3

% WILLIAM & MARY
CHARTERED 1693 W&M ScholarWorks

VIMS Books and Book Chapters Virginia Institute of Marine Science

1998

Hydrodynamics and equilibrium sediment dynamics of shallow,
funnel-shaped tidal estuaries

Carl T. Friedrichs
Virginia Institute of Marine Science, carl.friedrichs@vims.edu

Bruce A. Armbrust

H. E. deSwart

Follow this and additional works at: https://scholarworks.wm.edu/vimsbooks

6‘ Part of the Oceanography Commons

Recommended Citation

Friedrichs, Carl T.; Armbrust, Bruce A.; and deSwart, H. E., "Hydrodynamics and equilibrium sediment
dynamics of shallow, funnel-shaped tidal estuaries" (1998). VIMS Books and Book Chapters. 38.
https://scholarworks.wm.edu/vimsbooks/38

This Book Chapter is brought to you for free and open access by the Virginia Institute of Marine Science at W&M
ScholarWorks. It has been accepted for inclusion in VIMS Books and Book Chapters by an authorized administrator
of W&M ScholarWorks. For more information, please contact scholarworks@wm.edu.


https://scholarworks.wm.edu/
https://scholarworks.wm.edu/vimsbooks
https://scholarworks.wm.edu/vims
https://scholarworks.wm.edu/vimsbooks?utm_source=scholarworks.wm.edu%2Fvimsbooks%2F38&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/191?utm_source=scholarworks.wm.edu%2Fvimsbooks%2F38&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarworks.wm.edu/vimsbooks/38?utm_source=scholarworks.wm.edu%2Fvimsbooks%2F38&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:scholarworks@wm.edu

Physics of Estuaries and Coastal Seas, Dronkers & Scheffers (eds) © 1998 Balkema, Rotterdam, ISBN 90 5410965 3

Hydrodynamics and equilibrium sediment dynamics of shallow,
funnel-shaped tidal estuaries

C.T.Friedrichs & B.D.Armbrust
Virginia Institute of Marine Science, College of William and Mary, Va., USA

H.E.de Swart
Institute for Marine and Atmospheric Research, Utrecht University, Netherlands

ABSTRACT: Observations of tidal and sediment properties available for the River Tamar are used to guide
perturbation solutions for hydrodynamics and equilibrium sediment dynamics. For net sediment transport,
important contributions to velocity at O(&) are flood dominance due to internally generated nonlinearity and
ebb dominance due to river flow. The advection-dispersion equation is used to solve for tidal variations in
depth-integrated suspended sediment concentration. The lowest order balance is between erosion and
deposition; the importance of advection is scaled by the ratio of the sediment response time-scale to the tidal
time-scale. Analytical solutions show that tidally averaged sediment transport at O(&) is due to three dominant
effects: (i) flood-dominant tidal asymmetry, (ii) seaward river flow, and (iii) settling/scour lag made effective
by along-channel width convergence. The third effect represents a new mechanism for the maintenance of the
turbidity maximum. Unlike previous solutions applied to short tidal estuaries of constant width, variation in
tidally averaged channel depth is not found to be an important control. Assuming uniform bed erodability, the
predicted change in direction of tidally averaged sediment transport coincides with the observed location of
the turbidity maximum in the River Tamar. However, an equilibrium sediment budget requires erodability to
vary along-channel. An analytical solution is presented for along-channel variation in bed erodability which
produces zero net transport of sediment at O(¢). By assuming a migrating, finite size pool of easily erodable
bed sediment, analytical solutions successfully reproduce the along-channel extent and intensity of the high
turbidity region along the River Tamar, as well as its response to variations in fresh water discharge.

INTRODUCTION balance for strongly frictional funnel-shaped

By studying simplified geometries, insight from  embayments. This approach is an extension of
diagnostic, analytically based models can be used to Schuttelaars and de Swart (1996), hereafter S&S96,
constrain dominant sediment transport pathways and ~ who applied these equations to short channels of
equilibrium balances in more complex settings.  constant width.

Highly frictional, strongly funnel-shaped tidal The analytical results presented here are in
estuaries result in relatively simple analytical  general agreement with previous numerical and
solutions for tidal elevation and velocity, including  observational studies of sediment transport and
nonlinearities (Friedrichs & Aubrey 1994, hereafter  turbidity maximum development in funnel-shaped
F&A94). Nearly funnel-shaped embayments are  macrotidal estuaries. For example, both Allen at al.
common along transgressive tidal coastlines, and  (1980) and Uncles and Stephens (1989) used one-
observations of tidal velocity, suspended sediment  dimensional numerical models which neglected
concentration and sediment transport rates from field  density induced gravitational circulation to
examples are available in the literature (e.g., Uncles  demonstrate that the observed turbidity maximum in
et al. 1985; Uncles & Stephens 1989). In the present  the Gironde estuary in France and the Tamar estuary
paper, analytical solutions for nonlinear tidal  in the U.K. could each be reasonably reproduced by
velocity are combined with the one-dimensional  the action of tidal currents and freshwater discharge.
advection-dispersion  equation  for sediment  They each concluded that in the lower reaches of the
concentration to predict the equilibrium sediment  estuary, sediment is transported landward by flood
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dominance  generated by  nonlinear tidal
hydrodynamics, while landward of the turbidity
maximum, sediment is transported seaward by river
flow. Uncles and Stephens (1989) also documented a
seaward migration of the turbidity maximum with
increased river discharge in a manner consistent with
the findings of this study. More recently, Uncles et
al. (1996) described the seaward movement of
unconsolidated bed source material in concert with
migration of the turbidity maximum.

