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Abstract 

Implications of primary cilia and associated lysophosphatidic acid signaling in 

glioblastoma biology and therapy. 

Yuriy Loskutov 

 

The primary cilium is a ubiquitous organelle presented on most human cells. It serves 
as a crucial signaling hub for multiple pathways including growth factor and G-protein 
coupled receptors. Loss of primary cilia was observed in various cancers, however, the 
implications of this event are unclear. Several studies show that loss of cilia promotes cell 
proliferation, suggesting that alteration of ciliary-dependent signaling can drive the hyper-
proliferative phenotype of cancer cells, therefore re-establishing primary cilia or targeting 
altered signaling pathways could be a beneficial strategy as an anti-cancer therapy. 

Glioblastoma (GBM) is one of the deadliest cancers with a median survival of 14 
months. Such rapid progression of the disease is usually due to the very high growth rate 
of the tumor and rapid recurrence after surgical resection. Current standard of care for 
GBM patients includes aggressive radiation and chemotherapy, thus there is a high 
demand for more targeted approaches. Primary cilia formation is drastically decreased in 
GBM, however, the role of cilia in glioblastoma proliferation has not been explored. The 
overall aim of this work was to elucidate the mechanisms of increases in proliferation 
driven by the loss of cilia, and utilize it to target GBM. The cellular origins of GBM are 
currently under debate. One of the potential candidates are astrocytes, a highly abundant 
type of cell in the brain. Loss of primary cilia in human astrocytes stimulates proliferation 
in the presence of serum. Lysophosphatidic acid (LPA) was found to be a serum 
component responsible for this phenotype. Lysophosphatidic acid receptor 1 (LPAR1), a 
G-protein coupled receptor, was found to be accumulated in primary cilium in both 
astrocytes and GBM cells when cilium was present, while previously reported interactors 
of LPAR1, Gα12 and Gαq, were excluded from cilium. LPAR1 signaling through Gα12/Gαq 
was previously reported to be responsible for cancer cell proliferation. Such 
compartmentalization in ciliated cells creates a barrier against unlimited proliferation, 
which is one of the hallmarks of cancer. 

Inhibition of LPA signaling with the small molecule compound Ki16425 in deciliated, 
highly proliferative astrocytes or GBM cells/xenografts drastically suppresses their growth 
both in vitro and in vivo. Moreover, Ki16425 brain delivery via PEG-PLGA nanoparticles 
inhibited tumor progression in an intracranial glioblastoma patient-derived xenograft 
(PDX) model. Overall, in the current studies, a novel mechanism by which primary cilium 
restricts proliferation was established. Loss of primary cilia is sufficient to increase 
mitogenic signaling, and is important for the maintenance of a highly proliferative cancer 
phenotype. Clinical application of LPA inhibitors may prove beneficial to restrict 
glioblastoma proliferation and ensure local control of the disease. 
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Literature Review 

1. Primary cilia: signaling hub/organelle/molecular machine 

1.1 Primary cilia structure, maintenance, and function 

Primary cilium is a non-motile, microtubule-based organelle. It is formed as a 

protrusion of a mature centriole in G1/G0, consists of nine doublets of microtubules known 

as an axoneme, and is covered with the plasma membrane (1) (Fig.1). Ciliary 

microtubules are built from tubulin α and β dimers with the “+”end located at the tip of the 

cilium. The axoneme includes a transition zone linking the cilium to the centriole/basal 

body, a doublet zone including both microtubule doublet A (full microtubule) and B (hemi-

tube), and a singlet zone where only A tubes are present (2). The base of the primary 

cilium usually emerges from an invagination in the cell plasma membrane known as the 

ciliary pocket (3). 

 

Figure 1. Principal components and organization of the primary cilium. 

Cilia accumulate multiple receptors and signal transduction components, thus tight 

regulation of ciliary trafficking is required. Indeed, an elaborate system of intraflagellar 

transport machinery exists, and the core components of this system are intraflagellar 
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transport (IFT) particles (Fig.1). IFT particles consist of motor proteins, IFT-A, IFT-B, and 

BBSome complexes (4). Motor proteins include heterodimeric kinesin II complex (KIF3A, 

KIF3B and KAP), homodimeric kinesin II complex (KIF17), and IFT dynein complex. 

Heterodimeric kinesin II is required for cilium assembly (5) and movement of the IFT 

particles along the doublet zone (6). Homodimeric kinesin II seems to be dispensable for 

cilium assembly (7) and is required for movement along the singlet zone of the axoneme 

(6). IFT-dynein propels the IFT particles from the tip of the cilium back to the cell body 

(8).Loss of IFT-dynein results in abnormal, bulging cilia with accumulation of the IFT 

particles at the tip (9, 10). IFT-A and IFT-B complexes form the core of IFT particles, 

however, the exact function and relation of their components are not clear (11). Several 

components, such as IFT88, were reported to be essential for cilium assembly (12). The 

BBSome complex derives its name from Bardet-Biedl syndrome, since mutations in its 

components cause this disease (13). The BBSome interacts with IFT-A and IFT-B 

complexes and is believed to participate in trafficking of the transmembrane proteins 

along the cilium (14). 

1.2 Mechanisms of assembly/disassembly of primary cilia 

Assembly of the primary cilium begins in G1 with a docking of the small cytoplasmic 

vesicles to the mother centriole, this is Cep164 and Talpid3-dependent event (15). The 

fusion of the small vesicles, which requires EDH1 and EDH3, generates a large ciliary 

vesicle encapsulating the growing axoneme (16). After the assembly of the large ciliary 

vesicle, Rabin 8 activates Rab8, which promotes cilium elongation (16). Elongation of the 

axoneme deforms the ciliary vesicle by creating two membrane surfaces: the sheath 

(outer membrane) and the shaft (membrane surrounding axoneme). After the docking of 

the mother centriole to the plasma membrane, the ciliary vesicle fuses with it, exposing 

the growing cilium to the extracellular environment (17). 

Disassembly of the primary cilium is a crucial event for cell cycle progression. As the 

cilium is a protrusion of the basal body, it anchors the centriole in the perimembrane area, 

thereby preventing it from participation in mitotic spindle formation (18). During the cell 

cycle, the cilium is assembled in the G1/G0 phase, fluctuates through S and G2, and gets 

disassembled during G2/M transition (19). It is not entirely clear what is the mechanism 
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of cilium disassembly, however, there are several lines of evidence suggesting complex 

regulation of this process. Activation of the mitotic kinase Aurora A (AURKA) is a key 

player in cilium disassembly, and inhibition or transient depletion of AURKA abolishes 

serum-initiated cilia disassembly. The scaffold protein NEDD9, also known as neural 

precursor cell expressed developmentally down-regulated protein 9, has been implicated 

in the activation of AURKA (20) and is required for cilium disassembly. Histone 

deacetylase 6 (HDAC6), an enzyme that deacetylates tubulin (21), is a known 

phosphorylation target of AURKA, which increases its deacetylase activity and 

destabilizes axonemal microtubules (19). Interestingly, the role of HDAC6 seems to be 

dispensable for cilia development, arguing that cilium can be disassembled without 

HDAC6 involvement (22). The microtubule-destabilizing kinesins KIF2A and KIF2C are 

potential candidates for direct disassembly of axonemal microtubules. Overexpression of 

both kinesins triggers cilium disassembly, and KIF2A activity towards cilia is regulated by 

polo-like kinase 1 (Plk1) (23). Plk1 is a well-known target of AURKA (24), and moreover, 

both KIF2A and KIF2C are known to be regulated by AURKA during mitosis (25, 26), 

which puts them in the same AURKA-driven pathway for cilium disassembly. Cell cycle 

related kinase (CCRK) and its substrates intestinal cell kinase (ICK) and male germ cell-

associated kinase (MAK) were reported to participate in cilium disassembly (27). 

Furthermore, CCRK has been implicated in Sonic Hedgehog (Shh) signaling and cilium 

length and morphology regulation (28). 

1.3 Primary cilia and signal transduction 

The complexity and evolutionary stability of the primary cilium suggest that it has some 

important functionality. For a long time, primary cilia was known for its role in Hedgehog 

signaling, making it indispensable for proper development. In mammalian cells, Shh 

receptor patched 1 (Ptch1) localizes to the primary cilium in absence of the ligand, and 

excludes the intermediate signaling molecule smoothened (Smo) from it. Protein kinase 

A (PKA) promotes proteolytic processing of Gli2/3 into a repressor form, thereby inhibiting 

Shh-driven gene expression. In the presence of Shh, Ptch1 translocates to the plasma 

membrane, and Smo moves into the cilium. This abrogates PKA activation, promoting 

Gli2/3 accumulation in the ciliary tip and activating Gli transcription factor formation (29-

31). 
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Recently, several of the receptor tyrosine kinases (RTK) were reported to localize to 

the primary cilium, and signal in a cilium-dependent manner. Platelet-derived growth 

factor receptor (PDGFR) α was found to specifically accumulate in the primary cilium of 

fibroblasts, while PDGFRβ was excluded from the cilium. Engineered loss of the cilium 

induces rapid degradation of PDGFRα, and loss of its signaling ligand, PDGF-AA, while 

preserving signal transduction of PDGF-BB, a PDGFRβ-specific ligand (32). Insulin-like 

growth factor 1 receptor (IGF1R) is not exclusive to primary cilium, however, ciliary 

localization tends to sensitize it, as activation of the receptor upon stimulation was first 

detected in the cilium, and then spread further to the plasma membrane. Similarly to 

PDGFRα, loss of cilia drastically decreases ligand-induced activation of IGF1R and 

downstream phosphorylation of protein kinase B (AKT) (33). Other RTKs were also 

reported to localize to primary cilia, such as epidermal growth factor receptor (EGFR), 

which was found in cilia in kidney epithelial cells (34), astrocytes, and neuroblasts (35). 

Fibroblast growth factor receptor (FGFR) was reported to localize to motile cilia in the 

airways of rhesus monkeys (36), as well as to the basal body of primary cilia in mouse 

neural progenitor cells (37). Angiopoietin receptors Tie1/2 localize to primary cilia on the 

surface epithelium of the murine ovary, bursa, and extra-ovarian rete ducts (38). 

Unfortunately, the significance and role of cilia in these RTK signaling cascades are still 

unknown. 

Finally, a long list of receptors from the superfamily of G-protein coupled receptors 

(GPCR) was found to accumulate in the primary cilium of various cell types (39, 40). 

Several cilium-targeting sequences were identified within different types of GPCRs (41, 

42). Still, the importance of the cilium for GPCR signaling is very poorly understood. There 

is evidence suggesting that the cilium serves as a compartment to scaffold GPCR 

signaling components including adenylyl cyclases (AC) 3/5/6 and phosphodiesterase 4C, 

thus limiting the spread of downstream signaling (43). In addition to this, it has become 

evident that cilia can serve as a platform for GPCR signaling crosstalk through GPCR 

hetero-oligomerization (44) and downstream signaling modulation by co-localized 

receptors (45). In addition to these, a growing body of evidence indicates that the 

downstream effectors of GPCRs, heterotrimeric G-proteins, can also be accumulated or 

excluded from primary cilium. For example, Gαs is accumulated in cilia (46), as well as 
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Gαi2 and i3, while Gαi1 is excluded from it (47). Since GPCRs can usually interact with 

several types of Gα subunits, such compartmentalization creates a possibility for the 

cilium to act as a switch in GPCR signaling. 

1.4 Primary cilia loss/dysfunction associated diseases 

Mutations in cilium-associated genes can cause a plethora of diseases, collectively 

referred to as ciliopathies. Ciliopathies are systemic diseases with a wide variety of 

symptoms, usually including the development of abnormalities (polydactyly, situs 

inversus), vision loss, cyst formation in multiple organs, obesity, and neurological 

disorders (48). A classic example of a ciliopathy is Joubert syndrome (JBTS; 

MIM#213300). It is characterized by hypotonia, ataxia, psychomotor delay, an irregular 

breathing pattern, and distinctive cerebellar and brain stem malformations. Additional 

clinical features include retinal degeneration, cystic kidney disease, ocular colobomas, 

occipital encephalocele, hepatic fibrosis, polydactyly, and endocrine abnormalities (49). 

