
Journal of Computing and Applied Informatics (JoCAI) Vol. 02, No. 2, 2018 | 87 - 100

DATA SCIENCE
Journal of Computing and Applied Informatics

*Corresponding author at: Department of Information Technology, Faculty of Computer Science and

Information Technology, Universitas Sumatera Utara, Jalan Alumni No. 9 Kampus USU, Medan 20155, Indonesia
E-mail address: opim@usu.ac.id

Copyright © 2018 Published by Talenta Publisher
ISSN: 2580-6769 | e-ISSN: 2580-829X | DOI: 10.32734/jocai.v2.i2-326
Journal Homepage: https://talenta.usu.ac.id/JoCAI

Genetic Algorithms Dynamic Population Size with

Cloning in Solving Traveling Salesman Problem

Erna Budhiarti Nababan1*, Opim Salim Sitompul2, and Yuni Cancer3

1,2,3Universitas Sumatera Utara, Medan, Indonesia

Abstract. Population size of classical genetic algorithm is determined constantly. Its size

remains constant over the run. For more complex problems, larger population sizes need to

be avoided from early convergence to produce local optimum. Objective of this research is

to evaluate population resizing i.e. dynamic population sizing for Genetic Algorithm (GA)

using cloning strategy. We compare performance of proposed method and traditional GA

employed to Travelling Salesman Problem (TSP) of A280.tsp taken from TSPLIB. Result

shown that GA with dynamic population size exceed computational time of traditional GA.

Keyword: population size, local optimum, early convergence, Travelling Salesman Problem

Abstrak. Ukuran populasi dari algoritma genetik klasik ditentukan secara konstan.

Ukurannya tetap konstan selama proses berlangsung. Untuk menghadapi masalah yang

lebih kompleks, ukuran populasi yang lebih besar perlu dihindari dari konvergensi awal

untuk menghasilkan optimum lokal. Adapun tujuan dari penelitian ini adalah untuk

mengevaluasi perubahan ukuran populasi, yaitu populasi dinamis Algoritma Genetika (GA)

menggunakan strategi cloning. Kami membandingkan kinerja metode yang diusulkan

dengan GA tradisional yang digunakan untuk Traveling Salesman Problem (TSP) dari

A280.tsp yang diambil dari TSPLIB. Hasil menunjukkan bahwa GA dengan ukuran populasi

dinamis mempunyai waktu komputasi yang lebih baik dari waktu komputasi yang dihasilakn

GA tradisional

Kata Kunci: ukuran populasi, optimum local, konvergensi awal,

Received 13 April 2018 | Revised 29 May 2018 | Accepted 23 June 2018

1. Introduction

Among several parameters of genetic algorithm, population size is an important parameter that

can affect the performance of genetic algorithms. In a classical genetic algorithm, the population

size is constantly fixed continuously during the evolutionary search until the maximum generation

is achieved [1]. Figure 1 shows a population of several individuals, individuals 1 to n, for several

generations the size of the population remains the same or constant until the maximum generation

is achieved.

mailto:opim@usu.ac.id

Journal of Computing and Applied Informatics (JoCAI) Vol. 02, No. 2, 2018 88

Figure 1. Constant population size on Genetic Algorithm

The dynamic population size is the number of individuals in the population of each generation

that can be changed by plus and minus based on the best fitness value during the evolutionary

process lasting until the maximum generation is reached [2]. Population dynamic demonstrates

the population’s capability in exploring and exploiting their potential habitat. Based on the

ecological principles of natural population dynamics, dynamic populations should be more

appropriate for evolutionary computation than fixed sized population. Fixed size population is

strong contrast with population entities in nature. Biological populations are dynamic in both

space and time [3]. Dynamic populations should be more appropriate for evolutionary

computation. By testing five dynamic population sizing, which is which is random fluctuation

population, increasing population, decreasing population, bell-shaped population and inverse

bell-shaped population to mimic natural insect, [2] concluded that dynamic population size is

more efficiently than fixed sized population in term of the number of fitness function evaluation

and memory space requirement. According to [4] population size is one of the important

parameters that affect the performance of genetic algorithms. On complex issues, the optimal

population size is difficult to determine. Furthermore [5] stated that problem size and complexity

of the problem is underlying the arrangement of population size. However if population size is

too large or too small, it will trigger general problem of GA which is too large population size

will increase computational time and cause convergence time longer. As [6] said the larger the

population size, the better the solution. However, their research shown, population size above 100

chromosomes did not make better results while computing time continues to increase. On the

other hand too small population size will result to a premature convergence and trapped to a local

optimum [7]. Adjusting population size during a run could be more worthwhile than changing the

operator parameters [4].

