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Strong electron-boson coupling in the iron-based superconductor BaFe1.9Pt0.1As2 revealed 

by infrared spectroscopy 

 

Zhen Xing1, Shanta Saha2, J. Paglione2, and M. M. Qazilbash1,*
 

1 Department of Physics, College of William & Mary, Williamsburg, Virginia 23187-8795, USA 

2 Center for Nanophysics and Advanced Materials, Department of Physics, University of Maryland, College Park, Maryland 20742, USA 

 

Understanding the formation of Cooper pairs in iron-based superconductors is one of the most important topics in condensed 

matter physics. In conventional superconductors, the electron-phonon interaction leads to the formation of Cooper pairs. In 

conventional strong-coupling superconductors like lead (Pb), the features due to electron-phonon interaction are evident in the 

infrared absorption spectra. Here we investigate the infrared absorption spectra of the iron arsenide superconductor 

BaFe1.9Pt0.1As2. We find that this superconductor has fully gapped (nodeless) Fermi surfaces, and we observe the strong-coupling 

electron-boson interaction features in the infrared absorption spectra. Through modeling with the Eliashberg function based on 

Eliashberg theory, we obtain a good quantitative description of the energy gaps and the strong-coupling features. The full 

Eliashberg equations are solved to check the self-consistency of the electron-boson coupling spectrum, the largest energy gap, 

and the transition temperature (Tc). Our experimental data and analysis provide compelling evidence that superconductivity in 

BaFe1.9Pt0.1As2 is induced by the coupling of electrons to a low-energy bosonic mode that does not originate solely from phonons.  

 

I. INTRODUCTION 
Nearly half a century after the experimental discovery 

of superconductivity, Bardeen, Cooper, and Schrieffer (BCS) 

developed a model to explain this phenomenon [1]. The 

BCS mechanism provides a microscopic description of 

weak-coupling, phonon-mediated superconductivity in 

conventional superconductors. Subsequently, 

Eliashberg [2,3] proposed a more realistic model of the 

superconducting state that includes the retarded nature of the 

phonon induced interaction applicable to conventional 

strong-coupling superconductors like lead (Pb) and mercury 

(Hg). The agreement of the parameters in the self-consistent 

solutions of the Eliashberg equations, for example, in Pb, 

with experimental results like the phonon density of states 

from inelastic neutron scattering [4], electronic density of 

states from tunneling experiments [3], electronic heat 

capacity enhancement [3], and infrared absorption [5] 

provide strong evidence for the electron-phonon mechanism 

of superconductivity in conventional superconductors. 

For the iron-based superconductors, it has been argued 

that phonons alone cannot explain the high transition 

temperatures [6,7]. Spin and orbital fluctuations are 

currently the popular candidates for mediating the formation 

of Cooper pairs [6,7]. There is some experimental evidence 

that collective spin fluctuations may be the bosons that 

mediate the formation of Cooper pairs. These experiments 

include inelastic neutron scattering studies on both electron- 

and hole-doped iron pnictides [8–11], scanning tunneling 

spectroscopy [12], and specific heat measurements of hole 

(K) -doped BaFe2As2 [13], and quasiparticle interference 

imaging in LiFeAs [14]. 

There have been a number of infrared studies on iron-

based superconductors [15–29]. However, they have not 

reported clear evidence of strong electron-boson coupling 

features in the infrared absorption data in the 

superconducting state normalized to the infrared absorption 

data in the normal state. Such features are expected to occur 

if superconductivity is mediated by collective bosonic 

excitations. Although the larger gap(s) in the iron-based 

superconductors are in the strong-coupling regime, only a 

limited number of infrared studies have considered strong-

coupling approaches to model the data [17–19,25–27]. The 

strong-coupling methods were originally developed for 

strong electron-phonon interactions but they are believed to 

describe the coupling of electrons to any bosonic spectrum. 

In a few studies, researchers have obtained the electron-

boson spectral density from the scattering rate only in the 

normal state [17,25–27]. One recent work [18] provides a 

method to find the electron-boson interaction both in the 

normal and superconducting states from the infrared 

scattering rate (or self-energy). However, this work does not 

check if the electron-boson spectral density function is self-

consistent with the energy gap by solving the full Eliashberg 

equations. Charnukha et al. [19] have used a multiband 

Eliashberg theory to fit the optical conductivity to support 

the spin-fluctuation mechanism. Their model only 



qualitatively describes the real part of the optical 

conductivity in the superconducting state.  

