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PERFECT ESSENTIAL GRAPHS

M. JAVAD NIKMEHR - A. AZADI - B. SOLEYMANZADEH

Let R be a commutative ring with identity, and let Z(R) be the set of
zero-divisors of R. Let EG(R) be a simple undirected graph associated
with R whose vertex set is the set of all nonzero zero-divisors of R and
and two distinct vertices x,y in this graph are joined by an edge if and
only if AnnR(xy) is an essential ideal. A perfect graph is a graph in which
the chromatic number of every induced subgraph equals the size of the
largest clique of that subgraph. In this paper, we characterize all Artinian
rings whose EG(R) is perfect.

1. Introduction

Usually, after translating of algebraic properties of rings into graph-theoretic
language, some problems in ring theory might be more easily solved. It leads to
arising interesting algebraic and combinatorics problems. Therefore, the study
of graphs associated with rings has attracted many researches. There are a lot
of papers which apply combinatorial methods to obtain algebraic results in ring
theory; for instance see. Moreover, for the most recent study in this field see
[2, 5] and [7].

Throughout this paper, all rings are assumed to be commutative with iden-
tity. We denote by Z(R), U(R), Max(R) and Nil(R), the set of all zero-divisors,
the set of units, the set of all maximal ideals of R and the set of all nilpotent
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elements of R, respectively. The ring R is said to be reduced if it has no
nonzero nilpotent element. For every ideal I of R, we denote the annihilator
of I by AnnR(I). A nonzero ideal I of R is called essential, if it has a nonzero
intersection with any nonzero ideal of R. Some more definitions about commu-
tative rings can be find in [1, 3, 9]. We use the standard terminology of graphs
following [4, 8].

Let G = (V,E) be a graph, where V = V (G) is the set of vertices and E =
E(G) is the set of edges. By G, we mean the complement graph of G. We write
u−v to denote an edge with ends u,v. A graph H = (V0,E0) is called a subgraph
of G if V0 ⊂V and E0 ⊂ E. Moreover, H is called an induced subgraph by V0,
denoted by G[V0], if V0 ⊂ V and E0 = {u,v ∈ E|u,v ∈ V0}. Also G is called a
null graph if it has no edge. A complete graph of n vertices is denoted by Kn.
An n-part graph is one whose vertex set can be partitioned into n subsets, so that
no edge has both ends in any one subset. A complete n-partite graph is one in
which each vertex is jointed to every vertex that is not in the same subset. In a
graph G, a vertex x is isolated, if no vertices of G is adjacent to x. A clique of G
is a maximal complete subgraph of G and the number of vertices in the largest
clique of G, denoted by ω(G), is called the clique number of G. For a graph G,
let χ(G) denote the chromatic number of G, i.e., the minimal number of colors
which can be assigned to the vertices of G in such a way that every two adjacent
vertices have different colors. Note that for every graph G, ω(G) ≤ χ(G). A
graph G is said to be weakly perfect if ω(G) = χ(G). A perfect graph G is a
graph in which the chromatic number of every induced subgraph equals the size
of the largest clique of that subgraph.

Let R be a commutative ring. In this paper, we consider a simple undirected
graph associated with R EG(R) (see [6]) whose vertex set equals the set of
all nonzero zero-divisors of R and two distinct vertices x,y in this graph are
joined by an edge if and only if AnnR(xy) is an essential ideal. In this paper, we
characterize all Artinian rings whose EG(R) is perfect.

2. On perfect graph

We begin with the following useful lemma.

Lemma 2.1. [6] Let R be a nonreduced ring. Then the following statements
hold.

(1) For every x ∈ Nil(R)∗, x is adjacent to all other vertices.

(2) EG(R)[Nil(R)∗] is a (induced) complete subgraph of EG(R).

It was shown in [6, Lemma 3.1] that if x is a nilpotent element of R, then
AnnR(x) is an essential ideal of R. Here we have the following result:
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Lemma 2.2. For every x ∈ Nil(R), AnnR(x) is an essential ideal of R.

To prove our main results we need the following celebrate theorem.

Theorem 2.3 (see [4] The Strong Perfect Graph Theorem). A graph G is perfect
if and only if neither G nor G contains an induced odd cycle of length at least 5.

Corollary 2.4. Let G be a graph and {V1,V2} be a partition of V (G). If G[Vi] is
a complete graph, for every 1≤ i≤ 2, then G is a perfect graph.

