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Introduction
Stroke is one of leading causes of death and disability worldwide 
(1). Since it was approved by the FDA in 1996, tissue plasminogen 
activator (tPA) has become the only treatment for patients pre-
senting with stroke within 4.5 hours of onset (2–5). Recently, endo-
vascular thrombectomy has been shown to extend the therapeutic 
window for patients to within 12 hours after stroke onset by rapidly 
recanalyzing the occluded blood vessels and reestablishing tis-
sue perfusion, indicating that early tissue reperfusion can salvage 
dying brain cells (6–9). However, restoration of cerebral blood 
flow (CBF) beyond a critical time point cannot rescue irreversibly 
damaged brain cells, which leads to long-term disability in a large 
population of stroke survivors (9). High risk of brain hemorrhage 
also limits the tPA treatment to a small percentage of patients 
with ischemic stroke. Thus, there is a compelling need to develop 
therapies for early brain tissue perfusion after acute stroke and for 
enhancement of functional recovery in stroke survivors.

The neurovascular unit includes endothelial cells, vascular 
smooth muscle, glia, neurons, and associated tissue matrix proteins 
(9). Stroke induces highly dynamic alterations of the neurovascular 
unit, which contribute to the development of brain injury (9). Dur-
ing stroke recovery, ischemic brain undergoes limited remodeling, 
with a set of highly interactive processes involving components of 
the neurovascular unit and neural stem cells (10, 11).

Exosomes are endosome-derived small membrane vesicles, 
approximately 30 to 100 nm in diameter, and are released into 
extracellular fluids by cells in all living systems (12, 13). They are 
present in biofluids such as blood and the cerebrospinal fluid (CSF) 
(13). Exosomes carry proteins, lipids, and genetic materials and 
play essential roles in intercellular communication by transferring 
their cargo between source and target cells under physiological 
and pathophysiological conditions (12, 13). Emerging data indicate 
that exosomes regulate intercellular communication among com-
ponents of the neurovascular unit after stroke. In this Review, we 
highlight recent insights into the role of exosomes and exosomal 
microRNAs (miRNAs) in brain repair processes after stroke and 
discuss potential applications of exosomes for stroke therapy.

Pathophysiology of ischemic stroke
Ischemic stroke is primarily caused by thromboembolic occlu-
sion of a major artery that supplies the brain (9). When emboli or 
thrombi in situ occlude cerebral arteries, circulating platelets are 
rapidly recruited to the site of the occluded vessels (14). Plate-
lets, along with thrombin and fibrin resulting from tissue factor– 
activated blood coagulation, are the primary contributors to 
thrombus development at the site of the occluded artery (14, 15). 
Concomitantly, occlusion of a major cerebral artery triggers devel-
opment of secondary thrombosis in downstream microvessels, 
which causes dysfunction of cerebral endothelial cells, pericytes, 
and astrocytes and leads to disruption of the blood-brain barrier 
(BBB) and ischemic cell damage (16–19). The evolution of down-
stream microvascular thrombosis is heterogeneous and continues 
for hours and is highly associated with the progression of ischemic 
neuronal death from reversible to irreversible damage (14, 16–18). 
Thus, the primary goal for treatment of ischemic stroke is to rap-
idly recanalyze the occluded blood vessels, reestablish CBF in the 
ischemic cerebral microvascular bed, preserve vascular integrity, 
and minimize neuronal death (18, 20).

During stroke recovery, ischemic brain undergoes a series of 
remodeling events that lead to limited spontaneous functional 
recovery (21). Relatively quiescent cerebral endothelial cells in 
preexisting blood vessels are activated, leading to angiogenesis in 
experimental stroke models and human ischemic brain (22–25). 
In addition to cerebral endothelial cells, circulating endothelial 
progenitor cells are also involved in the generation of new blood 
vessels (26). Stroke-induced angiogenesis not only occurs in the 
periinfarct regions, but also in the ventricular/subventricular 
zone (V/SVZ) of the lateral ventricles, a neurogenic region (27). 
At early stages of recovery, angiogenic vessels are permeable, 
but new vessels become less leaky and functional when they 
mature (23, 28). Increased angiogenesis is highly associated with 
improved neurological outcomes (10).