The analytical solutions in this paper compliment
previous numerical and observational results by (i)
providing important insight into the physical
parameter combinations which govern the
previously inferred processes and (ii) identifying
entirely new transport mechanisms and controls. In
this paper we use high quality observations of
hydrodynamics and sediment dynamics available for
the River Tamar (Figure 1; George 1975; Uncles et
al. 1985, 1996; Uncles & Stephens 1989) to guide
properly  scaled  analytical  solutions  for
hydrodynamics and equilibrium sediment dynamics
in shallow, funnel-shaped tidal estuaries.

1. HYDRODYNAMICS
1.1 Lowest order solution

The geometry we consider is an infinite funnel-
shaped channel with exponentially decreasing width,

Weir Head
x=21km

2 km

@ = tidal elevation
(George, 1975)

2\ = bathymetry, velocity &
sediment concentration
(Uncles et al, 1985)

Figure 1. Location of tidal observations along the River Tamar
estuary.

River

W =wo exp ()

Figure 2. Geometry of idealized tidal estuary: (a) side view; (b)
plan view.

w = wyexp(-x/L,,), and a rectangular cross section of
depth H-h relative to mean ocean level, where H is
mean depth of the entire channel and 4 is the local
deviation of the bottom away from depth H
(Figure 2).

The relevant one dimensional equations for the
hydrodynamics are conservation of mass and
momentum:

(2 R S . U

a “a" 8 “H_nhin )
3

w%+g[uw(H—h+n)] =0 )

In (1)-(2), u is tidal velocity, ¢ is time, x is distance
landward from the ocean, g is acceleration of
gravity, n is surface displacement, and ¢, is the
bottom drag coefficient. The boundary condition at
x =0 is a tidal surface displacement of 1 = Acos(s?)
+ A,cos(2st-6,), where s is the dominant tidal
frequency, 4, and & are the amplitude and phase of
the overtide at x = 0, and there is a spatially invariant
river discharge, Q.

F&A94 present observations and theory
indicating the lowest order solution for funnel-
shaped estuaries such as the River Tamar is simply

n=Acos(st —kx), u=-Usin(st—kx) (3)

where U = sAL,/H, and k = FU/(gA). In the above
relations, U is the amplitude of tidal velocity, & is the
tidal wave number, and F = 8/(37) c4,U/H is the
coefficient of the leading term in the Fourier
expansion of the friction term. By plugging these
solutions into the mass and momentum equations,
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Figure 3. Sectionally-averaged velocity (—, m/s), sediment load (- - -, ppt m2) and salinity (-, ppt) over individual tidal cycles in
1982 along with transverse topography at sections 1 (25 May, 0 = 3.6 m3/s), 2 (27 April, Q = 5.9 m3/s) and 3 (26 Feb.,
Q = 25.9 m3/s) along the River Tamar. Cross-sections show station positions, depths below high water spring tide, and the
level of spring tide low water. Adapted from Uncles et al. (1985).

one finds that these solutions hold at lowest order
only if the following parameters are O(&) << 1:

A/H, hH, kL., s/F, AJA, /U (4)

where U, = OQ/(Hw). Unlike F&A94, here we do
not explicitly consider the effect of time-varying
estuary width due to the presence of intertidal flats
or marsh.

The very simple solutions given by (3) result at
lowest order largely because along-channel gradients
in channel width dominate velocity gradients in the
mass equation, and the friction term dominates
acceleration in the momentum equation (F&A94).
This is in contrast to the classical solution associated
with the phase speed (gH)'"?, which assumes
precisely the opposite scaling. The O(¢) terms, in the
order listed in (4), are due to: (1) finite tidal
amplitude, (i1) variations in tidally averaged channel
depth, (i) velocity gradients due to wave
propagation, (iv) local acceleration, (v) external
overtide forcing, and (vi) river discharge.

For spring tide along the Tamar (Uncles et al.
1985), the effective amplitude to depth ratio
applicable to the nonlinear friction and continuity
terms in (1)-(2) is V2(Hpigh-Hiow) Hmidrige = 0.6 at
spring tide, which is significantly less than 4/H,;ide
~ | (Table 1). This is because the channel banks in
the River Tamar are sloped such that the average
depth at high water, Hjgs, is significantly less than
Hipw + 24 (Figure 3). Alternatively, one could
include tidal flats in the hydrodynamic equations,

formulated such that they transported no momentum
and their width varied over the tidal cycle (F&A94).
However, such an approach would significantly
complicate the formulation of sediment transport.
The River Tamar is sufficiently narrow that it is
probably reasonable to allow momentum transport
over the entire cross-section, including intertidal
areas. Thus from this point forward, hydrodynamic
contributions resulting from the nonlinear friction
and nonlinear continuity terms will be scaled by
Ag/H, where Ayy = (Hpigi-Hiow)/2 1s the "effective”
amplitude. (Note that U remains s4L,/H, where 4 is
the actual tidal amplitude.)

