
Electromagnetic Fields Associated With the
M‐Component Mode of Charge Transfer
Lixia He1,2 , Farhad Rachidi2 , Mohammad Azadifar2,3 , Marcos Rubinstein3 ,
Vladimir A. Rakov4,5 , Vernon Cooray6, Davide Pavanello7 , and Hongyan Xing1

1Collaborative Innovation Center on Forecast and Evaluation of Meteorological Disasters (CIC‐FEMD), Jiangsu Key
Laboratory of Meteorological Observation and Information Processing, Nanjing University of Information Science and
Technology, Nanjing, China, 2Electromagnetic Compatibility Laboratory, Swiss Federal Institute of Technology (EPFL),
Lausanne, Switzerland, 3Institute of Information and Communication Technologies, University of Applied Sciences of
Western Switzerland, Yverdon‐les‐Bains, Switzerland, 4Department of Electrical and Computer Engineering, University
of Florida, Gainseville, FL, USA, 5Moscow Institute of Electronics andMathematics, National Research University Higher
School of Economics, Moscow, Russia, 6Division for Electricity, Uppsala University, Uppsala, Sweden, 7Institute of
Sustainable Energy, University of Applied Sciences of Western Switzerland (HES‐SO), Sion, Switzerland

Abstract In upward flashes, charge transfer to ground largely takes place during the initial continuous
current (ICC) and its superimposed pulses (ICC pulses). ICC pulses can be associated with either
M‐component or leader/return‐stroke‐like modes of charge transfer to ground. In the latter case, the
downward leader/return stroke process is believed to take place in a decayed branch or a newly created
channel connected to the ICC‐carrying channel at relatively short distance from the tower top, resulting in
the so‐called mixed mode of charge transfer to ground. In this paper, we study the electromagnetic fields
associated with the M‐component charge transfer mode using simultaneous records of electric fields and
currents associated with upward flashes initiated from the Säntis Tower. The effect of the mountainous
terrain on the propagation of electromagnetic fields associated with the M‐component charge transfer mode
(including classical M‐component pulses and M‐component‐type pulses superimposed on the initial
continuous current) is analyzed and compared with its effect on the fields associated with the return stroke
(occurring after the extinction of the ICC) and mixed charge transfer modes. For the analysis, we use a
2‐Dimentional Finite‐Difference Time Domain method, in which the M‐component is modeled by the
superposition of a downward current wave and an upward current wave resulting from the reflection at the
bottom of the lightning channel (Rakov et al., 1995, https://doi.org/10.1029/95JD01924 model) and the
return stroke and mixed mode are modeled adopting the MTLE (Modified Transmission Line with
Exponential Current Decay with Height) model. The finite ground conductivity and the mountainous
propagation terrain between the Säntis Tower and the field sensor located 15 km away at Herisau are taken
into account. The effects of the mountainous path on the electromagnetic fields are examined for classical
M‐component and M‐component‐type ICC pulses. Use is made of the propagation factors defined as the
ratio of the electric or magnetic field peak evaluated along the mountainous terrain to the field peak
evaluated for a flat terrain. The velocity of the M‐component pulse is found to have a significant effect on the
risetime of the electromagnetic fields. A faster traveling wave speed results in larger peaks for the magnetic
field. However, the peak of the electric field appears to be insensitive to the M‐component wave speed. This
can be explained by the fact that at 15 km, the electric field is still dominated by the static component, which
mainly depends on the overall transferred charge. The contribution of the radiation component to the
M‐component fields at 100 km accounts for about 77% of the peak electric field and 81% of the peakmagnetic
field, considerably lower compared to the contribution of the radiation component to the return stroke fields
at the same distance. The simulation results show that neither the electric nor the magnetic field
propagation factors are very sensitive to the risetimes of the current pulses. However, the results indicate a
high variability of the propagation factors as a function of the branch‐to‐channel junction point height. For
junction point heights of about 1 km, the propagation factors reach a value of about 1.6 for the E‐field and 1.9
for the H‐field. For a junction height greater than 6 km, the E‐field factor becomes slightly lower than 1. The
obtained results are consistent with the findings of Li, Azadifar, Rachidi, Rubinstein, Paolone, et al. (2016,
https://doi.org/10.1109/TEMC.2015.2483018) in which an electric field propagation factor of 1.8 was
inferred for return strokes and mixed‐mode pulses, considering that junction points lower than 1 km or so
would result in a mixed mode of charge transfer, in which a downward leader/return‐stroke‐like process is©2019. American Geophysical Union.
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believed to take place. It is also found that the field enhancement (propagation factor) for return strokemode
is higher for larger ground conductivities. Furthermore, the enhancement effect tends to decrease with
increasing current risetime, except for very short risetimes (less than 2.5 μs or so) for which the tendency
reverses. Finally, model‐predicted fields associated with different charge transfer modes, namely, return
stroke, mixed‐mode, classical M‐component, and M‐component‐type ICC pulse are compared with
experimental observations at the Säntis Tower. It is found that the vertical electric field waveforms
computed considering the mountainous terrain are in very good agreement with the observed data. The
adopted parameters of the models that provide the best match with the measured field waveforms were
consistent with observations. The values for the current decay height constant adopted in the return stroke
and mixed‐mode models (1.0 km for the return stroke and 0.8 km for the mixed‐mode pulse) are lower than
the value of 2.0 km typically used in the literature.

1. Introduction

M components are perturbations (or surges) in the relatively steady continuing current and in the associated
channel luminosity. The M in the term M component stands for D. J. Malan (Malan & Collens, 1937) who
was the first to study this lightning process. Classical M components occur in downward lightning and
involve a single channel between the cloud base and ground. They are excited at the upper extremity of
the channel (in the cloud) by either recoil leaders or separate in‐cloud leaders coming in contact with the
grounded current‐carrying channel. Recoil leaders are thought to occur in decayed channel branches pre-
viously supplying current to the grounded channel. Similar to leader/return stroke sequences and to conti-
nuing currents in negative lightning, M components serve to transport negative electric charge from the
cloud to ground. The M‐component mode of charge transfer to ground differs from the dart leader/return
stroke mode in that the former requires the presence of a current‐carrying channel to ground, while the lat-
ter apparently occurs along the remnants of the previously formed channel when there is essentially no cur-
rent (above 0.1–2 A) flowing to ground. M‐component‐like processes also occur during the initial stage of
object‐initiated and rocket‐triggered lightning, when a steady‐current‐carrying channel is excited at a height
of a kilometer or more above its ground termination point. Further information about M‐component mode
of charge transfer to ground is found in section 4.8 of Rakov (2016c).