Neural stem cells are present in adult rodent brain in the V/
SVZ and in the subgranular zone of the dentate gyrus (29). These 
neural stem cells generate new neurons throughout life (29). 
Stroke increases neurogenesis in experimental animals (30–33), 
and an increase in neural progenitor cells and neuroblasts has 
also been observed in human ischemic brain (34–38). Stroke-
induced neurogenesis couples to angiogenesis (31, 39–43). In the 

Stroke is one of the leading causes of death and disability worldwide. Stroke recovery is orchestrated by a set of highly 
interactive processes that involve the neurovascular unit and neural stem cells. Emerging data suggest that exosomes play 
an important role in intercellular communication by transferring exosomal protein and RNA cargo between source and target 
cells in the brain. Here, we review these advances and their impact on promoting coupled brain remodeling processes after 
stroke. The use of exosomes for therapeutic applications in stroke is also highlighted.

Exosomes in stroke pathogenesis and therapy
Zheng Gang Zhang1 and Michael Chopp1,2

1Department of Neurology, Henry Ford Hospital, Detroit, Michigan, USA. 2Department of Physics, Oakland University, Rochester, Michigan, USA.

Conflict of interest: The authors have declared that no conflict of interest exists.
Reference information: J Clin Invest. 2016;126(4):1190–1197. doi:10.1172/JCI81133.

https://www.jci.org
https://www.jci.org
https://www.jci.org/126/4
http://dx.doi.org/10.1172/JCI81133


The Journal of Clinical Investigation   R e v i e w  S e R i e S :  e x t R a c e l l u l a R  v e S i c l e S

1 1 9 1jci.org   Volume 126   Number 4   April 2016

of endosomal trafficking Alix, and the chaperone protein HSP70, 
although the content of exosomes varies with cell origin and physi-
ological and pathological conditions (13, 61). Tetraspanins, Alix, 
and HSP70 have been used as exosomal markers (13). Proteomic 
and RNA analyses have demonstrated that exosomes carry car-
goes of lipids, proteins, and RNAs, including mRNAs and miRNAs 
(13, 61); however, it is unclear how biological materials are loaded 
into individual exosomes.

All brain cells release exosomes (61). In vivo studies show that 
rodent and human brains release exosomes (62, 63). Compared 
with exosomes isolated from wild-type mouse brain, exosomes 
from brains of transgenic mice overexpressing human amyloid-β 
(Aβ) precursor protein (APP) contain high levels of full-length APP 
and C-terminal fragments of APP (62). Full-length and C-termi-
nal fragments of APP were also detected within exosomes from 
brain tissue of an Alzheimer’s disease (AD) patient (62). Full-
length APP cleavage by β-secretase occurs within endosomes, 
a fraction of Aβ peptides is sorted to multivesicular bodies, and 
these Aβ peptides are released in association with exosomes (64). 
In addition, exosomes isolated from prefrontal cortices of patients 
with schizophrenia and bipolar disorder showed different pro-
files of exosomal miRNAs compared with exosomes from brains 
of control subjects (63). Collectively, these studies suggest that 
exosomes released by both human and mouse brains under dis-
ease conditions change profiles of exosomal cargo proteins and 
miRNAs and that exosomes enriched with neurotoxic C-terminal 
fragments of APP may contribute to the spread of Aβ peptides to 
the brain. Although these in vivo studies are not able to indentify 
cellular sources of these exosomes, data from cultured cells sug-
gest that exosomes released by neurons and astrocytes contain Aβ 
peptides (see details below) (64, 65). It will be interesting to exam-
ine changes of brain exosomal cargo profiles and to investigate the 
role of their cargo in brain repair processes after stroke.

