So we obtain:

THEOREM 8. -(The third normalization theorem for homotopies). Let S be a compact triangulable space, G a finite directed graph, C,D two finite decompositions of S and e,f: $S \rightarrow G$ two functions pre-cellular w.r.t. C and D respectively, which are completely o-homotopic. Then, from any finite cellular decomposition Γ_2 of $S \times \left[\frac{1}{3}, \frac{2}{3}\right]$ of suitable mesh which induces on the bases $S \times \left\{\frac{1}{3}\right\}$ and $S \times \left\{\frac{2}{3}\right\}$ decompositions \widetilde{C} and \widetilde{D} finer than C and D, we obtain a finite cellular decomposition Γ of $S \times I$ and a homotopy between f and g which is a Γ -pre-cellular function.

Proof. - Let $F: SXI \rightarrow G$ be a complete o-homotopy between e and f. We define the complete o-homotopy $M: SXI \rightarrow G$ between e and f as in the introduction of this paragraph. Then, if we consider the restriction of M to $SX\left[\frac{1}{3},\frac{2}{3}\right]$, we can determine the real number r, upper bound of

the mesh. Now if Γ_2 is a finite cellular decomposition, satisfying the conditions of the theorem and with mesh < r, we can consider the cellular decomposition $\Gamma = \Gamma_1 \cup \Gamma_2 \cup \Gamma_3$ of the cylinder $S \times I$, such that: i) Γ_1 is the product decomposition $\widetilde{C} \times L_1$ of $S \times \left[0, \frac{1}{3}\right]$, where $L_1 = \left\{\{0\}, \\]0, \frac{1}{3}\left[\frac{1}{3}, \left\{\frac{1}{3}\right\}\right\}$. *ii)* Γ_3 is the product decomposition $\widetilde{D} \times L_3$ of $S \times \left[\frac{2}{3}, 1\right]$, where $L_3 = \left\{\left\{\frac{2}{3}\right\}, \\]\frac{2}{3}, 1\left[\frac{3}{3}, \left\{1\right\}\right\}\right\}$. Then we define the function $\widehat{g}: S \times I \rightarrow G$, given by: $\widehat{g}(G') = \left\{ \begin{array}{c} M(G'), & VG' \in \Gamma - \Gamma_2, \\ a \text{ vertex of } H(\left\{M(\overline{G})\right\}), & VG' \in \Gamma_2. \\ a \text{ vertex of } H(\left\{M(\overline{G'})\right\}), & VG' \in \Gamma_2. \\ \end{array} \right\}$ Afterwards, by Theorem 6, we construct the o-pattern \widehat{h} of \widehat{g} , by choosing as element of $H(\widehat{g}(st^m(G')))$, the value $\widehat{g}(G') = M(G')$ if $G' \in \Gamma - \Gamma_2. \\ By construction <math>\widehat{h}$ is a \widehat{F} -pre-cellular function. Hence \widehat{h} is the sought homotopy since $\widehat{h}/_{S \times \{0\}} = e$ and $\widehat{h}/_{S \times \{1\}} = f$. \Box

REMARK. - The finite cellular decomposition Γ induces on the bases $S \times \{0\}$ and $S \times \{1\}$ the decompositions \tilde{C} and \tilde{D} .

5) The second normalization theorem between pairs.

Given a set A, a non-empty subset A' of A, a finite graph G and a subgraph G' of G, we can generalize Definition 4, by considering function $f: A, A' \rightarrow G, G'$ which are quasi-constant w.r.t. a partition $P = \{X_j\}, j \in J$, of A. In this case it follows that the image of every X_j , such that $X_j \cap A' \neq \emptyset$, necessary is a vertex of G'. Moreover, if A is a topo

logical space and A' a subspace of A, we can also generalize the definition of weakly P-constant. So we have:

PROPOSITION 9. - Let S be a compact space, the filter W the uniformity of S, S' a closed subspace of S, U a closed neighbourhood of S', G a finite directed graph, G' a subgraph of G and f:S, U \rightarrow G,G' a complete ly o-regular function. If we choose in \mathring{U} a closed neighbourhood K of S', we can determine a vicinity $W \in W$ such that, for all the W-partitions $P = \{X_j\}$, $j \in J$, there exists a function h: S, $\mathring{K} \rightarrow G$,G', which is completely o-regular, weakly P-constant and completely o-homotopic to f: S,S' \rightarrow G,G'.