Proof. By Theorem 2.3, it is enough to show that G and G contain no induced
odd cycle of length at least 5. Let a1− a2− ·· · − an− a1 be an induced odd
cycle of length at least 5 in G. Since V = V1 ∪V2, we have |{a1,a2, . . . ,an}∩
V1| ≥ 3 or |{a1,a2, . . . ,an}∩V2| ≥ 3. This is a contradiction as G[V1] and G[V2]
are complete graphs. Also, since G[V1] and G[V2] are complete graphs, G is a
bipartite graph and thus contains no induced odd cycle of length at least 5.

The following lemmas have a key role in this paper.

Lemma 2.5. Let n be a positive integer and R∼= R1×R2×·· ·×Rn, where Ri is
a ring, for every 1≤ i≤ n. If EG(R) contains no induced odd cycle of length at
least 5, then n≤ 4.

Proof. Suppose that n≥ 5. Then we can easily get

(1,0,0,1,0,0, . . . ,0)− (0,1,0,0,1,0, . . . ,0)− (1,0,1,0,0,0, . . . ,0)−

(0,0,0,1,1,0, . . . ,0)− (0,1,1,0,0,0, . . . ,0)− (1,0,0,1,0,0, . . . ,0)

is a cycle of length 5. Thus Theorem 2.3 lead to a contradiction. So n ≤
4.

Lemma 2.6. Let R∼= R1×·· ·×Rn, a = (x1,x2, . . . ,xn) and b = (y1,y2, . . . ,yn),
where n is a positive integer, every Ri is an Artinian local ring and xi,yi ∈ Ri,
for every 1≤ i≤ n.

(1) a−b is an edge of EG(R) if and only if xiyi ∈ Nil(Ri), for all 1≤ i≤ n.

(2) a is not adjacent to b in EG(R) if and only if x jy j ∈ U(R j), for some
1≤ j ≤ n.

(3) a−b is an edge of EG(R) if and only if xiyi ∈ U(Ri), for some 1≤ i≤ n.

(4) a is not adjacent to b in EG(R) if and only if x jy j ∈ Nil(R j), for all 1 ≤
j ≤ n.
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Proof. (1) Assume that xiyi ∈Nil(Ri), for every 1≤ i≤ n. Then ab∈Nil(R).
This, together with Lemma 2.2, implies that AnnR(ab) is an essential ideal
of R. Hence a is adjacent to b.

Conversely, let a− b is an edge of EG(R). We claim that xiyi ∈ Nil(Ri),
for every 1 ≤ i ≤ n. Assume to the contrary, x jy j 6∈ Nil(R j), for some
1 ≤ j ≤ n. Since R j is Artinian local ring, we have x jy j ∈ U(R j). Hence
AnnR(ab)∩ 0× ·· · × 0×R j × 0× ·· · × 0 = (0, . . . ,0) and thus a is not
adjacent to b, a contradiction and so the claim is proved.

(2) Let a is not adjacent to b in EG(R), by Part (1), xiyi 6∈ Nil(Ri), for some
1 ≤ i ≤ n. This together with the fact Ri is Artinian local implies that
xiyi ∈ U(Ri). Converse is clear.

(3) is obtained by Part 2.

(4) is obtained by Part 1.

Lemma 2.7. Let S1,S2,S3,S4 be rings such that S1 ∼= R1, S2 ∼= R1×R2, S3 ∼=
R1×R2×R3 and S4 ∼= R1×R2×R3×R4, where Ri is a ring, for every 1≤ i≤ n.
Then if EG(S4) is a perfect graph, then EG(S3), EG(S2) and EG(S1) are perfect
graphs.

Proof. As EG(S4) is a perfect graph, it follows that EG(S4)[A] is a perfect
graph, where A = {(x1,x2,x3,x4) ∈ S4| x4 = 0}. It is clear that EG(S4)[A] ∼=
EG(S3). Thus EG(S3) is a perfect graph. Similarly, EG(S2) and EG(S1) are
perfect graphs

We are now in a position to state our main result in this section.

Theorem 2.8. Let R be an Artinian ring. Then EG(R) is a perfect graph if and
only if |Max(R)| ≤ 4.

