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ON THE APPROXIMATE CONTROLLABILITY OF SOME
SEMILINEAR PARTIAL FUNCTIONAL

INTEGRODIFFERENTIAL EQUATIONS WITH UNBOUNDED
DELAY

PATRICE NDAMBOMVE - KHALIL EZZINBI

This work concerns the study of the approximate controllability for
some nonlinear partial functional integrodifferential equation with infinite
delay arising in the modelling of materials with memory, in the framework
of Hilbert spaces. We give sufficient conditions that ensure the approxi-
mate controllability of the system by supposing that its linear undelayed
part is approximately controllable, admits a resolvent operator in the sense
of Grimmer, and by making use of the measure of noncompactness and
the Mönch fixed-point Theorem. As a result, we obtain a generalization
of several important results in the literature, without assuming the com-
pactness of the resolvent operator. An example of applications is given
for illustration.

1. Introduction

Control theory arises in many modern applications in engineering and environ-
mental sciences, it is one of the most interdisciplinary research areas. While
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studying a control system, one of the most common problems that appear is the
controllability problem, which consists in checking the possibility of steering
the control system from an initial state (initial condition) to a desired termi-
nal one (boundary condition), by an appropriate choice of the control u. The
controllability problem has two distinguished notions which are the exact and
the approximate controllability problems. Several authors have studied the con-
cept of exact controllability for systems represented by nonlinear evolutions
equations, in which the authors have effectively used fixed point technique (see
e.g., [2, 5, 10, 23, 26, 27] and the references contained in them). In infinite-
dimensional spaces the notion of exact controllability is usually too strong and,
therefore has limited applicability (see [17] and references therein). The no-
tion of approximate controllability is very often completely adequate in appli-
cations (see [17] and references therein). It is therefore important to study this
weaker version of controllability for nonlinear integrodifferential systems. Ap-
proximate controllability of nonlinear differential and integrodifferential sys-
tems with and without delays in infinite dimensional spaces has been exten-
sively studied (see e.g., [11, 12, 17, 18, 20–22, 25] and the references contained
in them).
In [22], the authors studied the following nonlinear impulsive integrodifferential
equation with unbounded delay:

x′(t) = Ax(t) +
∫ t

0
G(t− s)x(s)ds + f (t,xt)+Bu(t) for t ∈ J = [0,b]

x0 = φ ∈ P,

∆x(tk) = IK(xtk),k = 1, · · · ,m
(1)

where A : D(A)→ X and G(t) : D(G(t)) ⊃ D(A) are closed linear operators.
Assuming the compactness of the resolvent operator for the associated linear
system, they obtained existence and approximate controllability results for sys-
tem (1).
In [25], the author considered the following unbounded delayed integrodiffer-
ential systems:

x′(t) = Ax(t) +
∫ 0

−∞

a(s)A1x(t + s)ds + f (t,xt)+Bu(t) for t ∈ J = [0,b]

x0 = φ ∈ B,
(2)

where A : D(A)→ X is the infinitesimal generator of a compact C0-semigroup,
and A1 : X → X is a bounded linear operator. Using the compactness of the



APPROXIMATE CONTROLLABILITY FOR INTEGRODIFFERENTIAL EQUATIONS 339

semigroup generated by A, the author obtained the existence and approximate
controllability results for equation (2).
In [11], the authors considered the following semi-linear neutral evolution sys-
tem with infinite delay:

d
dt
[x(t)+L1(xt)] =−Ax(t) +L2(xt) + f (t,xt)+Bu(t) for t ∈ J = [0,b]

x0 = φ ∈ BCα ,
(3)

where−A :D(−A)→ X is the infinitesimal generator of an analytic semigroup,
L1 :D(A)→ X , L2 : B→ X are bounded linear operators, and the spaces B,BCα

are aximatically defined as we shall see later. Assuming the compactness of the
analytic semigroup generated by (−A,D(−A)) and using the theory of α-norm,
the authors obtained existence and approximate controllability results for equa-
tion (3).
In [12], the authors considered the following semilinear neutral integrodifferen-
tial equations with finite delay:

d
dt
[x(t)+F(t,xt)] =−Ax(t) +

∫ t

0
γ(t− s)x(s)ds + G(t,xt)+Bu(t)

for t ∈ J = [0,b]

x0 = ϕ, t ∈ [−r,0],

(4)

where−A :D(−A)→ X is the infinitesimal generator of an analytic semigroup,
and γ(·) is a family of closed linear operators. Using the theory of α-norm and
the fractional power, and without assuming the compactness of the resolvent
operator, the authors obtained the existence and approximate controllability re-
sults for system (4).
More recently, Alka et al in [1], studied the approximate controllability of non-
local fractional differential inclusions involving the Caputo fractional derivative
of order q ∈ (1,2) in a Hilbert space. Utilizing measure of noncompactness and
multivalued fixed point strategy, they obtained a new set of sufficient conditions
to ensure the approximate controllability of the nonlocal fractional differential
inclusions. Also, Avadhesh et al in [3] established sufficient condition for the
controllability of a control problem represented by second-order nonlinear dif-
ferential equation with non-instantaneous impulses in a Hilbert space. They
obtained their results using the strongly continuous cosine family of linear op-
erators and Banach fixed point method.
Motivated by the above works, we study in this paper, the approximate control-
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lability for some systems that arise in the analysis of heat conduction in mate-
rials with memory and viscosity [13, 16]. The interesting thing about materials
with memory is that they act adaptively to their environment. They can easily
be shaped into different forms at a low temperature, but return to their original
shape on heating. Steering such systems from an initial state (initial condition)
to a desired terminal one (boundary condition) by choosing appropriately a con-
trol, is of interest to many engineers and scientists. Such systems take the form
of the following abstract model of partial functional integrodifferential equation
with infinite delay in a Banach space (X , ‖ · ‖) :


x′(t) = Ax(t) +

∫ t

0
γ(t− s)x(s)ds + f (t,xt)+Cu(t) for t ∈ I = [0,b]

x0 = ϕ ∈ B,
(5)

where A :D(A)→ X is the infinitesimal generator of a C0-semigroup
(
T (t)

