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Abstract: 

The study proposes the utility of time series methodology in the study of processes in 

educational psychology. Conjointly, the study applies time series in the study of 

cognitive achievement. Thirteen students from seventh to ninth grades performed an 

inductive reasoning test. The performance was measured in 20 different occasions and 

the observations were aggregated to generate a times series of 260 observations (20 

different occasions by each individual multiplied by 13 participants). Result shows that 

a seasonal ARIMA (0,0,1) (1,1,1) adequately fits the data through a model comparative 

approach. Concluding, despites the complexity, ARIMA methodology is capable to 

investigate process, reducing the object of the study without lost its fundamental 

properties and dynamical aspects. 
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1. Introduction 

 

Understand the dynamic of processes is a valuable task in many fields, i.e. educational 

psychology (van Geert & Steenbeek, 2005a; van Geert & Fischer, 2009). However, the 

study of process tends to be very complex, demanding elegant strategies (Gomes, 

Ferreira & Golino, 2014; Gomes & Golino, 2015; Gomes, Araujo, Nascimento & 

Jelihovisch, 2018). One of those is time series quantitative methodology, that possesses a 

broad body of statistical techniques that can diminish the complexity of the object 

studied without losing the fundamental properties of the dynamic of processes (Van 

Geert & Steenbeek, 2008). As declared: “The American Psychological Association’s (APA’s) 

Division 12 Task Force on Promotion and Dissemination of Psychological Procedures has 

explicitly recognized time-series designs as important methodological approaches that can fairly 

test treatment efficacy and/or effective psychological practice.” (Borckardt et al., 2008, p. 77). 
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 Times series also can be helpful to model a test structure behind a dynamical 

process. Otherwise, a structure yielded by a study in a unique time might not be the 

best model throughout the entirely developmental process. Then, time series might be 

applied to access a structure in small samples or even in a unique participant, if the 

constructs were measured repeatedly.  

 Time series approach basically involves quantitative techniques that deal with 

data in a timepoint which correlated with the previous timepoints data. In other words, 

a datum in some occasion depends basically of the previous datum in time. This time 

dependence is named as autocorrelation. According to Van Geert and Steenbeek 

(2005b), this kind of dependency is the fundamental characteristic of any processual 

aspect, and time series, as other statistical tools, incorporates this postulate, which can 

be represented by the equation 1: 𝑦𝑡 = 𝑓(𝑦𝑡 −1). 

 The value of 𝑦𝑡 on a specific moment of time (t+1) is a function of its value on the 

previous moment (t). What equation 1 argues mathematically is that the state of any 

object studied is caused by the previous state of that object. Equation 1 contains the 

fundamental idea that it is possible to reduce the scope of an object without losing its 

processual characteristics (Van Geert & Steenbeek, 2005b). Time series methodology can 

do it because the time series axiom of temporal dependence is congruent with equation 

1. In other words, the previous observations directly influence or cause the next 

observations. Despite the relevance of dependency in studies about process, traditional 

statistics approaches do not deal with this condition. An assumption of traditional 

statistics is the independence of the error in the data. The large majority of studies about 

the predictors of cognitive achievement apply those statistics, i. e intelligence (Gomes & 

Borges, 2007; Gomes & Borges, 2008; Gomes & Borges, 2009a, 2009b, 2009c; Gomes, 

2010a, 2010b; Gomes, 2011b; Gomes, 2012; Gomes & Golino, 2012b; Golino & Gomes, 

2012; Golino & Gomes, 2014; Muniz, Pasian, & Gomes, 2016), metacognition (Gomes, 

Golino & Menezes, 2014; Gomes & Golino, 2014; Pires & Gomes, 2017; Pires & Gomes, 

2018), students' learning approaches (Gomes, 2010b; Gomes, 2011a; Gomes, Golino, 

Pinheiro, Miranda, & Soares, 2011; Gomes & Golino, 2012a; Gomes, 2013). By contrast, 

time series methodology is a class of techniques that considers and estimates the error 

dependency. Because of that, time series methodology brings new possibilities, but 

demands a considerable number of observations to estimate the parameters accurately, 

around 50 or more occasions of measurement (Glass, Willson & Gottman, 1975). 