2. Previous Research

Many techniques have been used in setting the size of population to get an optimal solution.

Research related to dynamic population size have been done by [8] by introducing methods of

addition and subtraction of population size based on changes in the best fitness values in the

Population

Individu-1

Individu-3

Individu-2

Individu-n

1
st
 Generation

Individu-1

Individu-3

Individu-2

Individu-n

M
th

 Generation

Individu-1

Individu-3

Individu-2

Individu-n

Max

Generation

• • • • • •

Population Population

⋮ ⋮ ⋮

Journal of Computing and Applied Informatics (JoCAI) Vol. 02, No. 2, 2018 89

population. The population size needs to be improved to explore the search space, while

population size reduction is done to improve the quality of solutions in the search space. The

addition of new population sizes is done by cloning some individuals with the best fitness value.

The results shown that genetic algorithms with population size changes during the evolution

process get faster computational time compare to classical genetic algorithms.

In their research [9] reduced the size of the population adaptively. The process of evolution begins

with a large population size then population size will continue to decrease depending on its best

fitness value. In other words if the fitness value increases then the population size is reduced.

Using this method, the genetic algorithm can produce better solutions and faster computational

time then classical genetic algorithms.

Population reduction method was employed by [10] where population size is divided into n group.

The purpose of this study is to get the best chromosome or individual from the search space. After

initialization, population is divided into n groups. Each group was controlled by a complete

tournament after which the best individual of each group is selected as the new population. This

method produced better performance and better solution than that of classical genetic algorithms.

3. Method

In this research data is taken from TSPLIB in the form of two-dimensional symmetrical TSP:

A280.tsp file containing coordinates of each city. For example, data of five cities used with the

location coordinates presented in Table 1.

Table 1. Coordinates of five cities on A280.tsp dataset TSPLIB

No Coordinate X Coordinate Y
1 288 149

2 288 129

3 270 133

4 256 141

5 256 157

3.1. Euclidian Distance

Distance between cities C calculated using Euclidean formula (1):

 𝐶𝑖,𝑖+1 = √(𝑥𝑖 − 𝑥𝑖+1)2 + (𝑦𝑖 − 𝑦𝑖+1)2 (1)

Using (1), distance of five cities obtained is shown in Table 2.

Journal of Computing and Applied Informatics (JoCAI) Vol. 02, No. 2, 2018 90

Table 2. The distance of five cities

C 1 2 3 4 5

1 0 20 24,08 32,98 32,98

2 20 0 18,44 34,18 42,52

3 24,08 18,44 0 16,12 27,78

4 32,98 34,18 16,12 0 16

5 32,98 42,52 27,78 16 0

3.2. Chromosome Representation and Initial Population

The chromosome representation or encoding technique used in this research is permutations of

the sequence of genes. Each city is represented by integer number and the sequence of genes in

the chromosomal represent order of cities/routes to be traversed to get fitness value.

Initialization of the population is an integer number generated randomly in [1, n], where n is the

length of the chromosome. For example, the initial population formation process given population

size is 8 individuals shown in Table 3.

Table 3. Initial Population

Individual Chromosome
Distance =

Objective Function

1 1 2 3 4 5 103,548

2 1 3 2 4 5 125,683

3 2 5 4 1 3 134,028

4 4 1 5 3 2 146,370

5 4 2 5 1 3 149,889

6 2 5 3 4 1 139,415

7 5 3 2 1 4 115,209

8 3 1 5 2 4 149,889

3.3. Evaluation of Fitness value

Fitness value of each individual is calculated using (2).