Direct measurements of lightning currents can be obtained either using instrumented towers (e.g., Berger,
1975; Diendorfer et al., 2009; Heidler et al., 2015; Romero et al., 2013; Visacro et al., 2004) or using artificial
initiation of lightning from natural thunderclouds (e.g., Qie et al., 2011; Thottappillil et al., 1995). Besides,
information on lightning current can be remotely inferred from lightning location systems using empirical
(e.g., Rakov et al., 1992) or theoretical (e.g., He et al., 2014; Rachidi & Thottappillil, 1993; Zhang et al., 2014)
equations. The estimation of lightning current parameters from remote field measurements is affected by the
conditions of the propagation path of the electromagnetic fields. Lightning electromagnetic fields experience
attenuation and distortion when propagating along a lossy ground (e.g., Cooray et al., 2012). Many research-
ers have proposed approximate expressions to estimate the attenuation and distortion of electromagnetic
fields due to the finitely conducting ground, considering either a homogeneous or a stratified soil (see
Shoory et al., 2012, for a review).

The Finite‐Difference Time Domain (FDTD) approach (Yee, 1966) has been widely used for calculating
lightning electromagnetic fields generated at different distances from as close as tens/hundreds of meters
(Baba & Rakov, 2007a; Mimouni et al., 2008) to as far as hundreds to thousands of kilometers (Berenger,
2005; Tran et al., 2017). The FDTD approach is often employed as a reference method to validate approxi-
mate expressions proposed for the computation of lightning electromagnetic fields (e.g., Khosravi‐Farsani
et al., 2013; Shoory et al., 2011). It has also been used to evaluate the influence of the struck object (e.g.,
Baba & Rakov, 2008), the building on which field sensors are located (e.g., Baba & Rakov, 2007b), and irre-
gular terrain (e.g., Kobayashi et al., 2016; Li et al., 2014; Li, Azadifar, Rachidi, Rubinstein, Diendorfer, et al.,
2016; Li, Azadifar, Rachidi, Rubinstein, Paolone, et al., 2016; Oikawa et al., 2013; Soto et al., 2014).

In lightning strikes to ground or to a tall structure, the mode of charge transfer to ground has a significant
influence on the lightning current and electromagnetic fields. In downward flashes, electric charges can
be transferred to ground via three different modes: downward leader/return‐stroke sequence, continuing
current, and M component (Rakov et al., 2001). In upward flashes, charge transfer to ground essentially
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takes place during the initial continuous current (ICC) and its superimposed pulses (ICC pulses). ICC pulses
can be associated with either M‐component or leader/return‐stroke‐like modes of charge transfer to ground
(Zhou et al., 2015). In this latter case, called mixed mode of charge transfer to ground (Zhou et al., 2011), the
downward leader/return stroke process is believed to take place in a decayed branch or a newly created
channel connected to the ICC‐carrying channel at relatively short distance from the tower top. M‐compo-
nent‐type ICC pulses are presumably associated with the reactivation of a decayed branch or the connection
of a newly created channel to the ICC‐carrying channel at larger junction heights. After the extinction of the
ICC, charge transfer to ground can take place via either return strokes, which are preceded by an essentially
no‐current interval, or classical M‐component mode pulses that are superimposed on the continuing current
after some return‐stroke pulses. Typical waveforms of each type will be shown in section 5 of the paper.

The analysis presented by He, Azadifar, Rachidi, et al. (2018) suggests that the M‐component‐type pulses
during the initial stage (ICC) have very similar characteristics to those of classical M‐component pulses
occurring during the continuing current (CC) after some return strokes. Their study also confirmed the simi-
larity of mixed‐mode pulses and return strokes, as already suggested in other studies (e.g., Azadifar et al.,
2016; Flache et al., 2009; Zhou et al., 2015).

He, Azadifar, Rachidi, et al. (2018) also proposed a new criterion based on the current waveform symmetry
to distinguish between mixed‐mode pulses and M‐component‐type pulses, the latter exhibiting a more sym-
metrical waveform than the former.

In this paper, we analyze the propagation effects on the electric fields associated with different charge trans-
fer modes using simultaneous records of electric fields and currents associated with upward flashes to the
Säntis Tower. For the analysis, we use a 2‐DFDTD (2‐Dimentional Finite‐Difference TimeDomain) method,
in which the return stroke andmixedmode aremodeled adopting themodified transmission linemodel with
current decaying exponentially with height (MTLE; Nucci et al., 1988; Rachidi & Nucci, 1990), and the M
component is modeled by the superposition of a downward current wave and an upward wave resulting
from the reflection at the bottom of the lightning channel (Rakov et al., 1995, Rakov et al., 2001). The finite
ground conductivity and the mountainous terrain between the Säntis Tower and the field sensor located 15
km away at Herisau are taken into account. The effects of the mountainous propagation path on the electro-
magnetic fields are examined for the four types of lightning pulses.

The rest of the paper is organized as follows. Section 2 describes the current measurement system at the
Säntis Tower and the electric field measuring system in Herisau, approximately 15 km away from the tower.
Section 3 describes the adopted models and the simulation approach. Section 4 presents the simulation
results and discussion, with emphasis on the propagation effects along mountainous terrain on the electro-
magnetic field generated by M‐component‐type pulses. For comparison, the propagation effect on the fields
associated with the return‐stroke charge transfer mode is studied as well. Section 5 presents a comparison
between model‐predicted fields and observations. Finally, a summary and conclusions are given in
section 6.

Throughout the paper, a positive sign for the current is used for negative return strokes, and the atmospheric
electricity sign convention (downward directed electric fields or electric field change vectors are positive) is
adopted for the electric field.

2. Instrumentation and Data Set
2.1. Lightning Current and Electric Field Measuring Systems

The Säntis Tower was instrumented inMay 2010 for lightning current measurements. The tower is equipped
with two sets of instruments, each including a Rogowski coil and a multigap B‐Dot sensor, mounted at two
heights along the tower, 24 and 82 m above ground level (Azadifar et al., 2014; Romero et al., 2010).

The electric field‐measuring system is located about 15 km away from the Säntis Tower, installed on the roof
of a 25‐m tall building in Herisau. It comprises a flat‐plate antenna and an analog integrator with an overall
frequency bandwidth of 40 Hz to 2 MHz. The decay time constant of the integrator is about 4.2 ms, so its
effect on the fields in the considered time windows (maximum 1.5 ms) is expected to be insignificant. The
signal is digitized and recorded using a PCI 5122 National Instruments card with sampling rate of 5 MS/s
and a time window of 4 s.
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It is known that the building on top ofwhich themeasuring sensors are located can affect themeasured signals
(Baba & Rakov, 2007b; Mosaddeghi et al., 2009). For example, Baba and Rakov (2007b) have shown that a 20‐
m tall building can result in an enhancement factor of 1.5. However, the effect depends strongly on the local
configuration. The building in Herisau, on which the field sensor was located, is surrounded by similar build-
ings, making in situ calibration difficult. Simulation results and comparison with experimental data suggest
that the enhancement factor should be close to 1 (Li, Azadifar, Rachidi, Rubinstein, Diendorfer, et al., 2016).