Previous experiments on high-quality single crystals of 

superconducting BaFe1.9Pt0.1As2 reveal two isotropic gaps, 

one 2–3 meV and the other 5–7 meV [30]. Here we report 

infrared spectroscopy data on BaFe1.9Pt0.1As2 that is 

consistent with multiband superconductivity with isotropic 

gaps. The important finding is that we observe strong-

coupling electron-boson interaction features when the 

infrared absorption spectra in the superconducting state are 

normalized to the infrared absorption spectrum in the normal 

state. The frequency-dependent infrared absorption (A) is 

simply 𝐴 = 1 − 𝑅  where the frequency-dependent 

infrared reflectance (R) is directly measured in the 

experiments. We identify a bosonic mode centered about 5 

meV that provides the pairing glue in superconducting 

BaFe1.9Pt0.1As2. We employ theoretical modeling of the 

absorption spectra within the Allen formalism [18,31] and 

Zimmermann formalism [32] based on Eliashberg theory. 

The full isotropic Eliashberg equations are solved to check 

the self-consistency of the Eliashberg function (electron-

boson spectral density function), the largest energy gap, and 

Tc. 

 

II. SAMPLES AND EXPERIMENTS 

Single crystals of BaFe1.9Pt0.1As2 were grown using the 

FeAs self-flux method, which is described in Refs. [30,33] 

along with x-ray, transport, magnetic, and thermodynamic 

measurements. The dc resistivity data show the onset of 

superconductivity at c = 23 K [30,33]. Magnetic 

susceptibility measurements show bulk superconductivity 

with full volume fraction [30,33]. The ab-plane reflectance 

at various temperatures from 300 to 5 K was obtained in a 

home-built cryogenic setup with a Bruker Vertex 80v 

Fourier transform infrared (FTIR) spectrometer in the 

frequency range 20−8000 cm-1 (2.5−990 meV) using the 

technique of in situ gold evaporation [34]. Cryogenic 

ellipsometry was performed in a homebuilt vacuum 

chamber with a Woollam variable-angle spectroscopic 

ellipsometer in the energy range 0.6–6 eV [34]. 

 

III. EXPERIMENTAL RESULTS, MODELING, 

AND DISCUSSION 

A. Infrared reflectance and absorption 

The ab-plane infrared reflectance of a BaFe1.9Pt0.1As2 

crystal is shown in Fig. 1. In the normal state at T = 25 K, 

BaFe1.9Pt0.1As2 is highly reflective at low frequencies 

consistent with metallic behavior as in other metallic iron 

arsenides [15,20–22,24–29,34]. At T = 5 K, well below Tc, 

superconductivity leads to changes in the spectrum at 

frequencies below ≈ 250 cm-1. Superconductivity is 

observed directly from perfect reflectance at frequencies 

below 31.5 cm-1 in the T = 5 K spectrum. The data are 

consistent with a fully gapped (nodeless) superconductor 

close to the dirty limit [20–22,35,36]. Features at ≈260 and 

≈320 cm-1 are observed in the normal state spectrum and 

these features are nearly unchanged in the superconducting 

state spectrum. The feature at ≈260 cm-1 is due to an 

infrared-active phonon. The somewhat broader feature at 

≈320 cm-1 is possibly due to a weak optical interband 

transition.   

 

 

FIG. 1. The ab-plane infrared reflectance of BaFe1.9Pt0.1As2 in the 

superconducting state (T = 5 K) and normal state (T = 25 K). Inset: the 

ab-plane infrared reflectance of BaFe1.9Pt0.1As2 at T = 5 K and T = 25 

K in a wider spectral range. 

 

The absorption in the superconducting state 𝐴𝑆(𝑇) for 

𝑇 < 𝑇𝐶  is obtained from the equation              

𝐴𝑆(𝑇) = 1 − 𝑅𝑆(𝑇), where 𝑅𝑆(𝑇) is the reflectance in the 

superconducting state. Similarly, the normal state absorption 

𝐴𝑁(𝑇 = 25 K)  is obtained from 𝐴𝑁(25 K) = 1 −

𝑅𝑁(25 K) . The ratio 𝐴𝑆(5 𝐾)/𝐴𝑁(25 K)  is plotted as a 

function of frequency in Fig. 2. There are clear features at 

80−200 cm-1 which are larger than the error bars [see Fig. 

