred 

researchers towards the development of analytical redundancy wherein computational methods 

are used to provide estimates of the outputs of the sensor systems without analytical redundancy. 

This approach is attractive especially when applied to low cost UAVs that in recent years have 

gained wide acceptance in applications like surveillance and monitoring, search and rescue, 

reconnaissance among others.  

This section will give a brief overview of techniques developed by other researchers for 

sensor failure detection, identification and accommodation. Typically, a sensor failure detection 

scheme involves observing the measurements from sensors, which under nominal conditions 

follow known and predictable patterns in the presence of system and measurement noise. 

Conventional failure detection mechanisms are based on hardware redundancy, using a voting 

scheme [16, 17], where the measurements from three identical sensors are compared to each 

other. If the measurement metrics from one of the redundant sensors is significantly different 

from the other two, it is then classified as failed and thus removed from consideration among the 

redundant sensors and a statistical mean of the measurements from the other two sensors is then 

used as representing the sensor output in the flight control system. Such a voting scheme is 

simple to implement and capable detecting hard failures fast, but has the drawback of increased 

hardware complexity, power requirements, and increased weight on board the aircraft. These 

disadvantages render this scheme unsuitable in situations such as low cost and low weight 

UAVs, where reduced cost, power and weight are critical factors. Analytical redundancy 

presents itself as an attractive alternative in such situations. Analytical redundancy refers to the 
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use of mathematical models of the sensors to estimate their outputs. The estimates of the actual 

signals that are computed by these analytical methods are then compared against the sensor 

outputs, generating an error signal, which can then be used to signal a failure. 

Analytical approaches to failure detection and accommodation have included the use of 

Multiple Model Kalman Filtering (MMKF) [17, 18] with ‘n’ observation models generated 

offline and stored in the onboard computer. Of the ‘n’ models, ‘n-1’ represent different types of 

sensor failures and one represents the nominal condition. Monitoring the Bayesian probability 

statistics of the outputs from all the models and checking which of the models matches with the 

actual output, provides failure detection and identification of the failure mode. The drawback of 

this method is that its effectiveness depends on a pre-determined set of failure models, making it 

less effective in case of failures that are not previously modeled. Furthermore, this is based on 

the operation of a Kalman filter and is limited to a linear model of the aircraft, making it 

sensitive to modeling errors. NNs are interesting analytical tools as they can be applied to 

systems that are either linear or non-linear. Over the last decade, several schemes have been 

proposed using NN as a tool for FDI [19-25]. An adaptive NN augmented observer by Sreedhar 

[21] uses a sliding mode observer to characterize the un-modeled dynamics to train the neural 

network while a new approach for sensor failure detection identification and accommodation 

using a neural network by Guo and Nurre [19] is useful when the relationship between the 

sensors is too complex to be modeled by a Kalman filter estimator. The use of NN for the system 

identification and control of non-linear systems is discussed in Narendra [22,23]. Also, 

Polycarpou [24,25] discusses systematic procedures for constructing non-linear estimation 

algorithms and stable learning schemes using the Lyapunov synthesis approach. The technical 

literature [26-35] discusses the use of neural networks in aircraft flight control.  

Previous work at West Virginia University [33-39] has addressed the issue of sensor and 

actuator failure detection, identification and accommodation, using various approaches including 

Neural Networks, Fuzzy Logic, Kalman predictor and Eigenstructure Assignment. An [1] 

addresses the issue of improving the NN based SFDIA schemes for detecting soft failures which 

are characterized by accumulation of errors in the sensors over a period of time, and also the 

integration of the sensor failure and actuator failure scenarios. This task was divided into two 

sub-divisions, namely Sensor Failure Detection and Identification (SFDI), to monitor the extent 

of deterioration of the sensor systems and Sensor failure accommodation (SFA), to deal with the 
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accommodation of the failed sensor by means of the NN scheme. Similarly, the actuator failure 

section is divided into two tasks as Actuator Failure Detection and Identification (AFDI), 

monitoring the extent of the cross coupling of the longitudinal and lateral direction dynamics, a 

situation that indicates a loss of symmetry corresponding to an actuator failure and Actuator 

Failure Accommodation (AFA) task, which deals with the controller actions to recover from 

failure. The SFDIA scheme is important particularly when the inputs from the sensors are used in 

feedback loops of the flight control systems. If left undetected and uncompensated, such 

inaccuracies would eventually build up in the system, resulting in closed loop instability and 

potentially unrecoverable flight conditions. Current solutions to overcome this problem have 

been to have multiple physical redundancies, typically triple physical redundancy, but this has its 

own drawbacks in terms of the weight of the redundant sensors, the power required to maintain 

them and increased hardware complexity. 

Although accommodating for sensor failures is an important issue, the task of identifying 

and accommodating for failures to the actuator systems, particularly the control surfaces on 

aircraft take a higher precedence. Actuator failures during flight more often than not lead to 

catastrophic and unrecoverable flight conditions. Since there are limitations on the forms of 

physical redundancy that can be incorporated into an aircraft to compensate for actuator failures, 

software based approaches that attempt to compensate for the failures using the remainder of the 

healthy control surfaces have been extensively studied in recent years. Aircraft dynamics are 

non-linear in nature, especially after failures on the actuator systems. Solutions to the control of 

such non-linear systems has been to decompose the non-linear system into a number of linear 

systems, around various operating points, allowing for control schemes using gain scheduling. 

On-line parameter estimation based gain scheduling approaches [51] have been used for 

implementing fault tolerant flight control systems.  

Gain scheduling approach to fault tolerance relies on the reconfiguration and re-

computation of controller gains for the predetermined set of linear models. The dependence on a 

set of predefined models and the extensive computational burden in the redesign of the controller 

gains is a drawback for this method.   

In recent years, several experimental programs have addressed the issue of fault tolerance 

through flight testing. The Reconfigurable Control for Tailless Fighter Aircraft (RESTORE) [52-

54] program and the Intelligent Flight Control System (IFCS) [55-65] are two examples of many 
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such experimental programs. The purpose of the RESTORE program was the development and 

evaluation of reconfigurable flight control algorithms. Unlike traditional control systems, the 

control laws within the RESTORE project were designed to compensate for unknown failures on 

aircraft control surfaces by adapting themselves to the changing aircraft dynamics. The controller 

designed by the Boeing team, within the RESTORE project is designed to be modular and is 

based on dynamic inversion and the neural network designed to regulate the inversion errors 

between the pre-determined aircraft model and the true aircraft dynamics. This error in inversion 

could be caused by an actuator failure or damage to the aircraft structure. The response from the 

control algorithms to compensate for the failures onboard the aircraft was distributed to the 

remainder of the functional surfaces by means of a control allocation module. Two flights were 

flown in December 1998 proving the feasibility of the adaptive control approach. The Tailless 

Fighter Aircraft X-36 is shown below in Figure 2-1. 

 

Figure 2-1 : Tailless Fighter Aircraft X-36 

The modular control architecture of the RESTORE project is as shown in the following 

figure. 
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Figure 2-2 : Boeing RESTORE Controller 

The Intelligent Flight Control System was established at NASA Dryden Flight Research 

Center to design aircraft flight controls that can optimize aircraft flight performance 

characteristics under both nominal and failure modes. The IFCS is designed to use the self 

learning concepts of NNs into flight control software to enable the pilot to maintain control of 

aircraft with major systems failure or combat damage. The first generation of the IFCS, referred 

to as the GEN-1 approach is based on a direct adaptive neural network based flight control 

system. The Gen-1 controller was designed to estimate the changes in the aircraft aerodynamics 

as a result of failure modes. This information is provided to the flight control scheme which then 

identifies the stability and control derivatives of the aircraft, as an indicator of the aircraft 

dynamic characteristics and is then used to stabilize the aircraft. Flight tests of the Gen-1 

controller were flown onboard a test-bed aircraft, the NASA NF-15B (NASA 837) shown below 

in Figure 2-3. 
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Figure 2-3 : IFCS Gen-1 Test bed Aircraft (NASA 837) 

The general block diagram of the IFCS Gen-1 controller is shown below in Figure 2-4. 
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Figure 2-4 : Architecture of IFCS Gen-1 Controller 

The IFCS Gen-2 controller concept is based on a dynamic inversion controller with a 

model following command path. The general block diagram of the Gen-2 IFCS flight controller 

is shown in Figure 2-5. 
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Figure 2-5 : Architecture of IFCS Gen-2 Controller 

The feedback errors that are generated are controlled with a Proportional + Integral (PI) 

controller and this basic system is augmented with an adaptive NN that operates directly on 

feedback errors. The NN then adjusts the system for the erroneous behavior or changes in the 

aircraft characteristics after failure. The dynamic inversion part of the control system produces 

acceleration commands that are translated into control surface deflections by a control allocation 

scheme. Initial PID test flights with IFCS NNs pre-trained to the F-15’s aerodynamic database 

was test flown in the spring of 1999. It must be noted that a portion of the current flight testing 

activities at West Virginia University is directed towards the implementation of the Gen-2 

controller scheme on the WVU YF-22 UAV research platform.  

Flight controls research at West Virginia University has addressed the issues of flight 

testing fault tolerant flight control laws [50]. Gu describes the “design development and flight 

testing of a Neural Network based Fault Tolerant flight Control System to accommodate for 

actuator failures”. Within the research effort, the author demonstrates the ability of a set of flight 

control systems to maintain aircraft handling qualities in the presence of failures on actuators. 

The author describes actuator failures on the Ailerons as the Right Aileron locked at Trim 

position and the failures on the Elevator as the Right Elevator locked at Trim position. The test 

bed aircraft used in that research effort is shown in Figure 2-6.  
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Figure 2-6 : WVU YF-22 

Conventionally, NN based fault tolerant flight control schemes are implemented on a 

standalone computational platform, although the inherent structure of the NN makes it a prime 

candidate for implementation on parallel computer architectures. Implementing the neural 

networks in parallel is effective in reducing the training time and also paves the way for 

incorporating more complex training algorithms. Recent work [40,41], among many others, has 

addressed the topic of implementation of NN on parallel computers by splitting the network 

structure into component modules and executing them concurrently. This research effort attempts 

to decompose a sequential implementation of a NN based fault tolerant flight control scheme into 

a set of high level modules, with each module executing an independent task. This differs from 

the network level decomposition approach of other researchers [40,41].  
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Chapter 3  - Visualization Environment 

3.1  Aviator Visual Design Simulator (AVDS) 

An important segment of this research is the use visualization environment to graphically 

display the results of the simulation. The demands on the visualization environment are that it 

should be able to render three-dimensional images of the aircraft and at the same time be capable 

of supporting an interactive simulation, accepting user-generated inputs via a joystick. The 

Aviator Visual Design Simulator (AVDS) is a commercially available flight simulation package 

[6] that satisfies the above requirements and provides desirable configuration options such as 

user definable aircraft models and dynamics.  The AVDS software package is a product of a joint 

research effort between Artificial Horizons Inc. and the United States Air Force and is a set of 

PC based simulation and visualization tools, designed for use by students, teachers, engineers 

and designers for aircraft research and development purposes. A typical AVDS 

simulation/visualization screen is shown in Figure 3.1. 

 

 

Figure 3-1 : AVDS Simulation/Visualization Environment 

Some of the appealing features of the AVDS simulation package are:   

•  AVDS can be used interactively to simulate aircraft design and provide animated 

results of batch simulations; 
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•  AVDS can be used for testing flight control systems design with the user-

definable interactive simulation model; 

•  AVDS contains user definable aircraft images including articulated control 

surfaces; 

•  AVDS is designed to accept user defined aircraft models, by means of       three-

dimensional lookup tables;  

•  AVDS is capable of interactive simulation with external hardware inputs and 

hardware-in-the-loop simulations; 

•  AVDS is capable of distributing simulation and visualization tools over a network 

of computers, forming a rudimentary distributed computing and simulation 

network.  

The recommended system configuration for supporting the AVDS simulation package are 

listed below: 

•  PentiumR processor based personal computer; 

•  MicrosoftR Windows 95/98, WinNTR or later operating system; 

•  A graphics accelerator; 

•  At least 32 MB RAM; 

•  At least 110 MB of disk space. 

3.2  Architecture of AVDS  

This section describes the architecture of the AVDS simulation environment as installed 

on a Microsoft Windows based personal computer. When AVDS is installed, it creates seven sub 

directories under the installation directory. The following section describes each of the seven 

directories and its file contents.  

•  “bin” directory  

The “bin” directory contains three files, namely, “avds.exe”, “avds.std.ini” and 

“avds.ini”. The avds.std.ini is a text file written in the standard windows “ini” format, 

and is used to store the multicast addresses, while the avds.ini file contains the file and 

path names for the AVDS setup files.    

•  “craft” directory 
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This directory contains a file named “craftcap”, that is used to identify the 

aircraft image definition files and sample aircraft image definition files. This enables the 

user to change the appearance of existing aircraft images and add new aircraft image 

files. 

•  “model” directory 

This directory contains a file “modelcap” that is used to identify user-defined 

models, a “makefile” used to compile user-defined code into a dynamic linked library, a 

sample flight control system file and a file with the aircraft model source code. The 

sample source code enables the user to modify the structure of the existing aircraft 

models or add new flight control system or aircraft files. This modified source code is 

then compiled into a “dll” using the “makefile” and added to the simulation using the 

“modelcap” file.  

•  “ports” directory 

Similar to the craft and model directories, the ports directory contains files that 

define the airport and other structural images used in the simulation. In addition, this 

directory contains the “portscap” file that is used to identify the airport image definition 

files, and the airport image definition files themselves.  

•  “terrain” directory 

This directory contains data files that AVDS uses in rendering the terrain, with the 

latitude and longitude of the terrain blocks derived from the name of the respective files.  

•  “userfiles” directory 

The “userfiles” directory contains files that can be used to configure the 

simulation or playback on the AVDS window. Among other files, this directory contains 

the files, “fighter.ply” and “file.ply”, which are sample configuration files used for 

aircraft initialization and playback configuration window, “fighter.av”, which is a 

parameter lookup table that can be updated between simulation runs. This directory also 

contains the “avds.init” file, a global setup file that saves all the default settings for 

AVDS.    
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•  “utilities” directory 

The utilities directory contains files and tools that used to convert AutoCAD files 

to AVDS format, for incorporating new aircraft images into AVDS, sample code and 

libraries to develop networked AVDS simulations.  

3.3  Interactive Simulation 

The interactive simulation mode gives the user the tools to simulate the aircraft dynamics 

in near real time while representing the vehicle dynamics graphically and interactively passing 

commands to the simulation. The interactive simulation model consists of two parts, namely the 

model structure and model parameters. The model structure can either be pre-defined or user 

defined and is built up with subroutines that define how the model parameters produce the 

vehicle dynamics. The model parameters are specified in a parameter file and read into AVDS 

when the interactive simulation begins, allowing the user an extra degree of freedom to change 

the model parameters at any time between simulations, without the need to recompile the 

program. A text file specifies the model parameters in the form of a lookup table and are 

scheduled based on the aircraft velocity, in Mach number, but can be based on other parameters 

as well. The lookup table can be extended to be multi-dimensional; up to three dimensions, but is 

restricted to be one dimensional within this research effort.  

The interactive simulation parameters can be set before the start of the simulation, by 

using the simulation configuration window, shown in Figure 3.2, from the Configure menu of 

AVDS. A representation of the simulation configuration window is shown below. 
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Figure 3-2 : Simulation Configuration Window 

The simulation configuration window has two smaller windows within it, with the 

window on the left indicating the “OUTPUTS” from the simulation environment and the window 

on the right representing the “INPUTS” to the simulation environment. On the right hand side, 

the ‘Inputs’ window represents the inputs that are fed into the simulation, the FCS, aircraft 

model, to a file for recording and the strip charts. These are similar to the parameters in the 

“OUTPUTS” window. The FCS and the aircraft drop down menus offer the user a range of 

choices in the type of the flight control system to be integrated with the type of aircraft. These 

“FCS” and “AIRCRAFT” options can be pre-defined with options that come packaged with 

AVDS or be user-defined, according to the systems and approach that the user designs. These 

extra options can be incorporated into the AVDS scheme using user defined simulation code 

blocks. The following section describes the procedure associated with creating or modifying user 

defined simulation code blocks and including them in the AVDS scheme.  

3.4  User Defined Simulation Code Blocks 

Both the aircraft models and flight control systems can be modified in several ways, first, 

by either changing the aircraft parameter values in the lookup tables or second, by re-writing the 

simulation code blocks. This section describes in some detail the process of modifying the 

simulation code blocks. 
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To redefine the structure of the FCS or the aircraft, the user must add new code or modify 

the existing User Defined Simulation Code Blocks (UDSCBs), written in C or a language that 

can interface with C. Once these files are written, they are compiled into object files and are 

loaded dynamically by the AVDS at runtime for use within the interactive simulations. The 

AVDS user manual [6] describes the steps for adding a user defined simulation code block as 

follows: 

1. Construct the source code to reflect the desired behavior of the flight control system or 

the aircraft model, remembering to include the header file usr_cblock.h. This header file 

contains information about the user defined simulation code block structure. 

2. Define and set the number of user defined simulation code blocks in the variable 

‘nBlocks’. 