 𝑓𝑖𝑡𝑛𝑒𝑠𝑠 =
1

𝑡𝑜𝑡𝑎𝑙 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒
 (2)

Fitness of individuals is shown in Table 4

Journal of Computing and Applied Informatics (JoCAI) Vol. 02, No. 2, 2018 91

Table 4. Fitness value of each individu

Individual Chromosome Total Distance Fitness

1 1 2 3 4 5 103,548
1

103,548
= 0,0097

2 1 3 2 4 5 125,683
1

125,683
= 0,0080

3 2 5 4 1 3 134,028
1

134,028
= 0,0075

4 4 1 5 3 2 146,370
1

146,370
= 0,0068

5 4 2 5 1 3 149,889
1

149,889
= 0,0067

6 2 5 3 4 1 139,415
1

139,415
= 0,0072

7 5 3 2 1 4 115,209
1

115,209
= 0,0087

8 3 1 5 2 4 149,889
1

149,889
= 0,0067

3.4. Selection

The selection process in this research is done by using roulette wheel selection method. We first

calculate total fitness 𝐹𝑖𝑡𝑡𝑜𝑡 of all individual,

𝐹𝑖𝑡𝑡𝑜𝑡 = ∑ 𝐹𝑘 (3)

where 𝐹𝑘 is individual fitness

𝐹𝑖𝑡𝑡𝑜𝑡 = 0,0097 + 0,0080 + 0,0075 + 0,0068 + 0,0067 + 0,0072 + 0,0087 + 0,0067

 = 0,0611

Afterward, relative fitness 𝑃𝑘 of each individual is calculated using (4) to select individual for

crossover (see Table 5)

 𝑃𝑘 =
𝐹𝑘

𝐹𝑖𝑡𝑡𝑜𝑡
 (4)

Table 5. Relative fitness of individuals

Individual Relative Fitness (Pk) Individual Relative Fitness (Pk)

1
0,0097

0,0611
= 0,1580 5

0,0067

0,0611
= 0,1092

2
0,0080

0,0611
= 0,1302 6

0,0072

0,0611
= 0,1174

Continued on next page

Journal of Computing and Applied Informatics (JoCAI) Vol. 02, No. 2, 2018 92

Table 5. Continued from previous page

Individual Relative Fitness (Pk) Individual Relative Fitness (Pk)

3
0,0075

0,0611
= 0,1221 7

0,0087

0,0611
= 0,1421

4
0,0068

0,0611
= 0,1118 8

0,0067

0,0611
= 0,1092

3.5. Crossover

The crossover process is done using the partially mapped crossover (PMX) method by taking 2

randomly cut points on each individual.

3.6. Mutation

The method of mutation used is to exchange one or more gene values in chromosomes randomly.

The value of a mutated gene in one population is determined by probability mutation (Pm)

3.7. Dynamic Population

After the mutation process, the individuals generated are evaluated to see the best fitness value.

The size of the population will increase or decrease depending on the change in the best fitness

value. If the best fitness value increases then the population size will be increased. If the best

fitness value remains the same for T generation, the population size will increase. When the best

fitness value decreases, the population size will be reduced.

Addition of population size is done by cloning some individuals with good fitness and by

randomly generating a number of new individuals. Meanwhile, reduction of population size is

done by eliminating individuals with poor fitness. Overall process of adaptive population is as

follow:

a. Calculate individual fitness after mutation process (see Table 6).

Table 6. Individual’s fitness value after mutation

Individual Genes Total Distance Fitness

1 1 5 2 4 3 149,889 0,0067

2 1 5 3 4 2 131,070 0,0076

3 2 5 3 4 1 139,415 0,0072

4 2 5 4 1 3 134,028 0,0075

5 1 3 2 4 5 125,683 0,0080

6 2 1 5 3 4 131,070 0,0076

7 3 2 1 4 5 115,209 0,0087

8 5 3 2 1 4 115,209 0,0087

Journal of Computing and Applied Informatics (JoCAI) Vol. 02, No. 2, 2018 93

The current best fitness value after the mutation process undergoes a change. In the initial

population the best fitness value is 0.0097, after the mutation, the best fitness value decreases to

0.0087. Since the best fitness value is decreased then the population size is reduced using the

following equation (5).

 𝑃𝑜𝑝𝑁 = 𝑃𝑜𝑝𝑂 ∗ (1 − 𝐹𝑑𝑒𝑐) (5)

 𝑃𝑜𝑝𝑁 = 8 ∗ (1 − 0,4) = 4,8 ≈ 5

where 𝐹𝑑𝑒𝑐 is decreasing factor in [0,1] interval

By eliminating individuals with smaller fitness values the size of the population in new generation

is five individuals, as shown in Table 7.

Table 7. Individuals in new generation

Individual Genes Total Distance Fitness

1 1 5 3 4 2 131,070 0,0076

2 1 3 2 4 5 125,683 0,0080

3 2 1 5 3 4 131,070 0,0076

4 3 2 1 4 5 115,209 0,0087

5 5 3 2 1 4 115,209 0,0087

After eliminating individual with smaller fitness value (on previous population), recalculate the

fitness value of the new individual on new generation (see Table 8).