Exosomes and cerebral angiogenesis
In vitro and in vivo experiments have shown that exosomes from 
circulating endothelial progenitor cells transfer cargo mRNAs 
associated with the PI3K/Akt signaling pathway and proangio-
genic miRNAs, such as miR-126 and miR-296, into recipient 
endothelial cells (66, 67). Within the recipient endothelial cells, 
these miRNAs activate the PI3K/Akt signaling pathway, leading 
to angiogenesis (66, 67). In the brain, exosomes from cultured 
glioblastoma cells induce angiogenesis by delivering their con-
tents of proangiogenic proteins, mRNAs, and miRNAs into cere-
bral endothelial cells (68). Additionally, immortalized human 
brain microvascular endothelial cells secrete exosomes (69). 
Proteomic analysis has demonstrated that exosomes released by 
human cerebral endothelial cells contain 1,179 proteins, includ-
ing several receptors that carry macromolecules across the BBB, 
such as transferrin receptor and insulin receptor (69). The role 
of these exosomal proteins has not been investigated, but inter-
actions between cerebral endothelial exosomes and pericytes 
have been studied (70). Exosomes secreted by immortalized 
mouse cerebral endothelial cells stimulated by LPS and cyto-
kines transferred cargo miRNAs and increased VEGF-B mRNA 
and protein levels in recipient cerebral vascular pericytes (70). 
VEGF-B and its receptor VEGFR-1 mediate angiogenesis (71). 

V/SVZ niche, neural stem cell proliferation induced by stroke is 
anatomically associated with activated cerebral endothelial cells 
(27). Newly generated neuroblasts in the V/SVZ migrate to peri-
infarct regions along cerebral blood vessels (31, 39–43). Blockage 
of cerebral angiogenesis impairs neurogenesis in the ischemic 
brain (31, 39–43). Neuroblasts appear to have a functional role in 
brain repair processes because depletion of neuroblasts exacer-
bates repair processes and worsens neurological outcome during 
stroke recovery (44).

In addition to neural progenitor cells, neural stem cells con-
tinuously generate oligodendrocyte progenitor cells (OPCs) that 
differentiate into myelinating oligodendrocytes (45–47). Mature 
oligodendrocytes are terminally differentiated and are vulnerable 
to cerebral ischemia. During brain repair processes, new oligo-
dendrocytes generated by OPCs form myelin sheaths around the 
regenerated axons in periinfarct gray and white matter (48–51). 
Recent studies indicate that cerebral endothelial cells actively and 
mutually interact with oligodendrocytes to facilitate angiogenesis 
and oligodendrogenesis during repair after stroke (52).

Exosomes and miRNAs
Experimental studies have provided new insight into cellular 
and molecular mechanisms that underlie the intertwined brain 
remodeling processes. Both intracellular and intercellular mol-
ecules mediate the intertwined brain remodeling events via auto-
crine and paracrine signaling effects. For example, downregula-
tion of miRNA-15a (miR-15a) in cerebral vessels in a mouse model 
of focal cerebral ischemia promotes stroke-induced angiogenesis 
in the periinfarct region by increasing FGF2 and VEGF levels (53). 
VEGF released by angiogenic endothelial cells also interacts with 
its receptor VEGFR2 in neural progenitor cells to promote their 
proliferation and neuronal differentiation (54). Moreover, cerebral 
endothelial cells in white matter are involved in regeneration of 
myelinating oligodendrocytes through brain-derived neurotroph-
ic factor (BDNF) and FGF2 in injured brain (52). Stroke-induced 
limited axonal sprouting and remyelination in the periinfarct 
region are also regulated by miRNAs. In vitro and in vivo studies 
showed that stroke-induced downregulation of miR-9 and miR-
200b expression in white matter mediates remyelination (55). 
Chondroitin sulfate proteoglycans (CSPGs) produced by reactive 
astrocytes inhibit axonal regrowth (56). Overexpression of the 
miR-17-92 cluster or miR-27a in cultured cortical neurons acti-
vates neuronal intrinsic growth signals by suppressing phospha-
tase and tensin homolog (PTEN) and ras homolog family member 
A (RhoA) signals, thereby overcoming the CSPG inhibitory effect 
(57, 58). In vivo studies of spinal cord injury in adult animals have 
shown that suppression of the PTEN signaling pathway within 
neurons enhances axonal sprouting even in the presence of CSPGs 
(57, 59). Thus, the miRNA and mRNA networks play a pivotal role 
in mediating brain-repair processes (60).