2(b)]. The sharp peak at 87 cm-1 is due to the largest gap. 

Above this gap feature, we observe a “valley-peak-valley” 

structure. When we compare our normalized infrared 

absorption data of BaFe1.9Pt0.1As2 to the normalized infrared 

absorption data of the well-known conventional strong-

coupling superconductor lead (Pb) (Refs. [5,31]), we see 

they are remarkably similar. In Pb, acoustic phonons are the 

bosonic modes which mediate the formation of Cooper pairs, 

and the valleys in the absorption data are due to the peaks in 

the phonon density of states shifted by the gap 2. Hence, 

the valleys in the absorption data of BaFe1.9Pt0.1As2 roughly 
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correspond to peaks in the density of states of bosonic modes 

shifted by the largest gap 23.  

In the following Secs. III B and III C, two different 

models have been applied to fit the normalized absorption 

of BaFe1.9Pt0.1As2, in order to quantitatively determine the 

bosonic mode coupled to the electrons. 

  

 
FIG. 2. (a,b) Experimental data showing infrared absorption in the 

superconducting state (T = 5 K) normalized to infrared absorption in 

the normal state (T = 25 K). Also shown are fits to the experimental 

data using four different methods described in the text. The Eliashberg 

functions α2F shown in (a) consist of one sharp, large peak and one 

smaller, broad peak in the superconducting state for both Allen 

formalism and Zimmermann formalism. (b) Zoomed-in view of the 

valley-peak-valley region (≈90−200 cm-1) in the normalized 

absorption spectrum shown in (a). Experimental error bars at 

representative frequencies are also shown in (b). 

 

 

B. Modeling strong-coupling features with Allen 

formalism 

In order to quantitatively study the bosonic modes in 

superconducting BaFe1.9Pt0.1As2 and obtain a fit to the 

experimental normalized absorption, we start from Allen’s 

formalism (optical self-energy method) generalized to 

multiband conductivity [18,31,37]. The imaginary part of 

the optical self-energy is 

𝛴2
𝑜𝑝(𝜔, 𝑇) = −

1

2
[∫ 𝑑𝛺𝛼2𝐹(𝛺, 𝑇)𝐾(𝜔, 𝛺, 𝑇) +

1

𝜏𝑖𝑚𝑝
𝑜𝑝 (𝜔)

∞

0
],

 (1) 

where 𝛼2𝐹(Ω, 𝑇)  is the Eliashberg function (electron-

boson spectral density function), 𝐾(𝜔, 𝛺, 𝑇) is the kernel 

of Allen’s integral equation, and 1 𝜏𝑖𝑚𝑝
𝑜𝑝 (𝜔)⁄  is the 

impurity scattering rate [18]. Equation (1) is applicable to 

both the normal phase and the superconducting phase, but 

𝐾(𝜔, 𝛺, 𝑇)  and 1 𝜏𝑖𝑚𝑝
𝑜𝑝 (𝜔)⁄  are different for the two 

phases: 

𝐾(𝜔, 𝛺, 𝑇) =
𝜋

𝜔
[2𝜔 coth (

Ω

2𝑇
) − (𝜔 + Ω) coth (

ω+Ω

2𝑇
) +

                         (𝜔 − Ω) coth (
ω−Ω

2𝑇
)]  

(for normal state),                  (2a) 

𝐾(𝜔, 𝛺, 𝑇) =
2𝜋

𝜔
(𝜔 − Ω)Θ(𝜔 − 2Δ − Ω)

× 𝐸 [
√(𝜔 − Ω)2 − (2Δ)2

𝜔 − Ω
] 

(for superconducting state at T = 0 K),   (2b) 

where Θ(𝑥)  represents the Heaviside step function, E(x) 

represents the complete elliptic integral of the second kind, 

and Δ is the energy gap. The impurity scattering rate is 

1 𝜏𝑖𝑚𝑝
𝑜𝑝 (𝜔)⁄ = 1 𝜏𝑖𝑚𝑝⁄  (for normal state)   (3a) 