Proof. - At first there exists a closed neighbourhood K of S', included in U, since S is normal. Then, by following the proof of Theorem 3, we determine a vicinity $V \in W$ such that $V(A_1^f) \cap \ldots \cap V(A_n^f) =$ $= \emptyset$, Vn-tuple a_1, \ldots, a_n non-headed of G. Moreover, if W' is the trace filter of W on $U \times U$, we obtain, as before, a vicinity $2' \in W'$ such that $Z'(A'_1^f) \cap \ldots \cap Z'(A'_m^f) = \emptyset$, Vm-tuple a'_1, \ldots, a'_m non-headed of G'. Since $Z' \in W'$, necessarily it is $Z' = V_1 \cap (UXU)$, where $V_1 \in W$. Then we choose a symmetric vicinity $W \in W$ such that $W \circ W \subseteq V \cap V_1$ and $W(K) \subset U$. Now, given a W-partition $P = \{X_j\}$, $j \in J$, of S, we define a relation $g: S, K \rightarrow G, G'$, by putting, for every X_j , $j \in J$, the constant value:

$$g(X_j) = \begin{cases} \text{a vertex of } H_G(\{f(X_j)\}) & \text{if } X_j \cap K \neq \emptyset, \\ \text{a vertex of } H_G,(\{f'(X_j)\}) & \text{if } X_j \cap K \neq \emptyset. \end{cases}$$

We verify that g satisfies the following conditions:
i) g is a function. In fact it results:
a) $\forall X_j / X_j \cap K = \emptyset$, the set $\{f(X_j)\}$ is headed in G. For proving this
we go on as in i) of the proof of Theorem 3.
b) $\forall X_j / X_j \cap K \neq \emptyset$, the set $\{f'(X_j)\}$ is headed in G'. At first we
prove that $X_j \subseteq U$. Let $z \in X_j \cap K$, $\forall y \in X_j$ it is $(z,y) \in X_j \times X_j \subseteq W$, i.e:
 $X_j \subseteq W(z) \subseteq W(K) \subseteq U$. Then, if we go on as in i) of Theorem 3, we obtain
that $\{f'(X_j)\}$ is headed in G'. Moreover, we remark that the vertex

 $g(x), \text{ chosen in } H_{G'}(\{f'(X_j)\}), \text{ is also an element of } H_{G}(\{f(X_j\}), \text{ since } f(X_j) = f'(X_j).$ From a) and b) it follows that there exists g(x), for every $x \in S$; hence g is a function. ii) and iii) The function $g:S, \tilde{K} \to G, G'$ and the homotopy $F:S \times I, \tilde{K} \times I \to G, G$ between f and g given by: $F(x,t) = \begin{cases} f(x) & \forall x \in S, & \forall t \in [0, \frac{1}{2}[\\ g(x) & \forall x \in S, & \forall t \in [\frac{1}{2}, 1] \end{cases}$ are completely quasi-regular functions.

a) $g: S \rightarrow G$ and $F: S \times I \rightarrow G$ are c. quasi-regular functions. We obtain this result as in ii) and iii) of Theorem 3. b) The restrictions $g': \mathring{K} \rightarrow G'$ and $F': \mathring{K} \times I \rightarrow G'$ are c. quasi-regular. At first we observe that, by the definition of g, it is $g(K) \subset G'$ and then $F(K \times I) \subset G'$. Secondly we go on as in ii) and iii) of Theorem 3, by choosing, $\forall x' \in \mathring{K}$, the neighbourhood $W(x') \cap \mathring{K}$, rather than W(x'), and by using the vicinity Z' rather than V. Then, for example, if we suppose that the *m*-tuple $a'_1, \ldots, a'_m \in \langle g'(x') \rangle$ is non-headed, we obtain the contradiction $x' \in Z'(A' \frac{f'}{1}) \cap \ldots \cap Z'(A' \frac{f'}{m})$. From a) and b) it follows ii) and iii).