Table 8. Fitness value of individual on new generation

Individual Genes Total Distance Fitness

1 5 3 4 1 2 139,415 0,0072

2 3 5 2 4 1 161,550 0,0062

3 4 1 2 3 5 115,209 0,0087

4 4 1 5 3 2 146,370 0,0068

5 5 1 2 3 4 103,548 0,0097

As shown on Table 7, the best fitness value obtained was 0.0087. After recalculating the fitness

value of five individuals, the best fitness value increased to 0.0097. Since the best fitness value is

increased, the population size will be cloned [11] using equation (6).

𝑃𝑜𝑝𝑁 = 𝑃𝑜𝑝𝑂 + (𝑃𝑜𝑝𝑂 ∗ (𝐹𝑖𝑛𝑐 ∗ (𝐺𝑚𝑎𝑥 − 𝐺𝑐𝑢𝑟) ∗ (
𝐹𝑚𝑎𝑥𝑁−𝐹𝑚𝑎𝑥𝑂

𝐹𝑚𝑎𝑥𝑖𝑛𝑖𝑡
))) (6)

𝑃𝑜𝑝𝑁 = 5 + (5 ∗ (0,1 ∗ (20 − 2) ∗ (
0,0097−0,0087

0,0097
))) = 5,9 ≈ 6

Journal of Computing and Applied Informatics (JoCAI) Vol. 02, No. 2, 2018 94

where

𝑃𝑜𝑝𝑁 : new population size

𝑃𝑜𝑝𝑂 : previous population size

𝐹𝑖𝑛𝑐 : increasing factor in [0,1] interval

𝐺𝑚𝑎𝑥 : maximum number of generation

𝐺𝑐𝑢𝑟 : current generation

𝐹𝑚𝑎𝑥𝑁 : the best fitness value of current generation

𝐹𝑚𝑎𝑥𝑂 : the best fitness value of previous generation

𝐹𝑚𝑎𝑥𝑖𝑛𝑖𝑡 : the best fitness value of initial population

Using (6) the population size of the new generation is 6 individuals. The new generation has the

addition of 1 individual from the previous 5 individuals shown in Table 9.

Table 9. Population size to the new generation

Individual Genes Total Distance Fitness

1 5 3 4 1 2 139,415 0,0072

2 3 5 2 4 1 161,550 0,0062

3 4 1 2 3 5 115,209 0,0087

4 4 1 5 3 2 146,370 0,0068

5 5 1 2 3 4 103,548 0,0097

6 1 3 5 2 4 161,550 0,0062

b. A whole process (selection-crossover-mutation-update population size) will be repeated until

stopping criterion is met.

3.8. Stopping Criterion

The stopping criterion in this research is maximum number of generation which is determined by

user.

4. Result and Discussion

In this section we will analyze genetic algorithm with constant population size and dynamic

population size to solve Travelling Salesman Problem (TSP). Data set used is a280.tsp taken from

TSPLIB.

4.1. TSP solution using Genetic Algorithm with constant population size

Testing done to solve Traveling Salesman Problem (TSP) problem with test data file a280.tsp

with parameter setting as follow:

Journal of Computing and Applied Informatics (JoCAI) Vol. 02, No. 2, 2018 95

Population size = 100, 200, and 500

Maximum generation = 200, 500, and 1000

Probability of crossover (Pc) = 0.6

Probability of mutation (Pm) = 0.001

Testing performed using the population size of 100, 200 and 500 individuals, with the maximum

generation of 200, 500 and 1000 generations, the probability of crossover (Pc) 0.6 and the

mutation probability (Pm) 0.001 is used constantly during the iteration. Testing is done 5 times.

Result obtained shown in Table 10, 11 and 12 respectively.