)
t≥0

on a Hilbert space X ; for t ≥ 0, γ(t) is a closed linear operator with domain
D(γ(t)) ⊃ D(A). The control u belongs to L2(I,U) which is a Banach space
of admissible controls, where U is another Hilbert space. The operator C ∈
L(U,X), where L(U,X) denotes the Banach space of bounded linear operators
from U into X , and the phase space B is a linear space of functions mapping
]−∞,0] into X satisfying axioms which will be described later, for every t ≥ 0,
xt denotes the history function of B defined by xt(θ) = x(t + θ) for −∞ ≤
θ ≤ 0, f : I×B → X is a continuous function satisfying some conditions. In
the literature devoted to equations with finite delay, the phase space is the space
of continuous functions on [−r,0], for some r > 0, endowed with the uniform
norm topology. But when the delay is unbounded, the selection of the phase
space B plays an important role in both qualitative and quantitative theories.
A usual choice is a normed space satisfying some suitable axioms, which was
introduced by Hale and Kato [14].
Integrodifferential equations appear in many areas of applications such as Elec-
tronics, Engineering, Physical Sciences, Fluid Dynamics, etc, During the last
decades, these integrodifferential systems have received considerable attention.
In recent years, many authors have worked on the existence and regularity of so-
lutions of nonlinear functional integrodifferential equations with infinite delay,
using the resolvent operator theory, see e.g., [9] and the references contained in
it.
R. Grimmer in [13], proved the existence and uniqueness of resolvent operators
that give the variation of parameters formula for the solutions, for these inte-
grodifferential equations. In [7], W. Desch, R. Grimmer and W. Schappacher
proved that the compactness of the resolvent operator is equivalent to that of the
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semigroup.
In this work, we use the fact that the operator-norm continuity of the resolvent
operator is equivalent to that of the semigroup [10]. In fact, we assume that
the resolvent operator admitted by the linear undelayed part of equation (5) is
operator-norm continuous. This property allows us to drop the compactness as-
sumption on the operator semigroup, considered by the authors in [11, 22, 25],
and prove that the operator solution satisfies the Mönch condition. We prove the
approximate controllability result using the Mönch’s fixed-point Theorem and
the Hausdorff measure of noncompactness. This method enables us overcome
the resolvent operator case considered in this work. Here the semigroup prop-
erty can not be used because resolvent operators in general are semigroups.
So, as contribution, compared to [11, 22, 25] and many other references in the
literature, this paper considers a broader class of functional differential equa-
tions; the compactness condition on the operator semigroup is dropped and
replaced by a weaker and more realistic condition which is continuity in the
operator norm topology; the variation of parameter formula for the solution is
written using the resolvent operators which do not satisfy the semigroup con-
dition and are therefore more general than semigroups. Also, our technique of
proof, using measure of noncompactness is of particular interest, as measure of
noncompactness is an important tool in the wide areas of functional analysis and
differential equations [1]. To the best of our knowledge, up to now no work has
reported on approximate controllability of partial functional integrodifferential
equation (5) with infinite delay in Hilbert spaces. It has been an untreated topic
in the literature, and this fact also motivates the present work.
The rest of the work is organized as follows: Section 2 is devoted to preliminary
results. In this section, we give the definition of resolvent operator. This allows
us to define the mild solution of equation (5). In section 3, we study the exis-
tence of mild solutions to equation (5). In section 4, we prove the approximate
controllability of the control system (5), assuming the approximate controllabil-
ity of the associated linear undelayed part. In section 5, we give an example to
illustrate the obtained results.

2. Integrodifferential equations and measure of noncompactness

Integrodifferential equations have applications in many problems arising in
physical systems, the following one-dimensional model in viscoelasticity is one
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of the applications of that theory

α
∂ 2ω

∂ t2 (t,ξ )+β
∂ω

∂ t
(t,ξ ) =

∂ϕ

∂ξ
(t,ξ )+h(t,ξ ),

γ
∂ω

∂ξ
(t,ξ )+

∫ t

0
a(t− s)

∂ω

∂ξ
(s,ξ )ds = ϕ(t,ξ ), (t,ξ ) ∈ R+× [0,1],

ω(t,0) = ω(t,1) = 0, t ∈ R+,

ω(0,ξ ) = ω0(ξ ), ξ ∈ [0,1],

where, ω is the displacement, ϕ is the stress, h is the external force, α, γ > 0 and
β are constants. In this model, the first equation describes the linear momentum
while the second equation describes the constitutive relation between stress and
strain. Setting γ = 1, v = ∂ω

∂ t , and u = ∂ω

∂ξ
, the above equations can be rewritten

as follows

[
u′(t)
v′(t)

]
=

[
0 ∂ξ

∂ξ

α
0

]{[
u(t)
v(t)

]
+
∫ t

0

[
a(t− s) 0

0 0

][
u(s)
v(s)

]
ds
}

+

[
0 0
0 − β

α

][
u(t)
v(t)

]
+

[
0

h(t)
α

]
, t ≥ 0.

Setting

x(t) =
[

u(t)
v(t)

]
, A =

[
0 ∂ξ

∂ξ

α
0

]
, B(t) =

[
a(t− s) 0

0 0

]

K =

[
0 0
0 − β

α

]
, and p(t) =

[
0

h(t)
α

]
,

we can rewrite the above equation into the following abstract form
x′(t) = A

[
x(t)+

∫ t

0
G(t− s)x(s)

]
ds+Kx(t)+ p(t) for t≥ 0

x(0) = x0.
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The operator A here is unbounded, while K and G(t) are bounded operators for
t ≥ 0 on a Banach space X . When AG(t) = G(t)A, we obtain the following
equation

x′(t) = Ax(t)+
∫ t

0
G(t− s)Ax(s)ds+Kx(t)+ p(t) for t≥ 0

x(0) = x0.

which has been studied in [8]. We note that in general, the equality AG(t) =
G(t)A does not hold.