Another classic example is Bardet-Biedl syndrome (BBS, MIM#209900), which includes 

rod-cone dystrophy, polydactyly, obesity, learning disabilities, hypogonadism, and renal 

anomalies. Secondary features include speech delay or disorder, developmental delay, 

behavioral abnormalities, brachydactyly/syndactyly, ataxia/poor coordination/imbalance, 

mild hypertonia, anosmia, diabetes, fibrocystic liver disease, Hirschsprung’s disease, as 

well as dental and cardiovascular anomalies (50). Symptoms and clinical representations 

of ciliopathies are largely overlapping, and can be separated by developmental 

abnormalities such as polydactyly and situs inversus, which are usually associated with 

impaired Shh signaling, or by degenerative processes, such as retinal degeneration, and 

different manifestations of dysplasia. The latter is of particular interest, as it occurs 

through the whole life of the patient and manifests as cyst formation in the kidney (51) 

and liver (52). Interestingly, modeling loss of cilia usually produces a hyperproliferative 

phenotype in normal cells (53, 54), thus one may expect to see increased incidence of 

cancer in patients with ciliopathies. Unfortunately, no such data is currently available, 

however Birt-Hogg-Dubé syndrome, which is associated with an increased incidence of 

renal cancer, was recently recognized as a ciliopathy (55). 
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2. Primary cilia: potential target for anti-cancer therapy 

2.1 Primary cilia and cancer 

In multiple cancer types, cilia tend to be lost, however, the role of this event is not 

clear. Recent publications suggest that loss of cilia in cancer is a relatively early event in 

disease progression. For instance, a drastic decrease in ciliation can be observed in 

breast cancer at the stage of non-invasive ductal carcinoma in situ (56). The same 

observation holds true in prostate cancer. In preinvasive stage of prostatic intraepithelial 

neoplasia, the number of cilia is significantly decreased (57). In a mouse model of 

pancreatic cancer, loss of cilia was noted even earlier in pre-cancer lesions. In this model, 

pancreatic intraepithelial neoplasia of varying grades can be detected prior to tumor 

development, and in these lesions, cilia were already absent (58). On the other hand, a 

few reports claim that cilia may be needed for cancer progression in some cases. Since 

Shh signaling requires the primary cilium, cancer development in models driven by the 

activation of Smo was strongly inhibited by loss of the cilia, but if the driver was the 

activated form of Gli, then the cilia loss enhanced tumorigenesis (59, 60). So far, such 

observations have only been specific for Shh-driven tumors, which puts them on a list of 

peculiar exceptions from the general trend. 

So far, cilia loss seems to correlate with tumor progression and also perhaps, 

malignant transformation, but is it a driving force for the latter, or is it just a consequence 

of transformation? Modeling the loss of cilia in normal cells suggests that it promotes 

hyperproliferation in Shh-independent cells. Engineered loss of primary cilia promotes 

proliferation in the mouse dermis in vivo (54). In cell culture settings, deciliation of normal 

cholangiocytes was sufficient to increase the proliferation rate, and moreover, loss of cilia 

promoted attachment-independent growth (53). In the case of Shh-dependent cell 

populations such as neural stem cells, ablation of primary cilia seems to inhibit their 

proliferation and lead to hypocellularity (61, 62). This observation goes along with tumor 

models driven by Smo activation, where cilia are required for tumor initiation (59, 60). 

Several approaches have been made to restore primary cilia in cancer cells. In 

cholangiacarcinoma cells, depletion or inhibition of the protein HDAC6, which is 
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implicated in cilia disassembly (19), was found to robustly restore primary cilia and 

suppress proliferation (53). In glioblastoma cells, depletion of CCRK, which is also 

implicated in cilium disassembly, was found to significantly inhibit proliferation and restore 

ciliation. Interestingly, the number of ciliated cells increased up to 10% in this study, but 

depletion of protein KIF3A, which is required for cilia assembly, abrogated all effects of 

CCRK depletion on both ciliation and proliferation (27). 

Overall, in the majority of cancers, loss of cilia seems to be an early event associated 

with an increase in proliferation, and restoration of the cilia, even in small cell populations, 

drastically decreases the proliferative capacity of cancer cells. 

2.2 Glioblastoma and primary cilia 

GBM is one of the most fast progressing cancers, which has a median patient survival 

of 13-16 months (63). Currently, treatment options for GBM are very limited, with the 

standard of care including aggressive surgical resection, radiation therapy, and 

chemotherapy (64). Unfortunately, due to its high invasiveness and fast tumor growth 

rate, the majority of GBM patients present signs of recurrent disease within 32-36 weeks 

(65). There is therefore a very critical need for the discovery of new targets and the design 

of new therapeutic approaches to treat GBM. 

Recently, GBM was reported to have a drastically decreased ciliation rate. Only about 

10% of GBM cells can assemble cilia. Moreover, electron microscopy analysis of GBM 

biopsies showed that the few cilia that they do form possess multiple structural 

abnormalities (66-68). Further inhibition of primary cilia assembly in patient-derived GBM 

primary cell culture through the introduction of a dominant-negative variant of KIF3A 

seems to have a minimal and non-coherent effect on both cell proliferation in vitro and 

tumor growth in a mouse intracranial model (69). On the other hand, even minimal 

restoration of primary cilia seems to have a tremendous effect on cell proliferation (27). 

This clearly suggests that loss of cilia in GBM is a non-random event and may be 

associated with the high proliferative capacity of tumor cells. Understanding the 

mechanisms of cilia loss in GBM and which pathways lead to increased proliferation upon 

loss of the cilia will allow to devise new strategies to battle GBM. 
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3. LPA signaling in mammalian cells 

3.1 LPA production and function 

LPA (lysophosphatidic acid) is a water-soluble lipid metabolite with a wide variety of 

cellular functions. LPA promotes proliferation in fibroblasts (70), astrocytes (71), and 

multiple other cell types (72-77).In addition to proliferation, LPA promotes cell migration 

(76, 77), platelet aggregation (78), smooth muscle contraction (79), and neurite retraction 

(80), making it a versatile signal molecule. LPA is present in large amounts in serum (81), 

saliva (82), brain (83), and tumor ascites (84).For a long time, the biosynthesis of LPA 

was a mystery, but it is now known that there are two main pathways to produce LPA: 1) 

autotaxin (ATX), a secreted lysophospholipase D enzyme, converts 

lysophosphatidylcholine (LPC) into LPA (85), and 2) phospholipase A can produce LPA 

from phosphatidic acid (86). During development, LPA signaling participates in wound 

healing (87), blood and lymphatic vessel formation (88), and brain development (89). 

3.2 LPA receptors: expression and function 

LPA signals through a family of GPCRs known as lysophosphatidic acid receptors 1-

6 (LPAR1-6) (Fig.2). LPARs have distinctive expression patterns and functions. LPAR1 

is expressed in the heart, brain, placenta, skeletal muscle, kidney, pancreas, spleen, 

prostate, testis, ovary, small intestine, and colon (90). LPAR1 can interact with the 

heterotrimeric G-protein family members Gαi/o, Gα12/13, and Gαq/11 (91), and promote cell 

proliferation, migration, survival, and cytoskeleton rearrangements. LPAR1 knockout in 

mice can cause a reduction in body weight, minor craniofacial deformities, and increased 

neonatal lethality due to decreased suckling behavior (92). LPAR2 is expressed in the 

embryonic brain, testis, leukocytes, prostate, spleen, thymus, and pancreas (93). 

Predicted interactors of LPAR2 include Gαi/o, Gα12/13, and Gαq/11 G-protein family 

members. Surprisingly, LPAR2 knockout in mice did not reveal any gross abnormalities 

(94). LPAR3 is broadly expressed, interacts with Gαi/o and Gαq/11 G-protein family 

members, and its knockout in mice does not cause any severe gross abnormalities, 

however, multiple reproductive defects were observed in LPAR3 -/- females (95). LPAR4 

is distinct from LPAR1-3, being structurally close to P2Y purinergic receptors, and 

interacts with all four major classes of Gα proteins (91). Knockout of LPAR4 in mice 
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produces embryonic lethality caused by impaired vascular development (88). LPAR5 is 

also structurally similar to P2Y receptors, and interacts with Gα12/13 and Gαq/11 G-proteins. 

LPAR5-knockout mice display decreased nociception and behavioral abnormalities such 

as decreased anxiety, motivational changes, and reduced social exploration (96). LPAR6 

is the most recently discovered R2Y type of LPA receptor, which interacts with Gα12/13 

(97). Knockout of LPAR6 does not seem to cause any alterations in mice behavior or 

development, however, it does completely abrogate liver regeneration (98). So far, 

nothing is known about the regulation or subcellular localization of LPARs. 

 

Figure 2. Schematic of LPAR signaling. 

3.3 LPA/LPAR signaling in cancer 

Recently, it became evident that LPA signaling is involved in cancer development and 

progression. ATX, the major enzyme involved in LPA production, is highly expressed in 

multiple cancer types including neuroblastoma, hepatocellular carcinoma, breast cancer, 

renal cancer, and GBM (99). LPA promotes migration in a variety of cancers including 

pancreatic (84), prostate (100), breast (101), and GBM (102), as well as promotes 

proliferation (75). Mechanistically, LPA can activate multiple pathways inducing 

proliferation, potentially in cell type specific manner. In head and neck squamous cell 

carcinoma, LPA stimulation causes transactivation of EGFR (74), while in colorectal 
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cancer LPA promotes β-catenin pathway activation (75). In ovarian cancer, LPAR1 

requires Gα12 to sustain LPA-driven proliferation (72), and Gαq is required for normal 

intestinal epithelium proliferation (103). Depletion of LPAR2 significantly decreases 

colitis-associated colon cancer development, while LPA promotes it (104). In addition, the 

level of LPA can be used as a prognostic marker in ovarian and gastric cancers (105, 

106). Surprisingly, inhibition of LPA signaling is still poorly investigated as a therapeutic 

strategy against cancer, however, several works indicate that inhibition of LPAR1 with 

Ki16425 is sufficient to abrogate metastasis formation in breast cancer (107, 108) and 

inhibition of ATX increases radiosensitivity in GBM (109). 

4. Kinesin-13 family motors and their role in cancer 

4.1 Kinesin motor superfamily in regulation of microtubule dynamics 

The kinesin superfamily is a superfamily of motor proteins capable of moving along 

microtubules. Most kinesins target to the growing “+” end of microtubules, but there are 

several exceptions. The primary role of kinesins is believed to be the transport of different 

cargoes within the cell. The kinesin superfamily includes 16 families of proteins: kinesin-

1-12 possess a conserved N-terminal motor domain and move towards the “+” end of the 

microtubules (110-112), kinesin-13 family members have a motor domain in the middle 

and tend to disassemble microtubule lattice (113), and kinesin-14 family members have 

a C-terminal motor domain and move toward the “-“ end of microtubules (114). The 

kinesin-1, 2, and 3 families are involved in the trafficking of membrane-bound vesicles 

and organelles, while the kinesin-4, 5, 6, and 14 families function during mitosis and 

participate in spindle microtubule organization and chromosome tethering (115). The 

kinesin-8 and 13 families regulate microtubule dynamics by either inhibiting microtubule 

elongation or initiating disassembly. Kinesin-8 family members have increased 

processivity, promoting accumulation of the motors at the “+” end of long microtubules 

(116). At the “+” end, kinesin-8 family members can prevent the addition of new tubulin 

dimers to the lattice or can directly remove tubulin from microtubules; however, reports 

on the ability of kinesin-8 to directly disassemble microtubules are controversial (117). 

Kinesin-13 family members are directly implicated in microtubule disassembly. Their 

motor domain localizes in the middle of the protein, and by itself can destabilize 
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microtubules (118, 119), but their disassembly rate is significantly enhanced by the 

addition of the neck region, which directly precedes the motor domain (120-122). 

Mechanistically, kinesin-13 family members disassemble microtubules by bending tubulin 

protofilaments at the end of microtubules, locking them in an unstable conformation, and 

thus, initiating microtubule catastrophe (123, 124). 

4.2 Cellular function of kinesin-13 family members 

Kinesin-13 family members include KIF2A, KIF2B, KIF2C and KIF24 proteins (117). 

KIF2A is involved in mitosis and is required for bipolar spindle formation (125). It is also 

well known to be involved in brain development through suppression of axon branching 

and to be required for axon pruning (126, 127). It seems to be involved in the regulation 

of cytoskeleton remodeling during cell movement through interaction with Arf GAP using 

GTP-binding protein-like, ankyrin repeats and PH Domains1 (AGAP1), but the 

implications of this are still vague (128). KIF2B is poorly studied, but it is known to have 

a distinct function during mitosis (125). KIF2C is well known for its mitotic functions (125), 

and was shown to interact with EB1 and EB3 and target growing microtubules, suggesting 

potential participation in rapid tubulin cytoskeleton rearrangements (129). KIF24 

participates in the remodeling of centriole microtubules (130) and suppresses cilium 

assembly during mitosis (131). KIF2A and KIF2C were recently shown to be able to 

induce cilia disassembly (23). Surprisingly, both studies involved KIF24 and KIF2A/C and 

did not distinguish between the effects of the kinesin-13 family members on pre-formed 

cilia versus de-novo ciliogenesis. 

4.3 Kinesin-13 family members in cancer 

Recently, the potential involvement of kinesin-13 family members in cancer was 

highlighted in multiple publications. For instance, all of the kinesin-13 family members are 

associated with progression and poor prognosis of hepatocellular carcinoma (132). High 

expression of KIF2A can predict poor prognosis for diffuse large B-cell lymphoma (133) 

and gastric cancer (134), and it is associated with high-grade glioma (135). KIF2C was 

found to have strong prognostic value in renal clear cell carcinoma (136) and glioma 

(137), and was recognized as a potential anti-cancer drug target (138). The reason for 

such a strong association with poor prognosis of kinesin-13 family motors, particularly 
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KIF2A and KIF2C, is still elusive. However, several lines of evidence indicate that KIF2A 

expression is required for maintaining a highly proliferative phenotype and supporting 

migration in cancer cells (135, 139). The same observations were made for KIF2C (140, 

141). Moreover, depletion of KIF2A or KIF2C is sufficient to induce apoptosis in cancer 

cells (142) or to promote senescence (143). Interestingly, both KIF2A and KIF2C induce 

primary cilia disassembly (23), and even partial restoration of the primary cilia drastically 

inhibits cancer cell proliferation (27, 53). Thus it is tempting to speculate that KIF2A and 

KIF2C drive the loss of primary cilia in cancer cells. 