Table 10. Testing on 100 individuals and 200, 500 and 1000 generation GA with constant

population size

Testing

The best fitness Computational time (ms)

200

generation

500

generation

1000

generation

200

generation

500

generation

1000

generation

1 0.3446 0.3355 0.3376 920 11263 22371

2 0.3545 0.3340 0.3340 1202 11263 22339

3 0.3318 0.3342 0.3342 1030 11247 22418

4 0.3346 0.3319 0.3369 936 11295 22371

5 0.3455 0.3326 0.3471 1139 11310 22371

Mean 0.3422 0.3336 0.3380 1045,4 11275.6 22374

Table 11. Testing on 200 individuals and 200, 500 and 1000 generation GA with constant

population size

Testing

The best fitness Computational time (ms)

200

generation

500

generation

1000

generation

200

generation

500

generation

1000

generation

1 0.3370 0.3333 0.3354 9063 22449 44757

2 0.3340 0.3337 0.3339 9064 22464 44788

3 0.3357 0.3357 0.3381 9111 22495 44819

4 0.3355 0.3357 0.3401 9141 22480 44819

5 0.3361 0.3369 0.3380 9157 22464 44757

Mean 0.3357 0.3351 0.3321 9107.2 22470.4 44788

Journal of Computing and Applied Informatics (JoCAI) Vol. 02, No. 2, 2018 96

Table 12. Testing on 500 individuals and 200, 500 and 1000 generation GA with constant

population size

Testing

The best fitness Computational time (ms)

200

generation

500

generation

1000

generation

200

generation

500

generation

1000

generation

1 0.3390 0.3401 0.3383 22807 56285 112259

2 0.3339 0.3380 0.3380 22745 56316 112508

3 0.3349 0.3413 0.3381 22838 57720 112243

4 0.3350 0.3363 0.3414 22776 56207 112367

5 0.3338 0.3383 0.3406 24461 56207 112274

Mean 0.3353 0.3388 0.3393 23125.4 56547 112330.2

After we test the problem with constant population size, we then test the dynamic population size

with the same parameters as we used in constant population.

4.2. TSP solution using Genetic Algorithm with dynamic population size

We then test the algorithm to a280.tsp with dynamic population size. The parameter used is same

as parameter value in genetic algorithm with constant population with additional parameter values

as follows:

Population Size = 100, 200, and 500

Maximum Population Size = 100, 200, and 500

Minimum Population Size = 10

Maximum Generation = 200, 500, and1000

Probablity crossover (Pc) = 0.6

Probability mutation (Pm) = 0.001

Increasing Factor = 0.1

Decreasing Factor = 0.4

Testing performed by using the population size of 100, 200 and 500 individuals, with the

maximum generation of 200, 500 and 1000 generations, the probability of crossover (Pc) 0.6 and

the mutation probability (Pm) 0.001 is used constantly during the iteration. Testing is done 5

times. Result obtained shown in Table 13, 14 and 15 respectively.

Journal of Computing and Applied Informatics (JoCAI) Vol. 02, No. 2, 2018 97

Table 13. Testing on 100 individuals and 200, 500 and 1000 generation GA with dynamic

population size

Testing

The best fitness Computational time (ms)

200

generation

500

generation

1000

generation

200

generation

500

generation

1000

generation

1 0.3446 0.4082 0.5222 920 5242 11326

2 0.3545 0.4237 0.4750 1202 5616 11216

3 0.3318 0.4172 0.4877 1030 5398 11669

4 0.3346 0.4136 0.5146 936 5803 11684

5 0.3455 0.4132 0.4983 1139 5148 11622

Mean 0.3422 0.4152 0.4996 1045,4 5441.4 11503.4

Table 14. Testing on 200 individuals and 200, 500 and 1000 generation GA with dynamic

population size

Testing

The best fitness Computational time (ms)

200

generation

500

generation

1000

generation

200

generation

500

generation

1000

generation

1 0.3490 0.4366 0.5704 1997 9298 21513

2 0.3595 0.4488 0.5410 2215 9766 21403

3 0.3470 0.4270 0.5274 2138 9875 21763

4 0.3630 0.4489 0.5399 1903 9282 21497

5 0.3448 0.4619 0.5509 1701 9672 20498

Mean 0.3527 0.4446 0.5459 1990.8 9578.6 21334.8

Table 15. Testing on 500 individuals and 200, 500 and 1000 generation GA with dynamic

population size

Testing

The best fitness Computational time (ms)

200

generation

500

generation

1000

generation

200

generation

500

generation

1000

generation

1 0.3570 0.4856 0.5508 3416 21606 49811

2 0.3618 0.4813 0.5689 5522 21107 48361

3 0.3995 0.4722 0.5560 6568 20857 47861

4 0.3581 0.4870 0.5701 3900 15007 45662

5 0.3576 0.4593 0.6016 4612 15990 50779

Mean 0.3668 0.4771 0.5695 4803.6 18913 48494.8

Comparison of average results obtained of the best fitness value and average computational time

of the constant population size and dynamic population size of genetic algorithm illustrated in

Figure 1 and Figure 2.