Emerging data suggest that exosome-mediated intercellu-
lar communication contributes to brain remodeling by transfer-
ring cargo from source cells to target cells (ref. 12 and Figure 1). 
Exosomes can be isolated from biofluids such as CSF and from 
the supernatant of cells cultured in exosome-free medium by 
centrifugation and other methods (61). Exosomes are generally 
enriched with tetraspanin proteins (CD63, CD81), the regulator 
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Exosomes and neurogenesis
Neural stem cells in the V/SVZ of the adult 
rodent brain exist in a unique niche where 
they contact blood vessels, neighboring cells, 
and CSF, constantly exchanging molecular 
signals (79). We are just beginning to under-
stand how intercellular molecular signals 
interact among the individual components 
within the niche. There is evidence that exo-
somes in CSF and neural stem cells mediate 
neural stem cell function and immune system 
function, respectively, by regulating intercel-
lular pathways (80, 81). Exosomes isolated 
from embryonic CSF of rats and humans con-
tain protein and miRNA components of the 
IGF signaling pathway (80). CSF-exosome 
cargoes, including both proteins and miRNAs, 
are highly conserved between rodent and 
human (80). Incubation of embryonic neural 
stem cells with CSF exosomes activated the 
IGF/mTORC1 pathway in the neural stem 
cells and promoted stem cell proliferation 
(80). Exposure of neural stem cells derived 
from V/SVZ neural stem cells of adult mouse 

to proinflammatory cytokines led to release of exosomes enriched 
with mRNAs encoding components of the IFN-γ signaling pathway 
(81). These exosomes activated STAT1 signaling in recipient cells 
through exosome-associated IFN-γ and its receptor IFNGR1 (81). 
Stroke activates innate and adaptive immune responses (82); thus, 
exosomes released by neural stem cells may also communicate 
with the immune system after stroke.

Exosomes and neuronal plasticity
Neurons and glia actively communicate with each other to coordi-
nate axonal growth and myelination, and emerging data suggest 
that exosomes released by neurons and glia contribute to these 
processes (61, 83, 84). Exosomes released by cultured cortical 
neurons carried the neuronal-specific protein L1 cell adhesion 
molecule (L1CAM) and the GluR2/3 subunits, but not the NR1 
subunits, of glutamate receptors (85, 86). Increasing cytosolic 
calcium in neurons and neuronal depolarization augmented the 
secretion of exosomes (85–87). Notably, exosomes released by 
neurons contain alpha-amino-3-hydroxy-5-methyl-4-isoxazole-
propionic acid (AMPA) receptors, while exosomes secreted from 
neurites of depolarized neurons are enriched with microtubule-
associated protein 1b (MAP1b) and miRNAs that target genes 
involved in neurite plasticity (86, 87). Exosomes from neurons 
treated with a retinoic acid receptor β2 (RARβ) agonist had a dual 
effect on neurons and astrocytes to inactivate PTEN signaling, 
leading to enhancement of neurite outgrowth (88). RARβ agonist 
inactivated cortical neuron PTEN signaling by releasing exosomes 
enriched with PTEN. These PTEN-enriched neuronal exosomes 
transferred PTEN proteins into astrocytes to suppress astrocyte 
proliferation (88). In addition to neurons, exosomes released by 
cortical neurons transferred miR-124 to astrocytes and increased 
the expression of the excitatory amino acid transporter GLT-1 in 
astrocytes, suggesting a role for neuronal exosomes in regulat-