2.2. Data Set

The data set is composed of simultaneous records of currents and vertical electric field waveforms associated
with two upward negative flashes initiated from the Säntis Tower on 18 August 2016 at 15:38:58 and at
18:49:29 local time, respectively. One event for each category of pulses, namely, return‐stroke pulse,
mixed‐mode pulse, M‐component‐type ICC pulse, and M‐component pulse, was considered as reference
for the analysis to validate the simulation models.

Because the GPS system was not working properly during these two flashes, the current pulses and the asso-
ciated electric field pulses of each flash were synchronized manually by aligning the current peak and the
associated field peak of the last return stroke. The alignment error was evaluated to be on the order of a
few microseconds (Li, Azadifar, Rachidi, Rubinstein, Paolone, et al., 2016).

3. Modeling
3.1. Model for the Classical M Components and M‐Component‐Type ICC Pulses

The model of Rakov et al. (1995, 2001) was used for the modeling of M components and M‐component‐type
ICC pulses. In this model, which assumes a purely vertical and straight channel, the initial current distribu-
tion is defined as an incident current wave launched at the junction point between an in‐cloud leader chan-
nel and the current‐carrying channel to ground, moving downward.When the current wave reaches the base
of the channel, a reflected wave is produced, which travels upward. As a result, the overall current distribu-
tion becomes a superposition of two waves moving in opposite directions. Both the incident downward wave
and the reflected upward wave are assumed to travel at a constant speed and undistorted. The distribution of
the M‐component mode current along the ICC‐ or the continuing‐current‐carrying channel is expressed as

i z′; t
� � ¼ i hm; t− hm−z

′
� �

=vm
� �

t<hm=vm
i z′; t
� � ¼ i hm; t− hm−z′

� �
=vm

� �þ i hm; t− hm þ z′
� �

=vm
� �

ρg t≥hm=vm
(1)

where νm is the velocity of the M‐component current wave, hm is the current height of the junction point
between the leader and the ICC/CC‐carrying channel above the Säntis Tower top, and ρg is the reflection
coefficient at the ground. It is worth noting that in (1), the presence of the tower was neglected, assuming
that its height is electrically small and, therefore, the effective reflection experienced by the downward wave
is determined by the ground reflection coefficient. Current distributions given by (1) apply to both the 124‐m
tower and lightning channel attached to its top. The two‐wave M‐component model is supported by field
observations at close distances (30–500 m) in Florida (Rakov et al., 1995, 2001) and at longer distances
(e.g., 15 km in He, Azadifar, Li, et al., 2018).

3.2. Model for Return‐Stroke and Mixed‐Mode Pulses

The adopted model for the return‐stroke pulses is the modified transmission line model with current decay-
ing exponentially with height (MTLE; Nucci et al., 1988; Rachidi &Nucci, 1990). Wewill use the samemodel
for mixed‐mode pulses because of their similar characteristics to those of return strokes (Azadifar et al.,
2016) and also because the junction point height for mixed‐mode pulses is lower than 1 km according to
the study of Zhou et al. (2015). In this case, the contribution of the downward leader‐like current wave to
the fields at 15‐km distance is negligible. According to the MTLE model, the current distribution along
the channel is defined as

i z′; tð Þ ¼ i 0; t−z′=vrsð Þ exp −z′=λð Þ t≥z′=νrs
i z′; tð Þ ¼ 0 t<z′=νrs

(2)

where vrs is the return stroke speed and λ is the current attenuation height constant. In (2), reflection from
the tower top and the transient process occurring along the tower were not considered (assuming that the
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tower is electrically short and its impedance is the same as the characteristic impedance of the lightning
channel). In the case of a tall tower, engineering models including MTLE have been extended to account
for such transients (e.g., Baba & Rakov, 2005; Rachidi et al., 2002).

3.3. Electromagnetic Field Computation

In this study, we employ a 2‐D cylindrical FDTD approach (Yee, 1966) to simulate the electromagnetic fields
generated by either (i) M‐component‐type pulses (including classical M‐component pulses and M‐compo-
nent‐type ICC pulses) or (ii) return‐stroke pulses and mixed‐mode pulses. The two simulation models are
shown in Figures 1 and 2, respectively. The current distribution along the channel for each model
(equations (1) and (2)) is specified in the FDTD model using a phased current source array (Baba &
Rakov, 2003). The electromagnetic fields are computed considering two different propagation paths, namely,
(1) assuming the propagation path between the Säntis Tower and the field measurement point in Herisau to
be a flat, homogeneous lossy ground (Figures 1a and 2a) and (2) taking into account the actual topography of
the terrain (Figures 1b and 2b). The adopted approach is similar to the one used by Li, Azadifar, Rachidi,
Rubinstein, Paolone, et al. (2016) in which in order to reduce the computational burden associated with a
3‐D FDTD approach, a 2‐D axial symmetric configuration, based on the two‐dimensional topographic
map along the direct path between the Säntis Tower and the field measurement station, was used. We have
adopted a 2‐D axial symmetric FDTD model that assumes that the 2‐D cross section of the topographic map
along the direct path between the Säntis Tower and the Herisau station is the same in all azimuthal direc-
tions. This assumption is discussed in detail in Li et al. (2017) where it is shown that the 2‐D axial‐symmetric

Figure 1. Geometry of the 2‐D cylindrical FDTD simulation domain for the evaluation of the electromagnetic fields
generated by M‐component‐type pulses (classical M‐component pulses and M‐component‐type ICC pulses). (a) Assuming
a flat ground and (b) considering the 2‐D terrain topography between the Säntis Tower and the field observation
site in Herisau.

Figure 2. Geometry of the 2‐D cylindrical FDTD simulation domain for the evaluation of the electromagnetic fields
generated by return‐stroke‐type pulses (return‐stroke pulses and mixed‐mode pulses). (a) Assuming a flat ground and
(b) considering the 2‐D terrain topography between the Säntis Tower and the field observation site in Herisau.
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FDTDmodel can provide a good accuracy with respect to results obtained
using a 3‐D FDTD approach while considerably reducing computation
time. Of course, the 2‐D axial‐symmetric analysis might lead to inaccura-
cies in the cases when the terrain is characterized by a particularly strong
radial asymmetry.

It should also be mentioned that we have not considered the effect of the
soil stratification along the considered field propagation path, which
depends on the depth of the top layer and electrical characteristics of
the layers (Li et al., 2019; Zhang et al., 2012).