Let I = [0,b], b > 0 and let X be a Banach space. A measurable function
x : I → X is Bochner integrable if and only if ‖x‖ is Lebesgue integrable. We
denote by L1(I,X) the Banach space of Bochner integrable functions x : I→ X
normed by

‖x‖L1 =
∫ b

0
‖x(t)‖dt.

Consider the following linear homogeneous equation:
x′(t) = Ax(t)+

∫ t

0
γ(t− s)x(s)ds for t ≥ 0

x(0) = x0 ∈ X .

(6)

where A and γ(t) are closed linear operators on a Banach space X .
In the sequel, we assume A and

(
γ(t)

)
t≥0 satisfy the following conditions:

(H1) A is a densely defined closed linear operator in X . Hence D(A) is a
Banach space equipped with the graph norm defined by, |y|= ‖Ay‖+‖y‖ which
will be denoted by (X1, | · |).

(H2)
(
γ(t)

)
t≥0 is a family of linear operators on X such that γ(t) is con-

tinuous when regarded as a linear map from (X1, | · |) into (X ,‖·‖) for almost all
t ≥ 0 and the map t 7→ γ(t)y is measurable for all y ∈ X1 and t ≥ 0, and belongs
to W 1,1(R+,X). Moreover there is a locally integrable function b : R+ → R+

such that

‖γ(t)y‖ ≤ b(t)|y| and
∥∥∥∥ d

dt
γ(t)y

∥∥∥∥ ≤ b(t)|y| .

Remark 2.1. Note that (H2) is satisfied in the modelling of Heat Conduction
in materials with memory and viscosity. More details can be found in [15].
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Let L(X) be the Banach space of bounded linear operators on X .

Definition 2.2. [9] A resolvent operator
(
R(t)

)
t≥0 for equation (6) is a bounded

operator valued function

R : [0,+∞) −→ L(X)

such that

(i) R(0) = IdX and ‖R(t)‖ ≤ Neβ t for some constants N and β .

(ii) For all x ∈ X , the map t 7→ R(t)x is continuous for t ≥ 0.

(iii) Moreover for x ∈ X1, R(·)x ∈ C1(R+;X)∩C(R+;X1) and

R′(t)x = AR(t)x+
∫ t

0
γ(t− s)R(s)xds

= R(t)Ax+
∫ t

0
R(t− s)γ(s)xds.

Observe that the map defined on R+ by t 7→ R(t)x0 solves equation (6) for
x0 ∈ D(A).

Theorem 2.3. [13] Assume that (H1) and (H2) hold. Then, the linear equation
(6) has a unique resolvent operator

(
R(t)

)
t≥0.

Remark 2.4. In general, the resolvent operator
(
R(t)

)
t≥0 for equation (6) does

not satisfy the semigroup law, namely,

R(t + s) 6= R(t)R(s) for some t, s > 0 .

We have the following theorem that establishes the equivalence between the
operator-norm continuity of the C0-semigroup and the resolvent operator for
integral equations.

Theorem 2.5. [10] Let A be the infinitesimal generator of a C0-semigroup(
T (t)

)
t≥0 and let

(
γ(t)

)
t≥0 satisfy (H2). Then the resolvent operator

(
R(t)

)
t≥0

for equation (6) is operator-norm continuous (or continuous in the uniform op-
erator topology) for t > 0 if and only if

(
T (t)

)
t≥0 is operator-norm continuous

for t > 0.

In this work, we will employ an axiomatic definition of the phase space B intro-
duced by Hale and Kato in [14]. Thus, (B,‖ · ‖B) will be a normed linear space
of functions mapping ]−∞,0] into X and satisfying the following axioms:
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(A1) There exist positive constant H and functions K : R+→ R+ continuous
and M : R+→R+ locally bounded, such that for a> 0, if x : ]−∞,a]→ X
is continuous on [0,a] and x0 ∈ B, then for every t ∈ [0,a], the following
conditions hold:

(i) xt ∈ B,

(ii) ‖x(t)‖ ≤ H‖xt‖B, which is equivalent to ‖ϕ(0)‖ ≤ H‖ϕ‖B for every ϕ ∈
B,

(iii) ‖xt‖B ≤ K(t) sup
0≤s≤t

‖x(s)‖+M(t)‖x0‖B.

(A2) For the function x in (A1), t → xt is a B-valued continuous function for
t ∈ [0,a].

(A3) The space B is complete.

Example [9] Let the spaces
BC the space of bounded continuous functions defined from (−∞,0] to X ;
BUC the space of bounded uniformly continuous functions defined from (−∞,0]
to X ;
C∞ :=

{
φ ∈ BC : limθ→−∞ φ(θ)exists

}
;

C0 :=
{

φ ∈ BC : limθ→−∞ φ(θ) = 0
}

, be endowed with the uniform norm

‖φ‖= sup
θ≤0
‖φ(θ)‖.

We have that the spaces BUC, C∞ and C0 satisfy conditions (A1)− (A3).

Definition 2.6. Let u∈ L2(I,U) and ϕ ∈B. A function x : ]−∞,b]→ X is called
a mild solution of equation (5) if x ∈ C([0,b];X) and satisfies the following
integral equation

x(t) =


R(t)ϕ(0)+

∫ t

0
R(t− s) [ f (s,xs)+Cu(s)] ds for t ∈ I

ϕ(t) for −∞≤ t ≤ 0.

(7)

Let’s define the notion of approximate controllability which is the main topic of
this paper.
Let x(b, x0, u) be the state value of (5) at terminal time b corresponding to the
control u and the initial value x0 = ϕ ∈ B. Introduce the set

R(b,x0) = {x(b, x0, u), u ∈ L2(I;U)},

which is called the reacheable set of system (5) at terminal time b.
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Definition 2.7. Equation (5) is said to be approximately controllable on the
interval I = [0,b] ifR(b,x0) is dense in X , i.e.,R(b,x0) = X .

We introduce the following operators to study the approximate controllability
of system (5).