1 𝜏𝑖𝑚𝑝
𝑜𝑝 (𝜔)⁄ = (1 𝜏𝑖𝑚𝑝⁄ ) 𝐸 [

√𝜔2 − (2Δ)2

𝜔
] 

(for superconducting state at T = 0 K),   (3b) 

in which 1 𝜏𝑖𝑚𝑝⁄   is a constant. Then the real part of the 

optical self-energy can be obtained by the Kramers-Kronig 

transformation: 

 𝛴1
𝑜𝑝(𝜔) = −

2𝜔

𝜋
𝑃 ∫ 𝑑𝛺

𝛴2
𝑜𝑝(𝜔)

𝛺2−𝜔2

∞

0
.         (4) 

The complex optical conductivity for one channel is 

 �̃�(𝜔) =
𝜔𝑝

2

8𝜋𝑖

1

�̃�𝑜𝑝(𝜔)−𝜔/2
,             (5) 

where 𝜔𝑝  is the plasma frequency in one channel and 

�̃�𝑜𝑝(𝜔) = 𝛴1
𝑜𝑝(𝜔) + 𝑖𝛴2

𝑜𝑝(𝜔). The total conductivity is the 

sum of different channels (here we have three channels due 

to the multiband nature of this material): 

 �̃�𝑡𝑜𝑡𝑎𝑙(𝜔) = �̃�𝑐ℎ1(𝜔) + �̃�𝑐ℎ2(𝜔) + �̃�𝑐ℎ3(𝜔).   (6) 

We then add the contributions of the interband transitions 

from the experimental data at higher frequencies to the total 

low-frequency conductivity calculated from the model. The 

reflectance is calculated from the real and imaginary parts of 

the total optical conductivity (Appendix B). The absorption 
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is calculated from the reflectance. 

In both normal state and superconducting state, the 

Eliashberg function 𝛼2𝐹(𝛺)  only appears in the optical 

self-energy of the largest gap channel, while for the two 

smaller gap channels only impurity scattering is considered 

in the optical self-energy. The parameters in the fit are as 

follows: the impurity scattering rate (1 𝜏𝑖𝑚𝑝⁄ = 370 cm-1) 

consistent with the experimental data, the weights of the 

square of the total plasma frequency in each conductivity 

channel, and the three energy gaps in the superconducting 

state (discussed below). The total plasma frequency of 1.45 

eV is obtained from the low-frequency optical conductivity 

data at T = 25 K in the normal state (Appendix A). Our best 

fits to the normalized absorption data and the corresponding 

Eliashberg function 𝛼2𝐹(𝛺)  are shown in Figs. 2(a) and 

2(b). The smallest gap 2Δ1 = 31.5 cm-1 corresponds to the 

onset of absorption and the largest gap 2Δ3 = 87 cm-1 

corresponds to the peak at 87 cm-1 in the normalized 

absorption data. A third gap with energy 2Δ2 = 58 cm-1 is 

required to fit the shoulder around 60 cm-1. However, Δ2 is 

associated with the Fermi surface with a small spectral 

weight (10% of the square of the normal state plasma 

frequency). The gaps Δ1 and Δ3 are associated with Fermi 

surfaces that, respectively, represent 55% and 35% of the 

square of the normal state plasma frequency. The smallest 

gap 1 that we observe in BaFe1.9Pt0.1As2 is consistent with 

four different experiments reported in Ref. [30]. The 

existence of a larger gap has been previously suggested by 

point contact spectroscopy experiments [30]. The 

observation of multiple gaps is consistent with several 

earlier studies of other types of iron-based 

superconductors [19,22,38]. For an electron-doped Ba-122 

system, angle-resolved photoemission spectroscopy 

(ARPES) data show that a small gap occurs on two electron 

pockets γ and δ, while a larger gap is on the outer hole pocket 

(β band) [39]. The inner hole pockets are hard to 

observe [39,40] due to their small spectral weight. Hence Δ2 

could be the gap on the inner hole pockets.  