 Velicer and Fava (2003) published an important paper that describes examples of 

time series in psychological research. Despite time series being more developed in areas 

such as engineering and economics, the creation of a class of models known as 

Autoregressive Integrated Moving Average (ARIMA) has aggregated the time series 

quantitative methodology to social sciences.  

 Because of the dependency, ARIMA time series estimates an autocorrelation 

matrix, which is the correlation between data in a moment of time and data about the 

same variable in previous moments of time (Coghlan, 2011). The autocorrelation matrix 

is accounted in terms of lags. In order to explain more concretely the autocorrelation 

and its relationship with lags, Table 1 shows a representation of how the data is 
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organized to calculate lagged autocorrelation. Supposing that a person performed a IQ 

test 100 times, Table 1 shows the score of that person in the first 5 occasions. In the first 

time, the score was 100 points. The second score was 102 points, and so forth. To 

calculate the lagged one autocorrelation the data is organized in two columns. The left 

column, labeled IQ in Table 1, contains the data in the usual sequence in time. The right 

column, labeled IQ-1 in Table 1, contains the data corresponding to one moment before 

the usual sequence in time. So, the first score (100 points) in column IQ does not have 

any value to be matched with the column IQ-1. The second score (102 points) in column 

IQ is matched in column IQ-1 with the previous value (100 points) of column IQ. 

Therefore, in practical terms, lag one means the value that comes before the current 

value. Continuing, the third value in IQ column (103 points) is matched in IQ-1 column 

with the second value from the IQ column. That procedure goes way down to the last 

value of the IQ column is matched. The data arrangement of the lag two autocorrelation 

follows the same logic of the lag one autocorrelation. However, the data that will be 

matched with the usual sequence corresponds to two values before it. As can be 

observed in Table 1, considering the two columns: IQ and IQ-2: the first two values in 

the IQ column are not matched with any values in the column IQ-2. The third value 

(103 points) in the IQ column is matched with the first value from the IQ column. The 

first value (100 points) is two lags before the third value (103 points). The fourth value 

(105 points) in the IQ column is matched to IQ-2 column with the second value in IQ 

column (102 points), and so on.  

 
Table 1: Representation of the data organization to calculate lagged auto-correlation 

Time IQ IQ -1 IQ-2 IQ-3 … 

 100 --- --- --- … 

2 102 100 --- --- … 

3 103 102 100 --- … 

4 105 103 102 100 … 

5 105 105 103 102 … 

… … … … … … 

 

The ARIMA approach is a time series model. It is composed by the autoregressive 

component (AR or p), the integrated component (I or d), and the moving averages (MA 

or q). ARIMA integrates the simple AR and MA time series models. These models, as 

well as the integrated ARIMA, can be useful to identify a pattern of trend or 

seasonality, or both, behind a series of data. The trend indicates the growth follows a 

pattern throughout the series (for instance, a linear increase, or a quadratic decrease). 

The seasonality assumes the series shows variations into specifics intervals (for 

instance, years, or cycles of difficulties in a cognitive test). AR and MA try to capture 

the autocorrelations through the autoregressed lags (like the equation 1) and the errors 

of the lags  𝑦𝑡 = 𝑓((ℰ𝑡) + (ℰ𝑡 −1)) 

 The autoregressive and the moving average components assume the series is 

stationary, which means the autocorrelations are the same for the entirely series and the 

data does not show trend or seasonality. If the time series is non-stationary, which is the 

http://oapub.org/edu/index.php/ejes
http://oapub.org/edu/index.php/ejes
http://oapub.org/edu/index.php/ejes
http://oapub.org/edu/index.php/ejes
http://oapub.org/edu/index.php/ejes


Cristiano Mauro Assis Gomes, Felipe Valentini 

TIME SERIES IN EDUCATIONAL PSYCHOLOGY:  

APPLICATION IN THE STUDY OF COGNITIVE ACHIEVEMENT

 

European Journal of Education Studies - Volume 6 │ Issue 8 │ 2019                                                                                  217 

predominant case, the trend from the time series must be partial out in ARIMA model. 