Γ
0
b =

∫ b

0
R(b− s)CC∗R∗(b− s)ds, W (λ ,Γ0

b) = (λ Id +Γ
0
b)
−1,

where C∗ and R∗(t) denote the adjoints of the operators of C and R(t) respec-
tively, and we assume that the operator W (λ ,ΓT ) satisfies
(H0) λW (λ ,Γ0

b)→ 0 as λ → 0+ in the strong operator topology.
From [12], hypothesis (H0) is equivalent to the fact that the linear control sys-
tem:

x′(t) = Ax(t) +
∫ t

0
γ(t− s)x(s)ds +Cu(t) for t ∈ I = [0,b]

x0 = ϕ ∈ B,
(8)

corresponding to system (5), is approximately controllable on [0,b].

For proving the results of the paper we recall some properties of the measure of
noncompactness and the Mönch fixed-point Theorem.

Definition 2.8. [4] Let D be a bounded subset of a normed space Y . The Haus-
dorff measure of noncompactness ( shortly MNC) is defined by

β (D) = inf
{

ε > 0 : D has a f inite cover by balls o f radius less than ε

}
.

Theorem 2.9. [4] Let D, D1, D2 be bounded subsets of a Banach space Y . The
Hausdorff MNC has the following properties:

(i) If D1 ⊂ D2, then β (D1)≤ β (D2), (monotonicity).

(ii) β (D) = β (D).

(iii) β (D) = 0 if and only if D is relatively compact.

(iv) β (λD) = |λ |β (D) for any λ ∈ R, (Homogeneity)
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(v) β (D1+D2)≤ β (D1)+β (D2), where D1+D2 = {d1+d2 : d1 ∈D1, d2 ∈
D2}, (subadditivity)

(vi) β ({a}∪D) = β (D) for every a ∈ Y .

(vii) β (D) = β (co(D)), where co(D) is the closed convex hull of D.

(viii) For any map G : D(G) ⊆ X → Y which is Lipschitz continuous with a
Lipschitz constant k, we have

β (G(D)) ≤ kβ (D),

for any subset D⊆D(G).

Let
Rb = sup

t∈[0,b]
‖R(t)‖, Kb = sup

t∈[0,b]
‖K(t)‖, Mb = sup

t∈[0,b]
‖M(t)‖.

We now state the following useful result for equicontinuous subsets of
C([a,b];X), where X is a Banach space.

Lemma 2.10. [4] Let M ⊂ C([a,b];X) be bounded and equicontinuous. Then
β (M(t)) is continuous and

β (M) = sup{β (M(t)); t ∈ [a,b]}, where M(t) = {x(t); x ∈M}.

Lemma 2.11. [4] Let M ⊂ C([a,b];X) be bounded and equicontinuous. Then
the set co(M) is also bounded and equicontinuous.

To prove the existence of mild solutions to equation (5), we shall need the fol-
lowing results.

Lemma 2.12. [26] If (un)n≥1 is a sequence of Bochner integrable functions
from I into a Banach space Y with the estimation ‖un(t)‖ ≤ µ(t) for almost all
t ∈ I and every n≥ 1, where µ ∈ L1(I,R), then the function

ψ(t) = β ({un(t) : n≥ 1})

belongs to L1(I,R+) and satisfies the following estimation

β

({∫ t

0
un(s)ds : n≥ 1

})
≤ 2

∫ t

0
ψ(s)ds.
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We now state the following nonlinear alternative of Mönch’s type for selfmaps,
which we shall use in the proof of existence of mild solutions to equation (5).

Theorem 2.13. [19](Mönch, 1980) Let K be a closed and convex subset of
a Banach space Z and 0 ∈ K. Assume that F : K → K is a continuous map
satisfying Mönch’s condition, namely,

D⊆K be countable and D⊆ co({0}∪F(D)) =⇒ D is compact.

Then F has a fixed point.

3. Existence result

In this section, we prove the existence of solutions using Mönch’s fixed point
theorem. First, we show that for any xb ∈ X , by choosing a proper control uλ

(for any given λ ∈ (0,1]), there is a mild solution xλ (·,x0,u)∈ C(I,X) of system
(5). For that goal, we need to assume that:

(H3) Equation (6) has a resolvent operator
(
R(t)

)
t≥0 that is continuous in

the operator-norm topology .

(H4) The function f : I×B −→ X satisfies the following two conditions:

(i) f (·,ϕ) is measurable for ϕ ∈ B and f (t, ·) is continuous for a.e t ∈ I,

(ii) for every positive integer q, there exists a function lq ∈ L1(I,R+)

such that

sup
‖ϕ‖B≤q

‖ f (t,ϕ)‖ ≤ lq(t) for a.e. t ∈ I and liminf
q→+∞

∫ b

0

lq(t)
q

dt = l <+∞,

(iii) there exists a function h ∈ L1(I,R+) such that for any bounded and
equicontinuous set D⊂ B,

β ( f (t,D))≤ h(t) sup
−∞<θ≤0

β (D(θ)) for a.e t ∈ I,

where
D(θ) = {φ(θ) : φ ∈ D}.
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(H5)

τ = 2Rb‖h‖L1

(
1+

2(M2Rb)
3

λ 2

)
< 1,

where Rb = sup
0≤t≤b

‖R(t)‖ and M2 is such that M2 = ‖C‖.

For any xb ∈ X , x : ]−∞,b]→ X mild solution of equation (5) and λ ∈ (0,1], we
define the control uλ (t) as follows.

uλ (t) =C∗R∗(b− t)W (λ ,Γ0
b)
{

xb−R(b)(x0)−
∫ b

0
R(b− s) f (s,xs)ds

}
.

Using this control, we define the operator Pλ : C(I,X)→C(I,X) as follows.

Pλ x(t) = R(t)ϕ(0)+
∫ t

0
R(t− s) f (s,xs)ds

+
∫ t

0
R(t− s)CC∗R∗(t− s)W (λ ,Γ0

b)
{

xb−R(b)ϕ(0)−
∫ b

0
R(b− s) f (s,xs)ds

}
.

One can see that the a fixed point of Pλ is a mild solution of equation (5). So
to show the existence of mild solutions, it suffices to show that Pλ has a fixed
point. We have the following theorem.