5. Aurora kinase A: master regulator of cilium 

5.1 AURKA structure and function 

AURKA is a mitotic serine/threonine kinase. The Aurora family of proteins consists of 

three known members: AURKA, AURKB, and AURKC. The N-terminal domain (1-128aa) 

of AURKA targets it to the basal body/centrosomes and allows it to interact with 

microtubules during mitosis (144). The N-terminal domain also inhibits the catalytic 

activity of AURKA when it is not bound to activating proteins (145) such as NEDD9 and 

TPX2. Activation of AURKA results in autophosphorylation of threonine 288 (activational 

phosphorylation) (19, 146-148) and serine 51 (protecting from degradation) (149). 

Inactivation of AURKA is regulated by protein phosphatase type 2a (PP2a) (150). Active 

AURKA is targeted to the centrosome through microtubule binding where it can function 

as a mitotic kinase. During mitosis, AURKA regulates the formation of 

Cdk1/CyclinB1complex through phosphorylation and activation of cdc25b phosphatase, 

which removes inhibitory phosphorylation from Cdk1 (151).Accumulation of AURKA is 

required for centrosome maturation and segregation (152). After nuclear envelope 

breakdown, AURKA is targeted to the mitotic spindle in complex with the microtubule-

binding protein TPX2 (146). Depletion of AURKA in normal cells results in G2/M arrest or 

the formation of a monopolar spindle, causing an inability to separate DNA and 

subsequent cell death (153). 

5.2 Role of AURKA in regulation of the ciliary dynamics 

Most AURKA studies focus on its role in mitosis and G2/M AURKA activation. 

Recently, a non-mitotic role of AURKA as a master-regulator of cilia disassembly became 
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evident. Serum stimulation of G1/G0-synchronized cells yielded activation of AURKA that 

was spatially restricted to the centrioles, and also cilia disassembly. In these settings, 

disassembly of the cilia occurs in two waves: first, within 1-2 hours after serum stimulation, 

and second, after 18-24 hours. The latter represents G2/M transition, but the first wave 

occurs during G1. Inhibition or depletion of AURKA completely abrogates the disassembly 

of cilia, while injection of the cells with pre-activated AURKA induces rapid deciliation (19). 

The exact mechanism of AURKA activation during the initiation of cilium disassembly has 

yet to be elucidated. However, several proteins participating in this event have already 

been established. Loss of NEDD9, a phosphorylation-independent AURKA activator, 

severely blunted cilia disassembly in response to serum (19). Calmodulin was shown to 

directly activate AURKA in a Ca2+-dependent manner, and binding to calmodulin is a 

prerequisite for serum treatment-induced cilia disassembly (154). Pitchfork (Pifo) also 

interacts directly with AURKA and promotes AURKA activation during cilia disassembly 

(155). 

 

Figure 3. Schematic of regulation of human KIF2C through phosphorylation. 

5.3 AURKA and KIF2C interface in mitosis and cilia 

KIF2A and KIF2C, microtubule-destabilizing kinesins, are potential candidates for 

direct disassembly of the cilia (23). During mitosis, AURKA regulates spindle targeting of 

both KIF2A and KIF2C, and interestingly, AURKA phosphorylation of KIF2A suppresses 
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its microtubule depolymerizing activity and suppresses spindle microtubules binding (25). 

KIF2C phosphorylation of serine 192 by AURKA can also suppress its depolymerization 

activity, however, the main effect of AURKA seems to be due to the phosphorylation of 

serine 719 (xenopus)/ 715 (human), leading to the redistribution of KIF2C to bipolar 

spindle microtubules (26). Plk1, a direct target of AURKA, can also phosphorylate serine 

715 and enhance depolymerization activity of KIF2C (156). In non-mitotic ciliated cells, 

overexpression of KIF2A or KIF2C initiates disassembly of cilia, but KIF2A was more 

potent (23). The observations were made in a serum-free media synchronized cell 

population, where AURKA is mostly inactive. Taking previously discussed data into 

account, activation of AURKA may drastically change the picture, since it will tend to 

inhibit KIF2A and activate KIF2C (Fig.3). 
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Abstract 

The primary cilium is a ubiquitous organelle presented on most human cells. It is a 

crucial signaling hub for multiple pathways including growth factor and G-protein coupled 

receptors. Loss of primary cilia, observed in various cancers, has been shown to affect 

cell proliferation. Primary cilia formation is drastically decreased in glioblastoma (GBM), 

however, the role of cilia in normal astrocyte or glioblastoma proliferation has not been 

explored. Here we report that loss of primary cilia in human astrocytes stimulates growth 

rate in a lysophosphatidic acid (LPA)-dependent manner. We show that lysophosphatidic 

acid receptor 1 (LPAR1) is accumulated in primary cilia. LPAR1 signaling through 

Gα12/Gαq was previously reported to be responsible for cancer cell proliferation. We found 

that in ciliated cells, Gα12 and Gαq are excluded from the cilium, creating a barrier against 

unlimited proliferation, one of the hallmarks of cancer. Upon loss of primary cilia, LPAR1 

redistributes to the plasma membrane with a concomitant increase in LPAR1 association 

with Gα12 and Gαq. Inhibition of LPA signaling with the small molecule compound Ki16425 

in deciliated highly proliferative astrocytes or glioblastoma patient-derived 

cells/xenografts drastically suppresses their growth both in vitro and in vivo. Moreover, 

Ki16425 brain delivery via PEG-PLGA nanoparticles inhibited tumor progression in an 

intracranial glioblastoma PDX model. Overall, our findings establish a novel mechanism 

by which primary cilium restricts proliferation and indicate that loss of primary cilia is 

sufficient to increase mitogenic signaling, and is important for the maintenance of a highly 

proliferative phenotype. Clinical application of LPA inhibitors may prove beneficial to 

restrict glioblastoma growth and ensure local control of disease. 
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Introduction 

The primary cilium is a ubiquitous, microtubule-based organelle which is built on top 

of a membrane-anchored basal body. Primary cilium is an important negative regulator 

of proliferation and a key sensory organelle. It serves as a hub for multiple signaling 

cascades including receptor tyrosine kinase (1), Sonic hedgehog (Shh) (2), and G-protein 

coupled receptors (GPCRs) (3). Disassembly of primary cilium leads to release of the 

basal body, also called the mother centriole, which is required for mitotic spindle formation 

and mitosis. Multiple mitotic kinases initiate cilium disassembly including AURKA, Plk1, 

and Nek2 (4-6). Centrosome sequestration is considered one of the primary mechanisms 

of negative regulation of proliferation by primary cilium. Nevertheless, cilium shortening 

and disassembly is often observed immediately after growth factor stimulation in 

interphase (4). The role of this short-term disassembly in cell proliferation is currently 

unknown. Recent publications suggest that in different types of cancer including breast, 

prostate, renal, and glioblastoma (GBM), cilia tend to be lost (7-10). However, the 

importance of this event on tumor maintenance and progression or treatment is not well 

understood. 

Several studies report that loss of primary cilia in normal cells increases proliferation 

and supports attachment-independent growth (11, 12), which are common hallmarks of 

cancer. Attempts to restore primary cilia in cancer cells yield a significant inhibition on 

proliferation (12, 13). These observations suggest that cilia loss can promote/sustain a 

highly proliferative phenotype. However, in a subset of Sonic hedgehog (Shh)-dependent 

medulloblastomas, presence of cilium is mandatory (14) for cancer maintenance, 

therefore studies on specific cancer subtypes are warranted to establish cilia’s role in 

tumor biology and potential therapeutic applications. 

Astrocytoma is the most commonly diagnosed adult brain cancer (15), which often 

progresses to GBM. The majority of GBM patients succumb to the disease within 13-16 

months (15). GBM is a highly proliferative disease with limited treatment options (16). 

Lysophosphatidic acid (LPA) is an abundant mitogen in brain tissue (17). LPA acts 

through binding of heterotrimeric G-protein coupled receptors (LPAR1-6). It was 

previously reported that LPAR1 can signal through Gαi, Gα12, and Gαq family members 

(18, 19). LPA stimulates cell proliferation in astrocytes (20) and cancer cells (21). 
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Astrocytes are abundant glial cells and well known for their ability to proliferate, especially 

in the activated state (22), and were previously reported as the potential cells of origin for 

GBM (23). 

In our current work, we establish that loss of primary cilia promotes proliferation of 

primary non-transformed human astrocytes, providing permissive conditions for 

transformation in an LPA-dependent manner. GBM primary cells, with a decreased 

occurrence of primary cilia, were also sensitive to LPA and LPAR1/3 inhibition. 

Mechanistically, we found that LPA-LPAR1-driven mitogenic signaling was restricted in 

cells with primary cilium due to compartmentalization of LPAR1 and its downstream 

effectors, Gα12 and Gαq, in cilia and in cytoplasm, respectively. LPAR1 was redistributed 

to the plasma membrane upon loss of primary cilium, thus enabling its binding to Gα12 

and Gαq, and therefore suggesting that redistribution of LPAR1 is a key mechanism 

driving proliferation in a cilia-dependent manner. 

Inhibition of LPAR1/3 with the small molecule inhibitor Ki16425 significantly reduces 

cell growth rate only in deciliated astrocytes. Likewise, patient-derived GBM proliferation 

was stimulated by LPA and abrogated by Ki16425 in a dose-dependent manner. 

Importantly, the growth of GBM patient-derived xenografts in vivo was drastically 

decreased upon Ki16425 administration as a monotherapy without significant side effects. 

Taken together, our findings indicate that loss of primary cilia eliminates spatial 

barriers curbing proliferation, thus unlocking the potential for unlimited proliferation. LPA 

is one of the key mitogenic factors driving highly proliferative GBM with no or very low 

basal ciliation, therefore clinical interventions based on inhibiting LPA signaling may 

significantly improve GBM patient survival and local disease control. 
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Results 

Loss of primary cilium promotes proliferation of astrocytes. 

Human astrocytes (HA) can form primary cilia. Incubation in serum-free media (SFM) 

promotes ciliation resulting in nearly 80% of cells having cilia (Fig.1A-B). This ciliation rate 

is similar to that observed in vivo (24). To allow for long term experiments, the primary 

human astrocytes (HA) were immortalized using SV40 large T antigen (HA-LTA) (25). 

Immortalization by LTA did not affect ciliation, which was similar to the parental astrocytes 

(Fig.S1A). To test how loss of primary cilia affects proliferation of primary (HA) or 

immortalized (HA-LTA) astrocytes, we utilized shRNA-driven knockdown of IFT88 or 

KIF3B, which are well characterized components of cilium assembly machinery (26, 27). 

Two shRNAs were used to target IFT88 or KIF3B resulting in up to a 90% knockdown 

(Fig1.C). Depletion of either IFT88 or KIF3B was sufficient to decrease ciliation to 5-15% 

(Fig.1D-E). These ciliation rates are similar to tissue biopsies from GBM patients (28). 

The loss of primary cilia resulted in a significant increase in growth rate of both 

immortalized and primary astrocytes (Fig1.F-G). Interestingly, this difference in growth 

rate was observed between ciliated (shCon) and deciliated (shKIF3B or shIFT88) cells 

only upon addition of serum-supplemented media (SSM), but not in SFM. Addition of SSM 

caused resorption of primary cilia in control cells in a biphasic wave pattern (Fig.S1B), 

which has been described previously for other cell types (4). These findings indicate that 

loss of primary cilia by itself does not promote proliferation, but rather increases the 

response to some mitogenic stimuli present in serum. 

 

Loss of primary cilia changes spatio-temporal response to mitogen stimulation. 

To elucidate the potential mechanism underlying cilia-dependent changes in cell 

growth rate, a time course analysis of synchronized (SFM starved) astrocytes was 

performed. Phosphorylation of ERK1/2 (Thr202/Tyr204) and AKT (Ser473), common 

readouts for a variety of mitogen and pro-survival stimuli, was used to follow the serum-

induced response. In agreement with previous reports, addition of 10% serum triggers a 

rapid (5-60min) increase in ERK1/2 and AKT phosphorylation followed by a gradual 

decrease (60-240min) in phosphorylation in all cell lines independent of ciliation status 

(Fig.2, Fig.3). Interestingly, the amount of phosphorylated ERK1/2 was twofold higher in 
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deciliated cells (shKIF3B or shIFT88) than in control (shCon) based on 

immunofluorescent and western blot assays (Fig.2A-F). Contrary to ERK1/2, 

phosphorylation of AKT was twofold lower in deciliated cells than in control (Fig.3A-F), 

indicating that changes in the pattern and intensity of the signal initiation/propagation act 

in a cilia-dependent manner. 

 

Lysophosphatidic acid signaling is critical for increased proliferation in 

deciliated astrocytes. 