The name of this procedure is differentiation.  

 Then, the first task is verified if the time series is stationary. If that condition 

happens, the time series must be non-differentiated (d=0). However, stationarity usually 

is not encountered in times series because it demands that the trend mean level and the 

standard deviation would be equal throughout the entire series. It is very common that 

trend mean level increases or decreases in pieces of the series, as occurs with the 

standard deviation that can be smaller or bigger in different pieces of the series. To deal 

with a non-stationary series due a trend, one might apply a lag difference procedure, 

which consists in replacing the current value at time t for the difference of the previous 

one ( 𝑦𝑡  −  𝑦𝑡−1 ); ARIMA model automatically performs the difference procedure 

(parameter d). If the first differentiation achieves a stationary time series, then the 

parameter d is modeled to be one (d=1). If not, a second differentiation will be done and 

if achieves stationarity then d parameter must be modeled to be two (d=2). If the second 

differentiation still generates a non-stationary time series, a new differentiation is 

created, and so on. It is important to note the d=2 does not mean a differentiation in lag 

two, however the difference is performed in lag one and, then, applied again in lag one 

(i.e. d=2 means a double-differencing, and not a differentiation in lag two). It is also 

relevant to mention the parameter d is set up to deal with trend. If the data shows 

seasonality as well, it might be necessary do remove it setting another parameter D 

(capital D) larger than 0. In summary, when parameters d and D are different from 0, 

the ARIMA will remove the trend and the seasonality in an integrated procedure. Then, 

the ARIMA evolves parameters for trend (lowercase p, d, q) and seasonality (uppercase 

P, D, Q).  

 The oncoming steps evolve choosing the best model of autoregressive and 

moving averages. ARIMA demands the determination of a model that considers these 

three parameters (p,d,q). One manner to define the ARIMA parameters includes 

verifying the fit of each model from a class of different models, choosing some criteria 

as AIC (Akaike Information Criterion) or BIC (Bayesian Information Criterion). This is 

the comparative model fit approach. Other way is the graphic analysis approach. It 

evolves the calculation of the partial autocorrelations of observed time series and the 

observation of the pattern in a graphic. The partial autocorrelations are measure of the 

autocorrelations after the lags have been partial out.  

 The next task of the graphic analysis approach evolves select the new time series 

stationary obtained by differentiation of maintain the original times series if it was 

stationary. Next, observes if the partial autocorrelations drop abruptly after a certain 

lag, this indicates that the autoregressive component is predominant, so the parameter q 

(moving averages) must be modeled to be zero lags (q=0) and the parameter p must be 

modeled considering the last lag number that has a statistically significant value (p ≤ 

.05). For example, if the two first lags of 90 occasions in the partial autocorrelations are 

statistically significant, p must be modeled equal to 2 lags (p=2). However, if the partial 

autocorrelations drop slowly to zero, the moving averages component is predominant, 

so the parameter p (autoregressive component) must be modeled to be zero lag (p=0) 
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and parameter q must be modeled considering the last lag number with statistically 

significant value (p ≤ .05) as the case presented about the p parameter.  

 

2. Application of ARIMA 

 

This study proposes apply time series ARIMA in a testing design that incorporates four 

cycles or recurrences of difficulty. The aim is to illustrate the use of time series ARIMA 

in the study of psychological processes, applying this approach to inspect the process 

related to the respondents' performance in the context of a specific testing design.  

