So we obtain:

THEOREM 8. -(The third normalization theorem for homotopies). Let S be a compact triangulable space, G a finite directed graph, C, D two finite decompositions of S and $e, f: S \rightarrow G$ two functions pre-cellular w.r.t. C and D respectively, which are completely o-homotopic. Then, from any finite cellular decomposition Γ_{2} of $S \times\left[\frac{1}{3}, \frac{2}{3}\right]$ of suitable mesh which induces on the bases $S \times\left\{\frac{1}{3}\right\}$ and $S \times\left\{\frac{2}{3}\right\}$ decompositions \widetilde{C} and \widetilde{D} finer than C and D, we obtain a finite cellular decomposition Γ of SXI and a homotopy between f and g which is a Γ-pre-cellular function.

Proof. - Let $F: S X I \rightarrow G$ be a complete o-homotopy between e and f. We define the complete o-homotopy $M: S X I \rightarrow G$ between e and f as in the introduction of this paragraph. Then, if we consider the restriction of M to $S \times\left[\frac{1}{3}, \frac{2}{3}\right]$, we can determine the real number r, upper bound of the mesh. Now if Γ_{2} is a finite cellular decomposition, satisfying the conditions of the theorem and with mesh $<r$, we can consider the cellular decomposition $\Gamma=\Gamma_{1} \cup \Gamma_{2} \cup \Gamma_{3}$ of the cylinder $S \times I$, such that: i) Γ_{1} is the product decomposition $\widetilde{C} \times L_{1}$ of $S \times\left[0, \frac{1}{3}\right]$, where $L_{1}=\{\{0\}$,]o, $\frac{1}{3}\left[,\left\{\frac{1}{3}\right\}\right\}$.
ii) Γ_{3} is the product decomposition $\tilde{D} \times L_{3}$ of $S \times\left[\frac{2}{3}, 1\right]$, where $L_{3}=\left\{\left\{\frac{2}{3}\right\}\right.$, $] \frac{2}{3}, 1\left[{ }^{3},\{1]\right\}$.

Then we define the function $\widehat{g}: S \times I \rightarrow G$, given by:

$$
\hat{g}(\sigma)=\left\{\begin{array}{lc}
M(\sigma), & \forall \sigma \epsilon \Gamma-\Gamma_{2}, \\
\text { a vertex of } H(\{M(\bar{\sigma})\}), & \forall \sigma \in \Gamma_{2} .
\end{array}\right.
$$

Afterwards, by Theorem 6 , we construct the o-pattern \hat{h} of \hat{g}, by choosing as element of $H\left(\hat{g}\left(s t^{m}(\sigma)\right)\right.$), the value $\hat{g}(\sigma)=M(\sigma)$ if $\sigma \epsilon \Gamma-\Gamma_{2}$. By construction \hat{h} is a \hat{h}-pre-cellular function. Hence \hat{h} is the sought homotopy since $\hat{h} /_{S \times\{0\}}=e$ and $\hat{h} /_{S \times\{1\}}=f . \square$

REMARK. - The finite cellular decomposition Γ induces on the bases $S \times\{0\}$ and $S \times\{1\}$ the decompositions \widetilde{C} and \widetilde{D}.
5) The second normalization theorem between pairs.

Given a set A, a non-empty subset A^{\prime} of A, a finite graph G and a subgraph G^{\prime} of G, we can generalize Definition 4 , by considering function $f: A, A^{\prime} \rightarrow G, G^{\prime}$ which are quasi-constant w.r.t. a partition $P=\left\{X_{j}\right\}$, $j \in J$, of A. In this case it follows that the image of every X_{j}, such that $X_{i} \cap A^{\prime} \neq \varnothing^{\prime}$, necessary is a vertex of G^{\prime}. Moreover, if A is a too
logical space and A^{\prime} a subspace of A, we can also generalize the definition of weakly P-constant. So we have:

PROPOSITION 9. - Let S be a compact space, the filter W the uniformity of S, S^{\prime} a closed subspace of S, U a closed neighbourhood of S^{\prime}, G a finite directed graph, G^{\prime} a subgraph of G and $f: S, U \rightarrow G, G^{\prime}$ a complete ly o-regular function. If we choose in \dot{U} a closed neighbourhood K of S^{\prime}, we can determine a vicinity $W \in W$ such that, for all the W-partitions $P=\left\{X_{j}\right\}, j \in J$, there exists a function $h: S, O_{K} \rightarrow G, G^{\prime}$, which is completely o-regular, weakly p-constant and completely o-homotopic to $f: S, S^{\prime} \rightarrow G, G^{\prime}$.