To define the mitogene/s potentially responsible for the hyperproliferative phenotype 

of deciliated astrocytes, charcoal-stripped serum was used. Charcoal stripping is an 

efficient way to deplete bioactive lipids, as well as hormones and some vitamins (29), but 

preserve protein-based growth factors. Surprisingly, charcoal-treatment of serum (cSSM) 

was sufficient to completely abrogate the increase in growth rate observed in deciliated 

astrocytes (Fig.4A). One of the most abundant lipid-based mitogens found in serum is 

lysophosphatidic acid (LPA), which binds to LPA receptors (LPARs) to elicit a response. 

To test if LPA is involved in deciliation-dependent stimulation of proliferation, a small 

molecule inhibitor of LPAR1-3, Ki16425 (30), was used. Similar to cSSM, addition of 

Ki16425 to SSM was sufficient to abrogate the deciliation-dependent increase in growth 

rates, without any effect on growth of ciliated astrocytes (SSM vs. SSM+Ki16425) 

(Fig.4B). Moreover, addition of LPA alone to the serum-free medium (SFM) was sufficient 

to stimulate proliferation of astrocytes, and partially recapitulate the difference observed 

between ciliated and deciliated cells in the presence of serum (Fig.4B). As expected, LPA 

addition resulted in a pattern of ERK1/2 and AKT phosphorylation similar to the one 

observed during serum stimulation (Fig.4C-E). Surprisingly, treatment with EGF, bFGF, 

PDGF-A/B, or HGF as single agents was neither sufficient to induce proliferation 

(Fig.S2A) nor able to recapitulate the difference in phosphorylation of both ERK1/2 and 

AKT (Fig.S2B-C, Fig.S3A-B) previously observed between ciliated and deciliated cells 

(Fig.2E, Fig.3E). Interestingly, addition of a cocktail of protein growth factors (GFs) 

including EGF, bFGF, and B27 supplement along with LPA was sufficient to fully 

recapitulate the phenotype observed with addition of serum (Fig.4F). These findings 

indicate that LPA signaling is responsible for the highly proliferative phenotype observed 
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in astrocytes with disrupted ciliogenesis, but it requires additional growth factors to amplify 

its effect. 

 

LPAR1 localizes to primary cilia. 

To understand the mechanisms underlying cilia-dependent action of LPA, the 

subcellular localization of LPARs and Gα subunits participating in downstream signal 

transduction pathways was analyzed. A panel of LPARs fused with 3xFLAG-tag was 

exogenously expressed in astrocytes followed by immunofluorescent analysis using anti-

FLAG antibodies. LPAR1 and LPAR3, but not LPAR6, were consistently localized in 

primary cilium (Fig.5A, S4A-B). Interestingly, in deciliated cells, both LPAR1 and LPAR3 

were targeted to the plasma membrane (Fig.S5A-B). To exclude the possibility of 

overexpression-driven cilium targeting of LPAR1, we validated several anti-LPAR1 

antibodies for immunofluorescent staining, using CRISPR-Cas9 driven LPAR1 depleted 

astrocytes as a control (Fig.S6). Utilizing validated antibodies we were able to confirm 

that endogenous LPAR1 localizes to primary cilium when it is present (Fig.S7). 

Analysis of the cellular localization of multiple Gα subunits shows that only Gαs 

consistently targeted to primary cilia, similar to previous reports (31). However, whether 

other Gα subunits enter primary cilia is currently unknown. We found that Gαi1, Gαq, and 

Gα12 did not display ciliary localization, but rather diffuse cytoplasmic and plasma 

membrane staining (Fig.5C). Such a pattern of compartmentalization suggests that 

LPARs may engage in interactions with different Gα subunits depending upon presence 

or absence of primary cilia. 

 

LPAR1 directly binds to Gα12 and Gαq subunits in deciliated cells. 

To test this hypothesis, immunoprecipitation analysis was performed in shCon, 

shIFT88, and shKIF3B astrocytes transiently overexpressing 3xFLAG-LPAR1. Based on 

sequence similarity, LPAR1 is predicted to interact with Gαi, Gαq, and Gα12 (19). No 

interaction was detected between LPAR1 and Gαs. The robust co-immunoprecipitation of 

Gα12 and Gαq with LPAR1 was noted, being 2-3 times higher in deciliated astrocytes 

(Fig.5D). Previously, LPAR1 was reported to promote cancer cell proliferation specifically 

through Gα12 (18). Gαq was also reported to transmit pro-proliferative signals in cancer 
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(32). We concluded that LPAR1 is sequestered in primary cilia, which prevents its 

interaction with cytoplasmic Gα12 and Gαq, restricting its proliferative signaling. Loss of 

cilia promotes LPAR1 interaction with Gα12 and Gαq, thus promoting the proliferative 

response to LPA (Fig.5D). 

 

LPA signaling drives GBM proliferation both in vitro and in vivo. 

To evaluate our findings in disease-relevant settings, previously characterized GBM 

patient-derived cells and xenografts (33, 34) of two molecular subtypes (classical-GBM6 

and mesenchymal-GBM12) were used. In agreement with previous reports (28), only 5-

10% of GBM cells in vivo (GBM xenografts in mice, Fig.S8A-B) or in vitro (primary cells 

short term cultures, Fig.S8C-D) possess primary cilia. LPAR1 staining in GBM6 and 12 

cells shows similar pattern to primary astrocytes (Fig.S8E). LPA was previously 

implicated in GBM progression and invasiveness (35), hence its effects on GBM cell 

proliferation was evaluated. Upon addition of LPA in serum-free GF-supplemented media, 

a significant increase of primary GBM cell growth rate in vitro was observed (Fig.S8F), 

while addition of the LPA inhibitor, Ki16425, to SSM decreases GBM cell growth rate in a 

dose-dependent manner (Fig.S8G). 

Similar to in vitro studies, daily intraperitoneal administration of 30mg/kg Ki16425 as 

a monotherapy over 4-5 weeks significantly decreased the growth of subcutaneously 

transplanted GBM xenografts in immunodeficient mice (Fig 6A-E). In agreement with in 

vitro PDX cell line proliferation data (Fig.S8G), the number of mitotic figures in Ki16425-

treated tumors (Fig 6D, E) was twofold lower. Overall, these findings indicate that LPA is 

an important mitogen in GBM and inhibition of LPA signaling is a viable option to improve 

anti-GBM therapy. 

 

PEG-PLGA Ki16425 loaded nanoparticles slow down GBM growth in brain. 

To assess the feasibility of targeting GBM with Ki16425 in patients, its effect on GBM 

growth was evaluated in an intracranial mouse model. Preliminary studies indicated that 

the regimen used for the subcutaneous GBM PDX experiment was not efficient in the 

intracranial model (Fig.S9A-B), suggesting that Ki16425 is not capable of crossing the 

blood brain barrier. To overcome this issue, we used a PEG-PLGA nanoparticle-based 
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delivery system (36) to allow for robust Ki16425 brain entry. Fluorescently labeled 

nanoparticles rapidly entered the brain upon IP injection and were gradually 

excreted/degraded over the next 12h period (Fig.S9C-D).To account for this decay, the 

regimen was modified to 30mg/kg Ki16425 loaded into nanoparticles and delivered every 

12h. Mice were intracranially injected with 5x105 GBM12 cells and tumor growth was 

monitored weekly via MRI. Upon tumors reaching 5mm3, mice were randomly assigned 

to Ki16425 or a vehicle loaded nanoparticles control group. Over 2 weeks of treatment, 

the Ki16425 nanoparticle-treated group showed a twofold decrease in tumor progression, 

compared to control (Fig.7A-B). In agreement with our previous experiments, the number 

of mitotic cells was decreased twofold (Fig.7C-D). These findings show that Ki16425 with 

a proper delivery method can significantly suppress GBM progression, and potentially, in 

combination with the current standard of care, improve local disease control and GBM 

patient survival. 
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Discussion 

Primary cilium is well known for its role in multiple signaling cascades (1, 2, 11). 

Primary cilia length and the number of cells with cilium is significantly reduced or lost in 

multiple cancer types including GBM (7-10). Moreover, several studies have noted an 

increase in cell proliferation upon loss of primary cilia (11, 12). The proposed mechanism 

of cilia-driven proliferation control involves the sequestration of basal body (mother 

centriole) and the inability to form the mitotic spindle (37). Previously, it was shown that 

primary cilium disassembly is biphasic: a first wave of fast, transient disassembly within 

1-2h after exposure to mitogenic stimuli (4), followed by a second wave of disassembly 

at 18-24h, which coincides with mitotic entry. The role of the first wave of cilium 

disassembly in mitogenic signaling is currently unknown, as is the mechanism/s 

underlying the increase in proliferation upon loss of primary cilia. 

Several pro-proliferative signaling cascades are reported to require primary cilium for 

proper signal transduction. For instance, PDGF-AA signaling through PDGFRαα is lost in 

deciliated fibroblasts, therefore stimulation with PDGF-AA does not cause ERK1/2 or AKT 

activation (38); however, the overall proliferation effect of cilia loss was not evaluated in 

this work. SHH signaling is well-studied in conjunction with primary cilium. Loss of cilia 

ablates SHH signaling and Shh-driven proliferation (39), and correspondingly, Shh-driven 

cancers have a tendency to maintain high ciliation rates (14, 40). On the other hand, 

ciliary localization of IGF1R (41) and Notch (11) signaling is needed for differentiation and 

restriction of cell proliferation. Importantly, cilium can selectively sequester signaling 

components like GPR88 (42) and LPAR1/3 (Fig.5, S4) from their interaction with cilia-

excluded co-factors, thus conferring selectivity on signal propagation/amplification 

through the lateral segregation of receptors. This strongly argues that the effect of primary 

cilia on proliferation is context-dependent, with pro-proliferative effects during 

development through Shh signaling and anti-proliferative effects in more differentiated 

cells. 

In GBM, the complete inhibition of ciliogenesis seems to have minimal and non-

coherent effects on overall proliferation and tumor progression (43). Nevertheless, 

ciliation compared to normal brain cells is drastically decreased (9), supporting an anti-

mitogenic function of primary cilium in GBM. Our current findings suggest that the 



35 
 

engineered loss of primary cilia in normal human astrocytes phenotypically closely mimics 

transient cilium disassembly (Fig.S1B), and also resembles cilia loss in GBM cells 

(Fig.S8B, D). The increase in growth rate observed in deciliated cells (Fig.1F, G) suggests 

that transient cilia disassembly may be a key event augmenting mitogenic signaling. 

Mechanistically, we found that loss of primary cilia in human non-transformed astrocytes 

results in the amplification of ERK1/2 phosphorylation and promotes proliferation in an 

LPA-dependent manner (Fig.2, Fig.4). Interestingly, phosphorylation of AKT in response 

to LPA or serum stimulation was decreased in deciliated astrocytes (Fig.3). This can be 

attributed to inactivation of PDGFRαα (38) and IGF1R (41) driven signaling, and adds to 

the understanding of increased stress sensitivity in deciliated astrocytes (44). These 

findings support the idea that loss of primary cilia changes the pattern of the cellular 

response to mitogen stimulation, resulting in higher, more sustainable ERK1/2 activation 

thus explaining the increase in proliferation, but revealing the potential vulnerability of 

deciliated cells to stress via a decrease in pro-survival signaling (pAKT). Since GBMs 

usually have high pAKT levels (45) and we did not observe the transformation of deciliated 

astrocytes, we conclude that additional hit/s such as those well-known for GBM including 

RTK amplification/PTEN inactivation/PI3K activation, are required for overcoming the 

decrease in AKT activation. 

Previously, LPA was implicated in the regulation of cell migration and proliferation (21, 

35), however, the role of primary cilia in these signaling pathways was not explored. The 

LPA receptors (LPAR1/3) are specifically localized to primary cilium, but the LPAR 

downstream effectors, Gα12 and Gαq, are excluded from it (Fig.5, S4). Both Gα12 and Gαq 

activation is known to be implicated in cancer cell proliferation and cancer progression 

(46, 47). For Gα12, activation through LPAR1 specifically was reported in ovarian cancer 

cells (18). Our findings support the notion that in the absence of primary cilia, LPAR1 

localizes to the plasma membrane and interacts with Gα12 and Gαq (Fig.5D, S5, S7). 

However, further research is required to pinpoint the intracellular compartment for Gα12 

and Gαq and endogenous LPAR1 interaction. Hence, loss of primary cilia could be 

responsible for increased proliferation in a subset of cancers, and thus cilia restoration or 

the manipulation of cilia-dependent signaling such as LPA could be used to develop new 

therapeutic approaches to fight cancer. 
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GBM cells seem to be highly dependent on LPA as a mitogen, since inhibition of LPA 

signaling with Ki16425 abrogates their growth in vitro, and in both subcutaneous and 

intracranial GBM models (Fig.S8, Fig.6, Fig.7). Interestingly, the magnitude of the 

Ki16425 effect was the same between two in vivo models (Fig.6, Fig.7), suggesting that 

LPA signaling is equally engaged in both of them. LPA is known to be highly abundant in 

brain (3.7-35 pmol/mg) and serum concentration of LPA was reported to be close to this 

range (4-15.5 µM) (17). In addition, GBMs were reported to increase LPA production by 

secreting autotaxin (48). However, further studies are required for comprising the LPA 

levels in GBM PDXs grown in subcutaneous versus brain settings. 