Journal of Computing and Applied Informatics (JoCAI) Vol. 02, No. 2, 2018 98

Based on Figure 1 and Figure 2, average of the best fitness value and average of computational

time obtained by dynamic population exceeds than that of constant population. Method of

determining the population size is done by increasing or decreasing the population size

dynamically based on the best fitness value. If the best fitness value increases then the population

size increases, in the contrary if the best fitness value is reduced then the population size is

reduced.

Figure 1 Average of best fitness value by constant population and dynamic population

Figure 2 Average of computational time by constant population and dynamic population

Journal of Computing and Applied Informatics (JoCAI) Vol. 02, No. 2, 2018 99

5. Conclusion and Future Research

Population size is one of the important parameters that affect the performance of genetic

algorithms. Population size can affect the diversity of the population. Generally in classical

genetic algorithms, population size is constantly regulated throughout the evolutionary process.

On complex issues, optimal population size is difficult to determine. Population size changes can

be made by increasing and decreasing the size of the population during the evolutionary process

is underway based on the change in the best fitness value. The addition of population size is done

by cloning some individuals with the best fitness. By using dynamic population size is the number

of individuals in the population of each generation that can be altered by adding and subtracting

the best fitness value during the evolutionary process until the maximum generation is achieved.

Based on the results obtained it is proven that genetic algorithm with dynamic population size can

get better results than that of obtained by the population with constant size. Dynamic population

size can increase the best average fitness value rather than a constant population size. The larger

the population size, the better the solution obtained as evidenced by the increase in the average

value of the best fitness.

REFERENCES

[1] Agoston E. Eiben, and Smith, J.E Introduction to Evolutionary Computing. Springer-Verlag

Berlin Heidelberg, New York. 2003.

[2] Dinabandhu Bhandari, Murthy, C.A. and Pal Sankar.K. Variance as a stopping criterion for

genetic algorithms with ellitist model. Fundamenta Informaticae, Volume 120, pages: 145-

164. 2012

[3] Michalewicz, Zbigniew. Genetic algorithms + data structures = evolution programs.

Springer-Verlag Berlin Heidelberg: New York. 1996.

[4] Alan Piszcz. and Terence Soule. Genetic programming: optimal population sizes for varying

complexity problems. Genetic and Evolutionary Computation Conference, pages: 86-91.

2006.

[5] Fernando G.Lobo and Claudio F. Lima. A review of adaptive population sizing schemes in

genetic algorithms. Proceedings of the Genetic and EvolutionaryComputation Conference

(GECCO’05), pages: 228-234.2005

[6] Olympia Roeva., Stefka Fidanova and Paprzycki, M. Influence of the population size on the

genetic algorithm performance in case cultivation process modelling. Proceedings of the

2013 Federated Conference on Computer Science and Information System, pages: 371-376.

2013

[7] Vlasis K. Koumousis and Cristos P. Katsaras. A saw-tooth genetic algorithm combining the

effects of variable population size and reinitialization to enhance performance. IEEE

Transactions on Evolutionary Computation, Volume 10, Issue 1, pages: 19-28. 2006.

[8] Agoston E. Eiben, Marchiori, E. and Valkό, V.A. Evolutionary algorithms with on-thefly

population size adjustment. Parallel Problem Solving from Nature PPSN VIII, Lecture Notes

in Computer Science, pages: 41-50.2004.

[9] Joshua W. Hallam, Olcay Akman. and Fusun Akman. Genetic algorithms with shrinking

population size. Computational Statistics, Volume 25, Issue 4, pages: 691-705.

Journal of Computing and Applied Informatics (JoCAI) Vol. 02, No. 2, 2018 100

[10] Raja, V. and Bhaskaran, M. Improving the performance of genetic algorithm by reducing

population. International Journal of Emerging Technology and Advanced Engineering ,

Volume 3 Issue 8, pages: 86-91.2013.

[11] Muzid, S. Dinamisasi parameter algoritma genetika menggunakan population resizing on

fitness improvement fuzzy evolutionary algorithm (PROFIFEA). Prosiding SNATIF Ke-1

Tahun 2014, pages: 471-478. 2014.