Theorem 3.1. Suppose hypotheses (H3)− (H5) are satisfied. Then, equation
(5) has a solution, provided that(

1+
b
λ
(RbM2)

2
)

RbKbl < 1 (9)

.

Proof. Let Kb = supt∈[0,b] ‖K(t)‖. For any xb ∈ X and λ ∈ (0,1], we define the
control uλ (t) as usual by the following formula:

uλ
x (t) =C∗R∗(b− t)W (λ ,Γ0

b)
{

xb−R(b)ϕ(0)−
∫ b

0
R(b− s) f (s,xs)ds

}
.

For each x ∈ C([0,b],X) such that x(0) = ϕ(0), we define its extension x̃ from
]−∞,b] to X as follows

x̃(t) =


x(t) if t ∈ [0,b]

ϕ(t) if t ∈]−∞,0]

We define the following space

Eb =
{

x :]−∞,b]→ X such that x|I ∈ C([0,b],X) and x0 ∈ B
}
.
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where x|I is the restriction of x to I.
We show using this control that the operator Pλ : Eb→ Eb defined by

(Pλ x)(t) = R(t)ϕ(0)+
∫ t

0
R(t− s)

[
f (s, x̃s)+Cuλ

x (s)
]

ds for t ∈ I = [0,b]

has a fixed-point. This fixed point is then a mild solution of equation (5). For
each ϕ ∈ B, we define the function y ∈ C([0,b],X) by y(t) = R(t)ϕ(0) and its
extension ỹ on ]−∞,0] by

ỹ(t) =


y(t) if t ∈ [0,b]

ϕ(t) if t ∈]−∞,0]

For each z ∈ C([0,b],X), set x̃(t) = z̃(t)+ ỹ(t), where z̃ is the extension by zero
of the function z on ]−∞,0]. Observe that x satifies (7) if and only if z(0) = 0
and

z(t) =
∫ t

0
R(t− s)

[
f (s, z̃s + ỹs)+Cuλ

z (s)
]

ds for t ∈ [0,b],

where
uλ

z (t)

= C∗R∗(b− t)W (λ ,Γ0
b)
{

xb−R(b)ϕ(0)−
∫ b

0 R(b− s) f (s, z̃s + ỹs)ds
}
(t).

Now let
E0

b =
{

z ∈ Eb such that z0 = 0
}
.

Thus E0
b is a Banach space provided with the supremum norm. Define the oper-

ator Γλ : E0
b → E0

b by

(Γλ z)(t) =
∫ t

0
R(t− s)

[
f (s, z̃s + ỹs)+Cuλ

z (s)
]

ds for t ∈ [0,b]

Note that the operator Pλ has a fixed point if and only if Γλ has one. So to prove
that Pλ has a fixed point, we only need to prove that Γλ has one.
For each positive number q, let Bq = {z ∈ E0

b : ‖z‖ ≤ q}. Then, for any z ∈ Bq,
we have by axiom (A1) that

‖zs + ys‖ ≤ ‖zs‖B+‖ys‖B
≤ K(s)‖z(s)‖+M(s)‖z0‖B+K(s)‖y(s)‖+M(s)‖y0‖B
≤ Kb‖z(s)‖+Kb‖R(t)‖‖ϕ(0)‖+Mb‖ϕ‖B
≤ Kb‖z(s)‖+KbRbH‖ϕ‖B+Mb‖ϕ‖B
≤ Kb‖z(s)‖+

(
KbRbH +Mb

)
‖ϕ‖B

≤ Kb q+
(

KbRbH +Mb

)
‖ϕ‖B
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Thus,
‖zs + ys‖ ≤ Kb q+

(
KbRbH +Mb

)
‖ϕ‖B =: q′.

We shall prove the theorem in the following steps.

Step1. We claim that there exists q > 0 such that Γλ (Bq)⊂ Bq. We proceed by
contradiction. Assume that it is not true. Then for each positive number q, there
exists a function zq ∈ Bq, such that Γλ (zq) /∈ Bq, i.e., ‖(Γλ zq)(t)‖> q for some
t ∈ [0,b]. Now we have that

q <
∥∥∥(Γλ zq)(t)

∥∥∥
≤ Rb

∫ b

0

∥∥∥ f (s, z̃q
s + ỹs)

∥∥∥ds+Rb

∫ b

0
‖Cuλ

zq(s)‖ds

≤ Rb

∫ b

0

∥∥∥ f (s, z̃q
s + ỹs)

∥∥∥ds

+ Rb

∫ b

0

∥∥∥CC∗R∗(b− t)W (λ ,Γ0
b)
[
xb−R(b)ϕ(0)−

∫ b

0
R(b− s) f (s, z̃q

s )ds
]∥∥∥ds

≤ b
λ
(RbM2)

2
(
‖xb‖+Rb‖ϕ(0)‖+Rb

∫ b

0
‖ f (s, z̃q

s )‖ds
)
+Rb

∫ b

0

∥∥∥ f (s, z̃q
s + ỹs)

∥∥∥ds

≤ b
λ
(RbM2)

2
(
‖xb‖+RbH‖ϕ‖B+Rb

∫ b

0
lq′(s)ds

)
+Rb

∫ b

0
lq′(s)ds,

where q′ := Kb q+q0, with q0 :=
(

KbRbH +Mb

)
‖ϕ‖B.

Hence

q≤
(

1+
b
λ
(RbM2)

2
)

Rb

∫ b

0
lq′(s)ds+

b
λ
(RbM2)

2
(
‖xb‖+RbH‖ϕ‖B

)
.

Dividing both sides by q and noting that q′ = Kbq+ q0→ +∞ as q→ +∞, we
obtain that

1≤
(

1+
b
λ
(RbM2)

2
)

Rb


∫ b

0
lq′(s)ds

q

+

b
λ
(RbM2)

2
(
‖xb‖+RbH‖ϕ‖B

)
q

and

liminf
q→+∞


∫ b

0
lq′(s)ds

q

= liminf
q→+∞


∫ b

0
lq′(s)ds

q′
q′

q

= lKb.
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Thus we have, 1 ≤
(

1+ b
λ
(RbM2)

2
)

RbKbl, and this contradicts (9). Hence for

some positive number q, we must have Γλ (Bq)⊂ Bq.