The ratio 2Δ3/kBTc = 5.44 is clearly in the strong-

coupling limit compared to the BCS weak-coupling value of 

3.53. The ratios of the other two gaps to Tc are either smaller 

than (2Δ1/kBTc = 1.97) or close to (2Δ2/kBTc = 3.63) the BCS 

weak-coupling value. This justifies using the Eliashberg 

function only in the conductivity channel associated with the 

largest energy gap Δ3. In order to fit the two valleys in the 

experimental normalized absorption spectrum, the 

Eliashberg function in the superconducting state consists of 

two Gaussian peaks: one large and sharp mode centered at 

frequency Ω1 = 46 cm-1 and one broad, weaker mode 

centered at frequency Ω2 = 121 cm-1. These two peaks 

approximately correspond to the two valleys respectively 

centered at frequencies 115 cm-1 (≈ Ω1 + 2Δ3) and 180   

cm-1 (≈ Ω2 + 2Δ3) in the calculated normalized absorption 

spectrum. In order to obtain the correct absolute value of 

normalized absorption, only the weak, broad peak is 

necessary in the Eliashberg function for the normal state. 

Here we discuss the calculated normalized absorption using 

three methods while keeping the same energy gaps: the 

multi-band Allen formalism including both electron-boson 

interaction and impurity scattering 1 𝜏𝑖𝑚𝑝
𝑜𝑝 (𝜔)⁄ , the 

multiband Allen formalism with only impurity scattering, 

and multiband Mattis-Bardeen theory [41] (with constant 

normal state conductivity 1 = 6000 Ω-1 cm-1 consistent with 

the low-frequency conductivity data at T = 25 K shown in 

Appendix A). The multiband Mattis-Bardeen theory 

assumes the gaps are isotropic s-wave gaps in the weak-

coupling limit, and the total conductivity is the superposition 

of the different superconducting channels. The multiband 

Mattis-Bardeen theory has been applied to iron-based 

superconductors previously [16,20–22,28,42]. The model 

fits are compared in Fig. 2. Neither multiple band Mattis-

Bardeen theory nor the Allen formalism with only impurity 

scattering capture the valley-peak-valley features in the 

normalized absorption data. The introduction of electron-

boson interaction to the optical self-energy for the largest 

gap is required to fit the valley-peak-valley features between 

≈90 and 200 cm-1.  

Since the Allen formalism is expected to provide only 

an approximate quantitative description of strong-coupling 

superconductors [18,31], we take the important step to 

check the self-consistency of the energy gap and the 

Eliashberg function 𝛼2𝐹(Ω)  used in the Allen formalism 

by solving the full Eliashberg equations. For this we assume 

an isotropic energy gap consistent with experiments [30] 

and the effective Coulomb pseudopotential μ* = 0.1 [43]. 

The Eliashberg equations are solved using EPW4.2 as 

described in Ref. [43]. The renormalization function Z(ω) 

and the superconducting gap Δ(ω) are first solved on an 

imaginary energy axis and then an analytic continuation is 

performed to the real axis. The solved gap function is 2Δ 

(ω=0) = 85 cm-1, which is almost identical to the largest gap 

2Δ3. We also calculate Tc from the Eliashberg function. The 

lower limit of Tc can be estimated from McMillan’s 

formula [44],  

 𝑇c,min =
〈𝜔〉

1.20
exp[−1.04 (1 + 𝜆) (𝜆 − 𝜇∗ − 0.62𝜆𝜇∗)⁄ ],

 (7) 



where 𝜇∗ is assumed to be 0.1, and 

 𝜆 = 2 ∫ dΩ 𝛼2𝐹(Ω)
∞

0
/Ω,          (8) 

 〈𝜔〉 = {∫ dΩ 𝛼2𝐹(Ω)
∞

0
}/{∫ dΩ 𝛼2𝐹(Ω)

∞

0
/Ω}.   (9) 

Thus we obtain Tc,min = 17.1 K. An upper limit of Tc is given 

by the generalized McMillan equation [18,44],  

 𝑘B𝑇c,max ≅ 1.13ℏ𝜔𝑙𝑛exp[− (1 + 𝜆) 𝜆⁄ ],   (10) 

where  

 𝜔𝑙𝑛 = exp[(2/𝜆) ∫ dΩ ln Ω 𝛼2𝐹(Ω)
∞

0
/Ω],   (11) 

and this gives Tc,max = 24.6 K. The estimates of Tc are 

consistent with the experimental transition temperature of 

23 K. 

 

C. Modeling strong-coupling features with 

Zimmermann formalism 

In order to confirm the results of the modeling based on 

the Allen formalism, we apply a second approach to model 

our data: the formalism of Lee, Rainer, and 

Zimmermann [32] (we call it Zimmermann formalism in 

this article) to calculate the optical conductivity in the 

strong-coupling regime. The Zimmermann formalism has 

advantages in that it is self-consistent and incorporates 

temperature dependence in the superconducting state. 