The remaining parameters in (4) are all significantly
less than A4/ H, with the exception of u,.,/U in the
most landward portion of the River Tamar (Table 1).
As we will see, the ebb dominance favored by u,u.,
in the upper reaches of the estuary is fundamental in
establishing a stable turbidity maximum and an
equilibrium budget for suspended sediment. A
relatively substantial river discharge of 0 = 10 m%/s
gives Uyie/ U = Qexp(x/L,)(w,HU) < A4/H for x <
19.6 km, which encompasses 93% of the Tamar
estuary. Expressed somewhat differently, the scaling
applied here, which assumes &< O(4d.4/H) is valid
only for

x<L, log{(Aeﬂ /H)(wOHU/Q)} )

A more stringent limitation on the applicability of
this analysis to the River Tamar under most
conditions is probably the presence of the tidal weir
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at x = 21 km. In reality, a reflected tidal wave is
generated at this point which propagates seaward
along the estuary for a distance on the order of L,,
before being dissipated by the combined effects of
rapid channel expansion and strong bottom friction.

1.2 Higher order solution, surface elevation

If we follow a formal perturbation analysis and
define

n= A{no +en +0(&? )} (6a)

u= Afu, + e + 0(&*)} (6b)
such that &<<1, then 1n,=cos(st-kx) and
u, = - sin(st-kx). Substitution of these solutions into
the mass and momentum equations, and grouping of
O(¢) terms eventually yields en, = en, + ey + €715
where

kL u,..
EMpp = _WT’I‘_ (7a)
en, = (% - kLw)kx cos(st — kx)
b
+2£kxsin(st—kx) )
H
Ae_ﬁ -
&, = ——= kx sin(2st — 2kx)
7 (7c)

+ %cos(%t -2k - 92)

The first subscript indicates the terms are O(&),
while the second subscript on each component
indicates the frequency relative to s. Thus 7, and #,
are also equal to 7, and w,,. In deriving (7) it is
important to note that although kL, << 1, kx can be
O(1), since x can be much greater than L,,.

In (7), &n,, provides the mean pressure gradient
needed to drive a spatially-invariant river discharge
seaward. Because 7, and u, are 90° out of phase, at
O(¢) there is no set-up induced by Stokes drift. £7,,
represents the competition between friction and
channel convergence in dampening or focusing tidal
amplitude. If friction is strong (large F) and
convergence weak (large L, and/or locally negative
h), then amplitude decreases landward along
channel. Conversely, if convergence overcomes
friction, amplitude increases. £7,, contains internally
generated and externally forced contributions to the
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overtide. Together, 7, and the first term in (7c)
produce a tide which is faster rising than falling and,
by continuity, flood dominant. Conceptually, the tide
is faster rising because the crest of the tide
propagates more quickly than the trough (because s/k
~ channel depth). Over a significant distance, the
crest begins to "catch up" with the trough,
decreasing the duration of the intervening flood.

Neglecting O(£%), (7c) and the first term in (7b)
are consistent with F&A94. However, F&A94 did
not include river flow nor along-channel depth
variation, two contributions which can be important
when considering the equilibrium sediment budget
or when exploring implications for morphodynamic
evolution. As in F&A94, we have included
nonlinearities generated by the depth variation in the
friction term, but we have not included the third
harmonic generated by quadratic friction. The
reasoning behind this is two-fold: (i) quadratic
friction appears to do a poor job reproducing
observations of the third harmonic in natural tidal
estuaries (e.g., Prandle 1980; Friedrichs & Madsen
1992); (ii) in general, the third harmonic does not
contribute strongly to net sediment transport. This
approach is equivalent to setting the c4u]
contribution in (1) to exactly 8/(37) c,U before
expanding (1).

1.3 Higher order solution, velocity

(6)-(7) into continuity (or
momentum), we find that to O(g), eu, = euy, + su;, +
&u,, where

By substituting

_ Zriver (8 a)

au, = {(kLw —%)kx—%}sin(st—kx)

(8b)
. h
+ (_7— ko + kLw) cos(st - kx)
H
A
, = 1 ;'1” sin(2st — 2kx)
Ay
-2 T, kox cos(2st — 2kx) (8¢c)

—2%5in(2st—2kx—-6§)

Eq. (8) reduces to the no tidal flat case considered by
A&F94 when ujy., = h/H = 0 and 4.4 = A. However
there is a typographical error in the solution of



A&F94: the first line of their (35) should read U/2
{(&n-&p) sin (2st-2kx) - 2y kx cos (2st-2kx)}.

In (8), &u,, is the velocity associated with the
spatially invariant river discharge. The portions of
gu,, proportional to kx represent the along-channel
growth or decay in velocity amplitude paralleling the
along-channel variation in £7,,. The remaining terms
in gu,, arise from applying the higher order linear
continuity terms to 73,. In particular, the kL,cos(st-
kx) term in (8b) causes the phase difference between
u and 7 to decrease as the rate of along-channel
convergence decreases. Together, u, and the second
term in &u,, produce a flood dominant current which
is a central control on the sediment budget in funnel-
shaped tidal estuaries. The third term in (8c) can also
contribute significantly to ebb- or flood dominant
currents depending on the relative phase between 7,
and 7,, at the mouth of the estuary. The first term in
£u,, arises from applying the higher order nonlinear
continuity terms to 7, and does not contribute
significantly to net sediment transport.