Figure 1 shows the geometry of two‐dimensional cylindrical coordinate
FDTD simulation domains for the computation of the electromagnetic
field generated by M‐component‐type pulses. The red‐filled circles indi-
cate the initial injection point of the M‐component‐type pulses, and the
red arrows indicate the propagation direction of the initial current wave.
In accordance with equation (1), νm is the velocity of the M component,
hm is the branch‐to‐channel junction point height (hereafter referred as
junction point height) of the in‐cloud leader channel, and d is the distance

between the lightning channel and the field sensor at Herisau (the red‐filled rectangle). W and L are the
radial and vertical sizes of the two‐dimensional computational domain, respectively. The domain shown in
Figure 1a represents the ground as a flat conducting half‐space with constant electrical parameters, while
the domain shown in Figure 1b takes into account the mountainous terrain between the Säntis Tower
and the observation point considering the 2‐D terrain topography obtained from ASTER GDEM version
002 (Meyer, 2011), as in Li, Azadifar, Rachidi,Rubinstein, Paolone, et al. (2016). A first‐order Mur
Absorbing Boundary Condition (Mur, 1981) was employed to truncate the computational domain without
causing reflections. ε0 and μ0 are the permittivity and permeability of free space, and σ, εr, and μr are the con-
ductivity, relative permittivity, and relative permeability of the ground.

The adopted simulation domain for the two‐dimensional FDTD is 40 km (along the radial axis, W in
Figure 1) × 30 km (along the vertical axis, L in Figure 1). The space is divided into square cells of 20 m ×
20 m with a time step Δt = 33.3 ns.

Figure 2 shows the geometry of two‐dimensional cylindrical coordinate FDTD simulation domains for the
computation of the electromagnetic field generated by return‐stroke‐type pulses. Red filled circles indicate
the initial injection points of return‐stroke‐type pulses, and red arrows indicate the propagation direction
of the initial current. As shown in equation (2), νrs is the velocity of the return‐stroke‐type pulses, and h is
the height of the channel. Considering the fact that return strokes and mixed‐mode pulses are characterized
by much faster rising waveforms compared to M components and M‐component‐type ICC pulses, the
adopted simulation domain is 20 km (radial W axis) × 15 km (vertical L axis), which is divided into square
cells of 5 m × 5 m with a time step Δt = 8.33 ns. Other parameters are the same as in Figure 1.

Three finite ground conductivities, σ = 10, 1, and 0.1 mS/m, were considered in the simulations. εr and μr
were assumed to be equal to 10 and 1, respectively.

The simulation models were validated using as reference closed‐form time domain solutions (Uman et al.,
1975) for the case of a flat, perfectly conducting ground and also numerical simulations published by Li,
Azadifar, Rachidi, Rubinstein, Paolone, et al. (2016) for the case of a mountainous terrain. The validation
results are not shown here for the sake of brevity.

4. Characteristics of Electromagnetic Field Pulses Associated With
M‐Component Pulses and M‐Component‐Type ICC Pulses
4.1. Current Distribution Along the Channel

We have considered a typical M‐component channel base current waveform shown in Figure 3. The current
associated with the M‐component mode of charge transfer to ground has a more or less symmetrical wave-
form (Rakov et al., 2001). He, Azadifar, Rachidi, et al. (2018) proposed to use a coefficient called asymmetri-
cal waveform coefficient (AsWC) to distinguish between M‐component‐type ICC pulses and mixed‐mode

Figure 3. M‐component channel base current waveform.
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pulses by quantifying the asymmetry of the observed current pulses. The AsWC is defined as (He, Azadifar,
Rachidi, et al., 2018)

ΑsWC ¼ FWHM‐t50%−100%

FWHM
(3)

where t50%‐100% is the time interval during which the current rises from 50 to 100% of its peak value and
FWHM is the full width at half maximum.

A fully symmetrical pulse is characterized by an AsWC equal to 1/2, while waveforms characteristic of
return strokes or mixed modes have AsWCs close to 1.0. According to He, Azadifar, Rachidi, et al. (2018),
if AsWC for a pulse superimposed on the ICC is lower than 0.8, the pulse is classified as an M‐compo-
nent‐type ICC pulse. As an example, the pulse presented in Figure 3 is characterized by a risetime of 64
ms and an AsWC of 0.73, typical of M‐component and M‐component‐type ICC pulses observed at the
Säntis Tower, according to the measurements presented in He, Azadifar, Rachidi, et al. (2018).

Figure 4 shows the distribution of the M‐component current along the ICC/CC‐carrying channel as pre-
dicted by the model of Rakov et al. (1995, 2001) equations (1). The junction point is assumed to be at a height
of 5 km (Rakov et al., 1995), the traveling speed of the M‐component current is assumed to be 3 × 107 m/s
(Rakov et al., 1995), and the ground reflection coefficient for current is assumed to be 1.0. From
Figures 4a and 4b, one can see that the channel base current is characterized by the highest peak, twice
the incident current as a result of a full reflection at ground (ground reflection coefficient ρg = 1.0). The cur-
rents along the channel are characterized by an initial peak, which is due to the incident wave, and after a
time corresponding to the wave traveltime from the observation point to ground and back, the ground‐
reflected wave adds up to it. The higher the observation point along the channel, the later the contribution
of the ground‐reflected wave and the smaller the overall current peak value (until the peaks of incident and
reflected waves become fully separated in time).

4.2. Electromagnetic Fields Over a Flat, Perfectly Conducting Ground

Characteristics of the electromagnetic fields generated by an M component at close distances (30 to 500 m)
have been discussed in Rakov et al. (1995, 2001). Here we briefly discuss the characteristics of electromag-
netic fields generated byM‐component‐type pulses at relatively far distances: (i) 15 km, the distance at which
the electric field was recorded, and (ii) 100 km, a typical distance at which electromagnetic fields were char-
acterized in different studies. The electric field signatures of M components within a few kilometers of the
lightning channel are V‐shaped (for the case of negative charge transfer to ground, a negative excursion is
followed by a positive excursion; atmospheric electricity sign convention; e.g., Rakov, 2016b, p. 236). In con-
trast, at larger distances, the signatures appear as ramps.

Figure 4. Current distribution in the ICC/CC‐carrying channel associated with an M‐component charge transfer mode
(the channel base current is shown in Figure 3). The junction point is at a height of 5 km, the velocity of the traveling
M‐component wave is assumed to be 3 × 107 m/s, and the ground reflection coefficient for current is assumed to be 1.0. (a)
Current waveforms at different heights along the channel. (b) Decomposition of current waveforms into incident (dotted
curves) and ground‐reflected (dashed curves) currents.
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Figure 5 presents the vertical electric field and azimuthal magnetic field calculated at distances of 15 and 100
km from the ICC/CC‐carrying channel. We have also shown for each case the contribution of the field com-
ponents, namely, the static, induction, and radiation components for the electric field and the induction and
radiation components for the magnetic field. It should be noted that the electromagnetic fields at 15 and 100
km presented in Figure 5 are calculated by using the analytical expressions (equations 7 and 9 in Uman et al.,
1975), not the FDTD approach. The calculations have been performed assuming the channel base current
shown in Figure 3 and adopting the same values as in Figure 4 for the height of the junction point, the velo-
city of the M‐component current, and the ground reflection coefficient. From Figures 5a and 5b, one can see
that the radiation component of the field does not play a significant role in the fields at 15 km. The vertical

Figure 5. Vertical electric field (a and c) and azimuthal magnetic field (b and d) associated with the M‐component charge
transfer mode (the channel base current is shown in Figure 3). Top panels (a and b): fields calculated at 15 km. Bottom
panels (c and d): fields calculated at 100 km. In each figure, the contribution of the field components (static, induction,
and radiation for the E‐field and induction and radiation for the H‐field) is also shown. The same junction‐point height
and M‐current wave front speed as in Figure 4 are adopted.

