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APPROXIMATE FIXED POINTS VIA COMPLETION

M. AIT MANSOUR - M.A. BAHRAOUI - A. EL BEKKALI

It was proved by S. Tijs, A. Torre and R. Brânzei in [1, Theorem 3.1]
that every single-valued contraction from a metric space into itself has an
ε-fixed point for every ε > 0. In this paper, we state this result for set-
valued mappings and we give a new proof of it by using the concept of
completion.

1. Introduction and preliminaries

Let (E,d) be a metric space. We denote by P(E) the set of nonempty subsets
of E. We also denote by C(E) the set of nonempty and closed subsets of E. The
Hausdorff distance between two elements A and B of P(E) is

D(A,B) = max
{

sup
a∈A

d(a,B),sup
b∈B

d(b,A)
}
.

The pair (C(E),D) is an extended metric1 space and its completeness is charac-
terized by the following theorem (see for instance [2, Theorem 3.2.4]):

Theorem 1.1. Let (E,d) be metric space. (C(E),D) is complete if and only if
(E,d) is complete.
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1D is an infinite-valued metric on C(E).
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Let (F,δ ) be an another metric space and ∆ the Hausdorff distance associed
to δ . A set-valued mapping Φ : E ⇒ F is said to be Lipschitzian if there exists
a constant κ > 0 such that ∆(Φ(x),Φ(x′)) 6 κd(x,x′), for all x,x′ ∈ X . The
constant κ is called Lipschitz constant of Φ. If κ < 1, Φ is said to be a set-
valued contraction.

Let ε > 0. A point x ∈ E is said to be ε-fixed point of Φ : E⇒ E if and only
if d(x,Φ(x)) 6 ε. It was shown by S. Tijs, A. Torre and R. Brânzei in [1], see
Theorem 3.1, that every single-valued contraction ϕ from a metric space into
itself has an ε-fixed point for every ε > 0. The proof of this result is obtained by
considering the usual sequence defined by xn+1 = ϕ(xn). Exactly in the same
immediate way (with obvious variants) one can obtain the result also for set-
valued mappings:

Theorem 1.2. Let (E,d) be a metric space, and let Φ : E ⇒ E be a set-valued
contraction. Then, Φ has an ε-fixed point for every ε > 0.

The aim of this paper is to give a new alternative proof of Theorem 1.2 based
on the notion of completion.

2. Our Proof

Let us first recall the following theorem which will play an important role in our
proof of Theorem 1.2, which claims that any metric space E is isometric with a
dense subset of a complete metric space called the completion of E.

Theorem 2.1 ([3, Theorem 3, p.159]). If (E,d) is a metric space, then there
exists a complete metric space (F,δ ) and a mapping i from E into F such that:

1. i is an isometry, i.e.: for all x,x′ ∈ E, δ (i(x), i(x′)) = d(x,x′);

2. the image of E is dense in F.

We recall also the following result of extension of contraction mappings.

Theorem 2.2 ([3, Theorem 1, p. 98]). Let (E,d) be a metric space, let (F,δ )
be a complete extended metric space, and let A be a dense subset of E. Then,
for every Lipschitzian mapping f : A→ F, there exists a Lipschitzian mapping
g : E→ F, with the same Lipschitz constant as f , such that g|A = f .

Another ingredient of our proof of Theorem 1.2 is a very classical result
by Nadler which says that every set-valued contraction from a complete metric
space into itself with closed values has a fixed point.
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Theorem 2.3 ([4, Theorem 5]). Let (E,d) be a complete metric space, and let
Φ : E ⇒ E be a set-valued contraction with closed values. Then Φ has a fixed
point, i.e., there exists a point x ∈ E such that x ∈Φ(x).

We are now in a position to give our proof of Theorem 1.2.
Proof of Theorem 1.2. Fix some ε > 0 and denote by κ the Lipschitz constant
of Φ. From Theorem 2.1, there exists a complete metric space (F,δ ) and an
isometry i : E→ F such that i(E) is dense in F .
Since i is an isometry, it is injective. Then, i : E → i(E) is a bijective mapping.
Furthermore, i−1 : i(E)→ E is an isometry. Indeed, for all y,y′ ∈ i(E), one has

d(i−1(y), i−1(y′)) = δ (i(i−1(y)), i(i−1(y′))) = δ (y,y′).

Now, we consider the mapping ĩ : P(E)→C(F) defined, for all A ∈ P(E) by

ĩ(A) = i(A) = {i(x) : x ∈ A},

where i(A) is the closure of i(A) in F . So, for all A,B ∈ P(E), we have

∆(ĩ(A), ĩ(B)) = ∆(i(A), i(B)) = ∆(i(A), i(B))

= max
{

sup
a∈A

inf
b∈B

δ (i(a), i(b)),sup
b∈B

inf
a∈A

δ (i(a), i(b))
}

= max
{

sup
a∈A

inf
b∈B

d(a,b),sup
b∈B

inf
a∈A

d(a,b)
}

= D(A,B).

Hence, ĩ is an isometry. Now, consider the composition map Ψ1 := ĩ ◦Φ ◦ i−1

with i−1 : i(E)→ E, Φ : E →P(E) and ĩ : P(E)→ C(F). Since ĩ and i−1 are
isometries and Φ is a contraction with constant κ , for all x,x′ ∈ E, it follows that

∆(Ψ1(i(x)),Ψ1(i(x′))) = ∆(ĩ(Φ(x)), ĩ(Φ(x′)))

= D(Φ(x),Φ(x′))

6 κd(x,x′)

6 κδ (i(x), i(x′)).

Thus, Ψ1 : i(E)→ C(F) is a contraction with constant κ and closed values.
Since (F,δ ) is complete, from Theorem 1.1 we infer that (C(F),∆) is also com-
plete. According to Theorem 2.2, there exists a contraction mapping Ψ : F →
C(F) extending Ψ1 to F . Accordingly, since F is complete then thanks to The-
orem 2.3, Ψ has a fixed point, i.e., there exists y ∈ F such that y ∈Ψ(y). On the
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other hand, since i(E) is dense in F , there exists x ∈ E such that δ (i(x),y)6 ε

2 .
Thus,

d(x,Φ(x)) = δ (i(x), ĩ(Φ(x))) = δ (i(x),Ψ1(i(x))) = δ (i(x),Ψ(i(x)))

6 δ (i(x),y)+δ (y,Ψ(i(x)))

6 δ (i(x),y)+∆(Ψ(y),Ψ(i(x)))

6 δ (i(x),y)+κδ (y, i(x)) = (κ +1)δ (y, i(x))

6 ε.

Consequently, x is a ε-fixed point of Φ. This completes the proof. �
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