In addition, activation of the Notch signaling pathway between 
cerebral endothelial cells and pericytes is required for cerebral 
angiogenesis and BBB integrity (72). For example, Delta-like 4 
(Dll4), a membrane-bound Notch ligand expressed by cerebral 
endothelial cells, stimulates Notch3 receptors on pericytes to 
keep the cerebral vascular structure quiescent (73). Exosomes 
released from human microvascular endothelial cells (HMECs) 
and human umbilical vein endothelial cells (HVECs) contain 
Dll4 proteins and have been shown to regulate development of 
angiogenesis (74, 75). The Notch signaling pathway interacts 
with the VEGF signaling pathway (76, 77). Together, these data 
suggest that cerebral endothelial exosomes could communicate 
with pericytes to mediate angiogenesis and to maintain BBB 
integrity through the VEGF and Notch signaling pathways.

Using a centrifugation approach, we have isolated exosomes 
released by cultured primary cerebral endothelial cells and 
neural progenitor cells harvested from nonischemic and isch-
emic animals. Proteomic and miRNA array analyses revealed 
that stroke substantially changed exosomal cargo proteins and 
miRNAs compared with exosomes from those nonischemic 
cells (78), indicating that stroke alters exosomal contents from 
cerebral endothelial cells and neural progenitor cells. Exosomes 
derived from ischemic neural progenitor cells promoted primary 
endothelial cell migration and capillary tube formation, whereas 
exosomes from ischemic cerebral endothelial cells enhanced 
neural progenitor cell proliferation and neuronal differentia-
tion (78). These data suggest that exosomes secreted by cere-
bral endothelial cells and neural progenitor cells contribute to 
the observed coupling of neurogenesis and angiogenesis during 
brain repair processes after stroke. In addition, cerebral endothe-
lial exosomes could also actively engage in brain remodeling by 
communicating with brain cells, including neurons and glia, and 
with remote cells in other organs during stroke recovery.

Figure 1. Potential of exosome-mediated intercellular communication in brain remodeling 
after stroke. Exosomes transfer proteins and RNAs to influence neurogenesis, angiogenesis, 
and oligodendrogenesis. EVs, extracellular vesicles.
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are also involved in the modulation of synaptic pruning, neuro-
genesis, and oligodendrogenesis (103–105). For example, SVZ-
resident microglia mediate neuroblast migration, whereas in the  
hippocampus, IL-4– and IFN-γ–activated microglia promote 
oligodendrogenesis and neurogenesis, respectively (104, 105). 
These data imply that microglial exosomes regulate oligoden-
drogenesis and neurogenesis under physiological and patho-
physiological conditions.

Exosomes and cognitive deficits
Stroke accelerates development of cognitive decline and AD, 
which are characterized by the presence of Aβ in the brain (18). Aβ 
is secreted into the extracellular milieu, and an imbalance between 
production and clearance leads to accumulation of Aβ (106). Exo-
somes secreted by cultured N2a neuroblastoma cells contained Aβ 
(64). Internalization of neuronal exosomes by microglia enhanced 
microglial capability to take up and degrade Aβ (107). In addition, 
statins, including simvastatin, stimulated microglia to secrete 
exosomes that were enriched with insulin-degrading enzyme 
(IDE), which is known to degrade Aβ (108). These IDE-enriched 
exosomes promoted clearance of extracellular Aβ peptides (108). 
These studies suggest that microglia clear Aβ peptides by either 
internalization of exosomes derived from other cells or secre-
tion of their own exosomes after statin treatment. Treatment of 
stroke and traumatic brain injury (TBI) with simvastatin enhanced 
ischemic brain repair processes, including axonal sprouting, and 
improved spontaneous object recognition and temporal order 
memory (109, 110). However, whether the statin treatment alters 
the ability of microglial exosomes to degrade Aβ peptides in the 
injured brain remains to be investigated.

Exosomes derived from pathological cells are involved in the 
progression of neurological disorders. Exosomes derived from 
astrocytes of mice overexpressing mutant copper-zinc SOD1, a 
model of familial ALS, or astrocytes treated with Aβ peptides have 
been shown to induce motor neuron death and astrocyte apop-
tosis, respectively, by shuttling mutant SOD1 and proapoptotic 
proteins into the recipient cells (111, 112).