Figure 6. Vertical electric field (a) and azimuthal magnetic field (b) at 15 km from the ICC/CC‐carrying channel asso-
ciated with the M‐component charge transfer mode pulse (the channel base current is shown in Figure 3). The contri-
bution of the incident wave is given in the pink curves and that of the ground‐reflected wave in blue. The black curves
represent total fields. The same junction‐point height and M‐current wave front speed as in Figure 4 are adopted.
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electric field is essentially dominated by the static component and the
magnetic field by the induction component. This is in contrast with fields
generated by return strokes, which are dominated at early times by their
radiation terms at similar distances (e.g., Rachidi & Thottappillil,
1993). On the other hand, the contribution of the radiation component
to the fields at 100‐km distance becomes significant, accounting for about
77% of the peak electric field and 81% of the peak magnetic field. The fact
that the radiation field is not dominant at distances as large as 15 km is
essentially due to the relatively long risetime and slow speed of the M‐

component current wave. The fact that the fields are dominated by the sta-
tic and induction components results in a faster decay of the M‐

component fields with increasing of the distance, compared to the 1/r
decay of radiation fields. It is interesting to note that the magnetic field
waveform at 100 km is bipolar, while the electric field waveform is not.
This is because of the contribution of the static component to the E‐field,
which is still important at this distance. It should be noted, however, that
for faster‐rising currents, such as the one presented in Figure 5 of Pichler
et al. (2010), the E‐field can feature a bipolar waveform as well.

Figure 6 presents the contributions of the incident downward wave and the ground‐reflected wave to the
overall electric and magnetic fields computed at 15 km. As can be seen from the figure, the reflected current
wave at ground produces a positive contribution to the field, which comes after a time delay corresponding
to the propagation of the downward wave from the junction point to ground, as seen at the
observation point.

4.3. Propagation Effects Along Mountainous Terrain

The effect of the mountainous terrain on the propagation of electromagnetic fields from lightning return
strokes to the Säntis Tower was analyzed by Li, Azadifar, Rachidi, Rubinstein, Paolone, et al. (2016). The
main conclusion of the study of Li et al. was that the propagation of the electric field generated by return‐
stroke‐type pulses along the mountainous terrain between the Säntis Tower and the field observation point
resulted in a significant enhancement of the fields, compared to the case of the propagation along a
flat ground.

In this section, we will analyze the effect of the propagation along the mountainous terrain between the
Säntis Tower and the field observation point at Herisau for classical M‐component and M‐component‐type
ICC pulses. As we have seen in the previous section, the fields for M‐component mode of charge transfer

Figure 7. Adopted current waveforms for M‐component and M‐compo-
nent‐type ICC pulses. The parameters of the four waveforms were chosen
based on the study of He, Azadifar, Rachidi, et al. (2018).

Figure 8. Vertical electric field (a) and azimuthal magnetic field (b) at 15 km associated with theM‐component‐type pulse
M1 (shown in Figure 7), calculated for different velocities (1 × 107, 2 × 107, 3 × 107, and 1 × 108 m/s). Black curves:
simulated fields assuming a flat lossy ground. Red curves: simulated fields considering the mountainous topography
between the Säntis Tower and the field measurement sensor in Herisau. Junction point height hm = 5 km. Ground
reflection coefficient ρg = 0.8. Ground electrical parameters: σ = 1 mS/m, εr = 10.
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differ from those for return strokes, because of a different current distribution and different current
waveform characteristics.

For the analysis, we will define the propagation factor as the ratio of the field peak evaluated along the
mountainous terrain to the field peak evaluated for a flat terrain. These factors for the vertical electric field
and the azimuthal magnetic field are

Ez–Factor ¼ Ez peak mountainousð Þ=Ez peak flatð Þ
H–Factor ¼ H peak mountainousð Þ=H peak flatð Þ (4)

We have selected for the analysis four typical current waveforms with different risetimes, based on the study
of He, Azadifar, Rachidi, et al. (2018). The current waveforms are shown in Figure 7.

Figure 8 illustrates the effect of the M‐component‐type current wave velocity on the electric and magnetic
fields at 15 km, considering the channel base current pulse M1 (shown in Figure 7). The calculations were
performed (i) considering a flat, finite‐conductivity ground and (ii) taking into account mountainous topo-
graphy, as described in section 3.3. The considered velocities for the M‐component wave are 1 × 107, 2 × 107,
3 × 107, and 1 × 108 m/s (Jordan et al., 1995; Rakov et al., 1995). The height of the junction point was
assumed to be hm = 5 km, the ground reflection coefficient for current was assumed to be ρg = 0.8, and
the ground electrical parameters were set to σ = 1 mS/m, εr = 10. Considering the rocky terrain at the
summit of the Säntis Tower (Romero et al., 2013), a ground reflection coefficient of 0.8 (rather than 1 used
previously) was used here.

Figure 9. Vertical electric field (a) and azimuthal magnetic field (b) at 15 km associated with theM‐component‐type pulse
M4 (shown in Figure 7), calculated for different junction point heights (1, 3, 4, and 7.5 km). Black curves: simulated
fields along an assumed flat lossy ground. Red curves: simulated fields considering the mountainous topography between
the Säntis Tower and the field measurement sensor in Herisau. Current wave velocity 3 × 107 m/s. Ground reflection
coefficient ρg = 0.8. Ground electrical parameters: σ = 1 mS/m, εr = 10.

Figure 10. Propagation factors for the vertical electric field (a) and magnetic field (b) at 15 km associated with the
considered component waveforms M1, M2, M3, and M4 shown in Figure 7. The results are presented as a function of the
junction point height.
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The following conclusions can be drawn from the presented simula-
tion results:

1. As can be seen in Figure 8, the velocity of the M‐component pulse
has a significant effect on the risetime of the electromagnetic
fields. A higher traveling wave speed results in larger magnetic
field peaks. However, the peak of the electric field at 15 km seems
to be insensitive to the M‐component wave speed, which is differ-
ent from the trend seen for magnetic field. This can be explained
by the fact that at this distance, the electric field is dominated by
the static component (see Figure 5a), which appears to mainly
depend on the overall transferred charge. Note that this is in con-
trast with the static component of return stroke field, which is
inversely proportional to the velocity (see Table 5.2 of Rakov,
2016a). The enhancement factors for H‐field in the range from
1.3 to 1.6 are reported in panel b for each case.