In tidal estuaries significantly deeper than the
Tamar, mean gravitational circulation can produce
landward directed near bottom currents which can
contribute to net sediment transport (e.g., Nichols &
Poor 1967). An estimate of the strength of
gravitational circulation is given by the Officer's
(1976) solution derived from a balance between the
mean pressure gradient and friction in a channel of
rectangular cross-section:

{5 {5 ) o

Ay 8H (D

In deriving (9), eddy viscosity (4,) and density
gradient (8p/0x) are assumed independent of z, p, is
depth averaged density, and the boundary conditions
are Ougn/O0z =0 at z =0, Uge = 0 at z=- H, and
f Ugadz = 0 integrated over the water column. With
H = 2.5 m, a conservatively large dp/ox = 2 kg/m’
per km, and a conservatively small 4, = 10> m%s,
we find ugn/U < 0.01, yielding ug,q, insignificant in
the Tamar compared to tidal asymmetries or river

flow in the upper reaches of the estuary near the
turbidity maximum.

do gH’
U, =
' o A8py A,

1.4 Comparison to observations from River Tamar

Figure 4 compares the predictions of (6)-(8) to
observations from the River Tamar collected by
George (1975) and Uncles et al. (1985). The only
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parameter "tuned" in the analytical solution is the
friction coefficient, which was chosen to give the
best least-squares fit between observed and modeled
along-channel propagation in tidal phase in Figure
4(a). The geometric and forcing parameters applied
in the model, along with the size of the small
parameters in (4) are given in Table 1. Observations
of surface elevation along the Tamar were taken
simultaneously over a single semi-diurnal spring tide
on 14 October 1970 (George 1975); observations of
cross-sectionally averaged velocity at spring tide
(see Figure 3) are not synoptic (Uncles et al. 1985).
The observations of surface elevation as well as
velocity at sections 1 and 2 were taken at times of
minimal freshwater discharge, thus the analytical
solutions in Figure 4 do not incorporate 7,, or u,,;
they also do not include the effect of A/H.

The analytical solution captures the slight increase in
high tide elevation and maximum current velocity
seen as one moves landward along the estuary. The

()

2r ° 'y
Tidal
phase 10} 4
(deg)
ot ]
High 3 Hb) ]
wi __._____..._———0———"_.——’.
(m) 2 ]
Max |
-flood e o -O- 10
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0
N2 rel | |
Dhase 150 \'\.\
(deg) 100} - o ° ]
uizrel 50| SO —— &
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Figure 4. Comparison of analytical solutions (lines) to
observations (circles) for the River Tamar. Solid
lines and filled circles refer to elevation, dashed lines
and open circles refer to cross-sectionally averaged
velocity: (a) phase of semi-diunal component
relative to mouth; (b) maximum tidal elevation
(relative to mid-tide at the mouth) and maximum
flood velocity; (c) phase of overtide relative to semi-
diurnal component; (d) amplitude of overtide relative
to semi-diurnal component. Observations from
George (1975) and Uncles et al. (1985).



analytic solution also predicts the right order of
magnitude for the quarter-diurnal components (7,
and u,,), with the amplitude ratio for quarter-diurnal
velocity being two to three times that for elevation.
The behavior of the quarter-diurnal relative phase is
reproduced well over the seaward portion of the
estuary, and the generally faster-rising and flood
dominant nature of the tide is captured throughout
the system. The phase, 6,,, of a given component is
determined by re-expressing that component as
| enlcOS(nst-6,y). The relative phase of 7, is then
defined as two times the relative phase of 7yt+en,,
minus the phase of 7,,. The relative phase of u,, is
analogously defined with respect to u, + &uy,.

The analytical solution significantly under-
predicts the decrease in quarter-diurnal relative
phase of the surface tide observed toward the inner
portion of the estuary. This is because the tidal
elevation curve is kinematically truncated in the
innermost Tamar by the elevation of the channel
bottom (George 1975), a process which is not
represented in the dynamics of (6)-(8). Truncation of
the tidal curve around low water can significantly
reduce the quarter-diurnal relative phase determined
by harmonic analysis (Speer et al. 1991). One should
expect kinematic truncation to affect velocity
asymmetry less, since maximum flood and ebb occur
outside the period of truncation.

2. SEDIMENT DYNAMICS

2.1 Lowest order solution

To calculate suspended sediment concentration, we
start with the one dimensional advection-dispersion
equation applied by S&S96 to a constant width
channel and adapt it here for a channel with varying
width:

(10)

In (10), C is depth-integrated suspended sediment
concentration, K is the longitudinal dispersion
coefficient, £ = (a/T. )4’ is the erosion rate, and
D =C/T, is the deposition rate. « is a spatially
varying empirical coefficient parameterizing the ease
with which bottom sediment can be mobilized, and
T¢ is the adjustment time-scale for the concentration
field, assumed to be constant for a given type of
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suspended sediment. In truth, deposition is not
proportional to depth-integrated suspended sediment
concentration; it is more closely proportional to
near-bed suspended sediment concentration. To
reconcile this, we will assume that nearly all of the
suspended sediment remains in the lower part of the
water column and is not vertically spread or
concentrated by tidal oscillations in water depth.
Then depth-integrated concentration remains
roughly proportional to near-bed concentration. As
long as the sediment response time is significantly
less than the tidal time scale, this is not an
unreasonable assumption.