Similar results to the Zimmerman formalism have been 

derived by Marsiglio [45] and Schachinger and 

Carbotte [46], which indicate the robustness and 

significance of the formalism. The temperature-dependent 

complex conductivity in the superconducting state takes the 

following expression [32,47]: 

σ(𝜔, 𝑇) =
𝜔𝑝

2

16𝜋3𝜔
∫ 𝑑𝜀 {tanh (

𝜀

2𝑘𝐵𝑇
) 𝑀(𝜀, 𝜔) ×

+∞

−∞

[𝑔(𝜀)𝑔(𝜀 + 𝜔) + ℎ(𝜀)ℎ(𝜀 + 𝜔) + 𝜋2] − tanh (
𝜀+𝜔

2𝑘𝐵𝑇
) ×

𝑀∗(𝜀, 𝜔)[𝑔∗(𝜀)𝑔∗(𝜀 + 𝜔) + ℎ∗(𝜀)ℎ∗(𝜀 + 𝜔) + 𝜋2] +

[tanh (
𝜀+𝜔

2𝑘𝐵𝑇
) − tanh (

𝜀

2𝑘𝐵𝑇
)] 𝐿(𝜀, 𝜔)[𝑔∗(𝜀)𝑔(𝜀 + 𝜔) +

ℎ∗(𝜀)ℎ(𝜀 + 𝜔) + 𝜋2]},     (12) 

where 𝜔𝑝  is the plasma frequency in one conductivity 

channel and  

 𝑔(𝜀) =
−𝜋�̃�(𝜀)

√Δ̃2(𝜀)−ε̃2(𝜀)
,            (13a) 

 ℎ(𝜀) =
−𝜋Δ̃(𝜀)

√Δ̃2(𝜀)−ε̃2(𝜀)
,         (13b) 

𝑀(𝜀, 𝜔) = [√Δ̃2(𝜀 + 𝜔) − ε̃2(𝜀 + 𝜔) +

                                  √Δ̃2(𝜀) − ε̃2(𝜀) + 1/𝜏]
−1

, (14a) 

𝐿(𝜀, 𝜔) = [√Δ̃2(𝜀 + 𝜔) − ε̃2(𝜀 + 𝜔) +

                                  √Δ̃∗2(𝜀) − ε̃∗2(𝜀) + 1/𝜏]
−1

, (14b) 

in which 1/𝜏 is the impurity, scattering rate. The quantities 

Δ̃  and ε̃  depend on energy 𝜀 , ε̃(𝜀) = 𝜀𝑍(𝜀)  and Δ̃ =

𝑍(𝜀)Δ(𝜀). The complex renormalization function 𝑍(𝜀) and 

superconducting gap Δ(𝜀)  are obtained by solving the 

standard Eliashberg equations for isotropic systems at real 

energies. In eq. (12), the integral is implemented on the 

energy axis from negative infinity to positive infinity. The 

negative energy dependence of 𝑍(𝜀)  and Δ(𝜀)  can be 

obtained from the symmetry properties of 𝑍(𝜀) and Δ(𝜀). 

Note that the real part of both 𝑍(𝜀)  and Δ(𝜀)  are even 

functions of energy, and the imaginary parts of both 𝑍(𝜀) 

and Δ(𝜀) are odd functions of energy [48,49]. 