2. Effect of the mountainous terrain on the electric field enhance-
ment for the considered junction point height is negligible. It
has also an insignificant impact on the early time response of
the magnetic field, which is dominated by the downward incident
wave. The effect of the mountainous terrain becomes significant
after the downward wave has reached the ground and when the
ground‐reflected wave is launched. This can be clearly seen in

Figure 8b. For example, when the velocity is 1 × 107 m/s, the wave reaches the ground at 500 μs, which
is the time when the effect of the mountainous terrain becomes important.

Figure 11. Typical current waveforms associated with return stroke pulses and
mixed‐mode pulses. Two return stroke pulses (fast RS pulse shown in green
and slow RS pulse shown in red) and two mixed‐mode pulses (MM1 and MM2
shown in solid and dashed pink) are used to compute the electric and magnetic
fields shown in Figures 12 and 13. The parameters of the waveforms (risetime and
AsWC) are given in the figure.

Figure 12. Vertical electric fields at 15 km associated with the return‐stroke pulses and mixed‐mode pulses shown in
Figure 11. (a) Fast return stroke, (b) slow return stroke, (c) mixed‐mode pulse (MM1), and (d) mixed‐mode pulse
(MM2). Solid curves: σ= 10mS/m; dashed curves: σ= 1mS/m; dotted curves: σ= 0.1mS/m. Black curves: simulated fields
along a flat lossy ground. Red curves: simulated fields considering the mountainous topography between the Säntis Tower
and the field measurement sensor in Herisau. Return stroke and mixed‐mode speed νrs = 1.5 × 108 m/s. Attenuation
height constant λ = 2 km.
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As mentioned in section 1, an M‐component‐type pulse is believed to be associated with the reactivation of a
decayed branch or the connection of a newly created channel to the ICC/CC‐carrying channel to ground at
high junction points (>1 km; Zhou et al., 2015). In Figure 9, we examine the effect of the height of the junc-
tion points on the electric and magnetic fields at 15 km, this time using the channel base current waveform
M4, in order to examine the impact of different current waveform parameters on the propagation factors (see
Figure 7). The calculations were again performed considering either a flat ground or taking into account the
mountainous terrain. The considered values for height of the junction point were 1, 3, 4, and 7.5 km. The
M‐component wave speed was assumed to be 3 × 107 m/s, and the ground electrical parameters were as
follows: σ = 1 mS/m, εr = 10.

The results show that the propagation factors (defined by equations (4)) decrease as the junction point height
increases. When the junction point height is as high as 7.5 km, the Ez‐Factor becomes 0.95, which means
that the mountainous terrain results in a slight attenuation of the electric field peak. For a junction height
of 1 km, the propagation factor for the electric field becomes 1.62, approaching the value of 1.8 inferred
by Li, Azadifar, Rachidi, Rubinstein, Paolone, et al. (2016) for return strokes and mixed‐mode pulses. It is
worth noting that according to Zhou et al. (2015), junction points lower than 1 km or so would result in a
mixed‐mode transfer of charge in which a downward leader/return stroke‐like process is believed to
take place.

Figure 10 shows the propagation factors for the electric and magnetic fields as defined in equations (4) as a
function of the junction point height and for the considered four M‐component pulses, which are character-
ized by different risetimes (and slightly different AsWC). It can be seen from the figures that both electric
and magnetic field propagation factors are not very sensitive to the risetimes and AsWC of the current
pulses. However, the results confirm the high variability of the propagation factors as a function of the junc-
tion point height. For junction point heights of about 1 km, the propagation factors reach a value of about 1.6

Figure 13. Azimuthal magnetic fields at 15 km associated with the return‐stroke pulses and mixed‐mode pulses shown in
Figure 11. (a) Fast return stroke, (b) slow return stroke, (c) mixed‐mode pulse (MM1), and (d) mixed‐mode pulse (MM2).
Solid curves: σ = 10 mS/m; dashed curves: σ = 1 mS/m; dotted curves: σ = 0.1 mS/m. Black curves: simulated fields
along a flat lossy ground. Red curves: simulated fields considering the mountainous topography between the Säntis Tower
and the field measurement sensor in Herisau. The return stroke and mixed‐mode speed is νrs = 1.5 × 108 m/s. The
attenuation height constant is λ = 2 km.
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(for the E‐field) and 1.9 (for the H‐field). For a junction height higher than 6 km, the E‐field propagation
factor becomes slightly lower than 1.

4.4. Comparison With Return‐Stroke Pulses and Mixed‐Mode Pulses

As mentioned in section 4.3, the effect of the mountainous terrain on the propagation of electromagnetic
fields from lightning return strokes to the Säntis Tower was analyzed by Li, Azadifar, Rachidi, Rubinstein,
Paolone, et al. (2016), where it was shown that the propagation of the field along the mountainous terrain
between the Säntis Tower and the field observation point results in a significant enhancement of the vertical
electric field associated with return‐stroke‐type pulses, compared to the case of the propagation along a flat
ground. The aim of this section is to present a more extensive analysis of the mountainous terrain on return
stroke (RS) and mixed‐mode (MM) pulses, as a function of the current risetime and AsWC. To do this, we
have considered 13 RS pulses with risetimes ranging from 0.36 to 7.0 μs (AsWC from 0.87 to 0.99) and 9
MM pulses with risetimes ranging from 0.15 to 20 μs (AsWC from 0.80 to 0.99). The range of variation of
the risetimes is based on the experimental analysis of He, Azadifar, Rachidi, et al. (2018). The peak value
of all the RS pulses was considered to be 10 kA, while that of MM pulses were assumed to be 5 kA. These
values correspond to the arithmetic mean values derived in He, Azadifar, Rachidi, et al. (2018). The consid-
ered RS and MM pulses are shown in Figure 11

Four pulses including two typical return‐stroke pulses (labeled as fast risetime RS pulse and slow risetime
RS pulse) and two mixed‐mode pulses (labeled as MM1 and MM2) are highlighted in Figure 11. Figures 12
and 13 present the computed electric and magnetic field waveforms at 15 km for the same four pulses,

Figure 15. Propagation factors for the vertical electric field (a) and for the magnetic field (b) at 15 km associated with
13 return‐stroke pulses and 9 mixed‐mode pulses as a function of the asymmetrical waveform coefficients (AsWCs).
Three different ground conductivities are considered: (i) σ = 10 mS/m (blue filled circles), (ii) σ = 1 mS/m (red filled
pentagram), and σ = 0.1 mS/m (pink filed rectangles).

Figure 14. Propagation factors for the vertical electric field (a) and for the magnetic field (b) at 15 km associated with
13 return‐stroke pulses and 9 mixed‐mode pulses as a function of the current risetime. Three different ground
conductivities are considered: (i) σ = 10 mS/m (blue filled circles), (ii) σ = 1mS/m (red filled pentagram), and σ= 0.1 mS/m
(pink filed rectangles).
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considering either a flat conducting ground or taking into account the
mountainous propagation path, as described in section 3.3. The return
stroke and mixed‐mode speeds are assumed to be 1.5 × 108 m/s and
the current attenuation constant λ = 2 km. Three different values for
the ground conductivity have been considered, namely, 10, 1, and
0.1 mS/m.