The above formulations for £ and D allow
simultaneous erosion and deposition. Mathematical
models for sediment transport of fine sediment often
assume that erosion occurs only when bottom stress,
7, is greater than some critical level, 7., and that
deposition only occurs for 7< 7, where 7; is the
critical deposition shear stress (e.g., Dyer 1986).
This formulation is based on laboratory observations
of flow over cohesive sediments. Since it is
generally observed in the laboratory that 7, < , this
formulation has been termed exclusive erosion and
deposition. However, more recent observations
under field conditions in estuaries containing
cohesive sediment suggest that erosion and
deposition can occur simultaneously in real estuaries
(e.g., Sanford & Halka 1993). This disagreement
with laboratory observations may be due to the
larger scales present in the field which produce
greater heterogeneities in terms of sediment
properties and turbulence over scales of 10's to 100's
of meters. When these heterogeneities are integrated
into simple mathematical models, it appears that a
bottom boundary which allows simultaneous erosion
and deposition better represents the behavior of
estuarine sediment in situ (Sanford & Halka 1993).
This is a convenient result, for allowing erosion and
deposition to occur together is easier to model
analytically.

If a lowest order balance in (10) is assumed
between erosion and deposition, then the
concentration scale is given by C,, = a,,[’, where a,,
is the scale of a(x). Scaling ¢ by 1/s, u by U, and x by
L., the orders relative to erosion and deposition of
the three terms on the left hand side of the
concentration equation (local change, advection,
dispersion) are, respectively:

2

&K
&uép = LU
w

m

&
& =
sL

W

& =T,

>



For spring tide along the River Tamar, 7, can be
estimated by examining the time-lag between depth-
integrated suspended sediment concentration and
cross-sectionally averaged velocity. These difficult
observations were obtained successfully by Uncles
et al. (1985) and are displayed in Figures 3 and S.
For T, = 0, one would expect |u| to be exactly in
phase with C. From the observations of Uncles et al.
(1985), it appears that ~30 min £ T, £ ~60 min
(Figure 5). The sediment response time can be
expected to be about equal to the vertical distance
which scales the fall off of sediment concentration
divided by the suspended sediment fall velocity. If
the vertical scale for sediment concentration is about
a meter, then 7, = 30-60 min corresponds to a fall
velocity of about 0.4 mm/s which, in tum, is
characteristic of medium silt (e.g., Dyer 1986).

A sediment response time of 30 to 60 minutes gives
~0.3 £ 5T, <~0.6, which is less than or equal to
AfH, the largest parameter neglected at lowest
order in the hydrodynamic solution. With U=~ 0.7
m/s and L, =~ 5 km, we find U/(sL,) = 1 for the
Tamar, and &r = gy. This scaling is in contrast to
S&S96 who, for constant width channels, treated s7.
as O(1) and assumed advection in the concentration
equation to be much less important than 8C/ot.
Along funnel-shaped estuaries, however, advection
of suspended sediment is more important than
advection of momentum because the length (L.,)
which scales gradients in sediment concentration is
much less than the length (1/k) which scales
gradients in along-channel velocity.

The ratio scaling the importance of dispersion
relative to advection is given by &’ = K/(L,U). If
one assumes the intra-tidal dispersion coefficient
K < 100 m?/s (e.g., Fischer et al. 1979; Zimmerman
1986), then for the River Tamar, K/(L,U) < 0.03,
which suggests that the contribution of dispersion is

e o
o ®

o o
N S

Current speed, 1ui (mvs)
o8 588 8

Concentration, C (pptxm?)

(=]

Time (hours)

Figure 5. Observations of current speed and cross-sectionally
integrated suspended particle concentration over a
spring tidal cycle. Estimates of the time-lag between
current speed and concentration are also shown.
Modified from Uncles et al. (1985).

321

not very important. For tidally averaged equations
applied to estuaries with irregular geometries, K may
be O(1000) m?/s because the effects of periodic tidal
advection are incorporated into "dispersion" (e.g.,
Zimmerman 1986). Here we treat tidal advection
separately, and the appropriate intra-tidal K is much
smaller.

Defining C = C,{C, + &C, + O(g&)}, 1t follows
from the lowest order relation, E = D, that

Co=a' =%{1—0052(st—kx)} (12)
where & = &/ a,,. From Figures 3 and 5, we can see
that (12) at least qualitatively resembles the
observations of cross-sectionally integrated sediment
concentration collected by Uncles et al. (1985).

It is worth noting that as s7. goes to zero, E =D
exactly, and C = aa? exactly. Then instantaneous
sediment transport is given by au’, which is very
much like the classic Meyer-Peter and Miiller (1948)
formula for bedload sediment transport. Thus the
analytical theory for tidal sediment concentration
and transport presented here can easily be extended
to bedload, namely the regime for which s7; is
exceedingly small.

2.2 Higher order solution

Substitution into the concentration equation and
grouping of O(¢) terms yields the following equation
for C,:

&C, = 2a' euu, — 5T, %
(13)

TU .2 .
- 2 e’ BC—,(e” uOCO)

where ' = st and x’ = x/L. The higher order sources
of concentration in (13) include altered erosion
patterns brought about by the presence of u,
interacting with u,, the finite time it takes for the
concentration to reach an equilibrium between
erosion and deposition, and along channel advection
of the concentration field. The latter two effects
together are often attributed to settling and scour lag
(e.g., Postma 1967). Note that dispersion does not
appear in the equation for C, because dispersion is
two orders of & smaller than advection in the
concentration equation.