MSC-derived exosomes and therapies
Cell therapies including bone mesenchymal stem cells (MSCs) 
improve neurological outcome after stroke and TBI (10, 18), and 
MSC therapy is in clinical trials for stroke (Table 1). Preclinical 
studies have demonstrated that MSCs promote angiogenesis, 
neurogenesis, and white matter remodeling in the injured brain 
by secreting factors to trigger the signaling pathways that are 
involved in brain repair. These findings indicate that paracrine 
effects of administered MSCs on brain parenchymal cells, but not 
cell replacement, underlie the benefits of MSC therapy (10, 18).

Compared with other cell types, cultured MSCs secrete a 
large quantity of exosomes (113). Emerging data from indepen-
dent laboratories indicate that exosomes released from MSCs 
provide therapeutic benefits in stroke and TBI by modulating 
the brain microenvironment (114–119). Intravenous admin-
istration of MSC-derived exosomes to rats subjected to focal 
cerebral ischemia or TBI substantially improved neurological 
function by promoting neurovascular remodeling during stroke 
and TBI recovery (116, 117, 119). Subsequently, the therapeutic 

ing astrocyte function (89). AMPA receptors and MAP1b are key 
regulators of synaptic and dendritic plasticity and axonal spouting 
(86, 87, 90). The astrocyte glutamate transporter GLT-1 in rodent 
regulates extracellular glutamate levels and modulates synap-
tic activation (89). Activation of AMPA receptors contributes to 
motor function recovery after stroke (91). Suppression of neuronal 
PTEN signals and reduction of an astrocyte scar promote axonal 
sprouting in adult CNS after spinal cord injury and stroke (57, 59, 
92). Together, these data suggest that neuronal exosomes mediate 
synaptic and axonal plasticity by synaptic transfer of their cargo 
between neurons and by communication with astrocytes (86, 93), 
which potentially mediate axonal and synaptic remodeling in the 
ischemic brain.

Exosomes and glia
Exosomes derived from embryonic chicken astrocytes contain 
HSP70 (94). Treatment of astrocytes from newborn mice with 
high KCl concentrations led to release of exosomes enriched 
with synapsin, a synaptic vesicle–associated protein that enhanc-
es neurite growth and neuronal survival (95). A range of KCl 
concentrations can induce astrocyte secretion of exosomes in 
the ischemic brain (95, 96). Thus, such processes may occur in 
activated astrocytes after stroke.

Cultured oligodendrocytes secrete exosomes, and cytosolic 
calcium levels in oligodendrocytes regulate exosomal secretion 
(97). Proteomic analysis showed that oligodendrocyte-derived 
exosomes contained major myelin proteins, proteolipid protein 
(PLP), 2′3′-cyclic-nucleotide-phosphodiesterase (CNP), and 
myelin basic protein (MBP) (97). Glutamate from activated neu-
rons also stimulates oligodendrocytes to release exosomes that 
carry MBP, PLP and sirtuin-2 (SIRT2) (98). These proteins inhibit 
myelination by activating Rho/ROCK/myosin signaling in recipi-
ent target cells (99). Transmission electron microscopic analysis 
showed the presence of PLP+ multivesicular bodies in the periax-
onal space (61), indicating that exosomes contribute to neuronal-
mediated coordination of myelination (61). In addition to myelin-
ation, exosomes from oligodendrocytes can be internalized by 
neurons and thereby improve neuronal viability under conditions 
of cell stress (98). In a model of in vitro ischemia, treatment of 
cortical neurons subjected to oxygen/glucose deprivation with 
oligodendrocyte-derived exosomes reduced ischemic neuronal 
death, which resulted from activation of signaling pathways in 
neurons by exosome cargo of superoxide dismutase, catalase, 
and other antioxidant enzymes (100). Thus, it appears that oligo-
dendrocyte exosomes have multifaceted effects on neurons.

