

Southwestern Oklahoma State University **SWOSU Digital Commons**

Student Research

Business & Computer Science

11-21-2019

Robot Simulation Analysis

Jacob Miller Southwestern Oklahoma State University, millerjl2@student.swosu.edu

Jeremy Evert Southwestern Oklahoma State University, jeremy.evert@swosu.edu

Follow this and additional works at: https://dc.swosu.edu/cpgs_edsbt_bcs_student

Part of the Artificial Intelligence and Robotics Commons, and the Robotics Commons

Recommended Citation

Miller, Jacob and Evert, Jeremy, "Robot Simulation Analysis" (2019). Student Research. 22. https://dc.swosu.edu/cpgs_edsbt_bcs_student/22

This Poster is brought to you for free and open access by the Business & Computer Science at SWOSU Digital Commons. It has been accepted for inclusion in Student Research by an authorized administrator of SWOSU Digital Commons. An ADA compliant document is available upon request. For more information, please contact phillip.fitzsimmons@swosu.edu.

Robot Simulation Analysis

Southwestern Oklahoma State University

Jacob Miller | Dr. Jeremy Evert | Department of Computer Science and Engineering Technology

Definitions

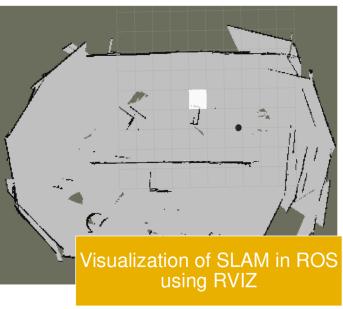
- ROS Robot Operating System.
 An open source suite of programs designed to be implemented in various robot platforms
- SLAM Simultaneous
 Localization and Mapping. The
 estimation of an unknown map
 and an agent's location inside it
- Turtlebot Entry level robotics platform, utilizing open source software

Turtlebot Example

Objectives

- Simulate virtual robot for test and analysis
- Analyze SLAM solutions using ROS
- Assemble a functional Turtlebot
- Emphasize projects related to current research trajectories for NASA, and general robotics applications

Project Future


- Use already completed work to create a functional, physical robot
- Utilize Researchers previous experience in image segmentation to accomplish:
- Have robot SLAM autonomously
- Analyze and compare SLAM approaches
- Have robot seek out a particular object in volume

Methods

- Created robot simulation: Gazebo
- Implemented SLAM
- Capable of autonomous navigation and simple objectives

Visualization

References

Quigley, M., Conley, K., Gerkey, B., Faust, J., Foote, T., Leibs, J., ... & Ng, A. Y. (2009, May). ROS: an open-source Robot Operating System. In *ICRA workshop on open source software* (Vol. 3, No. 3.2, p. 5).

Durrant-Whyte, H., & Bailey, T. (2006). Simultaneous localization and mapping: part I. *IEEE robotics & automation magazine*, *13*(2), 99-110.

ROS Documentation. (n.d.). Retrieved from ROS Wiki: wiki.ros.org