Now if we consider any o-pattern h of g, we obtain the sought function. In fact we have:

i') h: $S, \overset{\circ}{K} \rightarrow G, G'$ is completely o-regular (see [5], Proposition 15). ii') h is weakly P-constant by the definition of o-pattern of a quasiconstant function.

iii') h is completely o-homotopic to $f: S, S' \rightarrow G, G'$. Since the homotopy $F: S, \mathring{K} \rightarrow G, G'$ is c.quasi-regular by iii) and \mathring{K} is open, there exists an o-pattern E (which is c.o-regular by [5], Proposition 15) of F. We can choose E such that E(x, 0) = f(x) and E(x, 1) = h(x), $\forall x \in S$, for f and g are c.o-regular i.e.:

a) $f(x) \in H_G(\langle f(x) \rangle) = H_G(\langle F(x, 0) \rangle)$ and $h(x) \in H_G(\langle g(x) \rangle) = H_G(\langle F(x, 1) \rangle)$, $\forall x \in S$.

b)
$$f'(x) \in H_G(\langle f'(x) \rangle) = H_G(\langle F'(x, 0) \rangle)$$
 and $h'(x) \in H_G(\langle g(x) \rangle) = H_G(\langle F'(x, 1) \rangle), \quad \forall x \in K.$
Hence the o-pattern $h(x) = E(x, 1)$ is c.o-homotopic to f by E .

REMARK. - If S is a compact metric space, we can determine a positive real number r and choose partitions P with mesh $\langle r.$ In fact, we put $\varepsilon_1 = inf(enl(A_1^f; \ldots, A_n^f))$, $\forall n$ -tuple a_1, \ldots, a_n non-headed of G and $\varepsilon_2 = inf(enl(A_1^f; \ldots, A_m^f))$, $\forall m$ -tuple a'_1, \ldots, a'_m non-headed of G' and we choose ε_3 such that $W^{\varepsilon_3}(K) \subset U$. Then the real number r is given by

 $inf(\frac{\mathcal{E}_1}{2},\frac{\mathcal{E}_2}{2}, \mathcal{E}_3).$

THEOREM 10. -(The second normalization theorem between pairs). Let S be a compact space, the filter \mathcal{V} the uniformity of S, S' a closed subspace of S, G afinite directed graph, G' a subgraph of G and f:S,S' \rightarrow G,G' a completely o-regular function. Then we can determine a closed weighbourhood K of S' and a vicinity $\mathcal{W} \in \mathcal{W}$ such that, for all the Wpartitions $P = \{X_j\}$, $j \in J$, there exists a function h: S, $\mathring{K} \rightarrow G$,G', which is completely o-regular, weakly P-constant and completely o-homotopic

Proof. - By Proposition 28 of [5] and Theorem 16 of [4] there exists a closed neighbourhood U of S' and an extension $k: S, U \rightarrow G, G'$ which is c.o-regular and such that $k:S,S' \rightarrow G,G'$ is c.o-homotopic to f. Then we obtain the result by using Proposition 9 for the function $k: S, U \rightarrow G, G'$.

REMARK. - If G is an undirected graph, the function g can be choosen quasi-constant. Moreover if S is a compact metric space, we have only to consider the couples of vertices rather than the n-tuples and to determine $\ell_1 = inf(d(A_i^f, A_j^f))$, \forall couple a_i , a_j of non-adjacent vertices of G, $\mathcal{E}_2 = inf(d(A_r^{f'}, A_s^{f'}))$, V couple a_r, a_s of non-adjacent vertices of G'. Then, if we put $r' = inf(\xi_1, \xi_2)$, as in Remark 3 to Theorem 3, we can choose a covering $P = \{X_j\}$, $j \in J$, with mesh $\langle \frac{r'}{4}$ (see [8], Corollary 8).

6) The third normalization theorem between pairs.

Now we consider pairs of spaces given by a finite cellular complex C and by a subcomplex C' of C; it follows that |C'| is a closed subspace of |C|. Since we use completely o-regular functions f:[C], |C'| \rightarrow G,G' balanced by the open set |st(C')| (see [5], Definitions 6 and 12), we put:

DEFINITION 12. - Let C be a finite complex, C' a subcomplex of C, G a finite graph and G' a subgraph of G. A function $f: [C], [C'] \rightarrow G, G'$ is called pre-cellular w.r.t. C,C' or C,C'-pre-cellular if: i) $f: [C], [st(C')] \rightarrow G, G'$ is completely o-regular. ii) $f: |C| \rightarrow G$ is properly C-constant. iii) $f: |C| \rightarrow G$ is properly C-constant in C'.

THROREM 11. - (The third normalization theorem between pairs). Let S

be a compact triangulable space, S' a closed triangulable subspace of S, G a finite directed graph, G' a subgraph of G and $f:S,S' \rightarrow G,G'$ a completely o-regular function. Then for every finite cellular decomposition C,C' of the pair S,S', with suitable mesh, there exists a function h: S,S'->G,G' which is C,C'-pre-cellular and completely o-homotopic to f.

Proof. - By proceeding as in the proof of Theorem 10, at first we