Applying the known expressions for Cy, u, and u,
then gives us £C, = &C,, + eCy, + &C), + &C,; where



eCy, (s ) h
=\ —=—kL, |kx+— 14
a' F g +H (142)
o _[3TU 1 dwa) 2.,
a |4 L, wa dx' U
24 24
- 1;” Ioc+725in02}sin(st—kx) (14b)
A, 24
3L - =2 cos b, {cos(st — kx)
2H A
&C, 2h) .
2 - —(kLw +5T. + —) sin(2st — 2kx)
a H
i (s ) h
ok e 4
2{ I3 " +H} (14¢)
cos(2st — 2kx)
o [1TU 1 diwa) 24,
a |4 L, wa' dx H
24, . )
= sin 6, }51n(3st —3kx) (14d)

2
- % cos 8, cos(3st — 3kx)

Of all the terms in C,, only the sine portion of C,,
will contribute to tidally averaged sediment transport
at leading order, because only it is correlated with u,,.
The first term in the sin(st-kx) component of (14b)
originates from tidal advection in (13) (a component
of settling lag/scour lag), while the remaining three
are due to altered erosion arising from the interaction
of u, and u,.

The equation for net sediment flux over a tidal
cycle, S, is net advection minus net dispersion:

&
S =uCy—(K— 15
) =< d(> (15)
where () indicates a tidal average. Keeping the
leading order contributions to S due to advection and
dispersion, (15) can be re-expressed as

S= UC111{<u0C0>+ euCy)

(16)
+ &, C)) + E143C, [ &)

We have included the O(¢) advection terms because
(4yCy> = 0. The dispersion term involving C, is
non-zero, so dispersion is an order of & more
important in the sediment transport equation than it
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is in the concentration equation. Even so, for funnel-
shaped estuaries comparable to the Tamar, the
leading order dispersion term is still O(gp?) << O(&).
Thus we may still neglect dispersion. This result is
in contrast to S&S96, who showed that for constant
width basins about 20 km long, with relatively weak
tides (4/H =~ 0.15) and coarse sediment (s7, ~ 0.04),
advection and dispersion can be of equal importance
in" contributing to tidally averaged sediment
transport. In such systems, net transport due to
advection relative to dispersion is scaled by
(L’s/K)(sT.)(A/H)?, where L is the length of the tidal
estuary.

The solution for S is more compact than that for
u, or C, because relatively few terms survive time
averaging. In u,, only u,, and the cos(2st-2kx)
portion of u,, are correlated with C,, and in C,, only
the sin(st-kx) portion of C,, is correlated with wu,.
Plugging in the solutions for u,, u,, C; and C, into
(16) and averaging yields contributions (in order)
from river flow, tidal asymmetry and settling/scour

lag:

3 ; A, 4, .

S = —UCma’{—M+(—ﬂkx ~sin 92)
2 U H A
)

17U 1 d(wa)

4 L, wa' dx'
River flow transports sediment seaward; internally
generated tidal asymmetry transports sediment
landward; externally forced tidal asymmetry and
settling lag/scour lag can transport sediment

landward or seaward, depending on the phase of the
externally forced overtide and the spatial structure of

bed erodability, o’
With ¢ constant, (17) becomes

{

siné,+

uri\'er

U
TU

[

Ay

+ I hx

With da'/dx = 0, net landward sediment transport by
settling/scour lag occurs because of strong along
channel width convergence, a newly recognized
interaction capable of helping maintain the turbidity
maximum. Classically, settling/scour lag moves
sediment towards areas of lower velocity (Postma
1967). Here, spatial gradients in velocity are

minimal, and settling/scour lag acts to move
sediment toward areas of increasingly narrow

3
=-UC,a'
2 ma

4,

iy

(18)
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Plan views
of estuary

Convergence
—> Excess concentration
—> Enhanced deposition at end of flood

Divergence
—> Reduced concentration
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Figure 6. Illustration of net landward suspended sediment
transport due to settling/scour lag interacting with
width convergence.

channel width. Figure 6 shows conceptually how
settling/scour lag is effective in a funnel-shaped tidal
estuary with uniform bed erodability.

During flood, sediment is moved from a wider
portion of the estuary toward a narrower portion.
Because of  settling/scour lag, sediment
concentration does not respond instantaneously to
the strength of the local velocity. Thus a given parcel
of suspended sediment becomes crowded over a
smaller patch of channel bottom. There is now an
excess concentration relative to the equilibrium
value supported by erosion, and enhanced deposition
occurs toward the end of flood. During ebb the
opposite process occurs. A given parcel of
suspended sediment is spread over an increasingly
wider area of the estuary. The reduced concentration
relative to the value supported by erosion results in
decreased deposition toward the end of ebb.

It may seem strange that local sediment
concentration increases with along-channel width
convergence when the concentration of the
incompressible water carrying the sediment clearly
does not. This is because water responds to
convergence of channel width by moving upwards,
and the tide rises during flood. Sediment dynamics
are not affected by the rise of the sea surface because
it is assumed that depth-integrated (rather than
depth-averaged) sediment concentration controls the
deposition rate. As discussed in Section 2.1, this
assumption makes sense if most of the suspended
sediment remains in the lower part of the water
column.