Proof. First let EG(R) be a perfect graph. Since R is an Artinian ring, for some
positive integer n, R∼= R1×·· ·×Rn, where Ri is an Artinian local ring, for every
1≤ i≤ n. Now, by Theorem 2.3 and Lemma 2.5, n≤ 4. To prove the converse,
By Theorem 2.3, it is enough to show that EG(R) and EG(R) contains no in-
duced odd cycle of length at least 5. By Lemma 2.7, we need to prove the only
case that n = 4. So let R∼= R1×R2×R3×R4, where Ri is an Artinian local ring.
Indeed, we have the following claims:
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Claim 1. EG(R) contains no induced odd cycle of length at least 5. We
consider the following partition for vertices of EG(R).

A = {{(x1,x2,x3,x4) | xi ∈ Nil(Ri) for all i}\{(0,0,0,0)}},

B = {(x1,x2,x3,x4)| for some i, xi 6∈ Nil(Ri)}.

Thus A∩B = ∅ and V (EG(R)) = A∪B. Also we consider the following
partition for B.

B1 = {(x,y,z,w) ∈ B | x ∈ U(R1)},

B2 = {(x,y,z,w) ∈ B | x ∈ Nil(R1) and y ∈ U(R2)},

B3 = {(x,y,z,w) ∈ B | x ∈ Nil(R1), y ∈ Nil(R2) and z ∈ U(R3)},

B4 = {(x,y,z,w) ∈ B | x ∈ Nil(R1), y ∈ Nil(R2), z ∈ Nil(R3) and w ∈ U(R4)}.

It is easy to see that B = ∪4
i=1Bi and Bi∩B j = ∅ for every i 6= j. Note that we

denote elements of B j by ai = (xi,yi,zi,wi) for all 1≤ j ≤ 4.
Now, assume to the contrary, a1−a2−·· ·−an−a1 is an induced odd cycle

of length at least 5 in EG(R). We consider the following cases.
Case (1) {a1, . . . ,an}∩A =∅. Let ai ∈ {a1, . . . ,an}∩A, for some 1≤ i≤ n.

Then by Lemma 2.1, ai is adjacent to all other vertices, a contradiction. Thus
{a1, . . . ,an}∩A =∅.

Case (2) {a1, . . . ,an}∩B4 =∅. Assume to the contrary and with no loss of
generality, a1 = (x1,y1,z1,w1) ∈ B4. Then

a1 ∈ Nil(R1)×Nil(R2)×Nil(R3)×U(R4).

Then the fourth components of a2 and an must be in Nil(R4). Since x3x1,y1y3
and z1z3 are nilpotent elements and a3 is not adjacent to a1, by part 2 of Lemma
2.6, we conclude that the fourth component of a3 must be in U(R4). This to-
gether with a4 is adjacent to a3 implies that the fourth component of a4 is nilpo-
tent element and so a4a1 ∈ Nil(R). Therefore by Lemma 2.2, we have a4 is
adjacent to a1, which is a contradiction. So the assertion is proved.

Case (3) {a1, . . . ,an}∩B1 =∅. Assume to the contrary and with no loss of
generality, a1 = (x1,y1,z1,w1) ∈ B1. It is easy to see that for every 1 ≤ i ≤ 4,
there is no adjacency between two vertices of Bi. This together with Case (2)
implies that an and a2 are in B2∪B3. We consider the following three subcases.

subcase (1) {an,a2} ⊂ B3. We can let

{an,a2} ⊂ Nil(R1)×Nil(R2)×U(R3)×R4.
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Then the third components of a1 and a3 must be in Nil(R3). Also since an is
not adjacent to a3, by part 2 of Lemma 2.6, the fourth components of an and a3
must be in U(R4). This yields

a1 ∈ U(R1)×R2×Nil(R3)×R4,

an ∈ Nil(R1)×Nil(R2)×U(R3)×U(R4),

a3 ∈ R1×R2×Nil(R3)×U(R4).

Then the fourth components of a1 and a2 must be in Nil(R4). Hence we find
that

a1 ∈ U(R1)×R2×Nil(R3)×Nil(R4),

a2 ∈ Nil(R1)×Nil(R2)×U(R3)×Nil(R4).

Since a2 is not adjacent to a4, the third components of a4 must be in U(R3).
This implies that a4 is not adjacent to an and so n≥ 7. It is easy to see that the
third component of a5 must be in Nil(R3) and so a5a2 ∈ Nil(R). This implies
that a5−a2, a contradiction. So in this case the assertion is proved.