3. Define the user defined simulation code blocks. 

4. Add the simulation code blocks to the execution list. Thus, the user defined simulation 

code block will be reflected as an option to choose from in the simulation configuration 

window.  

5. Prototype the initialization and the update functions. These functions will be executed 

during the initialization of the model and during the run time, respectively. 

6. Declare the user defined simulation code blocks. 

7. Add the simulation initialization and update functions using the output[], input[] and 

param[] arrays for simulation inputs, outputs and lookup parameters respectively. 

8. Compile and link user defined simulation code block source code into a dynamic link 

library (dll). 

9. Add the name of the dll to the modelcap file. AVDS is designed to recognize the dynamic 

link library modules from the modelcap file. 

10. Configure the interactive simulation from the simulation configuration window. 

 

Appendix A contains detailed descriptions of the three dimensional lookup tables, and the 

user defined simulation code block header information. Appendix B shows a sample of the User 

Defined Simulation Code Block header information. 
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Chapter 4  - Theoretical Framework 

4.1  Mathematical Modeling and Aircraft Equations of Motion 

Simulation and visualization of aircraft dynamics on personal computers requires that a 

set of mathematical equations model the dynamics of the aircraft under review. This section 

addresses that issue and derives the equations of motion of a rigid aircraft, within the earth’s 

atmosphere. There are a few assumptions that are made during the process of deriving the 

equations of motion, and are noted accordingly. The derivations are handled in extensive detail 

in texts on aircraft dynamics [2, 3]. 

The first step towards deriving the rectilinear and rotational equations of motion of an 

aircraft is the choice of coordinate systems in which the equations hold true. The first reference 

frame, namely the earth fixed system, is assumed to be an inertial reference system, where 

Newton’s laws of motion hold true. The assumption is that the earth fixed axis system is an 

inertial frame which allows us to neglect of the rotational velocity of the earth, a result that 

would be acceptable for even supersonic flight. The earth fixed axis system is oriented in such a 

way that the x-axis is directed due north, the y-axis is directed due east and the positive z-axis is 

directed into the x-y plane, according to the right hand rule. The next reference frame, referred to 

as the aircraft carried vertical axis system, is obtained by translating the origin of the earth fixed 

reference frame to coincide with the center of gravity of the aircraft. The positive directions of 

each axis in this system are parallel to the directions of the respective axes within the earth fixed 

reference frame. The third reference frame, called the body fixed axis, is attached to the airplane 

itself, with the origin coinciding with the center of gravity of the airplane. The positive direction 

of the body fixed x-axis is then oriented to pass through the nose of the aircraft, the positive y-

axis through the right wing of the aircraft and the positive z-axis is directed into the x-y plane, 

according to the right hand rule. The fourth reference frame is called the wind reference system 

and is used to describe the aircraft’s flight path. The positive x-axis in this reference frame is 

oriented in the direction of the total velocity vector of the aircraft, with the angle of attack α, and 

the angle of sideslip β, defined by the orientation of this reference frame with respect to the body 

fixed axes. Thus, the airplane dynamics can now be described using these reference frames. For 

the purpose of this research, the F4 aircraft model is selected, primarily due to the benign nature 
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of its dynamics and the fact that the stability and control derivatives that describe the aircraft are 

readily available [2]. Figures 4.1 and 4.2 show a three view of a F4 aircraft and the relative 

orientations of the reference frames. 

 

Figure 4-1 : 3-View Drawing of F4 Aircraft 

 

Flight Path

1Y

2 3Y and Y

Y

3Z

Z

1 2Z and Z

3X and X

2X

1X

Φ Θ

Ψ
ΦΨ

Θ

'X

'Y

'Z

Earth Fixed Axis

 

Figure 4-2 : Airplane Orientation with Euler Angles 

The equations of motion for an aircraft are developed from the Newton’s second law of 

motion, which states that “the time derivatives of linear and angular momentum are equal to 
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the externally applied forces and moments respectively [2]”. This results in a vector-integral 

equation of motion, given as:  

'

A Av v S

d d r
dv g dv Fds

dt dt
ρ ρ

→
→ →

= +∫ ∫ ∫        Eq. 4.1 

for linear momentum and 

'
' ' '

A Av v S

d d r
r dv r g dv r F ds

dt dt
ρ ρ

→
→ → →→ →

× = × + ×∫ ∫ ∫      Eq. 4.2 

for angular momentum. 

The integrals 
V∫ and 

S∫ represent the total volume and surface area of the airplane. The 

above equations are for rigid aircrafts whose external geometry is known. Also, the total mass 

and mass distribution of the airplane are assumed to be constant with time and the forces A g dvρ
→

 

and F ds
→

 assumed to be the only external forces acting on the airplane.  

The vector-integral equations Eq. 4.1 and Eq. 4.2 can be further reduced to the following 

form with respect to the earth frame: 

.

( )P P A Tm V V m g F Fω
→

→ → → → →
+ × = + +        Eq. 4.3 

and 
.

A A TV
r r r dv M Mω ω ω ρ

→
→ → → → → → →   × × + × × = +  

   
∫       Eq. 4.4 

These equations are the vector forms of the aircraft equations of motion with respect to the earth 

reference frame. However, this form is not very friendly to express the steady state and time 

history response of the system and so, has to be written in the scalar component forms. Thus, the 

scalar component representation of the linear and angular momentum equations with respect to a 

the body reference frame is given as  
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.

( )
x xx A Tm U VR WQ mg F F− + = + +        Eq. 4.5 

.

( )
y yy A Tm V UR WP mg F F+ − = + +        Eq. 4.6 

.

( )
z zz A Tm W UQ VP mg F F− + = + +        Eq. 4.7 

and 

 
. .

( )xx xz xz zz yy A TI P I R I PQ I I RQ L L− − + − = +       Eq. 4.8 

.
2 2( ) ( )yy xx zz xz A TI Q I I PR I P Q M M+ − + − = +      Eq. 4.9 

. .

( )zz xz yy xx xz A TI R I P I I PQ I QR N N− + − + = +                          Eq. 4.10 

The above equations are not sufficient to solve for the time histories of motion, primarily 

because of the fact that the gravity components of Eq. 4.5, Eq. 4.6 and Eq. 4.7 depend on the 

orientation of the airplane with respect to the earth fixed coordinate system. 

The flight path of an airplane relative to the earth fixed axis system can be determined 

from the knowledge of the velocity components U, V and W in the body fixed axis system and 

the Euler angles. Thus, the relationship between the earth fixed axes velocity components and the 

body fixed axes velocity components of the airplane is given as: 

.

1
.

1

.
1

'
cos sin 0 cos 0 sin 1 0 0

sin cos 0 0 1 0 0 cos sin'

0 0 1 sin 0 cos 0 sin cos
'

x
U U

V Vy

WW
z

ψ ψ θ θ
ψ ψ φ φ

θ θ φ φ

 
  −         
         = = −          

          −          
 

                  Eq. 4.11 

The flight path of the airplane in terms of '( )x t , '( )y t  and '( )z t  is found by integrating 

the terms in equation 4.11. The Euler angles in Eq.4.11 are functions of time and are determined 

by integrating the following equations: 

.

sin tan cos tanP Q Rφ φ θ φ θ= + +                          Eq. 4.12 

.

cos sinQ Rθ φ φ= −                            Eq. 4.13 

.

( sin cos )secQ Rψ φ φ θ= +                           Eq. 4.14 

Also, the components of the gravitational force are given as: 
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sinxg g θ= −                            Eq. 4.15 

sin cosyg g φ θ=                           Eq. 4.16 

cos coszg g φ θ=                           Eq. 4.17 

Using the set of equations 4.5-4.17, the time history of the aircraft dynamics can be 

obtained by numerical integration.  

The following section discusses the theoretical basis of Neural Networks and the learning 

algorithms used to train the networks. 

4.2  Neural Network Theory 

A Neural Network can be defined as “A massively parallel distributed processor that has 

a natural propensity for storing experimental knowledge and making it available for use” [4, 

42]. They are also commonly referred to in literature as neurocomputers, connectionist networks, 

parallel-distributed processors etc. Neural Networks derive their flexibility and computing 

power through their ability to learn and generalize, producing reasonable outputs for inputs not 

encountered during the learning phase, and the presence of a massively parallel, distributed 

structure of individual neurons. A schematic representation of the non-linear model of a neuron 

is shown below in figure 4.3.  
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Figure 4-3 : Non-Linear Model of a Neuron 
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The fundamental elements of a neuron include the synapses, the summing junction and 

the activation function. The nature and functionalities of each element are described in the 

following section: 

•  Synapses are the connecting links between two individual neurons i and j in adjacent 

layers in the network architecture, and are characterized by an interconnection weight 

ijw . The input signal at the neuron j is the product of the output of the neuron i and the 

interconnection weight ijw . 

•  The summing junction is essentially a linear combiner, and sums all the input signals to 

the neuron, weighted by the respective synaptic weights. 

•  The activation function is used to limit the amplitude of the output from the neuron and is 

also sometimes referred to as the squashing function. Typically, the activation function 

normalizes the output of the neuron to a closed interval [0,1] or sometimes [-1,1].  

•  The model of the neuron also includes an externally applied threshold constant, kθ , that 

has the effect of lowering the net input of the activation function.  

Mathematically, a neuron can be described using the relationship 

1

p

k kj j
j

u w x
=

=∑                              Eq. 4.18 

and ( )k k ky uϕ θ= −                  Eq. 4.19  

 where 1 2, .... px x x are the inputs to each neuron in the input layer and 1 2, ....k k kpw w w are the 

synaptic weights associated with each input. The value ku  is the output of the linear combiner or 

the summer, kθ  is the threshold value, (.)ϕ  is called the activating function and ky is the final 

output of the individual neuron. The activation function defines the output of the neuron and can 

be classified into three basic types as Threshold, Piecewise-Linear and Sigmoid functions. 

•  A Threshold function is mathematically defined as 

1 0
( )

0 0

if v
v

if v
ϕ

≥
=  ≤

                           Eq. 4.20 

•  The mathematical representation of the Piecewise-Linear function is given as 
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1 0

( ) 0 0

1 0

if v

v if v

if v

ϕ
>

= =
− <

                            Eq. 4.21 

•  The Sigmoid function is the most common form of activation function used in 

neural networks and is defined as a strictly increasing function that is smooth and 

asymptotic. Mathematically, a typical sigmoid function can be expressed as 

1
( )

1 av
v

e
ϕ −=

+
                            Eq. 4.22 

where the parameter a is called the slope of the sigmoid function. By varying the 

slope parameter, we can obtain various sigmoid functions. 

The following section discusses some of the more common neural network architectures 

and their properties. 

4.3  Neural Network Architectures 

The architecture of a neural network is the order of the interconnections between the 

individual neurons that make up the overall network. In general, there are four different classes 

of network architectures, namely Single Layer Feedforward networks, Multilayer Feedforward 

networks, Recurrent networks and Lattice Structures. 

•  Single Layer Feedforward networks are the simplest form of a layered neural 

network, and have their component neurons organized in a single layer. This is 

strictly a feedforward network, where the source nodes of the ‘Input’ layer project 

onto the nodes in the ‘Output’ layer, but not vice versa. An example of a single 

layer feedforward network would be the linear associative memory, in which an 

output pattern is associated with an input pattern by adapting the interconnection 

weights between the neurons. 

•  Multilayer Feedforward network architectures have more than one layer of 

interconnected neurons, referred to as the Hidden Layer, between the ‘Input’ layer 

and ‘Output’ layer. The computation nodes associated with the ‘Hidden’ layer are 

called as hidden neurons or hidden layer neurons and the presence of these 

neurons enables a network to extract higher order statistics and approximate non-

linear functions effectively. The inputs to the activation function of each neuron 
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in the ‘Hidden’ layer are then the weighted sum of the outputs from the neurons in 

the ‘Input’ layer. These inputs are then passed through the activation function 

giving the corresponding output at each node in the Hidden layer, which then 

serve as inputs to the neurons of the next layer, until the ‘Output’ layer is reached 

where the output from each neuron gives the overall response of the network to 

the input pattern. 

•  Recurrent networks are distinct from a feedforward network in the aspect that 

they have at least one feedback loop in the network architecture. In this 

architecture, the output of a neuron is fed back as an input to other neurons in the 

same layer, resulting in a feedback network. The output of a neuron is fed to itself 

and all the other neurons in the same layer, results in a self-feedback network 

architecture. 

•  A lattice structure network architecture is characterized by the presence of one, 

two or ‘N’ higher dimensional array of neurons with a corresponding set of input 

layer neurons. The lattice structure can be considered to be a feedforward 

network with the neurons in the output layer arranged in rows and columns, where 

the dimension of the lattice characterizes the number of dimensions in space in 

which the graph lies. 

For the purpose of this research, a multilayer feedforward network was with one hidden 

layer chosen as the structure of the neural network. The next section discusses the multilayer 

feedforward network in more detail, with respect to its architecture and the learning algorithm 

used to train the networks. 

4.4  Extended Backpropagation Algorithm 

The multilayer feedforward network architecture, also referred to as Multilayer 

Perceptrons (MLPs), is one of the more important network architectures. Typically it consists of 

an input layer of sensory units, one or more hidden layers of computation nodes and one output 

layer of computational neurons. A popular approach to training the MLPs in a supervised 

manner is the error-backpropagation algorithm, based on the error-correction learning rule. The 

purpose of this rule is to minimize a cost function based on the error ( ) ( ) ( )k k ke t d t y t= − , where 

( )kd t  is the desired output from the network and ( )ky t  is the actual response of the network, to 
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the input presented, such that the actual response of each neuron in the output layer approaches 

the target response in some statistical sense. Figure 4.4 shows a schematic representation of a 

multilayer feedforward neural network. 
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Figure 4-4 : Multilayer Perceptron with One Hidden Layer 

The error-backpropagation training process consists of two distinct phases, namely the 

forward phase and the backward phase. In the forward phase, an input pattern is applied to the 

nodes in the input layer, which then propagates through the each of the hidden layers, till it 

reaches the output layer, where the output at the computational nodes is the overall response of 

the network to the input pattern that was presented. Once the overall response of the network is 

obtained, it is then compared to the target output and the difference between the two produces an 

error term. This error is then propagated backwards, leading to the term backpropagation, 

through the network structure and the corresponding interconnection weights are adjusted to 

make the response of the network move closer to the desired response. A detailed theoretical 

explanation of the derivation of the back propagation algorithm is provided in the text “Neural 

Networks: A Comprehensive Foundation” [4]. 

Although the back propagation algorithm is popular for training multilayer perceptrons, it 

has a few drawbacks that make the general algorithm unsuited for the current research. This 

section describes a few of the drawbacks of the backpropagation algorithm, particularly with 

reference to its activation function, the sigmoid function
1

1 jsum
e

−+
, and also suggests solutions to 

overcome these drawbacks:  



 32 

•  The backpropagation algorithm, applied to a multilayer perceptron, is not 

guaranteed to converge to the global minimum, even when the learning rate is 

properly selected, as the performance index may have many local minima; 

•  Although the backpropagation algorithm can approximate any non-linear 

function, it requires extensive training, which makes it unsuitable for on-line 

applications. 

A few approaches, among others, to overcome the above drawbacks of applying the 

backpropagation algorithm to train a multilayer perceptron are:  

•  Backpropagation algorithm with a momentum term used in updating the 

interconnection weights; 

•  Backpropagation with a variable learning rate; 

•  Backpropagation with batch training, network pruning and complexity penalty. 

A different solution, the Extended Back Propagation Algorithm (EBPA), to overcome 

these problems was developed at WVU [43], based on a significantly modified sigmoid 

activation function

1
net

T

U L
L

e
−

− +
+

. This uses a heterogeneous network, wherein each neuron in the 

hidden and the output layer has its own set of free parameters, namely the upper and lower 

bounds of the output range, as well as the slope of the sigmoid activation function. With respect 

to the multilayer perceptron architecture shown in Figure 4.5, the following derivations for the 

training the multilayer perceptron, using the EBPA, hold good. The modified schemes for the 

outputs at each neuron in the hidden and the output layers is given as  

1

n

i h hi i
h

sum A V
=

= + Θ∑                              Eq. 4.23 

( , , , ) ; 1,2,

1
i

i

i i
i i i i i isum

T

U L
B f sum U L T L i m

e
−

−= = + =
+

…                         Eq. 4.24 

for the hidden layer neurons, and 



 33 

1

m

j i ij j
i

sum BW
=

= + Γ∑                              Eq. 4.25 

( , , , ) ; 1,2,

1
j

j

j j
j j j j j jsum

T

U L
C f sum U L T L j p

e
−

−
= = + =

+

…                         Eq. 4.26 

for the output layer neurons. This would constitute the forward phase of training, where the 

overall response of the network is given by jC . 
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Figure 4-5 : Feedforward Multilayer Perceptron 
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In the backpropagation or the updating phase, the overall outputs of the network are 

compared to the target outputs the network is designed to track, and the error 

( ) ( ) ( ),k k ke t d t y t k neurons in the output layer= − ∀ is propagated backwards, to update the 

values of the interconnecting weights and thresholds at each neuron in both the hidden and 

output layers, as a means to minimize the difference between the overall output of the network 

and the actual parameter being tracked. 