From Figure 12 one can see that, as expected, the finite ground conductiv-
ity has a significant effect on the peak value and risetime of the vertical
electric field for the fast pulse. The effect of the finite ground conductivity
on the slow RS andmixed‐mode pulses is much less significant, because of
the less significant higher‐frequency content of their spectrum.
Furthermore, the mountainous terrain between the Säntis Tower and
the field observation point in Herisau results in an enhancement of the
field for all the considered pulses, consistent with the findings of Li,
Azadifar, Rachidi, Rubinstein, Paolone, et al. (2016). However, the
amount of enhancement depends on the current waveform and on the
ground electric conductivity. Specifically, the propagation factor decreases
with decreasing conductivity.

The results for the magnetic fields presented in Figure 13 are very simi-
lar to those obtained for the electric field. The values for the H‐field pro-
pagation factors are slightly higher than for the E‐field, presumably
because the static component of the electric field still contributes to
the electric field peak at that distance.

Figure 14 presents the propagation factors for the electric and magnetic fields for 13 return‐stroke pulses
and 9 mixed‐mode pulses as a function of the current risetime, and for three different ground conductiv-
ities. It can be seen that the field enhancement (propagation factor) is higher for larger ground conduc-
tivities. It can also be seen that the enhancement effect tends to decrease with increasing current
risetime, except for very short risetimes (less than 2.5 μs or so) where the tendency reverses. We believe

that this reversal of the trend for fast risetimes is essentially due to the
irregular propagation path. Indeed, by considering a perfectly smooth
propagation path between the Säntis Tower and the observation point,
represented by a conical shape, the resulting propagation factors would
be in the range of 1 to 1.2 and remain quasi‐constant as a function of
the risetime.

Figure 15 presents similar results but as a function of the AsWC. It can be
seen that the enhancement factors for both electric field and magnetic
field tend to increase with increasing values of AsWC, except for values
higher than about 0.95 where an opposite effect is observed. Values of
AsWC of 0.95 or higher correspond to steep fronts (short risetimes).

5. Comparison Between Model‐Predicted Fields
and Observations

In this section, we present a comparison between the model‐predicted
fields and experimental observations at the Säntis Tower. We have
selected four pulses belonging to two upward flashes that occurred on
18 August 2016 at 15:38:58 and 18:49:29 (local time). Each pulse is asso-
ciated with a different charge transfer mode, namely, return stroke, mixed
mode, classical M component, and M‐component‐type ICC. The mea-
sured current waveforms at the channel base were represented analyti-
cally using exponential functions with parameters determined by a
genetic algorithm approach (Bermudez et al., 2002). The results are pre-
sented in Figures 16–19, in which the blue curves show the measured

Figure 17. Measured and computed vertical electric fields at 15 km pro-
duced by a classical M component belonging to an upward negative light-
ning that occurred on 18 August 2016 at 15:38:58. The same filters were
employed as in Figure 16. (a) Measured current waveform and analytical
approximation. (b) Measured E‐field waveform (blue) and simulated results
obtained assuming a flat ground (green) and taking into account the
mountainous terrain (red). Ground parameters: σ = 10 mS/m, relative
permittivity εr = 10.

Figure 16. Measured and computed vertical electric fields at 15 km pro-
duced by an M‐component‐type ICC pulse belonging to an upward nega-
tive lightning that occurred on 18 August 2016 at 18:49:29. (a) Measured
current waveform (after applying a low‐pass filter with a cutoff frequency of
10 kHz) and analytical approximation. (b) Measured E‐field waveform
(after applying a low‐pass filter with a cutoff frequency of 400 kHz) and
simulated results obtained assuming a flat ground (green) and taking into
account the mountainous terrain (red). Ground parameters: σ = 10 mS/m,
relative permittivity εr = 10.
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waveforms and the red curves show the approximated currents and the
simulated vertical E‐fields considering mountainous terrain. The simu-
lated vertical electric fields over a flat lossy ground are also shown using
green curves. Ground conductivity is set to 10 mS/m in all four cases.
Figure 16 presents the comparison of the approximated current waveform
and the simulated vertical electric field at 15 km with the experimental
observation of an M‐component‐type ICC pulse associated with an
upward negative lightning that occurred on 18 August 2016 at 18:49:29.
The peak of the measured current pulse is 0.4 kA, its 10–90% risetime is
103.5 μs, and its AsWC is 0.68. The parameters of the model (shown in
the figure) were adjusted in order to provide the best match with the mea-
sured field waveform. One can see from Figure 16b that the electric field
waveform simulated considering the mountainous terrain matches quite
well the observed data. It can also be seen that considering a flat lossy
ground results in an underestimation of the field peak by 30%, consistent
with the vertical E‐field propagation factors inferred in section 4.3 for the
considered junction point height.

Figure 17 presents the comparison of the approximated current wave-
form and the simulated vertical electric field at 15 km with the experi-
mental observation of a classical M‐component pulse associated with
an upward negative lightning that occurred on 18 August 2016 at
15:38:58. The peak of the measured current pulse is 0.73 kA, its 10–90%

risetime is 50.3 μs, and its asymmetrical waveform coefficient (AsWC) is 0.64. It can be seen in Figure 17
b that the vertical electric field waveform simulated considering the mountainous terrain matches very well
the measured data. The adopted parameters of the model are given in Figure 17b. In this case, the moun-
tainous terrain effect enhances the vertical electric field by a factor of about 1.65. This is consistent with the
discussion presented in section 4.3, in which it was shown that the electric field propagation factor is
around 1.7 for a junction point height of about hm = 1 km.

Figure 18 presents the comparison of the approximated current waveform and the simulated vertical elec-
tric field at 15 km with the experimental observation of a mixed‐mode pulse associated with an upward

negative lightning that occurred on 18 August 2016 at 18:49:29. The peak
of the measured current is 2 kA, its 10–90% risetime is 16 μs, and its
AsWC is 0.8. From Figure 18b one can see that the vertical electric field
waveform simulated considering the mountainous terrain is in very good
agreement with the observed data. The adopted parameters of the model
are given in Figure 18b. Considering a flat lossy ground results in an
underestimation of the peak field by about 40% or so, which is consistent
with the analysis presented in section 4.4 and the findings of Li, Azadifar,
Rachidi, Rubinstein, Paolone, et al. (2016).

Figure 19 presents the comparison of the approximated current waveform
and the simulated vertical electric field at 15 km with the experimental
observation of a return stroke pulse associated with an upward negative
lightning that occurred on 18 August 2016 at 15:38:58. The peak of the
measured current is 1.5 kA, its 10–90% risetime is 8.7 μs, and its AsWC
is 0.86. Figure 19b shows that the electric field waveform simulated con-
sidering the mountainous terrain is in excellent agreement with the
observed data. The adopted parameters of the model are given in
Figure 19b. The assumption of a flat ground results in an underestimation
of the peak value by 35% or so, which is consistent with the analysis pre-
sented in section 4.4.