Step2. Γλ : E0
b → E0

b is continuous. In fact let Γλ := Γλ
1 +Γλ

2 , where

(Γλ
1 z)(t) =

∫ t

0
R(t− s) f (s, z̃s + ỹs)ds and (Γλ

2 z)(t) =
∫ t

0
R(t− s)Cuλ

z (s)ds.

Let {zn}n≥1 ⊂ E0
b with zn→ z in E0

b . Then there exists a number q > 1 such that
‖zn(t)‖ ≤ q for all n and a.e. t ∈ I. So zn, z ∈ Bq. By (H4)− (i), f (t, z̃n

t + ỹt)→
f (t, z̃t + ỹt) for each t ∈ [0,b]. And by (H4)− (ii),

‖ f (t, z̃n
t + ỹt)− f (t, z̃t + ỹt)‖ ≤ 2lq′(t).

Then we have

‖Γλ
1 zn−Γ

λ
1 z‖C ≤ Rb

∫ b

0
‖ f (s, z̃n

s + ỹs)− f (s, z̃s + ỹs)‖ds−→ 0, as n→+∞

by dominated convergence Theorem. Also we have that

‖Γλ
2 zn−Γ

λ
2 z‖C ≤ Rb

b
λ
(RbM2)

2
∫ b

0
‖ f (s, z̃n

s )− f (s, z̃s)‖ds−→ 0, as n→+∞

by dominated convergence Theorem. Thus

‖Γλ zn−Γ
λ z‖ ≤ ‖Γλ

1 zn−Γ
λ
1 z‖+‖Γλ

2 zn−Γ
λ
2 z‖ −→ 0, as n→+∞.

Hence Γλ is continuous on E0
b .

Step3. Γλ (Bq) is equicontinuous on [0,b]. In fact let t1, t2 ∈ I, t1 < t2 and
z ∈ Bq, we have
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‖(Γλ z)(t2)− (Γλ z)(t1)‖ ≤
∫ t1

0
‖R(t2− s)−R(t1− s)‖‖ f (s, z̃s + ỹs)+Cuλ

z (s)‖ds

+
∫ t2

t1
‖R(t2− s)‖‖ f (s, z̃s + ỹs)+Cuλ

z (s)‖ds

≤
∫ t1

0
‖R(t2− s)−R(t1− s)‖lq′(s)ds

+
∫ t1

0
‖R(t2− s)−R(t1− s)‖ 1

λ
Rb(M2)

2×(
‖xb‖+RbH‖ϕ‖B+Rb

∫ b

0
lq′(τ)dτ

)
ds

+
∫ t2

t1
‖R(t2− s)‖lq′(s)ds

+
∫ t2

t1
‖R(t2− s)‖ 1

λ
Rb(M2)

2×(
‖xb‖+RbH‖ϕ‖B+Rb

∫ b

0
lq′(τ)dτ

)
ds

By the continuity of
(
R(t)

)
t≥0 in the operator-norm toplogy, the dominated con-

vergence Theorem, we conclude that the right hand side of the above inequality
tends to zero and independent of z as t2→ t1. Hence Γλ (Bq) is equicontinuous
on I.

Step4. We show that the Mönch’s condition holds.
Suppose that D⊆ Bq is countable and D⊆ co({0}∪Γ(D)). We shall show that
β (D) = 0, where β is the Hausdorff MNC. Without loss of generality, we may
assume that D = {zn}n≥1. Since Γλ maps Bq into an equicontinuous family,
Γλ (D) is also equicontinuous on I.

By (H3)− (ii), (H4)− (iii) and Lemma 2.12, we have that
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β

(
{uλ

zn(t)}n≥1

)

= β

(
C∗R∗(b− t)W (λ ,Γ0

b)

{
xb−R(b)ϕ(0)

∫ b

0
R(b− t) f

(
s,{z̃n

s + ỹs}n≥1

)
ds
}

n≥1
(t)

)

≤ 1
λ

RbM2β ({xb−R(b)ϕ(0)})+ 1
λ

RbM2β

({∫ b

0
R(t−b) f

(
s,{z̃n

s + ỹs}n≥1

)
ds
}

n≥1

)

≤ 2M2(Rb)
2

λ

(∫ b

0
h(s)β

(
{z̃n

s}n≥1 +{ỹs}
)

ds
)

≤ 2M2(Rb)
2

λ

(∫ b

0
h(s)

[
β
(
{z̃n

s}n≥1

)
+β

(
{ỹs}

)]
ds
)

≤ 2M2(Rb)
2

λ

(∫ b

0
h(s)β

(
{z̃n

s}n≥1

)
ds
)
,since

{
ỹs : s ∈ [0,b]

}
is compact

≤ 2M2(Rb)
2

λ

(∫ b

0
h(s) sup

−∞<θ≤0
β
(
{z̃n

s (θ)}n≥1

)
ds

)
(

by Lemma2.10, since D = {zn}n≥1 is equicontinuous
)

≤ 2M2(Rb)
2

λ

(∫ b

0
h(s)ds

)
sup

0≤t≤b
β
(
{zn(t)}n≥1

)

This implies that

β

(
{(Γλ zn)(t)}n≥1

)
≤ β

({∫ t

0
R(t− s) f (s,{z̃n

s + ỹs}n≥1)ds
}

n≥1

)

+ β

({∫ t

0
R(t− s)Cuλ

zn(s)ds
}

n≥1

)

≤ 2Rb

(∫ b

0
h(s)ds

)
sup

0≤t≤b
β
(
{zn(t)}n≥1

)
+

4Rb(M2Rb)
3

λ 2

(∫ b

0
h(s)ds

)
sup

0≤t≤b
β
(
{zn(t)}n≥1

)
≤ 2Rb‖h‖L1 sup

0≤t≤b
β
(
{zn(t)}n≥1

)
+

4Rb(M2Rb)
3

λ 2 ‖h‖L1 sup
0≤t≤b

β
(
{zn(t)}n≥1

)
.
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It follows that

β

(
Γ

λ (D)(t)
)
≤ 2Rb‖h‖L1 sup

0≤t≤b
β

(
D(t)