The first step in the back propagation step is to determine the partial derivatives of the 

network with respect to each of the parameters in the network. For the output layer, taking the 

partial derivatives with respect to the upper bound, lower bound and the gradient results in the 

following expressions: 

' ( , , , ) ( )( )

( )j

j j j j j j j j
sum

j j j j

f sum U L T C U C L
f

sum T U L

∂ − −
= = −

∂ −
                         Eq. 4.27 

' ( , , , ) 1

1
j j

j

j j j j
U sum

j T

f sum U L T
f

U
e

−

∂
= =

∂
+

                          Eq. 4.28 

' '( , , , ) 1
1 1

1
j jj

j

j j j j
L Usum

j T

f sum U L T
f f

L
e

−

∂
= = − = −

∂
+

                         Eq. 4.29 

'

'

2

( , , , ) ( )( )

( )
j

j

j sumj j j j j j j j j
T

jj j j j

sum ff sum U L T sum C U C L
f

T T U L T

∂ − −
= = = −

∂ −
                       Eq. 4.30 

 

Similarly, at the hidden layer: 

' ( , , , ) ( )( )

( )i

i i i i i i i i
sum

i i i i

f sum U L T B U B L
f

sum T U L

∂ − −= = −
∂ −

                         Eq. 4.31 

' ( , , , ) 1

1
i i

i

i i i i
U sum

i T

f sum U L T
f

sum
e

−

∂= =
∂

+
                           Eq. 4.32 

' '( , , , ) 1
1 1

1
i ii

i

i i i i
L Usum

i T

f sum U L T
f f

sum
e

−

∂= = − = −
∂

+
                         Eq. 4.33 

'
'
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( , , , ) ( )( )

( )
i

i

i sumi i i i i i i i i
T

ii i i i

sum ff sum U L T sum B U B L
f

sum T U L T

∂ − −= = = −
∂ −

                       Eq. 4.34 
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Once the partial derivatives are computed, the next step is the formulation of the error 

term to be minimized. At the output layer, the difference between the overall network output and 

the target network output constitutes the error term and are given as: 

' ( )
j jsum sum j jf Y Cδ = −                              Eq. 4.35 

' ( )
j jU U j jf Y Cδ = −                              Eq. 4.36 

' ( )
j jL L j jf Y Cδ = −                              Eq. 4.37 

' ( )
j jT T j jf Y Cδ = −                              Eq. 4.38 

These errors are then propagated back to the neurons in the hidden layer, where the 

formulation of the error term at each neuron is not straight forward as they are at the output 

layer, as there are no well-defined target values at any neuron. Thus, the error terms at the hidden 

layer are computed using the chain rule, by multiplying the delta terms from the output layer 

with the interconnecting weights between the neurons in the hidden and the output layers: 

'

1
i i j

o

sum sum sum ij
j

f wδ δ
=

= ∑                              Eq. 4.39 

'

1
i i j

o

U U U ij
j

f wδ δ
=

= ∑                              Eq. 4.40 

'

1
i i j

o

L L L ij
j

f wδ δ
=

= ∑                              Eq. 4.41 

'

1
i i j

o

T T T ij
j

f wδ δ
=

= ∑                              Eq. 4.42 

Once the errors and delta terms are determined at both the hidden and the output layers, 

the bias terms and interconnecting weights are then updated using the following relationships: 

( ) ( 1) ; 1, 2,
jj sum sum sum jk k j oη δ α∆Γ = + ∆Γ − = …                          Eq. 4.43 

( ) ( 1); 1,2,
ii sum sum sum ik k i mη δ α∆Θ = + ∆Θ − = …                          Eq. 4.44 

and the weights are updated as  

( ) ( 1)
jij sum sum i sum ijw k B w kη δ α∆ = + ∆ −                           Eq. 4.45 

( ) ( 1)
ihi sum sum h sum hiv k A v kη δ α∆ = + ∆ −                           Eq. 4.46 

Now the upper and lower bounds as well as the temperatures on all the neurons in both 

the hidden layer and the output layer are updated using: 
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( ) ( 1)
jj u U u jU k U kη δ α∆ = + ∆ −                            Eq. 4.47 

( ) ( 1)
jj L L L jL k L kη δ α∆ = + ∆ −                            Eq. 4.48 

( ) ( 1)
jj T T T jT k T kη δ α∆ = + ∆ −                            Eq. 4.49 

( ) ( 1)
ii i U U iU k U kη δ α∆ = + ∆ −                            Eq. 4.50 

( ) ( 1)
ii L L L iL k L kη δ α∆ = + ∆ −                             Eq. 4.51 

( ) ( 1)
ii T T T iT k T kη δ α∆ = + ∆ −                             Eq. 4.52 

In the above equations, the terms η and α represent the learning rate and the momentum 

rates. The learning rate is a factor that determines the amount by which each parameter is 

updated at each time step. The momentum term controls the extent of the contribution of the 

weights in the previous time step on the current weights. Additional degrees of freedom can be 

achieved by having different learning and momentum rates for each of the parameters. This 

learning algorithm has a few advantages over the traditional backpropagation algorithm, such as 

a more degrees of freedom with regards to learning due to the presence of the parameters U, L, 

and T in the activation function. Also, this learning algorithm is more likely to avoid the local 

minima problem that is traditionally associated with the backpropagation algorithm and 

potentially learn faster and more accurately than the traditional backpropagation algorithm. 

There are some downsides to this learning method in that this takes approximately 30%-50% 

more computations, due to the presence of the extra degrees of freedom in U, L and T, although 

this issue is of concern only when the method is applied to on-line learning.  

4.5  Flynn’s Taxonomy and Message Passing Interface 

Enough! That is an expression hardly used by researchers in the same sentence as 

computational power. Ever since the dawn of the computer era, researchers and scientists have 

been clamoring for increased computational capacity, something that has not been satisfied even 

with the recent advances in semiconductor technology. Therefore, to meet the requirements for 

higher computational power, with the existing microprocessor technology, a new computing 

paradigm, parallel computing, was developed, wherein more than one distinct processor would 

work together, forming a parallel computer, to solve a given task. The parallel computer 

architectures were originally classified according to a popular scheme known as Flynn’s 

taxonomy, developed by Flynn in 1966 [44]. This classified the parallel computers into four 
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distinct classes, based on the number of instruction and data streams, as single instruction single 

data (SISD), multiple instruction multiple data (MIMD), single instruction multiple data (SIMD) 

and multiple instruction single data (MISD) architectures.  

The classical von Neumann computer is an example of the SISD architecture and has just 

a single instruction stream and a single data stream.  

 

Input

Memory

Central Processing Unit Output

 

Figure 4-6 : Classic von Neumann Computer Architecture 

The SIMD computer architecture has a single central processing unit exclusively 

dedicated to control and a bunch of slave arithmetic and logic units, each with its own memory. 

During each instruction cycle, the central processing unit sends an instruction to all the 

subordinate processors, which then execute it or remain idle. The general MIMD architecture is 

different from the SIMD architecture in the aspect that each processor in a MIMD system is a 

fully autonomous central processing unit, with its own control unit as well as arithmetic and 

logic unit. Thus, the MIMD systems are asynchronous in nature and are capable of executing its 

own set of instructions at its own pace.  

The MIMD architecture is further divided into two distinct groups as shared memory and 

distributed memory architectures. The shared memory architecture consists of a collection of 

distinct processors and distinct memory modules, interconnected by a communication network. 

Figure 4.6 shows a schematic representation of generic shared memory architecture.  
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Figure 4-7 : Generic Shared Memory Architecture 

On the other hand, with distributed memory architecture, each processor has its own 

private memory, and is connected to other processors by a common communication network. 

Figure 4.7 shows the schematic representation of generic distributed memory architecture. 

 

 

Figure 4-8 : Generic Distributed Memory Architecture 

The more popular methods of programming shared memory systems involves one of the 

various forms of message passing, Message Passing Interface or Parallel Virtual Machine, 

where the individual processes coordinate their activities by explicitly sending and receiving 

messages. The popularity of the message passing paradigm can be attributed to a large extent to 

its portability and its ability to run on heterogeneous systems, from distributed memory systems, 

shared memory systems, network of workstations, or a combination of the above. The Message 

Passing Interface (MPI) is described as “a standardized portable message passing system, 

designed by a group of researchers from academia and industry, to function on a wide variety of 

parallel computers” [45]. MPI standard provides efficient and reliable communication interface 

between processes, avoiding memory-to-memory copying, and facilitates overlap of computation 

and communication, with the ability to offload the communication to a secondary processor. The 
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Parallel Virtual Machine (PVM) can be described as a software package that allows the user to 

create and access a concurrent computing system created from a network of loosely coupled 

processing elements including standalone workstations, vector processors or even parallel 

supercomputers. The distinguishing factor of PVM is that it makes the heterogeneous collection 

of computers appear as a single virtual machine, leading to its name [46]. 

In recent years, the publication of the OpenMP standard for shared memory parallelism 

has provided developers with another portable and scalable API for writing parallel programs. 

Salient features of OpenMP are that it is made up of a simple set of directives and can provide 

incremental parallelism and does not have to deal with message passing and allows the use of 

shared data.  

For the purpose of this research, MPI is chosen as the communication paradigm, due 

mainly to the ease of programming and the availability of extensive support. MPI is portable and 

does not require any special compilers to work. Within this research effort, SIMD architecture is 

followed, with source code written as a single chunk of instruction sequence with each node on 

the cluster executing a section of the code, based on its rank. The individual processes execute in 

its own address space communicate with each other via calls to MPI primitives. This is a 

substantial advantage when applied to the adaptive flight control system scheme as different 

modules of the scheme can be programmed to attain its own goals and execute on different 

computers. Figure 4.8 shows an example of a parallel program written in C using MPI for 

communication [47]. In this example, six distinct processes, one of which is designated as the 

root process, are spawned on six different machines. The non-root processes send a greeting to 

the root, which then displays it as its output. The result of the program is shown in Figure 4.9.    
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 greetings.c -- greetings program

 Send a message from all processes w ith rank != 0 to process 0.
    Process 0 prints the messages received.

 Input: none.
 Output: contents of messages received by process 0.

/
include <stdio.h>
include <string.h>
include "mpi.h"

ain(int argc, char* argv[]) {
  int  my_rank; /* rank of  process             */
  int  p; /* number of processes    */
  int  source; /* rank of  sender               */
  int  dest; /* rank of  receiver             */
  int  tag = 0; /* tag for messages          */
  char message[100]; /* storage for message     */
  MPI_Status  status;         /* return status for  receive  */

  /* Start up MPI */
  MPI_Init(&argc, &argv);

  /* Find out process rank  */
   MPI_Comm_rank(MPI_COMM_WORLD, &my_rank);

  /* Find out number of  processes */
   MPI_Comm_size(MPI_COMM_WORLD, &p);

  if  (my_rank != 0) {
      /* Create message */
      sprintf (message, "Greetings f rom process %d!", my_rank);
      dest = 0;
      MPI_Send(message, strlen(message)+1, MPI_CHAR, dest, tag, MPI_COMM_WORLD);

  }
  else
  {
      /* my_rank == 0 */
      for (source = 1; source < p; source++) {

MPI_Recv(message, 100, MPI_CHAR, source, tag, MPI_COMM_WORLD, &status);
printf("%s\n", message);
}

   }

  /* Shut dow n MPI */
  MPI_Finalize();

 

Figure 4-9 : Example of a MPI Based Program 
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----PBS Prologue Report----
Bef ore running, there are       8 IPC semaphores and  IPC shared memory  segments on node4
Greetings f rom process 1!
Greetings f rom process 2!
Greetings f rom process 3!
Greetings f rom process 4!
Greetings f rom process 5!
node4
node4
node3
node3
node2
node2
PBS Epilogues Report
PBSJOB(10126.energy ):managed by  node4
/usr/spool/PBS/aux/10126.energy

 

Figure 4-10 : Result of the MPI “greetings” Program 
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Chapter 5   - Design of the Experimental Setup 

5.1   Matlab GUI 

This chapter discusses the experimental setup that was used for the implementation of the 

NN based fault tolerant flight control system addressed within this research effort.  

The experimental setup covers subtasks includes the design and implementation of a 

Matlab based Graphical User Interface (GUI) that allows the user to interactively setup the task 

at hand, the setup of the graphical simulation/visualization environment to allow for data 

exchange between itself and the flight control schemes, followed by the setup of the Beowulf 

cluster based computation platform.  

The first sub-task involved the development of the GUI and was developed within the 

Matlab 5.3 environment for this research study.  The initial GUI screen is shown below.  

 

 

Figure 5-1 : Main User Interface  

On this initial screen, when the “Initialize Parameters” button is clicked, it calls an 

initialization script which then initializes the handles for all the graphics objects on this screen, 

and sets the default parameters for all the seven NNs, including the MNN, P-DNN, Q-DNN, R-
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DNN, ROLL-NNC, PITCH-NNC and the YAW-NNC. Once the graphics object handles are 

initialized, the script then activates the buttons that presents the user an option to select between 

pre-trained NNs or un-trained NNs. Once the choice of the networks are made, the script then 

activates the graphics objects on the main GUI and displays the current settings of the NN 

structures that were chosen. This GUI is setup in such a way that the user can scroll through the 

different NN structures using the scroll buttons.  

The inner workings of the GUI can be explained with the help of an example. Taking the 

MNN as the test case, in order to alter its structure, the user has to scroll forward or backward to 

display the current setting of the MNN. Once this is done, clicking on the “Change Parameters” 

button will bring up the second layer of the GUI.   The second layer of the GUI is shown below.  

 

 

Figure 5-2 : Change Parameters Window 

Within this GUI, when the “Initialize Window” button is clicked, the script determines 

which network was selected in the previous screen and then brings up the current setting of the 
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network structure and displays the parameters in the appropriate fields. Traditionally, MLP based 

neural network structures have been hand coded into the program code. This makes it 

cumbersome to alter the structure of the networks if the need arises. This GUI based approach 

makes the design of the network structure flexible and the user can choose to vary any of the 

parameters that define the network. The first parameter in this window is the number of input 

variables that are used to estimate the outputs from the NN. The default setting for the MNN is 8 

variables. The other parameters are the number of Hidden layer neurons, the input data pattern, 

the learning rate of the network and the momentum rate of the network. The input data patters in 

the value that determines the number of time steps back in time that the NN reaches to gather its 

input data, to estimate its outputs at the current time step. After changing any of these 

parameters, clicking on the “Apply” button sets the appropriate values in memory. The user also 

has an option to choose the input variables to the NN. When the “New” button is clicked, a 

popup window presents the user with a list of variables that are sent across from the simulation 

environment. The user can choose the inputs to the NN from this popup window. The variables 

that are chosen from this popup window are identified by their indexes and are stored in an array 

in the order that they were chosen. The popup window that allows the user to choose the input 

variables is shown below. 
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Figure 5-3 : Choose Variables 

Once the variables for the NN are chosen and “Apply Settings” button is clicked, the user 

is taken back to the main GUI window. On the main GUI, once all the network parameters are 

set to the user’s satisfaction, clicking on the “Ok” button would activate the buttons to select the 

task to be executed. The tasks that can be selected are “Simulation”, “Train”, “SFDIA”, “AFDIA” 

and “SFDIA+AFDIA”. “Simulation” allows the user to run a simulation of the aircraft dynamics 

within AVDS with predefined maneuvers that are generated offline. The “Train” option allows 

the user to train the networks for the purpose of the SFDIA or the AFDIA tasks. This training 

can be done either offline or on-line with data from the AVDS environment. If the “Offline” 

training option is chosen, then the user is allowed to “fly” the aircraft within AVDS and the 

resulting data is then stored on the computer. This data can then be accessed offline and used to 

train the NN. If the “On-line” training option is chosen, the user can “fly” the aircraft within 

AVDS and simultaneously train the NN with on-line data. The difference between the scheme 
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training the NN offline and the scheme training the NNs on-line are in the way the inter-process 

communication schemes are setup. In the case of on-line training, data frames are sent across 

from the AVDS environment where the aircraft is flown to the NN structures at a pre defined 

frequency of 30 Hz. On the other hand, for training the networks offline, the aircraft is flown and 

the data store on the computer. This data is then used independently of AVDS to train the 

networks. 

The “SFDIA” option brings up another GUI, shown below, wherein the user can set the 

parameters for the SFDIA task. This GUI allows the user to select between pre-defined failure 

scenarios or custom defined failure scenarios. The parameters of the failure scenarios include the 

gyro which is set to fail, the type of failure on the selected gyro and the magnitude of the failure. 

The user can then choose the time of injection of the failure on the rate gyros. The types of 

failure include step and ramp type failures. This also allows the user to set the thresholds for 

failure detection and identification sub-tasks. 

 

Figure 5-4 : SFDIA Task Window 



 47 

Clicking on the “Ok” button on this GUI window sets the parameters for the SFDIA task 

in memory and returns control to the Main GUI.  

Similar to the GUI for the SFDIA task, the “AFDIA” button on the main GUI brings up 

another window that allows the user to set the parameters for the AFDIA task. The GUI for this 

is shown below. The parameters for the failure scenarios in this case include the control surface 

that is set to fail on the aircraft, the magnitude of the failure and the effectiveness of the failed 

surface which defines the amount of surface that is assumed to be lost. 