GBM6 and GBM12 used in the current study are of classical and mesenchymal 

molecular subtypes respectively, and are highly aggressive in mouse models (33, 34). 

Both of these subtypes are associated with rapid disease progression and poor 

prognosis. Our in vivo experiments clearly show that targeting LPA signaling yields a 

twofold reduction of tumor growth, specifically through a decrease in the proliferation rate 

of tumor cells (Fig.6, Fig.7). Moreover, utilizing a PEG-PLGA nanoparticles delivery 

system confirmed the effectiveness of targeting LPA signaling in intracranial settings. The 

median survival of GBM patients with the current standard of care including aggressive 

surgery, radiation, and chemotherapy (49) is about 12 months (15), with the majority of 

patients experiencing recurrence within 32-36 weeks (16). Targeting LPA signaling can 

prove to be highly beneficial in addition to standard care, since LPA is implicated in 

proliferation and migration/invasion (21, 35). Further studies are required, but based on 

our findings, we expect a substantial increase in recurrence-free survival upon inhibition 

of LPA signaling. 

Overall, our data supports the role of LPA signaling in cancer cell proliferation, and for 

the first time, highlights primary cilia as a switch for the interpretation of LPA as a mitogen. 

  



37 
 

Materials and Methods 

Cell lines and reagents 

Human astrocytes isolated from human cortex (1800) were obtained from ScienCell 

Research Labs and maintained in DMEM/F12, supplemented with 10% heat-inactivated 

FBS, Antibiotic-Antimycotic (ThermoFisher) and 10 μg/ml of gentamycin (MP 

Biomedicals). Cells were propagated and cryopreserved at passage 2, for all studies cells 

were not passaged more than 10 times or 8 weeks, no authentication or mycoplasma 

testing were performed. For immortalization, primary astrocytes at passage 5 or 6 were 

cultured until 50–75% confluency and transfected with SV40 large T-antigen construct 

(25), followed by selection with 500μg/ml G418 (Sigma) until resistant colonies were 

formed. GBM6 and 12 PDXs (33) were kindly provided by Dr. Jann Sarkaria (Mayo Clinic, 

Rochester, MN) through a shared MTA agreement, no authentication or mycoplasma 

testing were performed. PDXs were maintained and used for intracranial injections or 

primary cell culture isolation as previously described (34). A list of antibodies and their 

used applications is outlined in Table S1. shRNA constructs were obtained from 

Dharmacon and are outlined in Table S2. All primers were purchased from IDT 

Technologies or Invitrogen, the sequences of which are reported in Table S3. The 

following reagents were used: Lysophosphatidic acid (LPA, Cayman Chemical), EGF and 

PDGF-AB (Sigma), HGF (R&D Technologies), bFGF (Peprotech), B27 supplement 

(ThermoFisher), Ki16425 (ApexBio). For lysophosphatidic acid stimulation experiments, 

bovine serum albumin (BSA; BP1600, Fisher Scientific) was used as a carrier and was 

added to all cells to a final concentration of 0.1%. 

 

Western blotting 

Western blotting was performed using standard procedures (50). Primary antibodies 

used are outlined in Table S1. Secondary anti-mouse and anti-rabbit HRP-conjugated 

antibodies (Jackson ImmunoResearch Labs) were diluted 1:10,000 followed by 

chemiluminescence-based detection with HyGLO™ (Denville Scientific). Bands were 

quantified using the digital electrophoresis documentation and image analysis software 

GeneTools (Syngene Corp.), with signal intensity normalized to either α-tubulin or 

GAPDH. 
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Immunofluorescent cell analysis  

Cells were processed as previously described (4). Primary antibodies used are 

outlined in Table S1. Secondary antibodies included AlexaFluor 488, 555, and 647 

(ThermoFisher). Images were captured using a standard setting by an LSM510 confocal 

microscope (Zeiss) (50). All images represent whole-cell 3D reconstructed projections 

with 0.4μm steps. All quantifications were done using ImageJ (NIH). 

 

Cell growth/proliferation analysis 

Cell growth rate was determined using semi-automated cell counting in ImageJ (NIH). 

Cells were plated at 1x104 cells per well and grown in the specified conditions for five 

days, fixed with methanol, and stained with Hoechst33342. Four random 10x fields per 

well were analyzed with at least three replicates per independent experiment; each graph 

represents at least three independent experiments. 

 

Fluorescent immunohistochemistry (F-IHC) 

Deparaffinization and rehydration of 4-5µm thin sections was performed as following: 

1) three times for 3 min in xylene, 2) three times for 2 min in 100% ethanol, 3) 2 min in 

95% ethanol, 4) 2 min in 80% ethanol, 5) 2 min in 70% ethanol, and 6) 5 min in 1XTBS. 

Antigen retrieval was done using 98°C citrate buffer, pH 6.0 for 20 minutes. Sections were 

blocked for 60 min with 5% BSA, 1XTBS solution and stained with the indicated primary 

antibodies. Secondary antibodies included AlexaFluor-488, 555, and 647 (ThermoFisher) 

and sections were mounted with ProLong Gold DAPI-containing media (ThermoFisher). 

Images were captured using LSM510 confocal microscope as previously described (50) 

(Zeiss). All images represent whole-cell 3D reconstructed projections with 0.4µm steps. 

All quantifications were done using ImageJ (NIH). 

 

LPAR cloning 

For robust expression and detection of LPARs, pcDNA3.1 vector was modified as 

previously described (51). Briefly, the insert containing the cleavable ER-targeting 

sequence followed by a 3xFLAG-tag and multiple cloning site (Table S3) was synthesized 
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through String™ service (ThermoFisher) and cloned into pcDNA3.1 between HindIII and 

SalI restriction sites. LPAR1, 3, 6 cDNA was amplified from a Human Mammary Epithelial 

Cells (HMECs) cDNA library kindly provided by Dr. Alexey Ivanov (West Virginia 

University, Morgantown, WV); primers are shown in Table S3. The generated inserts were 

cloned into pcDNA3.1 ER-3xFLAG between BamHI and XhoI restriction sites. All 

constructs were validated by sequencing. 

 

Immunoprecipitation 

For LPAR1 immunoprecipitation, 3xFLAG-LPAR1 was transiently overexpressed in 

cells pre-incubated for 24h in serum-free media. Cells were lysed as previously described 

(52). 3xFLAG-LPAR1 was precipitated with anti-FLAG M2 affinity gel (Sigma) and used 

for subsequent Western blot analysis. 

 

Animal experiments 

NOD.Cg-Prkdcscid Il2rgtm1Wjl/SzJ (NSG) immunodeficient male mice (The Jackson 

Laboratory) were housed in the West Virginia University Animal Facility under pathogen-

free conditions with an approved Institutional Animal Care and Use Committee protocol. 

For subcutaneous injections, 100µl of GBM6 or GBM12 tumor mash mixed 1:1 with 

Matrigel (Corning) was injected into the mice flanks. For intracranial injections, transient 

primary cell cultures were established as previously described (34), and 5x105 cells in 5µl 

of Ca/Mg-free Dulbecco modified Phosphate Buffer Saline (DPBS) were administrated 

into the mouse cortex via stereotactic device-guided injection (34). Subcutaneous tumor 

growth was assessed weekly via caliper measurements; treatment was initiated upon 

tumor volume reaching 100mm3. Intracranial tumor volume was assessed weekly via 

contrast enhanced MRI (53) or twice a week via bioluminescence imaging (54); treatment 

was initiated upon tumor volume exceeding 5mm3. Animals were randomly assigned to 

the treatment group by simple randomization, investigator was single blinded during 

group allocation. Mice bearing subcutaneous tumors were intraperitoneally injected with 

30mg/kg Ki16425 in 95% corn oil/5% DMSO or vehicle alone daily. For the intracranial 

model, mice were administered 30mg/kg Ki16425 loaded into PEG-PLGA nano-particles 

in PBS or given nano-particles alone twice daily. All animals were euthanized upon 
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reaching a moribund condition, according to the WVU IACUC Tumor Development and 

Tumor Scoring in Rodents policy. 

 

Contrast enhanced Magnetic Resonance Imaging (MRI) 

To visualize the intracranial tumors, mice were intraperitoneally injected with 

gadolinium-DTPA (contrast reagent, BioPAL) to a final concentration of 2mmol/kg (55), 

and imaged with a compact MRI system (ICON, Bruker). Images were taken with T1 

weighted RARE sequence (echo time: 26.23ms; repetition time 1984.158ms; averages: 

8; rare factor: 6). Overall time of scan was 25min and final resolution was 0.125mm for 

all axes. Stack images were reconstructed and analyzed using ImageJ (NIH). 

 

Animal bioluminescence imaging 

Mice were imaged twice a week for quantitative evaluation of tumor growth as 

previously described (56). Images were obtained using the IVIS Lumina-II Imaging 

System and Living Image-4.0 software (PerkinElmer). 

 

PEG-PLGA nano-particles 

Nano-particles were prepared as previously described (36). Briefly, PEG-PLGA and 

Ki16425 were dissolved in acetone and added dropwise into water. The nano-particles 

were stirred for 2 h at 40°C before being collected by centrifugation (4000g for 90 min). 

After discarding the supernatant, the nanoparticles were resuspended in Phosphate-

Buffered Saline (PBS). 

 

Statistical analysis 

Statistical comparisons were made using two-tailed Student’s t-test. When more than 

two groups were analyzed, one-way or two-way analysis of variance (ANOVA) was used. 

P<0.05 was considered to be significant (*) as indicated in figure legends. All treatment 

groups were compared to vehicle/control unless mentioned otherwise. Experimental 

values were reported as the means with +/-S.E.M (standard error of mean). All 

calculations of statistical significance were made using GraphPad software. Sampe sizes 
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and statistical analysis chosen were based on our previous experience and 

recommendations of biostatistician (4, 50, 56).  
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Figure Legends 

Fig. 1. Loss of primary cilia promotes astrocyte proliferation in a growth factor-

dependent manner. 

(A) Representative image of the cilium formed by primary human astrocyte (HA), 

stained for acetylated α-tubulin (AcTub, cilium marker) and γ-tubulin (γTub, basal body 

marker); scale bar – 10μm. (B) Quantification of primary astrocytes forming cilium, as in 

(A), in regular serum-supplemented media (SSM) or upon 48h of serum starvation (SFM); 

300 cells, 100 cells in each of 3 independent experiments; Student’s t-test, p<0.05. (C) 

Western blot of IFT88 and KIF3B in primary and immortalized astrocytes (HA-LTA) stably 

expressing non-targeting shRNA (Con) or shRNA against IFT88 or KIF3B. (D, E) 

Quantification of primary astrocytes (D) and immortalized astrocytes (E) forming primary 

cilium, as in (B) upon depletion of IFT88 or KIF3B, as in (C); 300 cells, 100 cells in each 

of 3 independent experiments; one-way ANOVA with Dunnett’s post hoc test, p<0.05. (F, 

G) Growth rates of primary astrocytes (F) and immortalized astrocytes (G) upon depletion 

of IFT88 or KIF3B in full media or in serum-free conditions (SFM); 3 independent 

experiments; one-way ANOVA with Dunnett’s post hoc test, p<0.05. 

 

Fig. 2. Loss of cilium promotes increased ERK1/2 phosphorylation in response 

to serum stimulation. 

(A) Experiment schematics (top) and representative images of cells stably expressing 

non-targeting shRNA (Con) or shRNA against IFT88 or KIF3B, stained for acetylated α-

tubulin (AcTub, cilium marker), γ-tubulin (γTub, basal body marker), and ERK1/2 

phosphor-T202/Y204 (pERK1/2) ; scale bar – 10μm. (B, C, D) Quantifications of ERK1/2 

phosphor-T202/Y204 intensities in whole cells (B), nuclei (C) and cytoplasm (D) as in (A); 

100 cells in 3 independent experiments; two-way ANOVA with Dunnett’s post hoc test, 

p<0.05. (E) Representative western blot analysis of cells as in (A), stained for ERK1/2 

phosphor-T202/Y204, total ERK1/2, and GAPDH. (F) Quantifications of ERK1/2 

phosphor-T202/Y204 bands intensities, as in (E). 

 

Fig. 3. Loss of cilium promotes decreased AKT phosphorylation in response to 

serum stimulation. 



48 
 

(A) Experiment schematics (top) and representative images of cells stably expressing 

non-targeting shRNA (Con) or shRNA against IFT88 or KIF3B, stained for acetylated α-

tubulin (AcTub), γ-tubulin (γTub), and AKT phosphor-S473 (pAKT) ; scale bar – 10μm. 

(B, C, D) Quantifications of AKT phosphor-S473 intensities in whole cells (B), nuclei (C) 

and cytoplasm (D) as in (A); 100 cells in 3 independent experiments; two-way ANOVA 

with Dunnett’s post hoc test, p<0.05. (E) Representative western blot analysis of cells as 

in (A), stained for AKT phosphor-S473, total AKT, and GAPDH. (F) Quantifications of AKT 

phosphor-S473 bands intensities, as in (E). 

 

Fig. 4. Lysophosphatidic acid promotes proliferation in deciliated astrocytes. 