Table 1 summarizes the parameters of the models, namely, vrs and λ for
return‐stroke and mixed‐mode pulses, and νm, hm, and ρg for M

Figure 19. Measured and computed vertical electric fields at 15 km pro-
duced by a return‐stroke pulse belonging to an upward negative lightning
that occurred on 18 August 2016 at 15:38:58. (a) Measured current waveform
and analytical approximation. (b) Measured E‐field waveform (blue) and
simulated results obtained assuming a flat ground (green) and taking into
account the mountainous terrain (red). Ground parameters: σ = 10 mS/m,
relative permittivity εr = 10.

Figure 18. Measured and computed vertical electric fields at 15 km pro-
duced by a mixed‐mode pulse belonging to an upward negative lightning
that occurred on 18 August 2016 at 18:49:29. (a) Measured current waveform
and analytical approximation. (b) Measured E‐field waveform (blue) and
simulated results obtained assuming a flat ground (green) and taking into
account the mountainous terrain (red). Ground parameters: σ = 10 mS/m,
relative permittivity εr = 10.

10.1029/2018JD029998Journal of Geophysical Research: Atmospheres

HE ET AL. 6805



components and M‐component‐type ICC pulses, which were adjusted to match the simulation results with
the experimental data.

The junction point heights for the M‐component pulse and M‐component ICC pulse adopted in the model
were 1.0 and 1.5km, respectively. These values are in agreement with the studies of Zhou et al. (2015) accord-
ing to which the height of the junction point should be higher than 1 km for the M‐component charge trans-
fer to ground. The adopted value for the ground reflection coefficient is 0.8. Assuming a channel impedance
of about 0.5 to 2.5 kΩ (Rakov, 1998), this would correspond to a grounding impedance of about 50 to 300Ω,
which is reasonable considering the rocky terrain at the summit of the Säntis mountain (with a resistivity as
high as 10 kΩ.m (Romero et al., 2013)). The velocities for the M‐component pulse and M‐component‐type
ICC pulse are in the range of typical speeds for M components (Jordan et al., 1995; Rakov et al., 1995).
The adopted propagation speeds for the return‐stroke and mixed‐mode pulses are in the range of the experi-
mentally observed return stroke speeds (e.g., Idone & Orville, 1982; Rakov, 2007). However, the values for
the current decay height constant adopted in the model (1.0 km for the return stroke and 0.8 km for the
mixed‐mode pulse) are lower than the typical value of 2.0 km suggested in Nucci et al. (1988) and Nucci
and Rachidi (1989). This lower attenuation height constant may indicate a more severe attenuation of the
lightning current propagating along the channel in an upward flash compared to a downward flash. The
value for the ground conductivity considered in all the four cases is 10 mS/m, in agreement with Li,
Azadifar, Rachidi, Rubinstein, Paolone, et al. (2016).

6. Summary and Conclusions

We analyzed the propagation effect of mountainous terrain on the electromagnetic field associated with the
M‐component charge transfer mode and compared the results with the propagation effect on the fields asso-
ciated with the leader/return stroke andmixed charge transfer modes. For the analysis, we used a 2‐D FDTD
method, in which the M component is modeled by the sequence/superposition of a downward current wave
and an upward current wave resulting from the reflection at the bottom of the lightning channel (Rakov
et al., 1995 model), and the return‐stroke and mixed‐mode pulses are modeled adopting the MTLE model.
The finite ground conductivity and the mountainous terrain between the Säntis Tower and the field sensor
located 15 km away at Herisau were taken into account. The effects of the mountainous propagation path on
the electromagnetic fields were examined for classical M‐component and M‐component‐ICC pulses. Use
was made of the propagation factors defined as the ratio of the electric or magnetic field peak evaluated
for the mountainous terrain to the field peak evaluated for a flat terrain.

The velocity of the M‐component pulse was found to have a significant effect on the risetime of the electro-
magnetic fields. A faster‐traveling wave speed results in larger peaks for the magnetic field. However, the
peak of the electric field at 15 km appears to be insensitive to the M‐component wave speed. This can be
explained by the fact that at 15 km, the electric field is still dominated by the static component, whichmainly
depends on the overall transferred charge. The contribution of the radiation component to the fields at 100
km accounts for about 77% of the peak electric field and 81% of the peak magnetic field, significantly lower
compared to the contribution of the radiation component to the return stroke fields at the same distance.

Table 1
Summary of Parameters Derived From Matching Simulated and Measured Field

Parameters of M component Pulse type Comparison with previous studies

Charge transfer mode MICC MC References Comparison results

νm/(× 107 m/s) 9.0 1.0 Rakov et al. (1995) and Jordan et al. (1995) In its inferred range
hm/km 1.5 1.0 Zhou et al. (2015) Agree with the observation
ρg 0.8 0.8 Romero et al. (2013) Agree with the observation

Parameters of return stroke Pulse type Comparison with previous studies

Charge transfer mode RS MM References Comparison results

νrs/(× 108 m/s) 1.5 1.0 Idone and Orville (1982) and Rakov (2007) In its inferred range
λ/km 1.0 0.8 Nucci et al. (1988) and Nucci and Rachidi (1989) Lower than the proposed
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The simulation results showed that neither the electric nor the magnetic field propagation factor is very sen-
sitive to the risetime and AsWC of the current pulse. However, the results indicate a high variability of the
propagation factors as a function of the junction point height. For junction point heights of about 1 km, the
propagation factors reach a value of about 1.6 (for the E‐field) and 1.9 (for the H‐field). For a junction height
higher than 6 km, the E‐field factor becomes slightly lower than 1. The obtained results are consistent with
the findings of Li, Azadifar, Rachidi, Rubinstein, Paolone, et al. (2016), in which an electric field propagation
factor of 1.8 was inferred for return‐stroke and mixed‐mode pulses, considering that junction points lower
than 1 km or so would result in a mixed‐mode transfer of charge, in which a leader/return‐stroke‐like pro-
cess is believed to take place.

It was also found that the field enhancement (propagation factor) is higher for larger ground conductivities.
Furthermore, the enhancement effect tends to decrease with increasing current risetime, except for very
short risetimes (less than 2.5 μs or so) where the tendency reverses.

Model‐predicted fields associated with different charge transfer modes, namely, return stroke, mixed, clas-
sical M component, and M‐component‐type ICC pulse, were compared with experimental observations at
the Säntis Tower and at the field measuring station, 15 km away. It was found that the vertical electric field
waveforms simulated considering the mountainous terrain are in very good agreement with the observed
data. The adopted parameters of the models that provide the best match with the measured field waveforms
were consistent with experimental observations. The values for the current decay height constant adopted in
the return stroke and mixed‐mode models (1.0 km for the return stroke and 0.8 km for the mixed‐mode
pulse) were lower than the typical value of 2.0 km used in the literature.
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