 

Figure 5-5 : AFDIA Task Window 

Within the AFDIA task window, the user has a choice to selecting between predefined 

failure scenarios or custom defined scenarios. With both options, the user has to set the time of 

injection of the failure and the thresholds for the detection and identification of the actuator 

failures. Clicking on the “Ok” button sets the parameters for the AFDIA task in memory and 

returns control to the main GUI. 
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The next task option that is available on the main GUI is the option for “SFDIA+AFDIA” 

task. Within this task, both sensor failures and actuator failures are introduced on the aircraft. 

The GUI that allows to user to define the parameters of failure injection, detection and 

identification for the SFDIA+AFDIA task is shown below. Within this GUI, the user can select 

the failure options, thresholds, and the time of failure injection in the same manner as they were 

selected for the individual tasks. 

Once the parameters that define the specific task chosen are set, the control returns to the 

main window, where the total time of simulation can be entered. The user is now ready to run the 

simulation for the task at hand. 

The data exchange scheme is based on the client-server model, set in such a way that the 

Matlab environment under which this GUI runs is running the client side socket, while the 

master node on the Beowulf cluster is running the server side socket. The communication 

scheme is shown in the Figure 5-7. 

Beowulf Cluster
Master Node

node1

MATLAB
Environment

Server side
sockets

Client side
sockets

BSD Socket Interface

 

Figure 5-6 : Cluster - Matlab Interface 

5.2 AVDS Interface 

Towards the goal of creating a graphical front end to the adaptive flight control scheme, a 

commercially available visualization package, Aviator Visual Design Simulator (AVDS), 

designed as a joint project between Artificial Horizons Inc. and the United States Air Force is 

chosen. Although other graphics packages are available, such as X-Plane etc, this package was 

chosen mainly due to previous experience in using the package, within the research group. This 
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AVDS package gives the user the freedom to integrate their own control systems and aircraft 

model into the simulation and visualization of aircraft dynamics. 

One of the goals of this phase is the creation of a “communication channel” between 

AVDS and the adaptive flight control scheme codes to allow a smooth exchange of data. The 

communication channel is based on a client-server model and uses BSD sockets for inter-process 

communication. The AVDS environment set as the client while the master node in the Beowulf 

cluster is set as the master. Figure 5-8 shows a schematic representation of the scheme. Within 

the source code that generates the aircraft dynamics and visualization in AVDS, the client side 

socket is initialized, during the initialization phase of AVDS. This client side socket then waits 

for the server to send the parameters of the simulation that AVDS uses to determine the length of 

simulation and the task that the user wants to run. If the task that is to be run is the AFDIA 

procedure, then the AVDS client receives the appropriate parameters from the Matlab 

environment, via the Beowulf cluster master node.  

Beowulf Cluster
Master Node

node1

AVDS
Environment

Server side
sockets

Client side
sockets

BSD Socket Interface

 

Figure 5-7 : Cluster – AVDS Interface 

5.3 Beowulf Cluster Setup 

The SFDIA and the AFDIA tasks are designed to be executed on a distributed computing 

environment. A Beowulf cluster made up of commodity components is used as the distributed 

computing environment within this research effort.  

The cluster is made up of seven distinct compute nodes, node1-7and while node8 

supports the AVDS simulation/visualization. It must be noted that node8 is not explicitly a part 
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of the cluster as it does not communicate directly with the compute nodes on the cluster and 

communicates with only the main node by means of sockets. The visualization node could 

theoretically exist on an entirely different network, although this would not be advantageous 

considering the network traffic and congestion it might encounter. Each of the compute nodes is 

a standalone computer, running RedHat 9.0 distribution of the Linux operating system, with 

kernel version 2.4.20-8. Table 5-1 lists the specifications of the compute nodes on the cluster. As 

mentioned earlier in Chapter 4, the inter-node communication on the cluster is based on the 

Message Passing Interface. For this research effort, MPICH 1.2.6 is used. Some of the features of 

this version of the portable implementation of the MPI standard include  

•  Complete MPI 1.2 standard compliance, including canceling of send  

•  Support for MPMD programs and heterogeneous clusters 

•  Support for a wide variety of computing environments, including clusters of 

Symmetric Multi Processors and massively parallel processors. 

Table 5-1 : Specifications of Beowulf Cluster 

Node O.S CPU Memory Task 

node1 Linux 500 MHz 128 MB Master/Compute node 

node2 Linux 266 MHz 64 MB Compute Node  

node3 Linux 266 MHz 64 MB Computer Node 

node4 Linux 266 MHz 64 MB Compute Node  

node5 Linux 266 MHz 64 MB Compute Node  

node6 Linux 266 MHz 64 MB Compute Node  

node7 Linux 266 MHz 64 MB Compute Node  

node8 Windows 2000 MHz 1024 MB AVDS  

 

 Each node on the cluster is equipped with a 10/100 Mbps Ethernet card and the nodes 

are interconnected via a Cisco Systems, Catalyst 3560G series 48 port switch. 

The cluster is setup as a private network with the IP addresses of all the 8 nodes being 

192.168.1.1 through 192.168.1.8. The 192.168.1.8 node is the Windows 200 based graphical 

interface machine. On the cluster, node1 is set as the master node and is in charge of setting up 
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the communication channels between the compute nodes on the cluster and the graphics node on 

the Windows machine.  

The cluster built for the purpose of implementing the fault tolerant flight control systems 

in parallel is shown in the following figure. 

 

Figure 5-8 : Cluster for Parallel Implementation of FDIA 

The procedure for setting up a simulation for any of the tasks is as follows. The source 

code for the task is first transferred to the master node and then compiled into a binary using the 

MPI directive  

mpicc –o foo foo.c; rm –f foo.o 

The compiled binary is then transferred to all the other compute nodes on the cluster. The 

compute nodes, including the master node are setup with a similar directory structure. Before the 

binary can be executed on the cluster, the mpd daemons have to be started on all the compute 
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nodes. Once the daemons are started, they are connected in a ring, with the last node entering the 

ring between the last previously entered node and the first node. On the first node, the mpd 

daemons are started by issuing the command 

mpd & 

and a subsequent call to mpdtrace gives the port number at which the first daemon is 

listening. The other nodes connect to this port on the host machine, node1, using the command 

mpd –h node1 –p port_number 

Once all the compute nodes are in the ring, the binary can be executed on any number of 

processes using the command 

mpirun –np number_of_processes foo 

This command would set the binary running on all the nodes with the code is setup in 

such a way to execute a server side socket on the master node. Once the server socket is up and 

running on the master node, by clicking on the “Start Data Transfer” button on the main GUI in 

Matlab would create a client side socket within Matlab. This client would then connect to the 

server side socket on the master node. Once the master node receives the Initialization flag from 

the Matlab client, it sends an acknowledgement back to the client and then waits to receive the 

simulation parameters. Once the master node receives the simulation parameters, it distributes 

the same to all the compute nodes on the cluster using MPI_Send directive. Upon receiving the 

simulation parameters, all the compute nodes in the ring, including the master node, then proceed 

to initialize their respective NN structures, extracting whatever parameters they need, from the 

simulation parameters that was sent across from the Matlab side. 

The master node is now ready to receive the initialization flag from AVDS. Once the flag 

is received from AVDS, the master node sends appropriate simulation parameters to the AVDS 

environment, including the task identification number and the total time of simulation. If the task 

on hand is the AFDIA task, then the master node also sends the parameters that describe the 

failure, including the time of failure, the surface that failed, the magnitude of failure and the 

effectiveness of the surface after failure. AVDS receives all this information through its client 

side socket and then starts the simulation. 

The simulation within AVDS is setup so that it allows the “pilot” to “fly” the aircraft to 

an altitude of 3000 ft, before data transfer takes place. From the time instant tha the aircraft takes 

off till it reaches 3000 ft, there is no transfer of data from AVDS to the main and compute nodes 
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on the cluster. As a consequence, no NN training takes place. Once the aircraft reaches 3000 ft, 

AVDS sends out data frames at a rate of 30Hz across the socket to the master node. The master 

node collects the data from AVDS and distributes it to all the compute nodes in the cluster. Once 

all the data is distributed to the compute nodes, the master node then proceeds to execute the 

code for the MNN while the other compute nodes execute the codes for the DNNs, based on their 

individual ranks. For example, in the case of the SFDIA procedure, the node with rank 1 would 

execute the code for the P-DNN, the node with rank 2 would execute the code for Q-DNN and 

the node with rank 3 would execute the code for R-DNN. Once the forward and backward pass 

of each DNN is complete, they send their respective outputs to the MNN. Within the MNN on 

the master node, once all the estimates of the rate are received from the DNNs, the MNN 

proceeds to compute the error metrics and perform the procedure for failure detection and 

identification. Upon failure detection and/or identification, the MNN then proceeds to set 

appropriate flags. These flags are then sent across to the DNNs during the next cycle of data 

transfer.  

In the case of AFDIA, the process is similar to that of the SFDIA, except that once the 

error metrics are computed within the MNN and error flags are set or not set, this data is sent 

back to the AVDS environment. During the next cycle, AVDS checks the flags to determine if a 

failure has been declared and takes appropriate actions, based on the status of the flags. 

Figure 5-9 shows the detailed working of the communication scheme between the Matlab 

GUI, the Master node on the cluster and the AVDS environments for the parallel implementation 

of the SFDIA and AFDIA schemes. Figure 5-10 shows the communication scheme between the 

Matlab GUI, the Master node on the cluster and the AVDS environments for the sequential 

training implementation of the NNs for SFDIA purposes. 
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Figure 5-9 : Details of Matlab-Master Node-AVDS communication scheme 
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Figure 5-10 : Sequential Implementation of Adaptive Flight Control System Schemes 
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5.4 Modeling of Parallelization   

Parallelization of a sequential algorithm conveys different meanings under different 

contexts and cannot be generalized to apply for all contexts. The goals of parallelization differ 

from each application and so, different criteria should be used as yardsticks for interpreting the 

results of parallelization.  

Within this research effort, the goal is to provide a proof of concept implementation of a 

parallel distributed computation and control environment for the purpose of realizing a fault 

tolerant flight control system. This fault tolerance is geared towards detecting, identifying and 

accommodating for failures on systems of sensors without physical redundancy and failures on 

the control surfaces of an aircraft. Towards this goal, a Beowulf cluster based parallel computing 

environment was built from COTS components. Figure 5-10 gives the logical execution order of 

a sequential implementation of the fault tolerant flight control scheme on a single node.  

The first stage within this sequential implementation is the initialization of the NN 

structures with the data from the Matlab GUI. Once the initialization parameters are received 

from the Matlab environment, and the NNs initialized, the node then waits for the AVDS 

simulation environment to start and initialize its client side sockets. The AVDS environment is 

setup in such a way that it does not transmit data back to the master node until the aircraft is 

above an altitude of 3000 feet. Once the aircraft breaches the 3000 ft barrier, it starts to send 

frames of data back to the master node. 

If TMNN, TPDNN, TQDNN and TRDNN are the times of execution of the MNN, PDNN, QDNN 

and the RDNN respectively, then the total time that it takes to go through one cycle of execution 

of the forward and backward paths of the NNs is the sum of all the individual execution times. If 

xt  is a time measure of uncertainties and jitter involved in the transfer of data to and from main 

memory, the time taken for startup and other operations, and 1t  is the time taken for the socket 

communication between AVDS and the master node, then the total time taken for one cycle of 

the sequential implementation can be given by 

1s MNN PDNN QDNN RDNN ERR xT t T T T T T t= + + + + + +      Eq. 5.1 
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Figure 5-11 : Sequential Algorithm 
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Consider the parallel implementation of the SFDIA algorithm. The communication 

sequence and the order of execution of the NN structures MNN, PDNN, QDNN and the RDNN 

is shown in Figure 5-11.  
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Figure 5-12 : Parallel Implementation Timing Chart 
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In the following analysis, designating 1t  to be the time taken for socket communication 

between the AVDS environment and the main node on the Beowulf cluster, , , ,M P Q Rt t t t  to be 

the time taken by the MNN, PDNN QDNN and the RDNN to complete one cycle of learning and 

, ,
p q rr r rt t t  the time taken for the MPI based communication between the master node and the 

slave nodes on the cluster, we can derive an expression for the maximum time that it would take 

to complete one cycle of training for all the networks in the cluster. To begin the analysis, 

consider communication between the MNN and the PDNN only, the MNN will have the roll rate 

estimate data from PDNN after either 
pM rt t+ or 

pP rt t+ . Depending on whether the MNN 

finished computation earlier than the PDNN or PDNN finishes its computation earlier, the latest 

time at which MNN will have the data from PDNN can be given as  

max( , )
p pM r P rt t t t+ +           Eq. 5.2 

Now considering three networks, MNN, PDNN and the QDNN, the MNN will have the 

roll rate estimate data from PDNN and pitch rate estimate data from the QDNN after either 

p qM r rt t t+ + or 
p qP r rt t t+ +  or 

qQ rt t+ , depending on which of the three processes finish their 

computation earliest. Thus the latest time that the MNN will have the data from all the PDNN 

and the QDNN can be given as 

max( , , )
p q p q qM r r P r r Q rt t t t t t t t+ + + + +        Eq. 5.3 

Similarly, considering all the four networks MNN, PDNN< QDNN and the RDNN, the 

MNN will have the roll rate estimate data from PDNN, pitch rate estimate data from the QDNN 

and the yaw rate estimate data from the RDNN after either 
p q rM r r rt t t t+ + + or 

p q rP r r rt t t t+ + + or 

q rQ r rt t t+ + or 
rR rt t+ . Thus the latest time that the MNN will have the data from all the three 

DNNs can be given as 

max( , , , )
p q r p q r q r rM r r r P r r r Q r r R rt t t t t t t t t t t t t+ + + + + + + + +    Eq. 5.4 

And the total time for the parallel implementation to complete one cycle of learning can 

be given as 

1 max( , , , )
p q r p q r q r r

MNN PDNN QDNN RDNN

P M r r r P r r r Q r r R r

x x x x

T t t t t t t t t t t t t t t

t t t t

= + + + + + + + + + +

+ + + +
   Eq. 5.5 
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Since both the sequential and parallel implementations of the algorithms wait for the data 

to arrive from AVDS, we can safely remove that wait time from the total time taken by both 

implementations. 

s MNN PDNN QDNN RDNN ERR xT T T T T T t= + + + + +      Eq. 5.6 

max( , , , )
p q r p q r q r r

MNN PDNN QDNN RDNN

P M r r r P r r r Q r r R r

x x x x

T t t t t t t t t t t t t t

t t t t

= + + + + + + + + +

+ + + +
    Eq. 5.7 

Thus, the speedup that can be achieved by the parallel implementation of the sequential 

algorithm can be expressed as 

s

P

T
S

T
=            Eq. 5.6 

Since the parallel implementation of the fault tolerant flight control schemes for SFDIA 

and AFDIA purposes are set to run a predefined frequency of 30 Hz and since data 

synchronization is absolutely important, blocking calls for Send and Receive operations are used.  

From experimental data, the average time taken for the completion of one cycle of 

learning for the sequential implementation is 0.0258 s. the average time for the completion of 

one cycle of learning for the parallel implementation is also 0.0258 s. Thus, the speedup is given 

by S = 1. Figure 5-12 gives a comparison of the execution times for the sequential and parallel 

implementations of the training cycle of four NNs, namely the MNN, PDNN, QDNN and the 

RDNN. Within this research work, the timing directives used to measure the time taken to 

comple one cycle of NN training for the sequential and parallel implementations included the 

time that the MNN waits to receive the frame of data from AVDS. This influences the timing 

profile of both the sequential and parallel implementations, leading to similar execution times for 

the sequential and parallel implementations. 
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Figure 5-13 : Execution times for Sequential and Parallel Implementations 
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Chapter 6  - Sensor and Actuator Failure Detection Identification 

and Accommodation 

The main objectives of this research are the design and simulation of adaptive flight 

control schemes for the purposes of Sensor Failure Detection Identification and Accommodation 

(SFDIA) and Actuator Failure Detection Identification and Accommodation (AFDIA) on a 

distributed computational architecture. As previously mentioned in Chapter 1, this research effort 

is divided into different phases, with incremental goals in each phase, leading to the 

implementations of the SFDIA and AFDIA schemes on the distributed computational platform.  

This chapter discusses the structure of the SFDIA and AFDIA algorithms, their 

implementations and the results from the on-line simulation tests.  

As mentioned in Chapter 4, the MLP neural network architecture is used along with the 

EBPA as the training algorithm as the adaptive component of the fault tolerant flight control 

scheme. The SFDIA scheme consists of four distinct neural networks, namely the Main Neural 

Network (MNN), and three De-Centralized Neural Networks (DNNs) P-DNN, Q-DNN and R-

DNN, representing the roll, pitch and yaw gyros.  

The functionalities of the networks are designed so that the Main Neural Network will 

learn the time histories of pitch, roll and yaw sensors, based on sensor outputs from time instant 

‘k-1’ till ‘k-l’, from sensor systems onboard the aircraft. The time interval l  is the training 

pattern time window and exerts a huge influence on the time needed for training the network. 