(A) Growth rates of immortalized astrocytes stably expressing non-targeting shRNA 

(Con) or shRNA against IFT88 or KIF3B in serum-supplemented media (SSM), media 

supplemented with charcoal-stripped serum (cSSM), or in serum-free conditions (SFM); 

3 independent experiments; one-way ANOVA with Dunnett’s post hoc test, p<0.05. (B) 

Growth rates of cells as in (A) in serum-supplemented media (SSM), serum-

supplemented media supplemented with 10μmol/L Ki16425, serum-free media 

supplemented with 1μmol/L LPA (SFM LPA), or in serum-free conditions (SFM); 3 

independent experiments; one-way ANOVA with Dunnett’s post hoc test, p<0.05. (C) 

Experiment schematics (top) and representative western blot analysis of cells as in (A) 

stained for ERK1/2 phosphor-T202/Y204, total ERK1/2, AKT phosphor-S473, total AKT, 

and α-tubulin. (D) Quantifications of ERK1/2 phosphor-T202/Y204 bands intensities, as 

in (C). (E) Quantifications of AKT phosphor-S473 bands intensities, as in (C). (F) Growth 

rates of cells as in (A) SSM, SFM supplemented with 20ng/ml EGF, 20ng/ml bFGF, and 

B27 supplement (SFM-GF), SFM supplemented with 20ng/ml EGF, 20ng/ml bFGF, B27 

supplement and 1μmol/L LPA (SFM-GF LPA), or in serum-free conditions (SFM); 3 

independent experiments; one-way ANOVA with Dunnett’s post hoc test, p<0.05. 

 

Fig. 5. Intracellular localization of LPA signaling cascade components. 

(A) Representative images of immortalized astrocytes expressing exogenous 

3xFLAG-LPAR1/LPAR3/LPAR6, stained for acetylated α-tubulin (AcTub, cilium marker), 

γ-tubulin (γTub, basal body marker) and FLAG-tag, arrowheads indicate primary cilium; 
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scale bar – 10μm (B) Representative images of immortalized astrocytes stained for 

acetylated α-tubulin (AcTub), γ-tubulin (γTub), Gαs, Gαq, Gα12 and Gαi1, arrowheads 

indicate primary cilium; scale bar – 10μm. (C) Immunoprecipitation of 3xFLAG tagged 

LPAR1 expressed in immortalized astrocytes stably expressing non-targeting shRNA 

(Con) or shRNA against IFT88 or KIF3B in serum-free conditions. (D) Schematic of 

potential mechanism of primary cilium restrictive action on the proliferative component of 

LPA signaling. 

 

Fig. 6. Inhibition of LPA signaling suppresses proliferation of GBM PDXs in vivo. 

(A) Representative images of mice subcutaneously injected with GBM6 (left panel) 

and GBM12 (right panel) and administered with vehicle or 30mg/kg/day Ki16425. (B, C) 

Analysis of tumor growth as in (A) for GBM6 (B) and GBM12 (C); 5 mice per group; two-

way ANOVA with Sidak’s post hoc test, p<0.05. (D, E) Analysis of GBM6 (D) and GBM12 

(E) terminal tumor weight; 5 tumors per group; Student’s t-test, p<0.05. (F, G) 

Representative images of GBM6 (F) and GBM12 (G), stained with DAPI; arrowheads 

indicate mitotic cells; scale bar – 20μm. (H, I) Quantification of mitotic figures as in (F, G) 

for GBM6 (H) and GBM12 (I); at least 1000 cells within 10 random fields per group; 

Student’s t-test, p<0.05. 

 

Fig. 7. Targeted brain delivery of Ki16425 suppresses GBM PDX growth in an 

intracranial model. 

(A) Representative MRI images of mice bearing intracranially grafted GBM12 

throughout the treatment with PEG-PLGA nanoparticles loaded with Ki16425 (30mg/kg 

twice a day); scale bar – 5mm. (B) Analysis of tumor growth as in (A); 5 mice per group; 

two-way ANOVA with Sidak’s post hoc test, p<0.05. (C) Quantification of mitotic figures 

as in (D); at least 1000 cells within 10 random fields per group; Student’s t-test, p<0.05. 

(D) Representative images of tumors from (A), stained with DAPI; arrowheads indicate 

mitotic cells; scale bar – 20μm. 
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Supplementary Materials and Methods. 

Generation of CRISPR-Cas9 driven LPAR1 knock out in astrocytes. 

sgRNA targeting LPAR1 were designed using Broad institute web tool: 

https://portals.broadinstitute.org/gpp/public/analysis-tools/sgrna-design; synthesized as 

separate oligo nucleotides and cloned into pLentiCRISPR v2 (1) (a gift from Feng Zhang 

(Addgene plasmid # 52961)). Lentiviral particles were produced as previously described 

(2). Immortalized astrocytes were infected and selected on 1 µg/ml of puromycin until 

stable clones were formed. Individual cloned were established and tested for LPAR1 

expression. 

 

1. Sanjana NE, Shalem O, Zhang F. Improved vectors and genome-wide libraries for 

CRISPR screening. Nature methods. 2014;11(8):783-4. 

2. Pugacheva EN, Jablonski SA, Hartman TR, Henske EP, Golemis EA. HEF1-

dependent Aurora A activation induces disassembly of the primary cilium. Cell. 

2007;129(7):1351-63. 
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target cat.# 
host 

species 
company application dilution 

acetyated 

alpha tubulin 
T6793 mouse Sigma IF, F-IHC 1:1000 

acetyated 

alpha tubulin 
5335S rabbit Cell Signaling IF 1:500 

gamma tubulin sc-7396 goat Santa Cruz IF, F-IHC 1:500 

IFT88 60227-1-Ig mouse Proteintech WB 1:1000 

Kif3B sc-50456 rabbit Santa Cruz WB 1:500 

alpha tubulin 16199 mouse Sigma WB 1:40000 

pERK1/2 

T202/204 
9101 rabbit Cell Signaling IF, WB 1:200, 1:1000 

ERK1/2 4695 rabbit Cell Signaling WB 1:1000 

GAPDH MAB374 mouse Millipore WB 1:80000 

pAKT S473 AF887 rabbit R&D Systems IF, WB 1:100, 1:500 

AKT 2920 mouse Cell Signaling WB 1:1000 

FLAG F1804 mouse Sigma IF, WB 1:500, 1:1000 

FLAG PA1-984B rabbit 
Thermo Fisher 

Scientific 
IF, WB 1:500, 1:1000 

G alpha s sc-135914 mouse Santa Cruz IF, WB 1:100, 1:500 

G alpha q sc-393 rabbit Santa Cruz IF, WB 1:200, 1:1000 

G alpha 12 sc-409 rabbit Santa Cruz IF, WB 1:100, 1:200 

G alpha i1 sc-391 rabbit Santa Cruz IF, WB 1:100, 1:500 

Arl13b 17711-1-AP rabbit Proteintech IF, F-IHC 1:400, 1:200 

LPAR1 20442-1-AP rabbit Proteintech IF 1:100 

LPAR1 10005280 rabbit Cyman chemicals WB 1:250 

LPAR1 sc-515665 mouse Santa Cruz IF 1:100 
      
   Supplementary table 1 
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name clone ID targeting sequence vector company 

shIFT88#1 V3LHS_338157 GGAATAACACTGACCACCT pGIPZ Dharmacon 

shIFT88#2 V3LHS_338155 AGCATCTGAATACTGACCA pGIPZ Dharmacon 

shKif3B#1 V3LHS_644788 TTGCTAGTCTCTTCTCTCA pGIPZ Dharmacon 

shKif3B#2 V3LHS_635533 ATCTCATCTTCATCCTGCA pGIPZ Dharmacon 

     

  Supplementary table 2 
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name sequence company 

BamHI-

LPAR1 
ATTGGATCCATGGCTGCCATCTCTACTTCC IDT Technologies 

LPAR1-

TGA-XhoI 
ATTCTCGAGTCAAACCACAGAGTGGTCATTGC Invitrogen 

BamHI-

LPAR3 
ATTGGATCCATGAATGAGTGTCACTATGACAAGC IDT Technologies 

LPAR3-

TGA-XhoI 
ATTCTCGAGTCAGGAAGTGCTTTTATTGCAGACTG Invitrogen 

BamHI-

LPAR6 
ATTGGATCCATGGTAAGCGTTAACAGCTCC IDT Technologies 

LPAR6-

TGA-XhoI 
ATTCTCGAGTCAGGCAGCAGATTCATTGTCAAATATC Invitrogen 

ER-3xFlag-

MCS 

(forward 

strand) 

GATCCTAAGCTTACCGGTATGAAGACGATCATCGCCCTGAGCT

ACATCTTCTGCCTGGTATTCGCCATGGACTACAAAGACCATGA

CGGTGATTATAAAGATCATGACATCGATTACAAGGATGACGAT

GACAAGGGAGGTGGAGGCGGTGGAGGATCCTGTACAGCTAG

CGAATTCTGCAGATATCGGCGCGCCGTTTAAACACGCGTCTC

GAGTGATTAATTAAGGTCGACGATCCT 

Invitrogen 

sgLPAR1_F caccgTCTTTGGCTATGTTCGCCAG Invitrogen 

sgLPAR1_

R 
aaacCTGGCGAACATAGCCAAAGAc Invitrogen 

   

Supplementary table 3 
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Abstract 

The primary cilium is a ubiquitous organelle presented on most human cells. It serves 

as a crucial signaling hub for multiple pathways including growth factor and G-protein 

coupled receptors. Loss of primary cilia was observed in various cancers, however, the 

implications of this event are unclear. Our long-term goal is to delineate the molecular 

mechanism of primary cilia disassembly under normal and pathological conditions and 

determine if the loss of the cilium is required for cancer progression. Aurora kinase A, a 

common proto-oncogene often overexpressed in GBM, initiates rapid cilia disassembly, 

but the downstream effectors of this pathway still have not been found. One of the 

potential AURKA effectors is the motor protein KIF2C, known to directly destabilize 

microtubules. AURKA can phosphorylate KIF2C on multiple sites during mitosis, 

however, nothing is known about AURKA and KIF2C interaction in non-mitotic cells. We 

found that KIF2C overexpression is triggering cilia disassembly in AURKA dependent 

manner, and are focusing on elucidating the molecular mechanism of the KIF2C driven 

cilia disassembly. Phosphorylation of KIF2C on S715 by AURKA was reported to 

enchance spindle pole microtubule targeting. Both spindle pole and axonemal 

microtubules are highly post-translationally modified, thus our central hypothesisis that 

AURKA-dependent phosphorylation of KIF2C on S715 leads to increased affinity towards 

post-translationally modified microtubules (acetylated and/or detyrosinated), and cilia 

disassembly, resulting in increase in cell proliferation and tumor progression. 

  



72 
 

Introduction 

Glioblastoma multiforme (GBM) is one of the most deadly cancers for which no 

effective treatment strategy currently exists. The primary cilium is a ubiquitous 

microtubule-based organelle that protrudes from the apical surface of most human cells 

serving as a cellular antenna for signal transduction and is an important regulator of 

mitosis. Cilia are lost in many types of cancer including GBM (1-6). The importance of 

cilia loss for cancer progression is largely unknown, although several attempts to rescue 

ciliation in cancer cells reveal the therapeutic benefit behind primary cilia restoration (7, 

8). The long-term goal of this study is to delineate the molecular mechanism of primary 

cilia disassembly under normal and pathological conditions and determine if the loss of 

cilium is required for cancer progression. This knowledge is critical for the development 

of new therapeutic strategies to prevent and eradicate tumor growth. Aurora kinase A 

(AURKA or AurA), a common proto-oncogene that is often overexpressed in GBM (9-12), 

initiates rapid cilia disassembly (7, 13), but the downstream effectors of this pathway have 

still not been found. One potential AURKA effector is the motor protein KIF2C, known to 

directly destabilize microtubules. KIF2C and its family member KIF2A were shown to 

promote cilium disassembly upon overexpression (14). KIF2C is phosphorylated by 

AURKA, which promotes its localization to highly post-translationally-modified spindle 

pole microtubules (15). Axonemal microtubules bear similar post-translational 

modifications as spindle pole microtubules and are usually detyrosinated (16). 