 Explaining the testing design, the participants took a test to measure inductive 

reasoning. The items have been arranged in four cycles. Each cycle is composed by five 

levels of increased difficulty. When a cycle finishes with the all its five levels, the next 

one begins with the easiest level being presented first and so on. This process repeats 

until the end of the fourth cycle. Figure 1 shows the testing design. The difficulty of the 

items enhances until a peak, then easier items are presented, and the cycle starts over 

again. In this sense, we expect seasonality due the design of the items difficulty. First, 

the participants answer three items in the level one of difficulty (1-3 on the x-axis); then 

they answer three items with difficulty in the level two (4-6 on the x-axis); the process 

continues until the participants answer the three more difficult items (in the level five). 

In this moment, the first cycle ends and the second cycle begins. The procedure 

continues until the end of the fourth cycle. So, considering the exposed properties of 

time series quantitative methodology, it is expected that ARIMA approach will be 

capable to investigate the complex nature of the processual aspects evolved in the 

specified testing design. In this sense, we expect strong autocorrelation between the 

achievement in a specific time and the achievement in a previous time, which would 

justify modelling the data with time-series.  

 

 
Figure 1: Testing Design: Difficulty Level (Y-axis) by Items (X-axis) 
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3. Method 

 

3.1 Participants 

Participants were 13 seventh-ninth grade students from a middle-class SES private 

school in the Belo Horizonte city, Minas Gerais, Brazil, seven male and six females, with 

mean age of 13.53 years (standard deviation of 1.05). Four of them were in seventh 

grade, three in eighth grade, and six in the ninth grade.  

 

3.2 Instrument  

3.2.1 Inductive Reasoning Developmental Test (IRDT) 

IRDT (Golino, Gomes, Commons, & Miller, 2014) has 56 inductive reasoning items that 

contains seven difficult levels. The task included in all items is identifying from five 

patterns of letters the one that does not follow the same organization rule of the others 

(Golino & Gomes, 2012). Only the first five difficulty levels were employed in the 

current study.  

 Four booklet versions were created for the propose of this study. Each booklet 

version has 60 items, forming four cycles. Each cycle has five groups of three items, 

each one representing a specific level of difficulty. So, the first 15 items of the booklet 

compose the first cycle: items one, two and three measure the first difficulty level; items 

four, five, and six measure the second difficulty level, and so on, until items 13, 14 and 

15 that measure the fifth difficulty level. The next 45 items compose the second, third 

and fourth cycle, organized with the same structure as cycle one. So, each booklet 

version is composed by four cycles (see Figure 1). Each cycle has one item that is also 

present in other cycle of the same booklet. The difference between the booklet versions 

is the order of the four cycles, e.g., the first cycle of the version one is the fourth cycle of 

the version four. The raw score is generated through the sum of right answers in each 

group of three items representing the difficulty levels in each cycle. Each group has a 

score that goes from 0 (participant failed all three items) to 3 (participant passed all 

three items). Then, each test taker had 20 raw scores (60 items / 3 difficulty items) 

gathered in four cycles, and each cycle has five levels of difficulty (then, 4 cycles X 5 

difficulty = 20 raw scores). It is important to note Golino and Gomes (2012) show 

evidence the items on the same difficult level did have difficult invariant parameters 

(for instance, three first items of the first booklet have the same difficulty level of the 

three first items of the second booklet). 

 

3.3 Procedures and Data Analysis 

Each participant answered only one booklet version in a unique moment. Different 

participants responded different booklet versions, which variated due the order of the 

cycles. After the ending of one cycle of the booklet, it was given one minute of pause 

before the beginning of the next cycle. 

 The answers of each participant generate 20 raw scores of the achievement test. 

Each group of three items produces a raw score of zero, one, two or three points 

(respondent passed all three items). The 20 raw scores of the 13 participants were 
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aggregated to compose a time series of 260 occasions. ARIMA time series was applied 

and the model was selected through the graphic analyzes of the autocorrelation matrix 

and partial autocorrelation matrix. Time series analysis was performed through the 

statistical program R version 3.02 (R Core Team, 2017).  