The overall outputs of the network are the estimates of the roll, pitch and yaw gyros at current 

time instant ‘k’. On the other hand, the De-Centralized Neural Networks would estimate the 

outputs of their respective sensors at the current time instant ‘k’, based on inputs from other 

sensors onboard the aircraft. The most important distinction between the MNN and the DNNs is 

that the MNN uses the values of the roll, pitch and yaw gyros, albeit from previous time 

instances, among others, to estimate the current values of the roll, pitch and yaw rates. The 

DNNs on the other hand, DO NOT use values from the sensor they are representing, to estimate 

the current outputs. For example, the Q-DNN can have any measurements from any sensor 

onboard the aircraft, except the pitch rate gyro. Similarly for the roll and yaw gyros, the inputs to 

the DNNs could be the measurements from any sensor onboard the aircraft, except the roll rate 

and the yaw rate respectively. This ensures that spurious inputs from a failed sensor cannot pass 
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into the network that is trying to estimate the nominal values of the corresponding sensor and 

corrupt the training process, keeping it trustworthy. Failure detection and identification is 

achieved by monitoring the errors in the estimates of the rate gyro outputs, generated by the 

MNN and the DNNs. 

6.1 Types of Sensor Failures 

This scope of this research in terms of the sensors whose behavior is to be emulated by 

the networks is limited to only the rate gyroscopes, namely the pitch, roll and yaw gyros that are 

assumed to be without physical redundancy. The output from a typical rate gyro is given as  

0( ( ) )g rRate K V t K= −  

where: 

(deg/ sec)Rate Angular Velocity=  

((deg/ sec) / )gK is the rate gyro gain volt  

0 ( )K is the rate gyro offset volt  

( )V is the voltage offset from rate gyro Volt  

The accuracy of rate gyroscopes is characterized by two parameters, namely the drift and 

the scale factor. Gyroscope drift is the ability of the gyro to reference all rate measurements to 

the nominal zero rate measurement [48] and appears as an additive term in the gyro output. As a 

consequence, any drift from the actual value would cause the angular error to accumulate, 

resulting in faulty output from the gyroscope. The scale factor describes the ability of the gyro to 

accurately sense the angular velocity at different angular rates and describes the sensitivity of the 

sensor in deg/sec/volts. The accuracy of this parameter directly translates into the accuracy of the 

output as it is used to convert the voltage output from the gyro into angular rate. If system 

imperfections are present, it can result in variations of the scale factor and these variations would 

appear as errors in the calibration of the output voltage versus the angular rate.  

From the above descriptions, the generic sensor failures can be modeled as 

1. Additive sensor failure: In this type of failure, a constant value appears as a bias in 

the nominal sensor output and case can be modeled as , ,failure i nom i iX X nρ= + , 

where, in  is the direction vector of the faulty sensor and ρ  is the magnitude of 

the failure, positive or negative. 
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2. Multiplicative sensor failure: This failure can be modeled by multiplying the 

sensor’s nominal value by a constant factor and is given 

as , ,(1 )failure i i nom iX kn X= + , where k is the multiplying factor for the i th− sensor. 

This multiplicative failure can be further divided into two, based on the direction 

vector in as 

a. Step type sensor failure, where 1in =  

b. Ramp type failures, where  

1
1 2

2 1

21

f
f f

f fi

f

t t
t t t

t tn

t t

−
≤ ≤ −= 

 >=

       Eq 6.1 

and 1ft , 2ft  are the initial and final time instants of ramp type failures. 

6.2  Sensor Failure Detection Identification and Accommodation 

The Sensor Failure Detection Identification and Accommodation process is described in 

the following sections. During the training process, the networks produce outputs that estimate 

the pitch, roll and yaw gyro measurements at the current time instant and the interconnection 

weights and thresholds within the network are adjusted, as described in Chapter 4, in such a 

manner as to reduce the estimation error. In the original failure detection scheme, a quadratic 

parameter ( )MQEE k , the sum of the squares of the difference between the outputs from the 

MNN and the corresponding sensor values, is used for sensor failure detection (SFD). The 

( )MQEE k  is given as 

#
2

,
1

1
( ) ( ( ) ( ))

2

ofDNNs

i i MNN
i

MQEE k Y k O k
=

= −∑        Eq 6.2 

      
^ ^

2 2 21
[( ( ) ( )) ( ( ) ( )) ( ( ) ( )) ]

2
MNNMNN MNNp k p k q k q k r k r k

∧
= − + − + −    Eq 6.3 

Under nominal operating conditions, when there is no sensor failure and the networks are 

trained well, MQEE, which is a function of time, is close to zero, but when a sensor failure 

occurs, the outputs from the networks differs significantly from the sensor values, resulting in 

values of MQEE is significantly different from zero. Also, under nominal conditions, the 

learning process is active on all the networks, including the MNN and the three DNNs. However, 
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when the MQEE value exceeds a certain pre-defined threshold, a failure is declared, the learning 

processes on all the networks is halted and subsequently, the sensor values are replaced by the 

outputs from the DNNs, wherever the sensor measurements are used. This would constitute the 

failure detection phase of the adaptive flight control scheme, where the occurrence of a generic 

sensor failure is detected, but the actual failed sensor is not identified. The next step is the 

identification of the failed sensor and can be achieved by monitoring the absolute value of the 

estimation error at each DNN. If this value, at any of the DNNs, exceeds a pre-defined threshold, 

the sensor failure is then identified on the corresponding sensor. The estimation error of the 

DNNs is given by the following expression 

^
21

( ) ( ( ) ( ))
2xDQEE k x k x k= −          Eq 6.4 

                      where , ,x p q r=  

Once a sensor failure is identified, the next step involves the accommodation process for 

the failed sensor, where the output from the x-DNN is used to replace the measurement from the 

faulty sensor. This output is also used as an input to the MNN and also to any other DNN using 

the sensor measurement as an input. This approach of using error statistics of both the MNN and 

the DNNs would reduce the rate of false alarms in the failure detection and identification process.  

Along with the original scheme for fault detection, a modified scheme is proposed to 

improve the detection capabilities of the system for soft failures [49]. In this modified scheme, 

the quadratic estimation error MQEE used in the original scheme is replaced by a different 

quadratic estimation error, given by 

#
2

, ,
1

1
( ) ( ( ) ( ))

2

ofDNNs

i MNN i DNN
i

OQEE k O k O k
=

= −∑        Eq 6.5 

^ ^ ^ ^ ^ ^
2 2 21

[( ( ) ( )) ( ( ) ( )) ( ( ) ( )) ]
2

MNN DNNMNN DNN MNN DNNp k p k q k q k r k r k= − + − + −    Eq 6.6 

The need for an error statistic different from the MQEE can be justified by an analysis of 

a typical ramp type sensor failure, for example, when one of the gyros fail, the output 
^

MNNx  

would tend to track the corrupted sensor value since the MNN has the outputs from the failed 

sensor as one of its input. As a result, the parameter MQEE does not provide accurate failure 

detection, as the difference between ( )x k and 
^

MNNx  is not significant enough to exceed the pre-
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defined threshold. On the other hand, the output of the x-DNN would try to track the “nominal” 

value of the x-gyro, as it does not receive any measurement from the faulty sensor as an input. 

This difference between the outputs of the MNN and the x-DNN would cause the parameter 

OQEE to spike at the instant of failure and so can be used to detect a failure more reliable than 

when using the MQEE parameter. A block diagram of the scheme is shown in Figure 6-1. 
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Figure 6-1 : Block Diagram of SFDIA Scheme 
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6.3  Results of Offline Training for SFDIA purposes 

The NNs MNN, P-DNN, Q-DNN and R-DNN were trained offline for 100 epochs, using 

flight data with 5000 data points, generated at 30 Hz, from the AVDS environment. These 

trained networks were then tested every 10 epochs, starting from the 50th epoch, with data that it 

had not seen during its training cycle. During the training cycle, the weights and thresholds of the 

networks were saved after every 10 epochs. These pre-trained network structures were then used 

within the on-line Sensor Failure Detection, Identification and Accommodation scheme running 

on the cluster. The following figures Figure 6-2 through Figure 6-19 are representative of the 

training and testing results for the MNN. Once the training was completed, the last set of weights 

and thresholds from each network was saved as the starting point for the on-line learning during 

the SFDIA and AFDIA tasks.  

 

Figure 6-2 : MNN Output, Cycle 0, Roll Rate 
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Figure 6-3 : MNN Output, Cycle 0, Pitch Rate 

 

Figure 6-4 : MNN Output, Cycle 0, Yaw Rate 
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Figure 6-5 : MNN Output, Cycle 10, Roll Rate 

 

Figure 6-6 : MNN Output, Cycle 10, Pitch Rate 
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Figure 6-7 : MNN Output, Cycle 10, Yaw Rate 

 

Figure 6-8 : MNN Output, Cycle 5, Roll Rate (Testing) 
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Figure 6-9 : MNN Output, Cycle 5, Pitch Rate (Testing) 

 

Figure 6-10 : MNN Output, Cycle 5, Yaw Rate (Testing) 
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Figure 6-11 : MNN Output, Cycle 10, Roll Rate (Testing) 

 

Figure 6-12 : MNN Output, Cycle 10, Pitch Rate (Testing) 
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Figure 6-13 : MNN Output, Cycle 10, Yaw Rate (Testing) 

The Decentralized Neural networks are trained and tested in a similar fashion to that of 

the MNN with the same set of training data and testing data. The following figures represent the 

training and testing cycle of the P-DNN, Q-DNN and the R-DNNs. 
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Figure 6-14 : P-DNN Output, Cycle 0 

 

Figure 6-15 : P-DNN Output, Cycle 10 
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Figure 6-16 : P-DNN Output, Cycle 5 (Testing) 

 

Figure 6-17 : P-DNN Output, Cycle 10 (Testing) 
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Figure 6-18 : Q-DNN Output, Cycle 0 

 

Figure 6-19 : Q-DNN Output, Cycle 10 
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Figure 6-20 : Q-DNN Output, Cycle 5 (Testing) 

 

Figure 6-21 : Q-DNN Output, Cycle 10 (Testing) 
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Figure 6-22 : R-DNN Output, Cycle 0 

 

Figure 6-23 : R-DNN Output, Cycle 10 
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Figure 6-24 : R-DNN Output, Cycle 5 (Testing) 

 

Figure 6-25 : R-DNN Output, Cycle 10 (Testing) 
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The RMS value of the training error for the MNN outputs and the P, Q and R DNN 

outputs are presented in the following tables. 

Table 6-1 : Mean of Training and Testing Errors on MNN Outputs 

Trial 001 Cycle 0 Cycle 5 Cycle 10 

 Training Testing Training Testing Training Testing 

MNN P Output (deg/s)  0.081970 no data 0.004492 0.013770 0.003696 0.012894 

MNN Q Output (deg/s) 0.053757 no data 0.004127 0.024169 0.003774 0.023323 

MNN R Output (deg/s) 0.025208 no data 0.008697 0.009485 0.000000 0.008345 

 

Table 6-2 : Mean of Training and Testing Errors on P-DNN Output 

Trial 001 Cycle 0 Cycle 5 Cycle 10 

 Training Testing Training Testing Training Testing 

P-DNN P Output (deg/s)  0.070769 no data 0.007452 0.032378 0.019894 0.031356 

 

Table 6-3 : Mean of Training and Testing Errors on Q-DNN Output 

Trial 001 Cycle 0 Cycle 5 Cycle 10 

 Training Testing Training Testing Training Testing 

Q-DNN Q Output (deg/s) 0.038386 no data 0.11570 0.050728 0.11491 0.043032 

 

Table 6-4 : Mean of Training and Testing Error on R-DNN Output 

Trial 001 Cycle 0 Cycle 5 Cycle 10 

 Training Testing Training Testing Training Testing 

R-DNN R Output (deg/s) 0.021021 no data 0.007625 0.010511 0.007132 0.010215 

6.4  SFDIA On-line Simulation and Implementation Results 

For the purpose of Sensor Failure Detection, Identification and Accommodation, the 

MNN, P-DNN, Q-DNN and R-DNN were trained with offline data from the AVDS environment 

followed by the on-line simulation. The structures of the NNs used in this task are listed in the 

table. As described earlier, the initial settings for the neural network structures are derived from 
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the offline training process. Using the Matlab GUI, parameters describing the failed gyro, the 

time of failure and the type of failure were set. Within this study, the failures on the gyros were 

restricted to step type failures of a small (4 deg/s) and large (8 deg/s) bias amplitude. The 

following table gives a listing of the structure of the NNs used for this study.  

Table 6-5 : Structures of NN for SFDIA 

Network No. of Inputs TW ILN HLN Outputs LR MR 

MNN 8 5 40 25 3 0.05 0.00 

P-DNN 6 3 18 18 1 0.05 0.005 

Q-DNN 4 5 20 20 1 0.1 0.00 

R-DNN 5 4 20 25 1 0.075 0.005 

 

Once the parameters of the SFDIA procedure were set using the Matlab GUI, they were 

sent across the socket communication channel to the main node on the Beowulf cluster. When 

the main node receives the simulation parameters data, it distributes the same to all the compute 

nodes on the cluster. As described in section 5.3, once this process is complete, the main node 

waits for the initialization string from AVDS. Once initialization string from AVDS is received, 

the main node sends the task identification number and the total time of simulation across to 

AVDS and then waits for the “pilot” to fly the aircraft. Within AVDS, once the task 

identification number and the total time of simulation are received, the “pilot” takes off and 

climbs to an altitude over 3000 ft. once the aircraft breaches the 3000 ft barrier, AVDS starts its 

one-way communication with the main node and sends sensor data at a rate of 30 Hz. Within the 

main node, once the data is received from AVDS, it is distributed across the compute nodes to 

generate the estimates of the roll, pitch and yaw rates. These estimates are then sent back to the 

main node where the error metrics are computed and stored. Once the time of failure is reached, 

these error metrics are then used to check for failures on roll rate gyro, pitch rate gyro and the 

yaw rate gyros. If a failure is detected on any of the gyros, then a flag indicating such an event is 

set and sent as a part of the data stream to the DNNs at the next time step, indicating that a 

failure had occurred at the previous step. Within the DNNs, a code segment checks for the status 

of these specific flags to determine if the MNN had declared a failure on their respective gyro, at 

the previous time step. If the flag is set to indicate a failure, then the DNN suspends it learning 

process and begins the recall process. Thus from this time forward, the output from the DNN 
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representing the failed gyro is used as an estimate of the actual sensor measurement. This trend 

can be clearly seen in the plots of the MNN output for the channel representing the failed gyro. 

Figures 6-26 to 6-31 show the results from the SFDIA procedure, with a step failure of 8 

deg/sec bias occurring on the Q-gyro occurring at 50 sec into the flight. The error threshold on 

the MNN is exceeded at 50.066s, indicating a failure on the sensor subsystems. Subsequently, 

the error on the Q-DNN exceeds its thresholds at 50.066s, identifying the failure. 

 

Figure 6-26 : Error Thresholds for Failure on Q (8 deg/s Bias) 
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Figure 6-27 : MNN Outputs for Failure on Q (8 deg/s Bias) 

 

Figure 6-28 : DNN Outputs for Failure on Q (8 deg/s Bias) 
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Figure 6-29 : Velocity, Alpha, and Beta 

 

Figure 6-30 : Euler Angles 
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Figure 6-31 : Control Surface Deflections 

Figures 6-32 to 6-37 show the results from the SFDIA procedure, with a step failure of 8 

deg/sec bias occurring on the R-gyro occurring at 50 sec into the flight. The error threshold on 

the MNN is exceeded at 50.066s, indicating a failure on the sensor subsystems. Subsequently, 

the error on the R-DNN exceeds its thresholds at 50.066s, identifying the failure. 
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Figure 6-32 : Error Thresholds for Failure on R (8 deg/s Bias) 

 

Figure 6-33 : MNN Outputs for Failure on R (8 deg/s Bias) 
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Figure 6-34 : DNN Outputs for Failure on R (8 deg/s Bias) 

 

Figure 6-35 : Velocity, Alpha and Beta 
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Figure 6-36 : Euler Angles 

 

Figure 6-37 : Control Surface Deflections 
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Figures 6-38 to 6-43 show the results from the SFDIA procedure, with a step failure of 8 

deg/sec bias occurring on the P-gyro occurring at 50 sec into the flight. The error threshold on 

the MNN is exceeded at 50.066s, indicating a failure on the sensor subsystems. Subsequently, 

the error on the P-DNN exceeds its thresholds at 50.066s, identifying the failure. 

 

Figure 6-38 : Error Thresholds for Failure on P (8 deg/s Bias) 
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Figure 6-39 : MNN Outputs for Failure on P (8 deg/s Bias) 

 

Figure 6-40 : DNN Outputs for Failure on P (8 deg/s Bias) 
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Figure 6-41 : Velocity, Alpha and Beta 

 

Figure 6-42 : Euler Angles 
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Figure 6-43 : Control Surface Deflections 
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The following table presents the results of post failure analysis of the estimation errors of 

the MNN as well as the DNNs for small and large failures on the three gyros. The results are 

tabulated from three runs of the failure scenarios. 