Interestingly, KIF2C has decreased activity towards detyrosinated microtubules (17), 

thus, the central hypothesis of this study is that AURKA-dependent phosphorylation of 

KIF2C leads to a change in substrate preference and cilia disassembly, resulting in an 

increase in cell proliferation and tumor progression. Rescue of ciliation will inhibit 

proliferation, disease progression, and also potentially, recurrence. This hypothesis was 

tested through the execution of the following aims: 

Aim #1: Determine the mechanism/s of KIF2C-driven deciliation. The working 

hypothesis is that AURKA phosphorylation promotes KIF2C translocation from the 

cytoplasm to the primary cilium, where it orchestrates the disassembly of axonemal 

microtubules. 
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Aim #2: Determine the therapeutic benefits of combination therapy of KIF2C depletion 

and AURKA inhibition in the treatment of glioblastoma in patient-derived xenograft (PDX) 

models. The hypothesis is that the combination of KIF2C depletion and inhibition of 

AURKA will synergistically increase the incidence of primary cilia in cancer cells, as well 

as decrease tumor growth and potentially, recurrence. The rationale for the proposed 

work is that it will elucidate new mechanisms driving cilia disassembly, provide insight 

into the critical role of the primary cilia in cancer progression, and reveal new strategies 

for a targeted treatment of cancer.  
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Materials and methods 

Cell lines and reagents 

Human astrocytes isolated from human cortex (1800) were obtained from ScienCell 

Research Labs and maintained in DMEM/F12 supplemented with 10% heat-inactivated 

FBS, Antibiotic-Antimycotic (ThermoFisher), and 10 μg/ml of gentamycin (MP 

Biomedicals). Cells were propagated and cryopreserved at passage 2; for all studies, 

cells were not passaged more than 10 times or 8 weeks, and no authentication or 

mycoplasma testing were performed. For immortalization, primary astrocytes at passage 

5 or 6 were cultured until 50–75% confluency and transfected with SV40 large T-antigen 

construct (18) followed by selection with 500μg/ml G418 (Sigma) until resistant colonies 

were formed. RPE1 hTert cells were obtained from ATCC and cultured according to 

ATCC recommendations. U87MG and U373MG were a kind gift from Dr. Daniel C. Flynn 

and were also maintained according to ATCC recommendations. GBM6 and 12 PDXs 

(19) were kindly provided by Dr. Jann Sarkaria (Mayo Clinic, Rochester, MN) through a 

shared MTA agreement, and no authentication or mycoplasma testing were performed. 

PDXs were used for cell culture isolation as previously described (20). A list of antibodies 

and their used applications is outlined in Table 1. shRNA constructs were obtained from 

Dharmacon and are outlined in Table 2. All primers were purchased from IDT 

Technologies, the sequences of which are reported in Table 3. MLN8237 (Selleckchem) 

and Tubastatin A (Selleckchem) were also used. 

 

Western blotting 

Western blotting was performed using standard procedures (21). Primary antibodies 

that were used are outlined in Table 1. Secondary anti-mouse and anti-rabbit HRP-

conjugated antibodies (Jackson ImmunoResearch Labs) were diluted 1:10,000 followed 

by chemiluminescence-based detection with HyGLO™ (Denville Scientific). Bands were 

quantified using the digital electrophoresis documentation and image analysis software 

GeneTools (Syngene Corp.) with signal intensity normalized to α-tubulin. 

 

Immunofluorescent cell analysis 
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Cells were processed as previously described (13). Primary antibodies that were used 

are outlined in Table 1. Secondary antibodies included AlexaFluor 488, 555, and 647 

(ThermoFisher). Images were captured using a standard setting by an LSM510 confocal 

microscope (Zeiss) (21). All images represent whole-cell 3D reconstructed projections 

with 0.4μm steps. All quantifications were done using ImageJ (NIH). 

KIF2C cloning and cell lines generation 

KIF2C cDNA was purchased from PlasmID, PCR-amplified, and cloned into pEGFP 

(Clontech) vector between EcoRI and XhoI restriction sites. For inducible expression, 

EGFP-KIF2C fusion cDNA was cloned into pLUTZ lentivirus vector between AgeI and 

XhoI restriction sites (22). All constructs were validated by sequencing. 

Lentiviral particles were produced as previously described (13). Cells were infected 

and selected with correspondent antibiotics until stable clones were formed. 

 

Cell growth/proliferation analysis 

Cell growth rate was determined using semi-automated cell counting in ImageJ (NIH). 

Cells were plated at 1x104 cells per well and grown in the specified conditions for five 

days, fixed with methanol, and stained with Hoechst33342. Four random 10x fields per 

well were analyzed with at least three replicates per independent experiment; each graph 

represents at least three independent experiments. 
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Results 

KIF2C overexpression drives cilia disassembly in an AURKA-dependent 

manner. 

To test whether overexpression of KIF2C can cause loss of primary cilium, we 

generated RPE1-hTert and human immortalized astrocytes with inducible overexpression 

of GFP-tagged KIF2C. In both cell lines, overnight induction of KIF2C expression under 

ciliated, serum pre-starved conditions resulted in robust disassembly of primary cilia 

(Fig.1A, B). To test if cilium disassembly was KIF2C dose-dependent, time course 

experiments with limited KIF2C induction times were performed. The time course 

experiment revealed robust KIF2C dose-dependent disassembly of primary cilia (Fig.1C-

D). 

To test if AURKA plays a role in KIF2C-driven cilia disassembly, a small molecule 

inhibitor highly specific for AURKA called MLN8237 was used. Inhibition of AURKA and 

simultaneous induction of KIF2C significantly attenuated KIF2C-driven cilia disassembly 

(Fig.1E), suggesting that AURKA activity is required. Interestingly, KIF2C was noted to 

be present inside the primary cilium in several cells, and its presence was associated with 

decreased acetylated tubulin staining in the same area (Fig.1F). These data argue that 

KIF2C enters primary cilium prior to disassembling it. 

 

Ciliated cells are likely to be more a differentiated cell population within GBM. 

GBM tumor cells have decreased ciliation, but nevertheless up to 10% of GBM tumor 

cells possess primary cilia in vivo (23). This was confirmed for two PDX-derived GBM 

primary cell lines GBM6 and GBM12 (Study 1); these cell lines represent classical and 

mesenchymal subtypes of GBM, respectively, and were chosen due to their high 

expression of AURKA and KIF2C and the worst prognosis. To test if the ciliated population 

of GBM cells had any associated phenotype, Sox2 and CD44 expression was analyzed. 

Sox2 is enriched in self-renewing neural progenitor cells (24), and its loss in GBM tumor-

initiating cells causes abrogation of proliferation and tumorigenicity (25). CD44 is highly 

enriched in neural stem cells (26).The ciliated population of both GBM6 and 12 had only 

about 5% CD44-positive and 60% Sox2-positive cells, versus 40% and 80% in non-
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ciliated cells, respectively (Fig.2A-C), suggesting that this population is more 

differentiated and less proliferative. 

 

Depletion of KIF2C or inhibition of AURKA inhibit GBM cell proliferation and 

restore ciliation. 

To test if KIF2C has any effect on the proliferation of GBM cells, we generated U87MG 

cells with stable shRNA-driven depletion of KIF2C (Fig.3A). All cell sublines had at least 

an 80% depletion of KIF2C, and proliferated significantly slower compared to the control 

cell line (Fig.3B).Since AURKA activity is required for KIF2C-driven cilia disassembly, it 

was tested whether the inhibition of AURKA can restore ciliation. Inhibition of AURKA for 

24h with 50nM of MLN8237 was sufficient to cause a twofold increase in the ciliation of 

U87MG cells (Fig.3C) and also inhibit proliferation (Fig.3D). In PDX-derived GBM primary 

cells, incubation with MLN8237 for 24h was sufficient to increase ciliation of GBM6 cells 

up to 60%, as compared to 10-20% in the DMSO control group (Fig.3E). Interestingly, 

there were no changes in the total number of mitotic figures, however, half of the mitotic 

figures in MLN8237-treated cells represented characteristic abnormalities such as 

monopolar spindles (Fig.3F-G). 
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Future directions 

Validation of GFP-KIF2C data with untagged KIF2C. 

Data obtained from this study indicates that overexpression of GFP-KIF2C is sufficient 

to induce cilia disassembly (Fig.2), however, the level of overexpressed protein is much 

higher than the endogenous KIF2C level (Fig.2C). This can be explained by decreased 

depolymerization activity of EGFP-KIF2C (27) or the potential suppression of EGFP-

KIF2C cilia entry due to size exclusion (28). To address this issue, KIF2C cDNA was 

cloned into pLUTZ vector between EcoRI and XhoI restriction sites, allowing for the 

inducible expression of KIF2C without a tag. Utilization of this construct will allow the 

confirmation of previously obtained results, and clarify if KIF2C triggers cilia disassembly 

in a more physiological range. It is expected that lower levels of KIF2C trigger cilia 

disassembly, as well as more abundant KIF2C entry into the cilium. 

 

Evaluating the effects of S715 phosphorylation on KIF2C activity in vivo. 

To test whether phosphorylation status of KIF2C at the S715 site has an effect on cilia 

disassembly, we generated a series of KIF2C mutants: KIF2C-S715A (phosphor-dead), 

KIF2C-S715E (phosphor-mimicking) and KIF2C-KVD (microtubule disassembly-impaired 

(29)) in pLUTZ vector (Fig.4A). Utilization of these constructs will allow for evaluation if 

S715 phosphorylation effects the ability of KIF2C to disassemble primary cilia. It is 

expected that KIF2C-S715E will be more effective in cilium disassembly than KIF2C-wt, 

while KIF2C-S715A will be less effective in cilium disassembly than KIF2C-wt. KIF2C-

KVD will be utilized as negative control, since its overexpression is not expected to 

produce any effect on primary cilia. In addition, since KIF2C-KVD is supposed to be 

targeted to the cilium as well as KIF2C-wt, it is expected to see accumulation of KIF2C-

KVD at the tip/along the primary cilium upon overexpression. 

 

Evaluating the effects of S715 phosphorylation on KIF2C depolymerization 

activity in vitro. 

To test whether the phosphorylation status of KIF2C at the S715 site has an effect on 

in vitro microtubule depolymerization activity, cDNA for KIF2C wt, KIF2C S715A, S715E 

and KVD) was cloned in pcDNA3.1 6His-Flag vector (Fig.4B). This system allows to 
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express KIF2C and the mutants in HEK293T cells (Fig.4C). Future plans call for purifying 

the indicated proteins and using them for in vitro microtubule depolymerization assays 

(30). It is not expected to see any difference in depolymerization activity between KIF2C-

wt, KIF2C-S715A, and KIF2C-S715E, since tubulin available on the market consists of a 

mixture of tyrosinated and detyrosinated isoforms. To evaluate the substrate preference 

of KIF2C and its mutants, tyrosinated and detyrosinated tubulin dimers will be purified 

using previously described methodology (31). In experiments with tyrosinated tubulin, it 

is expected to see strong disassembly with KIF2C-wt, KIF2C-S715A, and KIF2C-S715E, 

while detyrosinated tubulin is predicted to be more resistant to KIF2C-wt and KIF2C-

S715A (17), but more sensitive to KIF2C-S715E (15). 

 

Evaluating the effects of KIF2C and AURKA depletion on the ciliation status of 

GBM PDXs in vivo and in vitro. 

To test whether depletion of KIF2C can restore ciliation in GBM PDXs, previously 

validated shRNA against KIF2C (Fig.3) will be subclonedfrom pGIPZ vectors into pTRIPZ 

vectors according to the manufacturer protocol to allow for inducible KIF2C depletion. 

Inducible shRNA against KIF2C will be introduced in GBM6 and GBM12 primary cultures 

and selected with puromycin. Selected cells will be injected into NSG mice for PDX 

amplification as described previously (20). Amplified PDXs will be validated for KIF2C 

depletion and used for in vivo and in vitro assessment of ciliation and proliferation. It is 

expected that primary cilia in GBM PDXs will be restored and severely suppress 

proliferation both in vitro and in vivo. Since the study data indicates that KIF2C-driven cilia 

disassembly is AURKA dependent (Fig.1E), inhibition of AURKA in conjunction with 

KIF2C depletion will be tested for their combined ability to restore ciliation and inhibit 

cancer cell proliferation. It is expected that better primary cilia restoration will occur with 

combination of AURKA inhibition and KIF2C depletion than with KIF2C depletion alone, 

since AURKA activation can initiate HDAC6-dependent cilia disassembly (13). 

 

Development of small molecule inhibitor for KIF2C. 

To develop an anti-KIF2C specific inhibitor, virtual screen of compounds was 

performed utilizing the publicly available crystal structure of the KIF2C motor domain 
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(https://www.ncbi.nlm.nih.gov/Structure/pdb/2HEH). The 11 compounds (Table 4) with 

the highest fitting scores from this screen will be utilized in in vitro microtubule 

depolymerization assays. The compounds with the best ability to inhibit KIF2C-driven 

depolymerization will be tested further for their ability to inhibit KIF2C-driven cilia 

disassembly in cells, along with their effect on cell viability. Compounds showing the best 

results in these assays will be tested in their ability to restore primary cilium and suppress 

proliferation of PDX GBMs in vitro and in vivo.  
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Discussion 

Loss of the primary cilium seems to have a significant role in maintaining a highly 

proliferative phenotype in cancer (7, 8). At the same time, inhibition of primary cilia 

formation does not play a significant role in GBM tumor cell proliferation both in vitro and 

in vivo (27), and moreover, these findings argue that these cells are more differentiated 

(Fig.2). Targeting cancer cells in order to restore primary cilia is therefore expected to 

dampen proliferation and force re-differentiation of the cancer cells. Currently, the exact 

machinery participating in the disassembly of primary cilia has remained unknown, but 

this study establishes that KIF2C can enter primary cilium and promote disassembly in 

an AURKA-dependent manner. Targeting of either KIF2C or AURKA significantly affects 

proliferation of cancer cells. Elucidation of AURKA and KIF2C interactions that help 

promote primary cilia disassembly will allow for the development of new targeted 

therapies by preventing cilia loss of cancer cells. 
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Fig. 1. KIF2C overexpression drives cilia disassembly in an AURKA-dependent 

manner. 