 

4. Results and Discussion 

 

Data was stored in a time series object through the ts ( ) function from the R program 

(we switched the font to clearly distinguish a R function from the text). This part in 

syntax was achievement <- ts (data, frequency=5) what means that the data was 

transformed in a time series object in R program named achievement. The time series 

start with the first occasion and end with the 260 occasions. The frequency equal to five 

in the syntax represents the cycle of five different degrees of difficulty in the testing 

design. This means that each five measurement occasions compose a time cycle and that 

each lag in the model will represent a specific time cycle which is composed by five 

measurement occasions.  

 

 
Figure 2: Observed time series for the achievement test 

 

 Figure 2 shows the observed time series plotted in a graphic. As commented, 

each time cycle represents five measurement occasions. And the cycles are compatible 

with a time-series with seasonality. Because time is accounted through the cycles, the 

260 occasions are represented into 52 lag cycles because each cycle is composed by five 

occasions. 

 The mean level of the observed time series is 1.615, median is 2.000, standard 

deviation is 1.332, the minimum is 0 and maximum is 3. Standard deviation is large, 
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indicating that the observed time series has a great variance. That condition is expected 

in function of the testing design of the study that presents to the participants easy item 

groups and hard item groups. 

 Figure 3 shows the autocorrelation factor of the observed time series. As 

mentioned, the time unit of the observed time series is the cycles. As each lag 

corresponds to each time unit, the first lag is composed by the lags 0.2, 0.4, 0.6, 0.8, and 

1.0. Lag 0.2 is the lag between the first item group and the second item group into cycle 

one. Lag 0.4 is the lag between the first item group and the third item group into cycle 

one. Lag 0.6 is the lag between the first item group and the fourth item group into cycle 

one, and lag 0.8 is the lag between the first item group and the fifth item group into 

cycle one. Lag 1.0 represents the lag between the first item group from cycle one and the 

first item group from cycle two showing a correlation between two cycles of same 

difficult level. Continuing, the second lag is composed by the lags 1.2, 1.4, 1.6, 1.8 and 

2.0. Lag 1.2 is the lag between the first item group into cycle one and the second item 

group into cycle two. Lag 1.4 is the lag between the first item group into cycle one and 

the third item group into cycle two. Lag 1.6 is the lag between the first item group into 

cycle one and the fourth item group into cycle two. Lag 1.8 is the lag between the first 

item group into cycle one and the fifth item group into cycle two. Lag 2.0 represents the 

lag between the first item group from cycle one and the first item group from cycle 

three. The same logic is so forth. 

 

  
Figure 3: Autocorrelations and partial autocorrelations of  

the achievement test scores through lags 

 

 Working with ARIMA demands the identification of the model to be fitted. The 

first task is verifying if the time series is stationary. A strategy to do that is observe the 

autocorrelations pattern. One condition to verify if observed time series is not stationary 

is observe the autocorrelation lags. When the autocorrelations decay close to zero and 

after they after turn to rise, the time series is non-stationary. This is what happens with 

the autocorrelations of the observed time series of the study (Figure 3). The 

autocorrelations slow down close to zero and rises up, continually. An example of that 

pattern is encountered in the following cycle lags. The lag 0.2 has the autocorrelation of 
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.164. This indicates that the performance in the first item group is weakly correlated 

with the performance in the second item group, both from the first cycle of time series. 

However, the lag 0.4 has an autocorrelation of -.358 which indicates that the 

performance in the first item group correlates in a negative way with the performance 

in the third item group, both from the first cycle. The lag 0.6 has an autocorrelation of -

.348, indicating that the performance in the first item group correlates negatively with 

the performance in the fourth item group, both from the first cycle. The autocorrelation 

from the lag 0.8 is .187 indicating that the performance in the first item group is weakly 

and positively correlated with the fifth item group, both from the first cycle. The lag 1.0 

has an autocorrelation of .728 and presents a strong connection between the 

performance in the first item group from the first cycle with the performance in the first 

item group from the second cycle. The variety of positive and negative autocorrelations 

showed in lag 0.2, 0.4, 0.6, 0.8 and 1.0 is a recurrent pattern and indicates that the 

observed time series is non-stationary. Figure 3 shows that pattern in a graphic 

representation. The pattern of autocorrelations decays throughout the lags, as well as it 

shows sinusoid shape with peaks and valleys. It also means the series has likely 

seasonality, and an ARIMA model, with P, D, Q parameters, could fit to the data 

(Montgomery, Jennings & Kulahci, 2015). 