Table 6-6 : Post Failure Estimation Error Analysis for MNN and DNNs 

Failed 

Gyro 

Magnitude  

  MNN (P) MNN (Q) MNN (R) P -DNN Q - DNN R – DNN 

  Mean 

(deg/s) 

Std 

(deg/s) 

Mean 

(deg/s) 

Std 

(deg/s) 

Mean 

(deg/s) 

Std 

(deg/s) 

Mean 

(deg/s) 

Std 

(deg/s) 

Mean 

(deg/s) 

Std 

(deg/s) 

Mean 

(deg/s) 

Std 

(deg/s) 

1 0.0025 0.1485     -0.2996 2.4389     

2 0.0031 0.2408     -0.3938 3.9541     Small 

3 0.0030 0.2710     -0.0820 3.0787     

1 0.005 0.2851     -0.2491 2.5425     

2 0.0052 0.3011     0.4324 5.3915     

P 

Large 

3 0.0054 0.1741     -0.5300 2.8449     

1   0 0.4840     -1.0572 1.9829   

2   0 0.6407     -1.3475 1.1470   Small 

3   -0.0020 0.4670     -1.4440 0.8234   

1   0.0058 0.6535     -1.8091 1.5893   

2   -0.0011 0.4177     -2.8651 1.5451   

Q 

Large 

3   -0.0027 0.3587     -3.6574 1.8354   

1     -0.0021 0.2452     -0.4275 0.3643 

2     0 0.2476     -0.5766 0.4842 Small 

3     -0.0011 0.1565     -0.2128 0.2905 

1     -0.0037 0.2911     -0.6409 0.5094 

2     -0.0019 0.1124     -0.5555 0.1796 

R 

Large 

3     -0.0028 0.1621     -0.7719 0.3424 

 

The following section describes the AFDIA procedures, the setup of the simulation runs 

and results from the parallel implementation of the scheme on the Beowulf cluster.  

6.5  Actuator Failure Detection Identification and Accommodation 

The need for an adaptive flight control scheme is perhaps more acute in the case of 

actuator failure as compared to sensor failure, as it is possible to have physical redundancy for 

sensors onboard the aircraft, it is not possible to have physical redundancy for the control 

surfaces and the lift generating sections of an airplane. The use of neural networks for state 

estimation provides an attractive option to develop an analytical control scheme that would 

reconfigure the control structure of the aircraft, in the event of an actuator failure. The goals of 
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this section of the research effort is the detection, identification and accommodation of failures 

on the control surfaces of an aircraft, using NN based controllers to drive the remaining 

“healthy” control surfaces. Multiple failures on control surfaces, catastrophic failures such the 

loss of  an entire wing or a portion of the aircraft fuselage on the aircraft structures, and failures 

on the propulsion systems onboard an aircraft are not considered within this research effort. 

Within the scope of this research effort, actuator failures are defined and simulated as a 

drop in surface efficiency, resulting from partial loss of surface, such as a missing part of a 

control surface or stuck control surfaces, or a combination of the two and are divided into four 

basic configurations as: 

1. Stuck Left Elevator at trim/non-trim deflection, without missing surface; 

2. Stuck Left Elevator at trim/non-trim deflection, with missing surface; 

3. Stuck Left Aileron at trim/non-trim deflection, without missing surface; 

4. Stuck Left Aileron at trim/non-trim deflection, with missing surface. 

The mathematical modeling of actuator failures in the presence of control surface loss is 

derived through a set of closed form expressions for the non-dimensional stability and control 

derivatives and is a function of the normal force coefficients of the control surface with the failed 

actuator. These equations for longitudinal stability derivatives given below: 

1,1 1,2 1,3S SR L
L L Lc K K c K c

α δ δ
= + +        Eq 6.7 

2,1 2,2 2,3S SR L
m L Lc K K c K c

α δ δ
= + +        Eq 6.8 

. 3,1 3,2 3,3S SR L
L L Lc K K c K c

δ δ
α

= + +        Eq 6.9 

. 4,1 4,2 4,3S SR L
m L Lc K K c K c

δ δ
α

= + +                 Eq 6.10 

5,1 5,2 5,3q S SR L
L L Lc K K c K c

δ δ
= + +                 Eq 6.11 

6,1 6,2 6,3q S SR L
m L Lc K K c K c

δ δ
= + +                 Eq 6.12 

The implementation of the AFDIA scheme is similar to the SFDIA scheme and has four 

distinct neural networks, namely the Main Neural Network (MNN), the pitch, roll and yaw 

Neural Network Controllers (NNCs). The outputs of the MNN are the same as they are for the 

SFDIA scheme and are the estimates of the outputs of the pitch, roll and yaw gyros, at a time 

instant k. The outputs of the NNCs are the estimates of the control surface deflections at a time 

instant k, computed from the time histories of measurements from the onboard sensors. Under 
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nominal conditions, the controller emulates the nominal deflections of the control surfaces and 

does not assume any physical meaning. However, training under nominal conditions would help 

improve the transient response of the network, following an actuator failure and the subsequent 

actuator failure accommodation process. The error cost function that is minimized during the 

training process is given as  

,,

^

( )L Rnom L R
yx yJ δ δ= − , where }{ , , yawx pitch roll= , }{ , ,y Elev Ail Rud=    Eq 6.13 

When an actuator failure occurs, it results in a change in the aircraft trim conditions due 

to changes in the aerodynamic forces and moments. Failures on the control surfaces could also 

lead to a reduction in their effectiveness, especially in cases where there is a loss of surface. With 

the occurrence of such failures on the aircraft control surfaces, there results a change in the 

angular velocities of the aircraft, consequently inducing a noticeable change in the value of the 

quadratic error parameter MQEE in the MNN. If this value exceeds a certain predefined 

threshold, a failure is implied. This part constitutes the Actuator Failure Detection (AFD) 

component of the fault tolerant flight control scheme. Following AFD, actuator failure 

identification is achieved by observing the auto and cross correlation coefficients between the 

angular rates p, q and r. In general, for two random processes, the cross correlation coefficient is 

defined by  

( ) [ ( ) ( )]YXR n E Y k X k n= +                  Eq 6.14 

The MNN monitors the error between the estimates of the roll, pitch and yaw rate gyros 

and the actual measurements from the sensors themselves. If this error metric exceeds a 

predefined threshold, then a flag is raised, indicating the occurrence of a possible failure. Then 

MNN then examines the auto and cross correlation coefficients pqR , qrR , prR , ttR , ffR .  

The most significant effect of an actuator failure is the loss of symmetry on the aircraft, 

which in turn would introduce a dynamic coupling between the longitudinal and lateral 

directional aircraft dynamics. This dynamic coupling would result in significant changes in the 

cross-correlation functions pqR , prR , qrR  and the auto correlation coefficients ttR , ffR , which can 

be then used to identify the failed actuator. Once AFI is successfully determined, failure 

accommodation is achieved by generating compensating control surface deflections as generated 

by the individual NNCs.  

In the case of the pitch NNC, an error cost function defined as: 



 97 

. .

1 2 3( ) ( ) ( )
AFAPitch ref ref refJ k q q k k q qθ θ= − + − + −               Eq 6.15 

where, 
.

0; ; 0ref ref trim refq qθ θ= = =  

is minimized in the longitudinal direction to generate the  compensating Elevator deflections for 

Actuator Failure Accommodation (AFA) in the longitudinal direction. At the same time, 

compensating control surface deflections are generated from the roll and yaw NNC so that the 

following cost functions are minimized in the lateral direction. These cost functions are defined 

as: 

4 5( ) ( )
AFARoll ref refJ k p p k φ φ= − + −                 Eq 6.16 

6 ( )
AFAYaw refJ k r r= −                   Eq 6.17 

In this research effort, the NNCs are executed in parallel on individual compute nodes on 

the cluster and the compensating control surface deflections that are generated by the controllers 

are sent to the MNN using the MPI directive MPI_Send. Once all the control surface deflections 

are received within the MNN, it sends the same across the other socket interface to the AVDS 

environment. The MNN also sends a flag indicating the detection and identification of actuator 

failure along with the compensating control surface deflections. Code segments within the 

AVDS environment read the status of these flags to determine if the control surface deflections 

that are used in the dynamic simulation are to be from the pilot stick inputs or from the 

controllers. 

Within this research effort, the structure of the AFDIA scheme is built in such a way that 

once actuator failures are detected and identified, the outputs from the controller takes over the 

control of the aircraft and the pilot input is completely cut off. Improvements to this setup could 

be to make use of a combination of the surface deflection commands from the pilot as well as the 

commands from controller outputs. 

The block diagram of the AFDIA scheme is shown in Figure 5.2 
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Figure 6-44 : Block Diagram of the AFDIA Scheme 

6.6  AFDIA On-line Simulation and Implementation Results   

Similar to the procedure followed for the SFDIA purposes, the networks representing the 

controllers were trained offline. The NNs ROLL-NNC, PITCH-NNC and YAW-NNC were 

trained offline for 100 epochs, using flight data with 5000 data points, generated at 30 Hz, from 

the AVDS environment. These trained networks were then tested every 10 epochs, starting from 
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the 50th epoch, with data that it had not seen during its training cycle. During the training cycle, 

the weights and thresholds of the networks were saved after every 10 epochs. The offline training 

for the neural network controllers was primarily used to narrow down the structure of the 

networks, particularly with regard to the inputs, the history time window, the number of hidden 

layer neurons, and the learning and momentum rates. Unlike the SFDIA procedure, these pre-

trained networks were not used within the AFDIA scheme. With respect to the MNN, the 

previously trained network structure for the SFDIA procedure was used as the baseline network 

architecture for the on-line implementation of the AFDIA process. The following table gives a 

listing of the structure of the NNs used for the purpose of actuator failure detection, 

identification, and accommodation. 

Table 6-7 : Structures of NN for AFDIA 

Network 
No. of 

Inputs 

TW 
ILN HLN Outputs LR MR 

MNN 8 5 40 25 3 0.05 0.005 

Roll NNC 5 3 15 12 1 0.1 0.005 

Pitch-NNC 3 2 6 20 1 0.1 0.005 

Yaw-NNC 5 3 15 20 1 0.1 0.005 

 

Similar to the setup procedure for SFDIA, once the parameters of the AFDIA procedure 

were set using the Matlab GUI, they were sent across the socket communication channel to the 

main node on the Beowulf cluster. The parameters include the surface that is scheduled to fail, 

the time at which the failure is supposed to occur, the magnitude of failure and the resulting 

effectiveness of the surface that failed. When the main node receives the simulation parameters 

data, it distributes the same to all the compute nodes on the cluster. As described in section 5.3, 

once this process is complete, the main node waits for the initialization string from AVDS. Once 

initialization string from AVDS is received, the main node sends the task identification number, 

the total time of simulation, and the failure specifications across to AVDS and then waits for the 

“pilot” to start flying the aircraft. Within AVDS, once the task identification number and the 

total time of simulation are received, the “pilot” takes off and climbs to an altitude over 3000 ft. 

once the aircraft breaches the 3000 ft barrier, AVDS starts its two-way communication with the 

main node and sends sensor data at a rate of 30 Hz. Within the main node, once the data is 
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received from AVDS, it is distributed across the compute nodes to generate the estimates of the 

roll, pitch and yaw rates. These estimates are then sent back to the main node where the error 

metrics are computed and stored. Once the time of failure is reached, within the AVDS 

environment, failure is injected on the selected surface. After this instant, the failed stops 

receiving its input from the pilot stick, and stays fixed at the set position. On the other hand, all 

the other surfaces continue to receive their inputs form the pilot stick. The aircraft dynamics are 

simulated under this configuration until a failure is declared by the MNN, on the main node. On 

the main node, once the failure time is reached, the MNN begins checking these error metrics for 

failures.  

When an actuator failure occurs, it generates noticeable changes in the aircraft trim 

conditions a well as the aerodynamic forces and moments acting on the aircraft. This typically 

leads to coupling between the lateral directional dynamics and the longitudinal directional 

dynamics. This coupling can be seen in the output generated by the MNN. After the time of 

failure is reached, the MNN begins checking the error metrics. When a predefined threshold on 

the MNN error metrics exceeds a certain value, a failure condition is declared. Once a failure 

condition is declared, the next step is the identification, which is done by monitoring the auto 

correlation coefficients Rtt and Rff. if the thresholds on these coefficients are exceeded, and then 

the appropriate failure is identified as either failure on the Elevators or Failures on the Ailerons. 

Following failure detection and identification, a flag indicating such an event is set and sent as a 

part of the data stream to the NNCs at the next time step, indicating that a failure had occurred at 

the previous step. Once the MNN completes this section of its task, it sends a vector of 6 

elements, ordered as the Pitch-NNC outputs for the elevator deflection in the first two elements, 

the Roll-NNC outputs for the aileron deflection in the next two elements, the Yaw-NNC output 

for the rudder deflection as the fifth element and a flag indicating the detection and identification 

of an actuator failure as the sixth element across the socket to the AVDS environment. At each 

time step, within the NNCs, a code segment checks for the status of the failure flag to determine 

if the MNN had declared a failure on any control surface, at the previous time step. If the flag is 

set to indicate a failure, then the NNCs switch their failure mode error generation configuration. 

Unlike the case of SFDIA, the learning of the NNCs is not suspended and continues to generate 

the compensating control surface deflections according to the error formulation. Now, within the 

AVDS environment, another segment of code checks the vector of data that it received from the 
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MNN at the previous time step to see if the MNN declared a failure. If the MNN had declared a 

failure, then the code segment accordingly switches to the outputs of the controller as the control 

surface deflection inputs to the aircraft dynamics.  

Once the failure on the control surface is declared and identified, controller takes total 

authority of the aircraft and attempts to stabilize the aircraft with the help of the remainder of the 

healthy control surfaces. In this setup for this research study, the pilot is totally removed from the 

loop.  

Within this research effort, as mentioned earlier, failures on only the Elevators and the 

Ailerons were considered. Simulations were run on the cluster and the results from the 

simulations are tabulated below. The following failure scenarios on the left elevator scenarios 

were considered. 

•  5 deg failure on Left Elevator, with 50% reduction in efficiency, at 50 sec. 

•  5 deg failure on Left Elevator, with 100% reduction in efficiency, at 50 sec. 

•  15 deg failure on Left Elevator, with 50% reduction in efficiency, at 50 sec. 

•  15 deg failure on Left Elevator, with 100% reduction in efficiency, at 50 sec. 

•  0 deg failure on Left Elevator, with 50% reduction in efficiency, at 50 sec. 

•  0 deg failure on Left Elevator, with 100% reduction in efficiency, at 50 sec. 

On the Left Aileron, the following failures were considered 

•  5 deg failure on Left Aileron, with 50% reduction in efficiency, at 50 sec. 

•  5 deg failure on Left Aileron, with 0% reduction in efficiency, at 50 sec. 

•  15 deg failure on Left Aileron, with 50% reduction in efficiency, at 50 sec. 

•  15 deg failure on Left Aileron, with 0% reduction in efficiency, at 50 sec. 

•  0 deg failure on Left Aileron, with 50% reduction in efficiency, at 50 sec. 

•  0 deg failure on Left Aileron, with 0% reduction in efficiency, at 50 sec. 

 

The results of parallel AFDIA implementation on the cluster can be tabulated as follows. 
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Table 6-8 : Results of Failure Detection and Identification on Left Elevator and Aileron 

Scenario 

Elev (L) Ail (L) 

Main error threshold 

exceeded at 

Autocorrelation 

threshold exceeded at 
Failure Identification 

5 deg, 50%  50.133 s 51.866 s Yes 

5 deg, 100%  50.125 s 50.00 s - 

15 deg, 50%  50.172 s 54.910 s Yes 

15 deg, 100%  50.1 s 51.3 Yes 

0 deg, 50%  50.133 s 59.133 s Yes 

0 deg, 100%     

 5 deg, 50% 50.066 s 53.7 s Yes 

 5 deg, 0% 50.066 s 51.5 s Yes 

 10 deg, 50% 50.066 s 51.766 s Yes 

 10 deg, 0% No data No data No data 

 0 deg, 50% 50.078 s - No 

 0 deg, 0% 50.133 s - No 

 

Statistical analysis was performed on the flight data sets from the simulation environment 

to determine the Receiver Operating Characteristic (ROC) curve, to achieve a good trade off 

between true positive rates and false positive rates while detecting the presence of actuator 

failures. A 2x2 table representing the true and false positives and negatives, used to determine 

the ROC curves is shown below in Table 6-9. 