One contribution to higher order hydrodynamics
which conspicuously does not contribute to tidally
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averaged sediment transport is A/H, e,
perturbations in along-channel depth away from the
mean depth of the entire estuary. The only velocity
component affected by perturbations in depth is u,,,
which is uncorrelated with C,. The altered erosion
patterns due to the interaction of u,, and u,
contribute to C,, and C,,, but neither of these is
correlated with u,. Thus if depth perturbations along
a shallow funnel-shaped estuary are characterized by
h/H < ((A.4/H) (as is the case for many macro-tidal
estuaries), then the nature of the equilibrium
suspended sediment budget is not related at lowest
order to along-channel variation in depth. This was
initially a surprising result, for this work, as an
extension of S&S96, anticipated determining the
along-channel variation in #/H required to satisfy a
zero along-channel gradient in cross-sectionally
integrated sediment transport. Instead, this study has
shown that AW/H plays no significant role in the
equilibrium sediment budget in such systems.

3. HIGH TURBIDITY REGION

3.1 Along-channel location

Still assuming the bed erodability to be independent
of x, (18) can be solved easily to find the location of
along-channel convergence of sediment transport.

" Figure 7 schematically displays the contributions to

tidally averaged sediment transport of (i) river flow,
(ii) internally generated tidal asymmetry (i.e., flood
dominance), and (iii) settling/scour lag associated
with width convergence, all as a function of position
along the estuary. Unless sediment transport due to
external tidal asymmetry is large and directed
seaward, sediment transport at the estuary mouth
will be landward due to the interaction of channel
convergence with settling/scour lag. (For the Tamar

6, ~ 175°, minimizing the net effect of the external
overtide.) As one moves landward, the magnitude of
landward transport by flood dominance and seaward
transport by river flow both increase. Initially the
linear increase in flood dominance with distance is
more rapid than the exponential increase in river
flow, and net sediment transport is landward. But
eventually seaward sediment transport by river flow
overcomes the combined effect of landward
transport by flood dominance and settling/scour lag.
Figure 8 displays observations of suspended
particulate  matter at spring high  water
(ranges > 4 m) along the Tamar estuary during 1985
as reported by Uncles and Stephens (1989). The
concentration profiles have been normalized by tidal
amplitude squared in an attempt to reduce the effect
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net sediment transport
Figure 7. Contributions to tidally averaged sediment transport

as a function distance along a shallow, funnel-shaped
estuary. This scenario assumes (i) bed erodability is
independent of along channel position and (ii)
asymmetries present at the mouth do not contribute
significantly to net sediment transport.
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Figure 8. Observations of suspended particulate matter at
spring high water along the River Tamar during
1985, normalized by tidal amplitude squared and
arranged in order of increasing river discharge
(modified from Uncles & Stephens 1989).

of differences in peak tidal velocity from one spring
tide to the next. Furthermore, they have been
displayed from top to bottom in order of increasing
fresh water discharge. Two distinct patterns can be
seen in the data in response to increasing Q: (i) the
high turbidity region moves seaward; and (ii) the
turbidity maximum becomes less intense.

Figure 9(a) compares_the observed location of the
turbidity maximum in Figure 8 with the prediction
of (18) for the convergence point of along-channel
net sediment transport. The positions for the
turbidity maximum predicted by the analytical
solution are reasonably consistent with the
observations. (They are also well seaward of the
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Figure 9. Observed and predicted properties of the high
turbidity region along the River Tamar as a function
of river discharge: (a) Along-channel location of the
turbidity maximum; (b) along-channel extent of
concentrations greater than or equal to one half the
turbidity maximum. In (a), vertical bars are along-
channel extent centered about the turbidity
maximum. (Observations from Uncles & Stephens
1989.)

high #,i., limit given by (5)). The theory also
predicts the observed migration of the turbidity
maximum toward the mouth of the estuary as river
discharge increases. As the turbidity maximum
migrates seaward, the magnitude of net landward
transport by the tides decreases linearly. In contrast,
net- seaward transport by the . river decreases
exponentially. Thus a little closer to the mouth, a
slightly less effective tidal asymmetry can balance
net transport by a much greater river discharge
because u,y., is significantly diminished by an
exponentially increased channel width.

3.2 Equilibrium along-channel extent

Although the above analysis appears to identify the
location of the turbidity maximum, it does not
represent an equilibrium sediment budget (i.e., zero
gradient in cross-sectionally integrated, tidally
averaged sediment transport). Clearly if bed
erodability is uniform in space, rapid deposition will
occur in the vicinity of the turbidity maximum, and a
continual sink for suspended sediment will exist.
Continual deposition will eventually create a
positive perturbation in bottom elevation at this
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location. However the sediment transport solution
indicates that a perturbation of size A/H < O(4.4/H)
does not contribute to the leading order sediment
budget. So with uniform o' and //H < O(4,.4/H), no
feedback can occur which could lead to a stable
morphology. It seems that the only way to produce
an equilibrium sediment budget at leading order is to
allow o to vary in x. An alternative explanation
might be that dd/dx=0, and funnel-shaped
macrotidal estuaries such as the Tamar are very far
from morphodynamic equilibrium. Considering the
highly energetic conditions, high sediment
concentrations present and stable tidal forcing, this
alternative hypothesis is dismissed.

To solve for the along-channel distribution of
at equilibrium, we assume that the rate of new
sediment input from the ocean and/or river is
negligible relative to the amount of suspended
sediment instantaneously in motion in the vicinity of
the turbidity maximum, and we also neglect the
externally forced overtide. Then the equilibrium
sediment budget will be nearly equivalent to the
following condition that S =~ 0 everywhere:

U, A
_ Hriver o —— L Awa)
U TH 0.(19)

Expanding u,,., about its value at x,,,;, and solving
for & then yields

o= eXp[_ %@(X-x,,,,b)z] (20)

High water SPM normalized by A’

which is strictly valid only for x - x,,,, << L,.