 There is a strong seasonal pattern. In this case, a seasonal ARIMA is applied in 

the time series, which has the three usual parameters p, d, q, and has three more 

parameters P, D, Q that represents the seasonal parameters. In this model, the six 

parameters need to be specified. Despite the more complexity, seasonal ARIMA is a 

good choice when the seasonal or cycle pattern is strong, which occurs in this study. 

Because the time series shows a non-stationary pattern, the first task is applying 

differencing until the time series achieve a stationary pattern. The differentiation can be 

done in d parameter or in D parameter to achieve stationarity. Some models which only 

estimate d and D parameters were compared through AIC criteria. Model 1 defines d=1 

and D=0 (AIC=1017.86), model 2 defines d=0 and D=1 (AIC=702.65), model 3 states d=1 

and D=1 (AIC=842.58), model 4 states d=2 and D=0 (AIC=1238.35), model 5 states d=0 

and D=2 (AIC=938.13), model 6 states d=2 and D=2 (AIC=1329.72), model 7 defines d=1 

and D=2 (AIC=1072.59) and finally model 8 defines d=2 and D=1 (AIC=1111.72). The 

model 2 is the best model because presents the lowest AIC value. This model was the 

chosen.  

 After the choice about the parameters d and D the rest of the parameters was 

analyzed. Parameters p, q, P, and Q were selected through the comparative fit 

approach. Table 2 shows the variety of models and the AIC value of each one. The 

seasonal ARIMA (0,0,1) (1,1,1) was the best model because presented the lowest AIC 

value and its parameters were all statistically significant (p ≤ .05). The model applied 

differencing through the D parameter, which indicates seasonality, and it also means 

the time-series was non-stationary. Furthermore, the estimated parameters ma1, SMA1 

(Seasonal Moving Average) and SAR1 (Seasonal Autoregressive) showed values 

ranging from -1 to 1 that denotes the model yielded stationarity properties. If those 
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parameters range away from -1 to 1 the model would be non-stationary, and it would 

unsuitable for an ARIMA model.  

 
Table 2: Fit of seasonal ARIMA models through AIC and its parameters 

models (p,d,q) (P,D,Q) AIC Parameters (and Standard Error) 

  

 

ar1 ar2 ma1 ma2 SAR1 SAR2 SMA1 SMA2 

model 1 (1,0,0) (0,1,0) 700.67 
0.125 

(0.06)        

model 2 (2,0,0) (0,1,0) 702.46 
0.128 

(0.06) 

-0.029 

(0.06)       

model 3 (0,0,1) (0,1,0) 700.44 
  

0.132 

(0.06)      

model 4 (1,0,1) (0,1,0) 702.31 
-0.141 

(0.33)  

0.270 

(0.33)      

model 5 (0,0,2) (0,1,0) 702.32 
  

0.130 

(0.06) 

-0.020 

(0.06)     

model 1a (1,0,0) (0,1,1) 647.37 
0.129 

(0.06)      

-0.616 

(0.08)  

model 1b (1,0,0) (1,1,0) 672.93 
0.118 

(0.06)    

-0.331 

(0.06)    

model 1c (1,0,0) (1,1,1) 628.04 
0.149 

(0.06)    

0.389 

(0.07)  

-0.974 

(0.05)  

model 1d (1,0,0) (1,1,2) 629.13 
0.142 

(0.06)    

0.562 

(0.15)  

-1.191 

(0.19) 

0.191 

(0.18) 

model 1e (1,0,0) (2,1,1) 629.52 
0.145 

(0.06)    

0.382 

(0.06) 

0.049 

(0.06) 