Table 6-9 : 2 by 2 Table for Determining Failure Detection Rates 

 Failure Present Failure Absent 

Failure Detected True Positive False Positive 

Failure Not Detected False Negative True Negative 

 

The corresponding ROC curves for failure detection on the Left Aileron and the Left 

Elevator are shown in the following figures. 
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Figure 6-45 : ROC Curve for Aileron Failure 

 

Figure 6-46 : ROC Curve for Elevator Failure 

The following table presents the results of post failure analysis of the tracking errors of 

the controller for failures on the Ailerons and Elevator. The results are tabulated from three runs 

of the failure scenarios. 
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Table 6-10 : Post Failure Tracking Error Analysis for Failures on Left Elevator and Aileron 

Failed Surface Failure Magnitude 

(deg) 

 

  P (deg/s) Q (deg/s) R (deg/s) 

  Eff. Mean Std Mean Std Mean Std 

50% -0.0425 0.2623 0.0359 0.4536 -0.0621 0.1295 
0 

100% 0.0068 0.2683 0.0208 0.9440 -0.0416 0.1215 

50% -0.0071 0.2053 -0.0173 0.4133 0.0303 0.1328 
5 

100% NA NA NA NA NA NA 

50% -0.0035 0.1763 0.0161 0.3372 -0.0882 0.0925 

Left Elevator 

15 
100% 0.0039 0.2735 0.0382 0.6991 -0.0393 0.1176 

50% NA NA NA NA NA NA 
0 

0% NA NA NA NA NA NA 

50% -0.0336 2.6439 0.3099 0.6814 0.3204 0.6442 
5 

0% 5.1164 10.2927 0.7769 2.0945 0.1052 0.7835 

50% 4.9556 10.0559 1.1856 3.4311 0.5455 0.7988 

Left Aileron 

10 
0% No data No data No data No data No data No data 
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The following figures 6-45 to 6-50 represent the results of Actuator Failure detection, 

Identification and Accommodation on the Left Elevator for a 5 deg failure with 50% reduction in 

the efficiency of the failed surface. The error threshold on the MNN is exceeded at 50.133s, 

indicating a failure on the sensor subsystems. Subsequently, the error on the Rtt exceeds its 

thresholds at 51.866s, identifying the failure. 

 

 

Figure 6-47 : Error Thresholds for Failure on Left Elevator (5 deg, 50% eff.) 
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Figure 6-48 : Control Surface Deflections, Failure on Left Elevator (5 deg, 50% eff.) 

 

Figure 6-49 : Angular Rates of the Aircraft, for Failure on Left Elevator (5 deg, 50% eff.) 
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Figure 6-50 : Euler Angles, for Failure on Left Elevator (5 deg, 50% eff.) 

 

Figure 6-51 : Euler Angles, for Failure on Left Elevator (5 deg, 50% eff.) 
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Figure 6-52 : MNN Outputs, for Failure on Left Elevator (5 deg, 50% eff.) 

The following figures 6-51 to 6-56 represent the results of Actuator Failure detection, 

Identification and Accommodation on the Left Elevator for a 0 deg failure with 50% reduction in 

the efficiency of the failed surface. The error threshold on the MNN is exceeded at 50.133s, 

indicating a failure on the actuators. Subsequently, the error on the Rtt exceeds its thresholds at 

59.133s, identifying the nature of the failure in terms of the failed surface. 
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Figure 6-53 : Error Thresholds for Failure on Left Elevator (0 deg, 50 % eff.) 

 

Figure 6-54 : Control Surface Deflections, for Failure on Left Elevator (0 deg, 50 % eff.) 
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Figure 6-55 : Aircraft Angular rates, for Failure on Left Elevator (0 deg, 50 % eff.) 

 

Figure 6-56 : Euler Angles, for Failure on Left Elevator (0 deg, 50 % eff.) 
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Figure 6-57 : Velocity, Alpha and Beta, for Failure on Left Elevator (0 deg, 50 % eff.) 

 

Figure 6-58 : MNN Outputs, for Failure on Left Elevator (0 deg, 50 % eff.) 
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The following figures 6-57 to 6-62 represent the results of Actuator Failure Detection, 

Identification and Accommodation on the Left Aileron for a 5 deg failure with 50% reduction in 

the efficiency of the failed surface. The error threshold on the MNN is exceeded at 50.066s, 

indicating a failure on the actuators. Subsequently, the error on the Rff exceeds its thresholds at 

53.7s, identifying the failure. 

 

Figure 6-59 : Error Thresholds for Failure on Left Aileron (5 deg, 50% eff.) 

 



 113 

 

Figure 6-60 : Control Surface Deflection, for Failure on Left Aileron (5 deg, 50% eff.) 

 

Figure 6-61 : Aircraft Angular Rates, for Failure on Left Aileron (5 deg, 50% eff. ) 
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Figure 6-62 : Euler Angles, for Failure on Left Aileron (5 deg, 50% eff. ) 

 

Figure 6-63 : Velocity, Alpha and Beta, for Failure on Left Aileron (5 deg, 50% eff. ) 
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Figure 6-64 : MNN Outputs, for Failure on Left Aileron (5 deg, 50% eff. ) 

The following figures 6-63 to 6-68 represent the results of Actuator Failure detection, 

Identification and Accommodation on the Left Aileron for a 0 deg failure with 50% reduction in 

the efficiency of the failed surface. The error threshold on the MNN is exceeded at 50.078s, 

indicating a failure on the sensor subsystems. Although the error threshold on the MNN exceeds 

its threshold, the failure is not identified in this case as the auto correlation coefficient Rff stays 

within its threshold. This could be the result of the nature of the failure on the aileron, with the 

aileron stuck at 0 degrees and with only a 50% loss in efficiency.  
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Figure 6-65 : Error Thresholds, for Failure on Left Aileron (0 deg, 50 % eff.) 

 

Figure 6-66 : Control Surface Deflection, for Failure on Left Aileron (0 deg, 50 % eff.) 
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Figure 6-67 : Aircraft Angular rates, for Failure on Left Aileron (0 deg, 50 % eff.) 

 

Figure 6-68 : Euler Angles, for Failure on Left Aileron (0 deg, 50 % eff.) 
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Figure 6-69 : Velocity, Alpha and Beta, for Failure on Left Aileron (0 deg, 50 % eff.) 

 

Figure 6-70 : MNN Outputs, for Failure on Left Aileron (0 deg, 50 % eff.) 
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Chapter 7  - Conclusions and Recommendations 

This research effort addresses the design and development of an adaptive flight control 

scheme to recover an aircraft from failures to its sensor systems and perform the sensor failure 

detection, identification and accommodation (SFDIA) and its actuators and perform the actuator 

failure detection, identification and accommodation (AFDIA). The fault tolerant flight control 

schemes are based on a set of neural network structures named as the Main Neural Network, and 

Decentralized Neural Network and Neural Network Controller. For the purpose of SFDIA, a 

combination of the MNN and three DNNs called the P-DNN, Q-DNN and the R-DNN are used. 

The P, Q, and R DNNs are designed to estimate the outputs of the roll, pitch and yaw gyros at 

time instant ‘k’, based on inputs from sensor systems onboard the aircraft from time instant ‘k-1’ 

till ‘k-l’. The restriction on the DNNs is that the P-DNN cannot have the roll rate as its input, the 

Q-DNN cannot have the pitch rate as its input and the R-DNN cannot have the yaw rate as its 

input. This is done primarily to ensure that the outputs from these networks are not tainted by 

any failures on the rate gyros and thus can be relied upon to provide good estimates of the rates 

in case of failures on the gyros. The MNN generates the estimates of the three gyros at time ‘k’ 

based on inputs from the sensor system from time ‘k-1’ to ‘k-l’. The MNN does not have any 

restrictions on the use of the rate gyro measurements to estimate the current values. A quadratic 

error parameter, MQEE which is the sum of the squares of the error in the rate estimates from the 

MNN and the DNNs is used for the detection of failures on the gyros. Step type failures of two 

different magnitudes were introduced on the rate gyros to evaluate the sensor failure detection, 

identification and accommodation scheme. Upon the introduction of the failures on the sensor 

outputs, the error metric MQEE showed a sudden spike indicating a failure on one of the sensor 

systems, while the DQEE parameter, which is the square of the estimation error on each of the 

individual DNNs provided the failure identification. Step type failures of 4 deg/s and 8 deg/s 

were successfully injected on the sensors, and subsequently detected and identified successfully 

on the distributed computational platform.  

Although accommodating for sensor failures are important in flight control systems, it 

takes a lower priority when compared to the accommodation for failures to the actuator systems 

onboard the aircraft. On the other hand, if the outputs from the rate gyros without physical 

redundancy are used in closed loop flight control laws, identifying and accommodating for 
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failures on the gyros becomes as important as accommodating for on-board actuator failures. 

Within the scope of this research study, actuator failures refer to failures to the control surfaces 

on board the aircraft, especially the left elevator and the left aileron. Failures refer to the 

situations in which these control surfaces are locked at a given position, with or without the 

added effect of a loss of surface. Such failure conditions introduce a significant coupling of 

lateral and longitudinal directional dynamics on the aircraft. The AFDIA scheme is designed 

along the lines of the SFDIA scheme, with the MNN and three Neural Network Controllers, 

namely the Roll-NNC, Pitch-NNC and the Yaw-NNC. As with the SFDIA scheme, the MNN is 

designed to estimate the values of the pitch, roll and yaw rate gyros at time ‘k’, based on inputs 

from time ‘k-1’ till ‘k-l’. the NNCs on the other hand provide the estimates of the control surface 

deflections at time ‘k’, based on inputs from the sensor systems from time ‘k-1’ till ‘k-l’. Once 

failure is detected and identified, the controller takes over the “flying” of the aircraft and restores 

it to equilibrium conditions. 

Within the goals of this research effort was the design of an interface between the neural 

network based fault tolerant flight control schemes and a simulation/visualization environment. 

AVDS was chosen as the simulation/visualization environment mainly due to previous 

experience in using the commercially available software package among members of Dr. 

Marcello Napolitano’s research group and the fact that AVDS allows the user to customize its 

code to suit their needs. Towards achieving the goal of interfacing this environment with the 

fault tolerant flight control schemes, a TCP/IP socket based communication and data transfer 

scheme was designed and successfully implemented. The scheme is based on the client-server 

model, with the AVDS environment acting as the client side socket.  

Another important phase of this research effort was the successful design and 

development of a Matlab based GUI tool that would enable the user to interactively set the 

parameters to define the simulation tasks.  This GUI tool provides the user with flexibility to 

change the structure of the NNs that are used within the fault tolerant flight control schemes. 

With the help of this tool, the user can change the inputs to the NN structure, the time history 

window of the inputs, the number of hidden layer neurons, and the learning and momentum rates 

for the interconnection weights between the nodes of the fully connected NN and the thresholds 

at each node. This tool also deploys a client side TCP/IP socket that is later used to transfer the 

simulation parameters to the master node on the cluster. 
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The typical implementations of flight control schemes are on standalone computational 

platforms. One of the goals of this research effort was the development of a distributed 

computing platform that would enable the fault tolerant flight control schemes to be executed in 

parallel. This goal was successfully realized and a Beowulf cluster was built with 7 compute 

nodes, nodes1-7 from COTS components. All the compute nodes on the cluster were running the 

Linux operating system, kernel version 2.4.20-8 and the cluster communication was based on the 

Message Passing Interface. For all the tasks, source code was written in C and was structured in 

such a way that different sections of the code were conditionally executed, based on the rank of 

the process executing the code, loosely following a SIMD model. The node executing the code 

for MNN is designated as the master node and is responsible for coordinating the data 

communication between the AVDS environment and all the other compute nodes on the cluster.  

The master node coordinates communication between the cluster and Matlab GUI on one 

hand and cluster and AVDS on the other hand, using sockets. Once the tasks are initialized on 

the cluster, a section of code within the master node creates a server side socket and waits for the 

Matlab GUI to initialize itself and create a client side socket. There is exchange of initialization 

flags between the master node and the Matlab GUI, followed by the transfer of all the simulation 

parameters that were set using the GUI, to the master node. The master node now has all the 

parameter that defines the four network structures MNN, PDNN, QDNN and RDNN and other 

simulation and task related parameters, such as the time of simulation, and failure specifications. 

This node then uses MPI directives to send these parameters to all the compute nodes on the 

cluster, which then proceed to initialize their respective network structures. When AVDS is 

initialized, it also receives simulation parameters and once the aircraft reaches 3000 ft in altitude, 

it starts to send sensor data back to the master node using its client side sockets. The master node 

then distributes this frame of data to all the compute nodes in the cluster. Once the learning cycle 

is complete on all the compute nodes, the estimates are sent back to the master node wherein 

error metrics are computed and failure checking is done. If a failure is detected, appropriate flags 

are set and sent along with the frame of sensor data from AVDS, during the next time step, to all 

the compute nodes, which tailor their execution responses based on the status of the failure flags. 

The AFDIA scheme was successfully implemented on the distributed computation 

environment for failures on the Left Elevator and the Left Aileron. The failures on the surfaces 

included the surface being stuck at 0 deg deflection, 5 deg deflection and 15 degree deflection, 
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with a loss of surface. The AFDIA scheme was able to detect the failures and able to 

accommodate for them, except in the case of 0 deg failures on the aileron.  

7.1 Recommendations for Future Work 

This research effort provided a proof of concept implementation of a COTS cluster based 

distributed computing environment for the purpose of implementation of a fault tolerant flight 

control scheme. Under the current setup, the compute nodes are made up of desktop computers, 

running a non real-time version of the Linux operating system. This entire setup can be shrunk 

into a more compact physical size by migrating the cluster to PC104 based compute nodes. 

Another suggestion would be to make use of real-time extensions to the Linux operating system, 

making the entire operation run in real time. With increasing emphasis towards flight tests of 

fault tolerant flight control schemes, the logical step forward from this research effort would be 

the flight tests on UAV test platforms. Within the fault tolerant flight control scheme, future 

work could include the integration of the SFDIA and the AFDIA tasks to detect, identify and 

accommodate for failures on both the sensor systems as well as the actuators. Also, the 

interactive GUI in Matlab could be expanded to allow the user to choose the learning algorithm 

of the neural networks, and possibly even the NN architecture itself. 

 



 123 

References 

[1]  An, Y., “A Design of Fault Tolerant Flight Control Systems for Sensor and Actuator 

Failures Using On-Line Learning Neural Networks”, PhD Dissertation, WVU, 

Mechanical and Aerospace Dept., Morgantown, WV, 1998. 

[2]  Roskam, Jan, “Airplane Flight Dynamics and Automatic Flight Controls, Part I”, Design, 

Analysis and Research Corporation, Lawrence, Kansas, 1995 

[3]  Stevens, B.L., Lewis, F.L., “Aircraft Control and Simulation”, John Wiley and Sons, 

New York, 1992. 

[4]  Haykin, S., “Neural Networks: A comprehensive Foundation”, McMillan College 

Publishing Company, Inc., 1994. 

[5]  Motyka, P., Bonnice, W., Hall, S., Wagner, E. “The Evaluation of Failure Detection and 

Isolation Algorithms for Restructurable Control”, NASA Contractor Report 177983, 

1985 

[6]  AVDS User Manual, Version 1.2.1, Artificial Horizons Inc. October 1999. 

[7]  Rumelhart, D. and McClelland, J., “Parallel Distributed Processing”, MIT Press, 

Cambridge MA. 1986. 

[9] Alfonso C. Paris, “Estimation of the Longitudinal and Lateral-Directional Aerodynamic 

Parameters from Flight Data for the NASA F/A-18 HARV”, PhD Dissertation, 

Department of Mechanical and Aerospace Engineering, West Virginia University, 1997. 

[10]  Napolitano, M.R., Dale A. Windon II et. al., “Virtual Flight Data Recorder: A Neural 

Extension of Existing Capabilities” Journal of Guidance, Control, and Dynamics, Vol. 

21, No. 4, pp.662~664, 1998. 

[11]  M. Hagiwara, “Theoretical Derivation of Momentum Term in Back-propagation”, In 

proceedings of the International Joint Conference on Neural Networks, Vol.I Baltimore, 

MD, 1992. 

[13] Matlab User’s Guide. Mathworks Inc. Natick, MA. 

[14]  Douglas E. Comer, Internetworking with TCP/IP Vol.1: Principles, Protocols and 

Architecture (4th Edition). 



 124 

[15] Kerr, T., “False Alarm and Correct Detection Probabilities Over a Time Interval for 

Restricted Classes of Failure Detection Algorithms”, IEEE Transactions of Information 

Theory, Vol. IT-20, No.4, 1982, pp 619~631. 

[16] Kerr, T., “Decentralized Filtering and Redundancy Management/Failure Detection for 

Multisensor Integrated Navigation Systems,” IEEE Transactions on Information Theory, 

pp.191~208, 1986. 

[17]  Willsky, A.S., “A Survey of Design Methods for Failure Detection in Dynamic Systems,” 

Automatica, Vol. 12, pp.601~611, 1976. 

[18]  Willsky, A.S., “Failure Detection in Dynamic Systems,” Agard LS-109, Neuilly sur 

Seine, France, pp.2.1~2.14, 1980. 

[19]  T.-H. Guo, J. Nurre, “Sensor Failure Detection and Recovery by Neural Networks,” 

Proceedings of the International Joint Conference on Neural Networks, pp. I-221~I-226, 

1991. 

[20]  Petri A. Jokinen, “Comparison of Neural Network Models for Process Fault Detection 

and Diagnosis Problems,” Proceedings of the International Joint Conference on Neural 

Networks, pp.I-239~I-244, 1991. 

[21]  R. Sreedhar, B. Fernandez, C.Y. Masada, “A Neural Network Based Adaptive Fault 

Detection Scheme,” Proceedings of the American Control Conference, pp.3259~3263, 

1995. 