Proof. - At first there exists a closed neighbourhood K of S^{\prime}, included in U, since S is normal. Then, by following the proof of Theorem 3, we determine a vicinity $V \boldsymbol{\in} W$ such that $V\left(A_{1}^{f}\right) \cap \ldots \cap V\left(A_{n}^{f}\right)=$ $=\varnothing, \forall n$-tuple a_{1}, \ldots, a_{n} non-headed of G. Moreover, if w^{\prime} is the trace filter of W on $U \times U$, we obtain, as before, a vicinity $Z^{\prime} \in W^{\prime}$ such that $Z^{\prime}\left(A_{1}^{\prime} f^{\prime}\right) \cap \ldots \cap Z^{\prime}\left(A_{m}^{\prime} f^{\prime}\right)=\varnothing$, $\forall m$-tuple $a_{1}^{\prime}, \ldots, a_{m}^{\prime}$ non-headed of G^{\prime}. Since $Z^{\prime} \in W^{\prime}$, necessarily it is $Z^{\prime}=V_{1} \cap(U X U)$, where $V_{1} \in W$. Then we choose a symmetric vicinity $W \in W$ such that $W \circ W \subseteq V \cap V_{1}$ and $W(K) \subset U$. Now, given a W-partition $P=\left\{X_{j}\right\}, j \in J$, of S, we define a relation $g: S, \stackrel{\circ}{K} \rightarrow G, G^{\prime}$, by putting, for every $X_{j}, j \in J$, the constant value:

$$
g\left(X_{j}\right)= \begin{cases}\text { a vertex of } H_{G}\left(\left\{f\left(X_{j}\right)\right\}\right) & \text { if } X_{j} \cap K=\varnothing \\ \text { a vertex of } H_{G},\left(\left\{f^{\prime}\left(X_{j}\right)\right\}\right) & \text { if } X_{j} \cap K \neq \varnothing\end{cases}
$$

We verify that g satisfies the following conditions:
i) g is a function. In fact it results:
a) $\forall X_{j} / X_{j} \cap K=\varnothing$, the set $\left\{f\left(X_{j}\right)\right\}$ is headed in G. For proving this we go on as in i) of the proof of Theorem 3 .
b) $\forall X_{j} / X_{j} \cap K \neq \varnothing$, the set $\left\{f^{\prime}\left(X_{j}\right)\right\}$ is headed in G^{\prime}. At first we prove that $X_{j} \subseteq U$. Let $z \in X_{j} \cap K, \forall y \in X_{j}$ it is $(z, y) \in X_{j} \times X_{j} \subseteq W$, i.e: $X_{j} \subseteq W(z) \subseteq W(K) \subseteq U$. Then, if we go on as in i) of Theorem 3 , we obtain that $\left\{f^{\prime}\left(X_{j}\right)\right\}$ is headed in G^{\prime}. Moreover, we remark that the vertex $g(x)$, chosen in $H_{G},\left(\left\{f^{\prime}\left(X_{j}\right)\right\}\right)$, is also an element of $H_{G}\left(\left\{f\left(X_{j}\right\}\right)\right.$, since $f\left(X_{j}\right)=f^{\prime}\left(X_{j}\right)$.
From a) and b) it follows that there exists $g(x)$, for every $x \boldsymbol{A} S$; hence g is a function.
ii) and i ii) The function $g: S, \stackrel{\circ}{K} \rightarrow G, G^{\prime}$ and the homotopy $F: S \times I, \stackrel{\circ}{K} \times I \rightarrow G, G$ between f and g given by:

$$
F(x, t)=\left\{\begin{array}{lll}
f(x) & \forall x \in S, & \forall t \in\left[0, \frac{1}{2}[\right. \\
g(x) & \forall x \in S, & \forall t \in\left[\frac{1}{2}, 1\right]
\end{array}\right.
$$

are completely quasi-regular functions.
a) $g: S \rightarrow G$ and $F: S \times I \rightarrow G$ are c. quasi-regular functions. We obtain this result as in ii) and iii) of Theorem 3.
b) The restrictions $g^{\prime}: \stackrel{O}{K} \rightarrow G^{\prime}$ and $F^{\prime}: \stackrel{O}{K} \times I \rightarrow G^{\prime}$ are c. quasi-regular. At first: we observe that, by the definition of g, it is $g(K) \subset G^{\prime}$ and then $F(K \times I) \subset G^{\prime}$. Secondly we go on as in ii) and iii) of Theorem 3, by choosing, $\forall x^{\prime} \in \mathbb{K}$, the neighbourhood $W\left(x^{\prime}\right) \cap \stackrel{\circ}{K}$, rather than $W\left(x^{\prime}\right)$, and by using the vicinity Z^{\prime} rather than V. Then, for example, if we suppose that the m-tuple $a_{1}^{\prime}, \ldots, a_{m}^{\prime} \in\left\langle g^{\prime}\left(x^{\prime}\right)\right\rangle$ is non-headed, we obtain the contra diction $x^{\prime} \in Z^{\prime}\left(A^{\prime} f_{1}^{\prime}\right) \cap \ldots \cap Z^{\prime}\left(A_{m}^{\prime} f^{\prime}\right)$.
From a) and b) it follows ii) and iii).
Now if we consider any o-pattern h of g, we obtain the sought function. In fact we have:
$\left.i^{\prime}\right) h: S, \stackrel{O}{K} \rightarrow G, G^{\prime}$ is completely o-regular (see [5], Proposition 15). i^{\prime}) h is weakly P-constant by the definition of o-pattern of a quasiconstant function.
iii') h is completely o-homotopic to $f: S, S^{\prime} \rightarrow G, G^{\prime}$. Since the homotopy $F: S, O_{K} \rightarrow G, G^{\prime}$ is c.quasi-regular by iii) and $\stackrel{\circ}{K}$ is open, there exists an o-pattern E (which is c.o-regular by [5] , Proposition 15) of F. We can choose E such that $E(x, 0)=f(x)$ and $E(x, 1)=h(x), \forall x \in S$, for f and g are c.o-regular i.e.:
ョ) $f(x) \in H_{G}(\langle f(x)\rangle)=H_{G}(\langle F(x, 0)\rangle)$ and $h(x) \in H_{G}(\langle g(x)\rangle)=H_{G}(\langle F(x, 1)\rangle)$, $\forall x \in S$.
b) $f^{\prime}(x) \in H_{G},\left(\left\langle f^{\prime}(x)\right\rangle\right)=H_{G^{\prime}}\left(\left\langle F^{\prime}(x, 0)\right\rangle\right)$ and $h^{\prime}(x) \in H_{G^{\prime}}(\langle g(x)\rangle)=$ $=H_{G^{\prime}}\left(\left\langle F^{\prime}(x, 1)\right\rangle\right), \quad \forall x \in K$.
Hence the o-pattern $h(x)=E(x, 1)$ is c.o-homotopic to f by $E \cdot \square$

REMARK. - If S is a compact metric space, we can determine a positive real number r and choose partitions P with mesh $<r$. In fact, we put $E_{1}=\inf \left(\operatorname{ent}\left(A_{1}^{f}, \ldots, A_{n}^{f}\right)\right)$, $\forall n$-tuple a_{1}, \ldots, a_{n} non-headed of G and $\varepsilon_{2}=$ $\inf \left(\operatorname{ent}\left(A_{1}^{\prime} f^{\prime}, \ldots . A_{m}^{\prime} f^{\prime}\right)\right)$, $\forall m$-tuple $a_{1}^{\prime}, \ldots, a_{m}^{\prime}$ non-headed of G^{\prime} and we 2hoose ε_{3} such that ${ }_{W} \varepsilon_{3}(K) \subset U$. Then the real number r is given by $\inf \left(\frac{\varepsilon_{1}}{2}, \frac{\varepsilon_{2}^{3}}{2}, \varepsilon_{3}\right)$.