-1.000 

(0.18)  

model 3a (0,0,1) (0,1,1) 647.39 
  

0.129 

(0.06)    

-0.615 

(0.08)  

model 3b (0,0,1) (1,1,0) 672.91 
  

0.120 

(0.06)  

-0.330 

(0.06)    

model 3c (0,0,1) (1,1,1) 627.85 
  

0.154 

(0.06)  

0.390 

(0.07)  

-0.974 

(0.06)  

model 3d (0,0,1) (1,1,2) 629.02 
  

0.146 

(0.06)  

0.557 

(0.15)  

-1.185 

(0.19) 

0.185 

(0.18) 

model 3e (0,0,1) (2,1,1) 629.38 
  

0.149 

(0.06)  

0.383 

(0.06) 

0.047 

(0.06) 

-1.000 

(0.18)  

 

The model 3c (Table 2) shows SAR and SMA (or P and Q) as the most important 

parameters, as they presented the greatest regression weights, which highlight the 

relevance of the seasonality properties to explain the data. The positive SAR1 indicates 

a positive correlation throughout cycles (or the previous cycle is positive associated to 

the current cycle); and the negative SMA1, the most weighted parameter in this model, 

points to a strong negative correlation between the end of a cycle and the beginning of 

the subsequently cycle. This result was expected due the strong difference in the 

difficulty between a group of items at the cycles edges. The ma1 shows less weight than 

the seasonal parameters (SAR and SMA), even though it can be interpreted as a slightly 

correlation from a group of items to the subsequent group, regardless the cycles. In 
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summary, the ARIMA model could capture the theoretical process behind the 

instrument level of difficulty. 

 However, the AIC values presented in the Table 2 does not sustain, per se, that 

the model has an adequate fit but only says that the specific model is the best of the 

tested models. The model fit must be evaluated through the autocorrelation function of 

the residuals, the p values for Ljung-Box statistic and the normal distribution of the 

residuals. Figure 4 shows that there is no one significative autocorrelation of residual 

lags as there is no one p values for Ljung-Box statistic below .05, indicating that the null 

hypotheses that p is equal zero to the autocorrelation lags cannot be refuted. Beyond 

these aspects, the residuals show a normal distribution curve, indicating that the 

selected season ARIMA model represents adequately the observed time series.  

 

 
Figure 4: Fit tests of the selected seasonal ARIMA model 
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5. Conclusion 

 

The present study proposes that ARIMA time series methodology is an elegant 

approach to deal with process in educational psychology. Concomitantly, the study 

applied a specific test design which each cycle was composed by five different item 

groups in terms of difficulty. The seasonal ARIMA was approached to the observed 

time series and adequate fit the data. This model showed the achievement in a time was 

slightly associated to the forthcoming achievement; the group of items at same level of 

difficult in different cycles are positive associated each other (for instance, first group of 

items of the first cycle was associated to the first group of item of the second cycle and 

so forth); and the strongest parameter pointed to an abrupt achievement decrease (or a 

valley on the time-series graphic) from the end of a cycle and the beginning of the 

subsequent cycle. Those results yield relevant information about the achievement 

process and the testing designing due the difficulty of the items. Those results also 

support the hypotheses of a time-series with seasonality. In this sense, the model is an 

evidence of temporal dependence of the achievement test (i.e. an achievement score 

depends on the previous score). However, it does not highlight any cognitive process 

behind the achievement.  

 Despite the complexity of investigate process, time series quantitative 

methodology is a viable tool and does not eliminates the fundamentals and the 

dynamics of the processes. Of course, this study applies ARIMA methodology to only 

one variable and other aspects could be part of the research, as exogenous factors and 

other time series in a complex fashion evolving multivariate time series analysis. 

Beyond the proximal objectives, this study intended stimulate the increase of 

psychological research with time series in fields that traditionally do not use this 

approach, as the intelligence psychometric field, for example. Through time series 

quantitative approach new possibilities can be open to these fields, articulating 

structures and processes together. 
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