)
+

4Rb(M2Rb)
3

λ 2 ‖h‖L1 sup
0≤t≤b

β

(
D(t)

)
≤

(
1+

2(M2Rb)
3

λ 2

)
2Rb‖h‖L1 sup

0≤t≤b
β

(
D(t)

)
= τ sup

0≤t≤b
β

(
D(t)

)
That is β

(
Γλ (D(t))

)
≤ τβ

(
D(t)

)
. But from Mönch’s condition, we have

β

(
D(t)

)
≤ β

(
co
(
{0}∪Γ

λ (D(t))
))

= β

(
Γ

λ (D(t))
)
≤ τβ

(
D(t)

)
.

This implies that β

(
D(t)

)
= 0, since τ < 1, which implies that β

(
Γλ (D)(t)

)
=

0. This shows that Γλ (D)(t) is compact, that is {Γλ (x)(t); x ∈ D} is compact
as desired. So Kλ (D) is equicontinuous and equibounded for all 0 < λ ≤ 1
and therefore by Ascoli-Arzela’s Theorem, we have that Γλ (D) is relatively
compact.
But

β

(
D
)
≤ β

(
co
(
{0}∪Γ

λ (D)
))

= β

(
Γ

λ (D)
)
.

Since D and Γλ (D) are equicontinuous on [0,b] and D is bounded, it follows by
Lemma 2.10 that β

(
Γλ (D)

)
≤ τβ

(
D
)

, where τ is as defined in (H5). Thus
from the Mönch condition, we get that

β

(
D
)
≤ β

(
co({0}∪Γ

λ (D)
)
= β

(
Γ

λ (D)
)
≤ τβ

(
D
)
,

and since τ < 1, this implies β

(
D
)
= 0, which implies that D is relatively

compact as desired in Bq and the Mönch condition is satisfied. We conclude
by Theorem 2.13, that for each 0 < λ ≤ 1, Γλ has a fixed point z in Bq. Then
x = z+ y is a fixed point of Pλ in Eb which is a mild solution of equation (5).
And the proof is complete.

�

4. Approximate Controllability Results

We are now in the position to prove the approximate controllability of equation
(5). We show that under certain assumptions, the approximate controllability
of (5) is implied by the approximate controllability of the corresponding linear
system (8). We prove that xλ (b)→ xb in X , which implies the approximate
controllability of (5). We have the following result.
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Theorem 4.1. Assume that the hypotheses (H0), (H3) are satisfied and in addi-
tion, the function f is continuous and uniformly bounded. Then, equation (5) is
approximately controllable on [0,b].

Proof: Let xb ∈ X , λ ∈ (0,1) and xλ ∈ Bq be the mild solution of equation (5)
obtained in Theorem 3.1 under the control uλ given above. So xλ satisfies:

xλ (b) = R(b)ϕ(0)+
∫ b

0
R(b− s) f (s,xλ

s )ds

+
∫ b

0
R(b− s)CC∗R∗(b− t)W (λ ,Γ0

b
)×{

xb−R(b)ϕ(0)−
∫ b

0
R(b− s) f (s,xλ

s )ds
}

ds.

From the definition of Γ0
b
, it follows that

xλ (b) = xb +
(

Γ
0
b
W (λ ,Γ0

b
)− Id

)[
xb−R(b)ϕ(0)−

∫ b

0
R(b− s) f (s,xλ

s )ds
]

ds

= xb +λW (λ ,Γ0
b
)

[
xb−R(b)ϕ(0)−

∫ b

0
R(b− s) f (s,xλ

s )ds
]

ds

We obtain that

∥∥∥xλ (b)− xb

∥∥∥= ∥∥∥∥λW (λ ,Γ0
b
)

[
xb−R(b)ϕ(0)−

∫ b

0
R(b− s) f (s,xλ

s )ds
]

ds
∥∥∥∥

By the uniform boundedness of f , we have that there exists N∗ > 0 such that

∫ b

0
‖ f (s,xλ

s )‖2 ≤ b(N∗)2,

and consequently the sequence { f (s,xλ
s )}λ is bounded (uniformly in λ )

in L2(I,X). Then there is a subsequence still denoted by { f (s,xλ
s )}λ , that

weakly converges to, say, F(s) in L2(I,X). Then, we have that:

∥∥∥∫ T

0
R(T − s)

[
f (s,xλ (s))ds−F(s)

]∥∥∥ → 0 as λ → 0+.



APPROXIMATE CONTROLLABILITY FOR INTEGRODIFFERENTIAL EQUATIONS 357

It follows from (H0) that∥∥∥xλ (b)− xb

∥∥∥ =

∥∥∥∥λW (λ ,Γ0
b
) [xb−R(b)ϕ(0)]−λW (λ ,Γ0

b
)

[∫ b

0
R(b− s) f (s,xλ

s )ds
]

ds
∥∥∥∥

≤
∥∥∥λW (λ ,Γ0

b
)
[
xb−R(b)ϕ(0)

]∥∥∥+∥∥∥λW (λ ,Γ0
b
)

(∫ b

0
R(b− s)F(s)ds

)∥∥∥
+

∥∥∥λW (λ ,Γ0
b
)

(∫ b

0
R(b− s)

[
f (s,xλ

s )−F(s)
]

ds
)∥∥∥

≤
∥∥∥λW (λ ,Γ0

b
)
[
xb−R(b)ϕ(0)

]∥∥∥+∥∥∥λW (λ ,Γ0
b
)

(∫ b

0
R(b− s)F(s)ds

)∥∥∥
+

∥∥∥∫ b

0
R(b− s)

[
f (s,xλ

s )−F(s)
]

ds
∥∥∥−→ 0 as λ → 0+.