Subcase (2) {an,a2} ⊂ B2. By a similar way as used in Subcase 1, we get a
contradiction.

Subcase (3). an ∈ B2 and a2 ∈ B3. By a similar way as used in Subcase (1),
we get a contradiction. Thus {a1, . . . ,an}∩B1 =∅.
By the above cases {a1, . . . ,an}⊆B2∪B3, but this is contradicts the fact EG(R)[B2∪
B3] is a bipartite graph, and thus EG(R) contains no induced odd cycle of length
at least 5.

In Claim 2, A, B and Bi are sets that mentioned in Claim 1.
Claim 2. EG(R) contains no induced odd cycle of length at least 5. We show
that EG(R) contains no induced odd cycle at least 5. Assume to the contrary,

a1−a2−·· ·−an−a1

is an induced odd cycle of length at least 5 in EG(R). It is clear that EG(R)[A]
is a null graph and so {a1, . . . ,an}∩A =∅. First we show that

{a1, . . . ,an}∩B4 =∅.

Assume to the contrary and with no loss of generality, a1 = (x1,y1,z1,w1) ∈
B4. Then a1 ∈ Nil(R1)×Nil(R2)×Nil(R3)×U(R4). This together with part 3
of Lemma 2.6 implies that the forth components of a2 and an must be in U(R4)
and so we have

an ∈ R1×R2×R3×U(R4),

a2 ∈ R1×R2×R3×U(R4).



PERFECT ESSENTIAL GRAPHS 285

It is easy to see that a2 is adjacent to an, a contradiction, and so

{a1, . . . ,an}∩B4 =∅.

Finally to complete the proof, we prove that {a1, . . . ,an}∩B3 =∅. To get a
contradiction, let a1 = (x1,y1,z1,w1) ∈ B3. Then

a1 ∈ Nil(R1)×Nil(R2)×U(R3)×R4.

Since a1− an, a1− a2 and a2 is not adjacent to an, we consider the following
two cases.
Case (1)

a1 ∈ Nil(R1)×Nil(R2)×U(R3)×U(R4),

a2 ∈ R1×R2×U(R3)×Nil(R4),

an ∈ R1×R2×Nil(R3)×U(R4).

Since a3 is not adjacent to a1, the third and the fourth components a3 must be
nilpotent. On the other hand, a3 is adjacent to a2. This implies that x3x2 ∈U(R1)
or y2y3 ∈ U(R2).
First suppose that x3x2 ∈ U(R1). Now, we know that

a3 ∈ U(R1)×R2×Nil(R3)×Nil(R4),

a2 ∈ U(R1)×R2×U(R3)×Nil(R4).

This together with that a3 is adjacent to a4 implies that x3x4 ∈ U(R1) or y3y4 ∈
U(R2). If x3x4 ∈U(R1), then we have x2x4 ∈U(R1). Therefore a4 is adjacent to
a2, which is a contradiction. Thus we conclude that y3y4 ∈ U(R2). This yields

a3 ∈ U(R1)×U(R2)×Nil(R3)×Nil(R4),

a4 ∈ Nil(R1)×U(R2)×R3×R4.

Since a4 is not adjacent to a1, we have

a4 ∈ Nil(R1)×U(R2)×Nil(R3)×Nil(R4).

Thus a4 is not adjacent to an and so n ≥ 7. On the other hand, since a4− a5,
the second components of a5 must be unit and so a5 is adjacent to a2, which is
a contradiction.

So, suppose that y2y3 ∈ U(R2). Similarly, we get a contradiction. Thus in
this case the assertion is proved.

Case (2)
a1 ∈ Nil(R1)×Nil(R2)×U(R3)×U(R4),
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a2 ∈ R1×R2×Nil(R3)×U(R4),

an ∈ R1×R2×U(R3)×Nil(R4).

By similar argument that of case (1), we get a contradiction.
This means that {a1, . . . ,an} ⊆ B2 ∪ B1. Clearly, EG(R)[B1], EG(R)[B2] are
complete, and thus by Corollary 2.4, EG(R)[B1∪B2] is a perfect graph, a con-
tradiction. Hence EG(R) contain no induced odd cycle of length at least 5.
Therefore by Claim 1, Claim 2 and Theorem 2.3, EG(R) is a perfect graph.
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