Microglia are a heterogeneous population of cells in the CNS 
and play a primary role in immune responses. Cultured prima-
ry microglia and microglia from a cell line released exosomes 
that contained the aminopeptidase CD13 and the lactate trans-
porter monocarboxylate transporter 1 (MCT-1) (101). Microglial 
exosomes transferred CD13 to neurons, evoking neuropeptide 
degradation (101). Microglia can also take up exosomes secret-
ed by other brain cells. In vitro and in vivo studies have dem-
onstrated that exosomes from OPCs were preferentially inter-
nalized by microglia via a macropinocytotic mechanism (102). 
Compared with naive microglia, microglia challenged by IFN-γ 
substantially reduced uptake of OPC exosomes (102). Microglia 
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Stroke induces immunosuppression in the peripheral blood, 
which exacerbates stroke outcome (125–127). In addition to inter-
actions with brain cells, MSC-derived exosomes administered to 
ischemic mice appear to communicate with natural killer cells 
and lymphocytes in the peripheral blood to attenuate postisch-
emic immunosuppression (114).

HSC-exosomes and therapies
Studies from myocardial ischemia have shown that engineered 
exosomes with elevated sonic hedgehog (Shh) derived from 
CD34+ hematopoietic stem cells (HSCs) transferred functional 
Shh and activated the Shh signaling pathway in recipient cells, 
enhancing angiogenesis in the border zone of infarction and pre-
serving cardiac function (128). Shh (129–131) plays an important 
role in the regulation of adult neurogenesis under physiological 
and pathological conditions (132–135). These experiments sug-
gest that exosomes can deliver functional proteins to modulate 
cellular function of recipient cells and that treatment of stroke 
with tailored Shh-exosomes could facilitate brain remodeling.

Exosomes can cross the BBB (13, 136). For example, intrana-
sal administration of Odyssey 800 dye–labeled exosomes derived 
from a glioblastoma cell line led to distribution of fluorescent par-
ticles throughout the brain, mainly in the olfactory bulb in mice 
(136). Using the Cre-loxP system, studies have demonstrated that 
intrahippocampal injection of Cre-recombinase mRNA contain-
ing exosomes into mice with a ROSA26-lacZ reporter activated 
a lacZ reporter in the hippocampal neurons (98), indicating that  
Cre-recombinase mRNA within the exosomes activates the report-
er gene in recipient neurons. Furthermore, intravenous injection 
of exosomes expressing a fusion protein consisting of the neuron-
specific rabies virus glycoprotein (RVG) peptide with the exosomal 
membrane protein LAMP2B demonstrated targeting of neurons, 
microglia, and oligodendrocytes in the brain (137). Intravenous 
administration of the RVG peptide–expressing exosomes carrying 
siRNA against opioid receptor mu (MOR) enhanced the movement 
of exosomes across the BBB and inhibited MOR expression in the 
brain (138). These data suggest that exosomes not only cross the 
BBB, but also deliver functional cargo to trigger gene expression in 
specific recipient cell types in the brain.

effect of MSC-derived exosomes has also been demonstrated 
by independent laboratories in the mouse subjected to stroke 
and TBI (114, 115). Systemic administration of MSC-derived 
extracellular vesicles to ischemic mice markedly reduced 
motor coordination deficits and enhanced angiogenesis and 
neurogenesis, while treatment of TBI mice with human MSC-
derived extracellular vesicles substantially preserved spatial 
leaning ability (114, 115). Improved neurological outcomes from 
these MSC-derived exosome studies are comparable to the 
therapeutic effect observed with MSC therapy, suggesting that 
MSC-derived exosome–mediated cell-cell communication may 
contribute to the therapeutic effect of the MSC therapy.