Figure 9(b) compares the observed along-channel
extent of the region of high turbidity in Figure 8
with that predicted by (20). Along-channel extent is
defined here as the length of channel containing
sediment concentrations greater than or equal to half
the concentration observed at the turbidity

__maximum. The analytical solution reproduces the

observed increase in along-channel extent with
increased river discharge. Except for the minimum
and maximum discharge cases, (20) also does a
reasonable job of quantitatively predicting the
observed extent of the high turbidity region. The
observed extent for the lowest discharge case is
probably limited by its proximity to the weir present
21 km from the mouth. Conversely, the low
sediment concentrations associated with the highest
discharge may have blurred its signal into the
background concentration of very low density matter
not associated with resuspension, thus exaggerating
the along-channel extent of the high turbidity region.

3.3 Migration of finite sediment supply

As shown in the previous section, an equilibriuin
sediment budget requires the region of high bed
erodability (i.e., the region of large ) to migrate
seaward with increased river discharge. This
suggests that the region of high turbidity is formed
from a mobile pool of easily erodable sediment.
Furthermore, the supply appears to be finite, for after
the source material has migrated to a new area, very

Analytical solution for tidally-

(from Uncles & Stephens, 1989)

River
Flow:

4md/s

Te = 45 min

averaged sediment concentration

_— — ]
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9md/s
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11 mdfs

13m3/s

26 m3/s

60 md/s

0 5 10 15 20 0
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Figure 10. Observed and predicted suspended sediment concentration profiles along the Tamar, normalized by tidal amplitude
squared and arranged in order of increasing river discharge (observations from Uncles & Stephens 1989).
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low values for « are found away from the new
turbidity maximum, which suggests the process of
migration does not leave behind much excess
unconsolidated bed material. If the total pool of
easily mobilized sediment is approximately constant
for a typical spring tide, then the product of its
along-channel extent times the intensity of the
turbidity maximum times the channel width at x,,
should remain roughly fixed. Figure 9(b) indicates
that the along-channel extent of the high turbidity
region varies rather weakly in response to river
discharge (except for Q@ = 4 and 60 m3/s, as
discussed above). Therefore the total pool ~
Caw(xurs), and the scale of the turbidity maximum
should vary with x,,,; as follows:

Total pool
C ~—2>rr
" W( X turb )

Figure 10 compares observed profiles of the high
turbidity region along the River Tamar with
analytical solutions for identical river discharges by
combining (i) the concentration scale predicted by
(21), (i) the shape and along-channel extent
predicted by (20), and (iii) the position predicted by
(18). An intermediate sediment response time scale
of T. = 45 min was chosen for the theoretical
predictions. Comparison of the observed and
predicted profiles still requires incorporation of an
arbitrary constant in (21) good for all river
discharges. (Note that there is no vertical scale on
the analytical solutions in Figure 10.) Nonetheless,
the analytical solution reasonably captures the along-
axis position, along-channel extent and relative
intensity of the region of high turbidity along the
River Tamar.

The model results displayed in Figure 10 require
the presence of a finite, mobile supply of easily
erodable bed source material. Direct evidence of a
rapidly moving fine-grained deposit along the River
Tamar is provided by Uncles et al. (1996), who
describes the seasonally migrating distribution of
"mobile, unconsolidated, bed-source mud” (p.381).

Figure 11 displays the along-channel distribution

of this muddy deposit as a function of river
discharge. Migration of the bed source material
appears to parallel the seasonal migration of the high
turbidity region.
In the summer and fall, when Q is typically small,
the unconsolidated bed source mud is found in the
upper reaches of the estuary, while in the winter and
spring, when Q is typically large, the unconsolidated
mud is found further seaward.

@n

River

i . ; . | Flow: Mo./Yr
Summet/Fall N/A 10/89
S ] emilks 7-9/82
12ml/s 4/89
15m3s 390
Winter/Spring 32mis 1-4/82

1 1 L .

° 5 10 15 20

Distance from mouth (km)

Figure 11. Observed distributions of mobile, unconsolidated
bed-source mud along the River Tamar as a function
of river discharge and season. Data from Uncles et al.
(1996) and Bale et al. (1985).
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Table 1. Morphological and tidal properties of the River
Tamar.

Parameter Value.  Stand. err
Distance from mouth to weir head 21 km n.a.
H = average cross-section depth at 24m 0.1 m
midtide

h = 2% x standard deviation of H 0.19m n.a.
A = spring tidal amplitude (from Fig 24m 0.1m
8)

A H = Vo Hyigh-Hiow) Hictie 0.60 m 0.1m
L, = e-folding length for width at 4.7 km 0.8 km
midtide

w, = exponential fit for widthatx=0 650 m 200 m
277k = tidal wave length fit to tidal 360 km 50 km
phase

A,/A = relative amplitude of overtide 0.11 n.a
at mouth

&, = overtide relative phase at mouth 175° n.a.
s/F = acceleration relative to friction 0.20 0.04
kL, = width change relative to tide 0.09 0.02
U,/ U for seaward 93% of Tamar <0.6 n.a.
with O = 10 m3/s

sT, = sediment response time rel to 0.3-0.6 n.a.
tide

k/(L,U) = dispersion relative to 0.03 n.a
advection

n.a. = not available or not applicable
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