So, xλ (b)→ xb holds in X and therefore, we obtain the approximate controlla-
bility of equation (5), and the proof is complete.

�

we now illustrate our main result by the following example.

5. Example

Let Ω be bounded domain in Rn with smooth boundary and consider the follow-
ing nonlinear integrodifferential equation.



∂v(t,ξ )
∂ t = ∆v(t,ξ )+

∫ t

0
ζ (t− s)∆v(s,ξ )ds+

∫ 0

−∞

α(θ)g(t,v(t +θ ,ξ ))dθ

+ηω(t,ξ ) for t ∈ I = [0,1] and ξ ∈Ω

v(t,ξ ) = 0 for t ∈ [0,1] and ξ ∈ ∂Ω

v(θ ,ξ ) = φ(θ ,ξ ) for θ ∈]−∞,0] and ξ ∈Ω,
(10)

where η > 0, g : [0,1]×R→ R is continuous and Lipschitzian with respect to
the second variable, the initial data function φ : R−×Ω→R is a given function,
ω : [0,1]×Ω→ R continuous in t, α : R−→ R is continuous, α ∈ L1(R−,R)
and ζ ∈W 1,1(R+,R+).



358 PATRICE NDAMBOMVE - KHALIL EZZINBI

Let X = U = L2(Ω) and the phase space B = BUC(R−,X), the the space of
uniformly bounded continuous functions endowed with the following norm

‖ϕ‖B = sup
θ≤0
‖ϕ(θ)‖.

Then, the space BUC(R−,X) satisfies axioms (A1), (A2) and (A3).

We define A :D(A)⊂ X → X by:
D(A) = H2(Ω)∩H1

0 (Ω)

Av = ∆v for v ∈ D(A).

Theorem 5.1. (Theorem 4.1.2, p. 79 of [24]) A is the infinitesimal generator of
a C0-semigroup on L2(Ω).

A generates a C0-semigroup
(
T (t)

)
t≥0 on L2(Ω).

Moreover,
(
T (t)

)
t≥0 generated by A above, is compact for t > 0 and therefore

is operator-norm continuous for t > 0. Thus by Theorem 2.5, the corresponding
resolvent operator is operator-norm continuous for t > 0.
Define

x(t)(ξ ) = v(t,ξ ), x′(t)(ξ ) =
∂v(t,ξ )

∂ t
, ω(t,ξ ) = u(t)(ξ ).

ϕ(θ)(ξ ) = φ(θ ,ξ ) for θ ∈]−∞,0] and ξ ∈Ω.

f (t,ψ)(ξ ) =
∫ 0

−∞

α(θ)g(t,ψ(θ)(ξ ))dθ for θ ∈]−∞,0] and ξ ∈Ω.

C : X → X be defined by
(

Cu(t)
)
(ξ ) = Cu(t)(ξ ) = ηω(t,ξ ).

(γ(t)x)(ξ ) = ζ (t)∆v(t,ξ ) for t ∈ [0,1], x ∈ D(A) and ξ ∈Ω.

We suppose that ϕ ∈ BUC(R−,X). Then, equation (10) is then transformed into
the following form

x′(t) = Ax(t) +
∫ t

0
γ(t− s)x(s)ds + f (t,xt)+Cu(t) for t ∈ I = [0,1],

x0 = ϕ ∈ B.
(11)

Suppose there exists a continuous function p ∈ L1(I;R+) such that

|g(t,y)| ≤ p(t)|y| for t ∈ I and y ∈ R.
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One can see that f is Lipschitz continuous with respect to the second variable
and moreover for ϕ ∈ B, we have we have

sup
‖ϕ‖B≤q

∥∥∥ f (t,ϕ)
∥∥∥≤ q‖α‖ p(t).

So f satisfies (H4)− (i) and (H4)− (ii) with lq(t) = q‖α‖ p(t). Also f satisfies
(H4)− (iii) by condition (viii) of Theorem 2.9, since f is Lipschitz. Moreover,
f is uniformly bounded, and b, Rb, and λ can be chosen such that (H5) and
condition (9) are satisfied.
To obtain the approximate controllability for equation (10), it suffices for us to
verify that hypothesis (H0) is satisfied. We have the following result:

Lemma 5.2. ( [12]) Let γ(t)∈ L1(R+)∩C1(R+) with primitive B(t)∈ L1
loc(R+)

such that B(t) is non-positive, non-decreasing and B(0) = −1. If the operator
A is self-adjoint and positive semi-definite, then the resolvent operator R(t) as-
sociated to (6) is self-adjoint as well.

By Lemma 5.2 above, the resolvent operator R(t) of (10) is self-adjoint. So it
follows that
C∗R∗(t)ξ = R(t)ξ , for any ξ ∈ X .
Let now C∗R∗(t)ξ = 0, for all t ∈ [0,b]. Then, C∗R∗(t)ξ = R(t)ξ = 0, t ∈ [0,b].
It follows from the fact that R(0) = Id that ξ = 0, so from [6] (Theorem 4.1.7)
that the linear control system corresponding to (10) is approximately control-
lable on [0,b], and therefore (H0) holds. Hence by Theorem 3.1 and Theorem
4.1, equation (10) is approximately controllable on [0,b] provided that condition
(H3) is fulfilled.

Conclusion

This paper contains the approximate controllability of some partial functional
integrodifferential differential equation with infinite delay in Hilbert spaces. We
use the resolvent operator theory, the Hausdorff Measure of Noncompactness
and the Mönch fixed point theorem techniques to prove the existence of mild
solutions. The result shows that without assuming the compactness of the re-
solvent operator for the associated linear homogeneous part, the Mönch fixed
point theorem can effectively be used to obtain approximate controllability re-
sults under some sufficient conditions such as the approximate controllability
of the associated linear homogeneous part. Moreover, the example presented in
section 5 illustrates an application of the obtained results. The results can be
extended to partial functional integrodifferential equation with nonlocal and im-
pulsive conditions whose linear parts admit a resolvent operator in the sense of
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R. Grimmer. We shall investigate their approximate controllability in our future
work.
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