Exosomes transfer their cargo miRNAs to recipient cells (120, 
121) and MSC-derived exosomes contain more than 700 miRNAs 
that are bound to argonaute2 (AGO2), a component of the RNA-
induced silencing complex (RISC) (122, 123). The effect of engi-
neered MSC-derived exosomes that carry elevated miRNAs on 
brain remodeling after stroke has been investigated in vitro and in 
vivo (118, 119). Treatment of stroke models with MSCs abolished 
stroke-induced downregulation of miR-133b in the ischemic 
brain (118). When MSCs were cultured with extracts harvested 
from ischemic brain tissues, they released exosomes enriched 
with miR-133b. Tailored MSC-derived exosomes with elevated or 
reduced miR-133b were harvested from the supernatant of MSCs 
transfected with lentiviral vectors carrying pre–miR-133b or anti–
miR-133b, respectively (118, 119). Intravenous administration of 
tailored MSC-derived exosomes with increased or decreased 
miR-133b to rats with stroke led to enhancement or exacerbation, 
respectively, of axonal remodeling and neurological function 
compared with naturally occurring MSC-derived exosomes (119). 
Connective tissue growth factor (CTGF) and RhoA are putative 
targets of miR-133b and are known to suppress neurite growth 
(118). In vitro, incubation of cortical neurons with miR-133b–
elevated exosomes downregulated RhoA and enhanced neurite 
outgrowth, whereas treatment of astrocytes with miR-133b–ele-
vated exosomes suppressed CTGF, which is mainly expressed by 
astrocytes (119, 124). Collectively, these data indicate that MSC-
derived exosomes may be used as vehicles to transport miRNAs 
that modulate genes in the recipient neurons and astrocytes.

Table 1. Clinical trials of MSC therapy for stroke

Trial Trial number Purpose Intervention arm Phase Primary end point
The STem Cell Application Researches and Trials In 
NeuroloGy-2 (STARTING-2) Study

NCT01716481 Effect of MSCs on 
neurologic deficits

IV autologous MSCs 3 Shift in mRS at 90 d

Autologous Bone Marrow Mesenchymal Stem Cell 
Transplantation for Chronic Stroke

NCT01714167 Effect of MSCs on  
chronic stroke 

Intracerebral injection 
of autologous MSCs

1 Change from baseline  
in NIHSS at 12 mo

Autologous Bone Marrow Mesenchymal Stem Cell 
Transplantation for Chronic Ischemic Stroke

NCT02564328 Effect of MSCs on  
chronic stroke

IV autologous MSCs 1 Change from baseline in  
Fugl-Meyer scale at 12 mo

Intravenous Autologous Mesenchymal Stem Cell 
Transplantation to Treat Middle Cerebral Artery Infarct

NCT01461720 Effect of MSCs on 
infarction 

IV autologous MSCs 2 Changes in NIHSS, mRS,  
and BI at 1 yr 

Change infarct size at 1 yr
Autologous Bone Marrow Stromal Cell  
and Endothelial Progenitor Cell Transplantation  
in Ischemic Stroke (AMETIS)

NCT01468064 Safety of MSC therapy IV autologous MSCs,  
IV autologous EPCs

1 adverse events at 1 yr, changes  
in mRS and the BI at 1 yr
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Perspectives
Exosomes are emerging as important intercellular players in mediat-
ing neurorestorative events after stroke and neural injury (139–141). 
Preliminary work demonstrates that either naturally occurring or 
engineered exosomes derived from stem/progenitor cells provide 
therapeutic benefits (139–141). However, there are multiple unan-
swered questions and challenges in the development of exosome 
therapy including the following: (a) identification of the cellular 
signals by which the ischemic brain is able to affect the content 
and quantity of exosomes released by brain parenchymal cells and 
by remote organs, (b) understanding how exosomal cargo affects 
expression of endogenous genes and proteins in recipient cells of 
injured brain, (c) delineation of the specific cell types that are target-
ed by brain parenchymal cell–derived exosomes, and (d) knowledge 
of the effects of sex, age, and comorbidity on the cellular generation 
of exosomes and their cargo and the effect of sex, age and comorbid-

ity in response to exosome treatment after stroke. Ongoing studies to 
investigate exosomes as a means of intercellular communication in 
ischemic brain will provide novel insights into the role of exosomes 
in the development of stroke pathogenesis and aid in the develop-
ment of exosomal therapies to enhance stroke recovery.
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