[22]  Narendra, K.S., Partasarathy, K. “Identification and Control of Dynamical Systems Using 

Neural Networks”, IEEE Transactions on Neural Networks, Vol. 1, No 1, pp.4~27, 1990. 

[23]  Levin, A.U., Narendra, K.S. “Control of Non-Linear Dynamical Systems Using Neural 

Networks: Controllability and Stabilization”, IEEE Transactions on Neural Networks, 

Vol.4, No.2, pp.192~206, 1993. 

[24]  M.M. Polycarpou, A.T. Vemuri, “Learning Methodology for Failure Detection and 

Accommodation,” IEEE Control Systems, pp.16~24, 1995. 

[25]  M.M. Polycarpou, A.J. Helmicki, “Automated Fault Detection and Accommodation: A 

Learning Systems Approach,” IEEE Transactions on Systems, Man, and Cybernetics, 

Vol.25, No.11, pp.1447~1458, 1995. 



 125 

[26]  Kline-Schoder, R.,Rauch, H.,Youssef, “Fault Detection, Isolation, and Reconfiguration 

for Aircraft Using Neural Networks,” Proceedings of the AIAA Guidance, Navigation 

and Control Conference, AIAA Paper 93-3876, Monterey, Ca, 1993. 

[27]  S.N. Balakrishnan, Victor Biega, “Adaptive-Critic-Based Neural Networks for Aircraft 

Optimal Control,” Journal of Guidance, Control, and Dynamics, Vol.19, No.4, 

pp.893~898, 1996. 

[28]  Huang, C., Tylock, J., Engel, S., Whitson, J., Eilbert, J., “Failure-Accommodating Neural 

Network Flight Control,” Proceedings of the AIAA Guidance, Navigation and Control 

Conference, AIAA Paper 92-4394, Hilton Head, SC, 1992. 

[29]  C.M. Ha, “Neural Networks Approaches to AIAA Aircraft Control Design Challenge,” 

Journal of Guidance, Control, and Dynamics, Vol. 18, No. 4, pp. 731~739, 1995. 

[30]  Ha, C.M., Wei, Y.P., Bessolo, J.A., “Reconfigurable Aircraft Flight Control System Via 

Neural Networks,” Proceedings of the 1992 Aerospace Design Conference, AIAA Paper 

92-1075, Irvine, Ca, 1992. 

[31]  Chi-Yuan Chiang, H.M. Youssef, “Neural Network and Fuzzy Logic Approach to 

Aircraft Reconfigurable Control Design,” Proceedings of the American Control 

Conference, pp.3505~3509, 1995. 

[32]  B.S. Kim, A.J. Calise, “Nonlinear Flight Control Using Neural Networks,” Journal of 

Guidance, Control, and Dynamics, Vol.20, No.1, pp.26~33, 1997. 

[33]  Napolitano, M.R., Chen, C.I.,et. al., “Aircraft Failure Detection and Identification Using 

Neural Networks,” Journal of Guidance, Control, and Dynamics, Vol. 16, No. 6, 

pp.999~1009, 1993. 

[34]  Napolitano, M.R., Casdorph, V.,Neppach, C., Naylor, S, “On-line Learning Neural 

Architectures and Cross-Correlation Analysis for Actuator Failure Detection and 

Identification,” International Journal of Control, Vol.63, No.3, pp.433~455, 1996.  

[35]  Napolitano, M.R., Steve Naylor et. al., “On-Line Learning Nonlinear Direct 

Neurocontrollers for Restructurable Systems,” Journal of Guidance, Control, and 

Dynamics, Vol. 18, No. 1, pp.170~176, 1995. 

[36]  Mascarell, J. C., “Design and Comparison of Neural Network and Fuzzy Logic Actuator 

Failure Schemes for Flight Control System,” Master Thesis, Department of Mechanical 

and Aerospace Engineering, West Virginia University, 1996. 



 126 

[37]  Napolitano, M.R., Neppach, C. et. al., “Neural-Network-Based Scheme for Sensor 

Failure Detection, Identification, and Accommodation,” Journal of Guidance, Control, 

and Dynamics, Vol.18, No.6, pp.1280~1286, 1995. 

[38]  Windon, D.A., “Design and Comparison of Neural Network and Kalman Predictor Based 

Sensor Validation Schemes for Implementation on the NASA-Aurora Theseus Aircraft,” 

Master Thesis, Department of Mechanical and Aerospace Engineering, West Virginia 

University, 1996. 

[39]  Napolitano, M.R., Swaim, R.L., “New Technique for Aircraft Flight Control 

Reconfiguration,” Journal of Guidance, Control, and Dynamics, Vol. 14, No.1, 

pp.184~190, 1991. 

[40]  Coetzee, L., “Parallel approaches to training feedforward neural nets”. Ph.D. Thesis, 

University of Pretoria, 1996. 

[41] Torrensen, J., “Parallelization of Backpropagation Training for Feed-Forward Neural 

Networks”. Ph.D. Thesis, The Norwegian Institute of Technology, 1996. 

[42] L. Fausett, “Fundamentals of Neural Networks: Architectures, Algorithms, and 

Applications”, Prentice Hall, Englewood Cliffs, NJ, 1994. 

[43]  Chen, C.L., Nutter, R.S., “An Extended Back-Propagation Learning by Using 

Heterogeneous Processing Units,” Proceedings of International Joint Conference on 

Neural Networks, pp. III-988~993, Baltimore, Maryland, 1992. 

[44]  Flynn, M., “Very high speed computing systems”. Proceedings of the IEEE 54:1901-

1909, December 1966. 

[45] Marc Snir, M., Otto, S., Huss-Lederman, S., Walker, D., Dongarra, J., “MPI: The 

Complete Reference”, MIT press, 1999.  

[46] Geist, A., Beguelin, A., Dongarra, J., Jiang, W., Manchek, R., Sunderam, V., “PVM: 

Parallel Virtual Machine: A Users' Guide and Tutorial for Networked Parallel 

Computing”, MIT Press, 1994. 

[47] Pacheco, P.S., “Parallel Programming with MPI”, Morgan Kaufman Publishers, Inc., 

1997. 

[48] Crossbow Technology Inc., “Acceleration, Tilt/Angle and Inertial/Gyro”, Product 

Catalog. 



 127 

[49] Napolitano, M.R., An,Y., Seanor, B., “A fault tolerant flight control system for sensor 

and actuator failures using neural networks”, Aircraft Design Journal, Vol.3, pp. 103-128. 

[50] Gu, Yu, “Design And Flight Testing Actuator Failure Accommodation Controllers on 

WVU YF-22 Research UAVs”. PhD thesis, West Virginia University, 2004. 

[51] Perhinschi, M.G, Lando, M, Massotti, L., Campa, G., Napolitano, M.R., Fravolini, M.L., 

“On-Line Parameter Estimation Issues for the NASA IFCS F-15Fault Tolerant Systems”. 

[52] Brinkre, J., & Wise, K., “Flight testing of a reconfigurable flight control law on the X-36 

tailless fighter aircraft”, AIAA GNC Conference, 2000. 

[53] Air Force Research Laboratory, “First Flight Test Demonstration of Neural Network 

Software”, http://www.afrlhorizons.com/Briefs/0001/VA9904.html 

[54] Dryden Flight Research Center, “X-36 Tailless Fighter Agility Research Aircraft in 

flight”,http://www.dfrc.nasa.gov/Gallery/Photo/X-36 

[55] NASA Dryden Flight Research Center, “Intelligent Flight Control Systems”, 

http://www.dfrc.nasa.gov/Newsroom/FactSheets/FS-076-DFRC.html 

[56] Perhinschi M. G., Napolitano M.R., Campa G., Seanor B., Gururajan S., "Design of 

Intelligent Flight Control Laws for the WVU F-22 Model Aircraft", Proceedings of the 

AIAA Intelligent Systems Technical Conference 2004 Chicago IL, AIAA2004-6282 

[57] Perhinschi M. G., Napolitano M.R., Campa G., Burke H. E., Larson R. R., Burken J., 

Fravolini M. L., "Design and Testing of a Safety Monitor Scheme on the NASA Gen_2 

IFCS F-15 Flight Simulator", Proceedings of the AIAA Intelligent Systems Technical 

Conference 2004 Chicago IL, AIAA2004-6284 

[58] Perhinschi M. G., Burken J., Napolitano M.R., Campa G., Fravolini M. L.,"Performance 

Comparison of Different Neural Augmentation for the NASA Gen_2 IFCS F-15 Control 

Laws", Proceedings of the American Control Conference 2004 Boston MA, pp3180-3184 

[59] Perhinschi M. G., Napolitano M.R., Campa G., Fravolini M. L., "Integration of Fault 

Tolerant System for Sensor and Actuator Failures within the WVU NASA F-15 

Simulator", Proceedings of the AIAA Guidance, Navigation, and Control Conference, 

August 2003, Austin, Texas, AIAA-2003-5643 

[60] Perhinschi M. G., Napolitano M.R., Stolarik B., Hammaker S., Campa G., Rogers S., 

"Design Of Safety Monitor Schemes for a Fault Tolerant Flight Control System", 



 128 

Proceedings of the AIAA Guidance, Navigation, and Control Conference, August 2003, 

Austin, Texas, AIAA-2003-5646 

[61] Battipede M., Gili P., Lando M, Napolitano M. R., Perhinschi M. G., Campa G., 

"Comparative Analysis of Neural Control Systems Within the NASA IFCS F-15 WVU 

Simulator", Proceedings of the AIAA Guidance, Navigation, and Control Conference, 

August 2003, Austin, Texas, AIAA-2003-5643 

[62] Perhinschi M. G., Napolitano M.R., Campa G., Fravolini M. L., Massotti L.,Lando M., 

"Augmentation of a Non Linear Dynamic Inversion Scheme Within the NASA IFCS F-

15 WVU Simulator", Proceedings of the American Control Conference 2003, June 4-6, 

2003 Denver CO, USA, pp1667-1672 

[63] Perhinschi M. G., Campa G., Napolitano M.R., Fravolini M. L., Lando M., Massotti L., 

"Performance Comparison of Fault Tolerant Control Laws Within the NASA IFCS F-15 

WVU Simulator", Proceedings of the American Control Conference 2003, June 4-6, 

2003 Denver CO, USA, pp1661-1666 

[64] Battipede M., Gili P., Napolitano M. R., Perhinschi M. G., Massotti L., Lando M., 

"Implementation of an Adaptive Predictor-Corrector Neural Controller within the NASA 

IFCS F-15 WVU Simulator", Proceedings of the American Control Conference 2003, 

June 4-6, 2003 Denver CO, USA, pp1302-1307 

[65] Perhinschi M. G., Lando M., Massotti L., Fravolini M. L., Campa G., Napolitano M.R., 

“On-Line Parameter Estimation for Real Time Application for the NASA IFCS F-15 

Fault Tolerant Systems”, Proceedings of the American Control Conference, Anchorage, 

AK, 2002, pp191-196 

 



 129 

Appendix A 

A.1 Sample Three Dimensional Lookup Table 

This section shows a sample of the three dimensional lookup tables for the F4 aircraft 

dynamics.  

# 
# Aero Coefficients for F4 aircraft dynamics 
# 
 
# Cdo : basic drag coefficient 
# 
:DB 5 0 0 Mach None None 1.0 0.0 
 0.0 0.206 0.900 1.800 9.00 
 0.0269 0.0269 0.0205 0.0439 0.0439 
 
# 
# Cdu : drag coefficient due to translational velocity 
# 
:Du 5 0 0 Mach None None 1.0 0.0 
 0.0 0.206 0.900 1.800 9.00 
 0.0 0.0 0.027 -0.054 -0.054 
 
 
# 
# Cda : drag coefficient due to angle of attack 
# 
:Da 5 0 0 Mach None None 1.0 0.0 
 0.0 0.206 0.900 1.800 9.00 
 0.555 0.555 0.300 0.400 0.400 
 
# 
# Cdf : drag coefficient due to flap deflection 
# 
:Df 5 0 0 Mach None None 1.0 0.0 
 0.0 0.206 0.900 1.800 9.00 
 0.0 0.0 0.0 0.0 0.0 
 
# 
# Cdg : drag coefficient due to gear deflection 
# 
:Dg 5 0 0 Mach None None 1.0 0.0 
 0.0 0.206 0.900 1.800 9.00 
 0.0 0.0 0.0 0.0 0.0  
 
# 
# Clo : basic lift coefficient 
# 
:LB 5 0 0 Mach None None 1.0 0.0 
 0.0 0.206 0.900 1.800 9.00 
 0.43 0.43 0.100 0.01 0.01 
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# 
# Cla : lift coefficient due to angle of attack 
# 
:La 5 0 0 Mach None None 1.0 0.0 
 0.0 0.206 0.900 1.800 9.00 
 2.80 2.80 3.75 2.80 2.80 
 
# 
# Clde : lift coefficient due to elevator deflection 
# 
:Le 5 0 0 Mach None None 1.0 0.0 
 0.0 0.206 0.900 1.800 9.00 
 0.24 0.24 0.40 0.25 0.25 
 
# 
# Cldf : lift coefficient due to flap deflection 
# 
:Lf 5 0 0 Mach None None 1.0 0.0 
 0.0 0.206 0.900 1.800 9.00 
 0.0 0.0 0.0 0.0 0.0  
 
# 
# Clq : lift coefficient with dimensionless pitch rate 
# 
:Lq 5 0 0 Mach None None 1.0 0.0 
 0.0 0.206 0.900 1.800 9.00 
 1.33 1.33 1.80 1.30 1.30  
 
 

A.2 User Defined Simulation Code Block Header Information 

•  Blockname - the name of the user code block. This is entered in the 

usr_cblock.c file to notify AVDS of this new code block. 

•  Type - the value in this location is either USR_FCS or USR_AC. The type of the 

block determines where it is displayed on the Aircraft Initialization page. 

•  Description of code block - a textual description of the code block. This 

description is displayed in the type menu for the aircraft of FCS on the 

Aircraft Initialization. 

•  in1 in2 in3 in4 in5 in6 ... - a list of the inputs to this block. These are 

displayed under FCS In or AC In on the Aircraft Initialization page. 

•  out1 out2 out3 ... - a list of the outputs from this block. These are displayed 

under FCS Out or AC Out on the Aircraft Initialization page. 

•  param1 param2 param3 param4 ... - a list of the parameters that will have 

corresponding look-up tables. 

•  r - the update rate in Hz is based on this integer number. The actual update 

may vary depending on the computer and complexity of the simulation model. 

•  Init_func - the name of a function that AVDS will call to initialize the code 

block. 

•  update_func - the name of the function that AVDS calls at the rate specified by 

"r" to update the simulation. 
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CBlock blockname = {  
type,      /* Type */ 
"description of code block" ,  /* Description */ 
"in1 in2 in3 in4 in5 in6...",  /* Inputs */ 
"out1 out2 out3...",   /* Outputs */ 
"param1 param2 param3 param4...", /* Params*/ 
r,      /* Update Rate (Hz) */ 
init_func     /* Init Function*/ 
update_func     /* Update Function */ 

} 
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Appendix B  

B.1 Sample User Defined Simulation Code Block. 

#include <usr_cblock.h> 
int nBlocks = 1; 
CBlock FBgainFCS; 
Cblock *pCBlockx[] = {&FBgainFCS}; 
void fcs_init(); 
void fcs_update(); 
/* Add declaration of code blocks */ 
CBlock FBgainFCS = { 

USR_FCS,     /* Type */ 
"Feedback Gains",    /* Description */ 
"Ps Rs Ys Ts P Q R",   /* Inputs */ 
"de da dr dt",    /* Outputs */ 
"k1 k2 k3 cmd1 cmd2 cmd3",  /* Parameters */ 
20,      /* Update Rate (Hz) */ 
fcs_init,     /* Init Function */ 
fcs_update     /* Update Function */ 
}; 

enum { STICK_P, STICK_R, STICK_Y, STICK_T, ROLL, PITCH, YAW }; /* Inputs */ 
enum { D_ELE, D_AIL, D_RUD, D_THR }; /* Outputs */ 
enum { GAIN_P, GAIN_R, GAIN_Y, GAIN_CP, GAIN_CR, GAIN_CY}; /* Parameters 
*/ 
void 
fcs_init( input, output, param ) 
double *input, *output, *param; 
{ 

output[D_ELE] = input[STICK_P]*param[GAIN_CP]+input[PITCH]*param[GAIN_P]; 
output[D_AIL] = input[STICK_R]*param[GAIN_CR]+input[ROLL]*param[GAIN_R]; 
output[D_RUD] = input[STICK_Y]*param[GAIN_CY]+input[YAW]*param[GAIN_Y]; 
output[D_THR] = input[STICK_T]; 

} 
void 
fcs_update( input, output, param ) 
double *input, *output, *param; 
{ 

output[D_ELE] = input[STICK_P]*param[GAIN_CP]+input[PITCH]*param[GAIN_P]; 
output[D_AIL] = input[STICK_R]*param[GAIN_CR]+input[ROLL]*param[GAIN_R]; 
output[D_RUD] = input[STICK_Y]*param[GAIN_CY]+input[YAW]*param[GAIN_Y]; 
output[D_THR] = input[STICK_T]; 

} 
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