(A) Representative image of RPE1-hTert cells with (left-bottom corner) and without 

overexpression of GFP-KIF2C, stained for acetylated α-tubulin (AcTub, cilium marker) 

and KIF2C; scale bar – 10μm. Arrow indicates primary cilium. (B) Quantification of cilium 

in cells with (Dox+) without (Dox-) induction of EGFP-KIF2C expression as in (A) upon 

24h of serum starvation; 300 cells total, 100 cells in each of 3 independent experiments; 

Student’s t-test, p<0.05. (C) Western blot of KIF2C in RPE1-hTert cells after 24h of serum 

starvation and induction of EGFP-KIF2C expression for the indicated number of hours. 

(D) Quantification of cells forming primary cilium upon induction of GFP-KIF2C expression 
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for the indicated number of hours as in (C); 300 cells total, 100 cells in each of 3 

independent experiments; one-way ANOVA with Dunnett’s post hoc test, p<0.05. (E) 

Quantification of cells forming primary cilium as in (B) upon induction of GFP-KIF2C 

expression for 16h in the presence or absence of 50nM MLN8237; 300 cells total, 100 

cells in each of 3 independent experiments; one-way ANOVA with Dunnett’s post hoc 

test, p<0.05. (F) Representative image of the primary cilium in human astrocytes after 

48h of serum starvation, followed by 8h induction of GFP-KIF2C expression, stained for 

acetylated α-tubulin (AcTub, cilium marker) and KIF2C; scale bar – 10μm. Arrow indicates 

KIF2C accumulation in primary cilium. 
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Fig. 2. Stem-cell/differentiation marker status of ciliated cells is different from 

cells without primary cilia. 

(A) Representative image of GBM6 and GBM12 cells with and without primary cilia 

stained for acetylated α-tubulin (AcTub, cilium marker), γ-tubulin (γTub, basal body 

marker), and CD44 (neural stem-cell marker); scale bar – 10μm. (B) Quantification of 

CD44+ cells as in (A); 200 cells total, 100 cells in each of 2 independent experiments; 

Student’s t-test, p<0.05. (C) Quantification of Sox2+ cells; 200 cells total, 100 cells in each 

of 2 independent experiments; Student’s t-test, p<0.05. 
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Fig. 3. Effects of KIF2C depletion and inhibition of AURKA on GBM cell 

proliferation and ciliation. 

(A) Western blot of KIF2C in U87MG cells stably-expressing shRNA against KIF2C. 

(B) Growth curve of U87MG cells as in (A); slopes of the fitted lines significantly different 

in F-test, * p<0.05 (C) Quantification of cilium in U87MG cells treated with 50nM MLN8237 

or 15μM Tubastatin A; 500 cells total, 250 cells in each of 2 independent experiments; 

one-way ANOVA with Dunnett’s post hoc test, p<0.05. (D) Growth curve of U87MG cells 

as in (C); slopes of the fitted lines significantly different in F-test, * p<0.05. (E) 
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Quantification of GBM6 cells forming primary cilium in the presence of 50nM MLN8237; 

300 cells total, 100 cells in each of 3 independent experiments; Student’s t-test, p<0.05. 

(F) Representative image of the mitotic figures in GBM6 cells as in (E). Top image depicts 

normal mitotic figure, and bottom image depicts abnormal, monopolar mitotic figure; 

stained for acetylated α-tubulin (AcTub, cilium marker) and DAPI; scale bar – 10μm. (G) 

Quantification of mitotic figures as in (E and F); 200 cells total, 100 cells in each of 2 

independent experiments. 
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Fig. 4. KIF2C cloning and protein production. 

(A) Map of pLUTZ KIF2C construct.(B) Map of pcDNA3.1 6xHis-Flag KIF2C construct. 
(C) Western blot of 6xHis-Flag-KIF2C expressed in HEK293T cells. Cells were lysed in 
phosphate-buffered saline with 15mM imidazole. 
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Table 1. 

target cat.# 
host 

species 
company application dilution 

acetyated 

alpha 

tubulin 

T6793 mouse Sigma IF 1:1000 

gamma 

tubulin 
sc-7396 goat Santa Cruz IF 1:500 

alpha 

tubulin 
16199 mouse Sigma WB 1:40000 

CD44 sc-9960 mouse Santa Cruz IF 1:400 

Sox2 3579S rabbit 

Cell 

Signaling 

Technology 

IF 1:400 

KIF2C sc-81305 mouse Santa Cruz IF, WB 
1:200, 

1:1000 

 

 

Table 2. 

name clone ID targeting sequence vector company 

shKIF2C#1 V3LHS_357508   AAACTACTGTCATACTCCT pGIPZ Dharmacon 

shKIF2C#2 V3LHS_357509 TGGAGTTGACGGATCTCCG pGIPZ Dharmacon 

shKIF2C#3 V2LHS_78032 TTATTTGCAGTCGTCACTG pGIPZ Dharmacon 

 

 

Table 3. 

name sequence company 

EcoRI-Kif2C ATTGAATTCATGGCCATGGACTCG IDT Technologies 

Kif2C-XhoI ATTCTCGAGTCGTCACTGGGGC IDT Technologies 
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Table 4. 

compound ID compound name company 

7693705 
2-{2-[(5-hydroxy-6-methyl-1,2,4-triazin-3-
yl)thio]ethyl}-1H-isoindole-1,3(2H)-dione 

ChemBridge 

7657128 
4-(3-{[4-(2-hydroxyethyl)-1-piperazinyl]sulfonyl}-
4-methylphenyl)-2-methyl-1(2H)-phthalazinone 

ChemBridge 

11300854 
6-({4-[(4-butyl-1H-1,2,3-triazol-1-

yl)methyl]piperidin-1-yl}carbonyl)-1H-indole 
ChemBridge 

63713617 
N-(2,1,3-benzothiadiazol-5-ylmethyl)-N-methyl-

1H-pyrazole-3-carboxamide 
ChemBridge 

73545990 
3-{2-[4-(2-fluorobenzyl)piperidin-1-yl]-2-

oxoethyl}dihydropyrimidine-2,4(1H,3H)-dione 
ChemBridge 

61771203 
3-(2-fluorophenyl)-N-(imidazo[1,2-a]pyrimidin-2-

ylmethyl)-1H-pyrazole-5-carboxamide 
ChemBridge 

97609998 
2-amino-4-[5-(1H-pyrazol-3-yl)-2-thienyl]-6-(1H-

pyrrol-3-yl)nicotinonitrile 
ChemBridge 

82375256 
N-[2-(5-amino-1,3,4-thiadiazol-2-yl)ethyl]-5-(2-
fluorophenyl)pyrazolo[1,5-a]pyrimidin-7-amine 

ChemBridge 

80994660 
5-[(2-dibenzo[b,d]furan-4-yl-1H-imidazol-1-
yl)methyl]-1,2,4-oxadiazole-3-carboxamide 

ChemBridge 

22763338 
4-(2,6-dimethyl-3-pyridinyl)-N-methyl-N-{[3-(3-

pyridinyl)-5-isoxazolyl]methyl}-2-pyrimidinamine 
ChemBridge 

81086871 (1-methyl-1H-imidazol-2-yl){3-[6-(1H-pyrazol-1-
yl)pyrimidin-4-yl]phenyl}methanone 

ChemBridge 
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General Discussion 

The primary cilium is a crucial organelle for the transduction of multiple signaling 

cascades (1-3). Loss of primary cilia is associated with an increase in cell proliferation in 

some cell types (3, 4), while suppressing cell proliferation in others (5, 6). In the majority 

of cancer types, including GBM, the length and number of primary cilia are significantly 

reduced or lost (7-10). Overall, the studies documented in this dissertation present 

multiple novel insights into the role of the primary cilium in the regulation of normal and 

cancer cell proliferation and in the mechanisms of cilia disassembly. In Study 1, it was 

demonstrated that the loss of primary cilia promotes proliferation of human astrocytes in 

a growth factor-dependent manner. For the first time, it was demonstrated that spatio-

temporal characteristics of the cellular response to growth factors are drastically altered 

upon the loss of primary cilia. Previously, PDGF-AA signaling through PDGFRαα was 

reported to be lost in deciliated fibroblasts (11), and IGF1R signaling was significantly 

reduced (12), thus an increase in proliferation upon the loss of primary cilia is a somewhat 

unexpected phenomenon. Other RTKs such as EGFR, FGFR, and Tie1/2 were noticed 

to localize to primary cilia (13-17), but the significance of this is unknown. In addition, 

different GPCRs can accumulate in the primary cilium (18, 19) along with their 

downstream signaling components (20, 21). Therefore, loss of cilia can interfere with 

multiple signaling cascades of various modalities, and systematic studies of signaling 

alterations are very scarce. In Study 1, LPA was established to be the main non-peptide 

growth factor responsible for the increased proliferation of astrocytes with disrupted 

ciliogenesis. For the first time, scrutinous analysis of the hyperproliferative phenotype in 

cells with an engineered loss of cilia was able to establish the underlining mechanism for 

increased proliferation. It was found that LPA-LPAR1 signaling is regulated by primary 

cilia. Loss of primary cilia promotes redistribution of LPAR1, which is normally localized 

to the cilium, and streamlines signaling through Gα12/Gαq, thus increasing proliferation. 

Gα12 and Gαq activation were previously reported to be implicated in cancer cell 

proliferation and cancer progression (22, 23). Furthermore, the LPAR1-Gα12 module 

specifically was reported to drive ovarian cancer cell proliferation (24). These findings 

suggest that primary cilia restricts LPA-LPAR1-driven Gα12/Gαq activation. Loss of cilia in 

GBM cells highjacks LPA signaling to maintain a highly proliferative phenotype, rendering 
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them sensitive to inhibition of LPAR1. Utilization of a nanoparticle-based delivery of 

Ki16425, a small molecule inhibitor of LPAR1-3, as a monotherapy significantly 

decreased GBM growth in vivo. These results clearly indicate that inhibition of LPA 

signaling is a viable therapeutic option for GBM control in addition to standard care, 

especially in light of the implication of LPA in proliferation and migration/invasion (25, 26). 

Currently, the standard of care for GBM patients includes surgical resection of the tumor 

and a combination of radiation and chemotherapy (27). Unfortunately, the majority of 

patients experience recurrence of the disease within several months (28). Novel 

approaches in immunotherapy of GBM seem to be promising, but sustained responses 

are still rare (29). In part, this may be due to the prolonged lag period between the initiation 

of therapy and the tumor response (30), thus utilization of a tumor growth suppression 

agent in combination with an immunotherapeutic approach could be beneficial. Further 

studies are required to establish the possibility of combining LPAR inhibitors with 

conventional or immuno-based therapies. However, two LPAR inhibitors were recently 

used for clinical trials. BMS-986020, an LPAR1 inhibitor, is in Phase 2 clinical trials for 

idiopathic pulmonary fibrosis (NCT01766817); and SAR100842, an LPAR1 and 3 

inhibitor, is in Phase 2 clinical trials for systemic sclerosis (NCT01651143). If the results 

of the current study can be replicated utilizing these compounds, GBM patient survival 

could be significantly improved, and disease control would become much easier. Based 

on Study 1’s findings, it would be expected to see a substantial increase in recurrence-

free survival upon inhibition of LPA signaling in addition to the current standard of care. 

Since loss of primary cilia alters a great number of signaling pathways, restoration of 

primary cilia in cancer cells could potentially restore proper signaling and induce re-

differentiation. So far, several attempts were made to restore cilia in cancer cells, and 

results have been very promising (4, 31). However, since the mechanisms of cilia 

disassembly are still not fully understood, it is difficult to pursue. Thus, it is crucial to 

delineate the pathways involved in cilium loss. Study 2 focused on the role of KIF2C in 

the disassembly of cilia. It was found that KIF2C can enter and disassemble primary cilia 

in an AURKA-dependent manner. The differentiation/stem marker status of ciliated GBM 

cells was evaluated, which confirmed that the cilium is likely to promote re-differentiation 

along with halting proliferation. Finally, it was established that targeting of KIF2C and 
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AURKA drastically decreases proliferation of GBM cells, and moreover, AURKA inhibition 

can robustly restore primary cilia in these cells. AURKA is well known as a master 

regulator of cilia disassembly (32), as well as being an important mitotic regulator (33). 

Inhibition of AURKA, therefore, can suppress tumor growth in two ways: first, through 

direct inhibition of mitosis, and second, through restoration of the primary cilia. KIF2C is 

also involved in progression through mitosis, however depletion of KIF2C in non-

transformed cells tends to generate a much milder phenotype than in cancer cells (34), 

indicating that KIF2C inhibition can potentially yield very little side effects. Further studies 

are required to elucidate the exact mechanism of AURKA–KIF2C cooperation in driving 

cilia disassembly. Unveiling the mechanisms of cilia disassembly in cancer cells will allow 

for the development of novel approaches for anti-cancer therapy. Restoration of primary 

cilia in cancer cells is expected to suppress proliferation and initiate re-differentiation, thus 

allowing for robust and prolonged disease control. 
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