THEOREM 10. - (The second normalization theorem between pairs). Let S be a compact space, the filter W the uniformity of S, S^{\prime} a closed subspace of S, G afinite directed graph, G^{\prime} a subgraph of G and $f: S, S^{\prime} \rightarrow$ I, G^{\prime} a completely o-regular function. Then we can determine a closed reighbourhood K of S^{\prime} and a vicinity $W \in W$ such that, for all the W partitions $P=\left\{X_{j}\right\}, j \in J$, there exists a function $h: S, \mathcal{O}^{\circ} \rightarrow G, G^{\prime}$, which

to f.

Proof. - By Proposition 28 of [5] and Theorem 16 of [4] there exists a closed neighbourhood U of S^{\prime} and an extension $k: S, U \rightarrow G, G^{\prime}$ which is
 obtain the result by using Proposition 9 for the function $k: S, U \rightarrow G, G^{\prime}$.

REMARK. - If G is an undirected graph, the function g can be choosen quasi-constant. Moreover if S is a compact metric space, we have only to consider the couples of vertices rather than the n-tuples and to determine $\varepsilon_{1}=\inf \left(d\left(A_{i}^{f}, A_{j}^{f}\right), \forall\right.$ couple a_{i}, a_{j} of non-adjacent vertices of $G, \varepsilon_{2}=\inf \left(d\left(A_{r}^{\prime}, A f_{s}^{\prime}\right)\right), \forall$ couple a_{r}, a_{s} of non-adjacent vertices of G^{\prime}. Then, if we put $r^{\prime}=\inf \left(\varepsilon_{1}, \varepsilon_{2}\right)$, as in Remark 3 to Theorem 3, we can choose a covering $P=\left\{x_{j}\right\}, j \in J$, with mesh $<\frac{r^{\prime}}{4}$ (see [8], Corollary 8).
6) The third normalization theorem between pairs.

Now we consider pairs of spaces given by a finite cellular complex C and by a subcomplex C^{\prime} of C; it follows that $\left|C^{\prime}\right|$ is a closed subspace of $|C|$. Since we use completely o-regular functions $f:|C|,\left|C^{\prime}\right|$ $\rightarrow G, G^{\prime}$ balanced by the open set $\left|s t\left(C^{\prime}\right)\right|$ (see [5], Definitions 6 and 12), we put:

DEFINITION 12. - Let C be a finite complex, C^{\prime} a subcomplex of C, G a finite graph and G^{\prime} a subgraph of G. A function $f:|C|,|C| \rightarrow G, G^{\prime}$ is called pre-cellular w.r.t. C, C^{\prime} or C, C^{\prime}-pre-cellular if:
i) $f:|C|,\left|s t\left(C^{\prime}\right)\right| \rightarrow G, G^{\prime}$ is completely o-regular.
ii) $f:|C| \rightarrow G$ is properly C-constant.
iii) $f:|C| \rightarrow G$ is properly C-constant in C^{\prime}.

THROREM II. - (The third normalization theorem between pairs). Let S be a compact triangulable space, S^{\prime} a closed triangulable subspace of S, G a finite directed graph, G^{\prime} a subgraph of G and $f: S, S^{\prime} \rightarrow G, G^{\prime} a$ completely o-regular function. Then for every finite cellular decomposition C, C^{\prime} of the pair S, S^{\prime}, with suitable mesh, there exists a function $h: S, S^{\prime} \rightarrow G, G^{\prime}$ which is $C, C^{\prime}-p r e-c e l l u l a r ~ a n d ~ c o m p l e t e l y ~ o-h o m o-~$ topic to f.

Proof. - By proceeding as in the proof of Theorem lo, at first we