For the normal state, the conductivity can be expressed 

as 

σ𝑁(𝜔, 𝑇) =
𝜔𝑝

2

8𝜋𝜔
∫ 𝑑𝜀 [tanh (

𝜀+𝜔

2𝑘𝐵𝑇
) −

+∞

−∞

                                        tanh (
𝜀

2𝑘𝐵𝑇
)] 𝑀𝑁(𝜀, 𝜔),  (15) 

where  

 𝑀𝑁(𝜀, 𝜔) = [−𝑖𝜀�̃�(𝜀 + 𝜔) + 𝑖𝜀�̃�
∗ (𝜀) + 1/𝜏]−1,  (16) 

 and 𝜀�̃�(𝜀) is defined by 

 𝜀�̃�(𝜀) = 𝜀 + ∫ 𝑑Ω 𝛼2𝐹(Ω) [𝑖𝜋 coth (
Ω

2𝑘𝐵𝑇
) −𝛹 (

1

2
+

+∞

−∞

                  𝑖
−𝜀+Ω

2𝜋𝑘𝐵𝑇
) +𝛹 (

1

2
+ 𝑖

−𝜀−Ω

2𝜋𝑘𝐵𝑇
)], (17) 

in which 𝛼2𝐹(Ω) is the Eliashberg function and 𝛹(𝑥) is 

the digamma function. Negative energy dependence of 

𝛼2𝐹(Ω) can also be obtained from symmetry properties of 

𝛼2𝐹(Ω). Note that 𝛼2𝐹(Ω) is an odd function of frequency 

(energy) [50]. 

For the simulation based on the Zimmermann approach, 

the following parameters were used for the strong-coupling 

channel with the largest gap Δ3: 𝜔𝑝
2 is 35% of the square of 

the total plasma frequency of 1.43 eV, and the impurity 

scattering rate in the normal state and superconducting state 

is 370 and 160 cm-1, respectively. A lower impurity 

scattering rate in the superconducting state compared to that 

in the normal state gives a better fit to the experimental data. 

This can be understood as follows: The effective impurity 

scattering rate in the superconducting state is lower because 

condensed electrons do not undergo impurity scattering. For 

weak-coupling channels with energy gaps Δ1 and Δ2, we 



used Mattis-Bardeen theory to calculate the conductivity. 

The total optical conductivity is obtained by adding up the 

contribution from the three parallel channels. The spectral 

weight (square of the plasma frequency) ratios for the three 

conductivity channels for the best fit are the same as in the 

Allen formalism (55%, 10%, and 35% for the gaps Δ1, Δ2, 

and Δ3). The best fit and corresponding Eliashberg function 

are shown in Fig. 2. It can be seen in Fig. 2 that the 

Zimmerman model has overall good quantitative agreement 

with the data because it captures the valley-peak-valley 

features between 90 and 200 cm-1 and the frequencies of the 

peak and dip align very well with those in the experimental 

data. Similar to Allen’s method, the Eliashberg function in 

the superconducting state still consists of two peaks, one 

large, sharp peak centered at 36.3 cm-1 (4.5 meV), and one 

small, broad peak centered 121 cm-1 (15 meV). The coupling 

constant λ = 4.27, and the corresponding upper limit 

transition temperature Tc is 20.5 K. Analogous with the 

results of the Allen formalism, only the small, broad peak is 

included in the Eliashberg function for calculating the 

normal state conductivity. The result of solving the 

Eliashberg equations at 5 K gives the gap function 2Δ (ω=0) 

= 81.2 cm-1, which is close to the result using Allen’s 

formalism. 

Our models based on the Allen and Zimmermann 

formalisms quantitatively describe the energy gaps and the 

strong-coupling features in the experimental data (see Fig. 

2). However, we note that the model based on the Allen 

formalism gives a better fit to the experimental data 

compared to the model based on the Zimmermann 

formalism. 

 

D. Origin of the bosonic modes 

Next we discuss the origin of the two peaks in the 

Eliashberg function. The promising candidates for bosons 

which mediate the formation of Cooper pairs are either spin 

fluctuations or orbital fluctuations (induced by Fe phonons). 

Spin resonance modes have been determined by inelastic 

neutron scattering experiments [8–11]. The spin resonance, 

which is observed only in the superconducting state in 

cuprates, heavy-fermion, and iron-based superconductors, is 

generally considered a feedback effect from 

superconductivity. Despite some theoretical controversies, 

the resonance is viewed as a spin-exciton bound state in the 

particle-hole channel. The appearance of the resonance 

implies a sign change of superconducting gap(s) between 

either different patches of the Fermi surface or different 

Fermi pockets connected by a resonance mode at 

momentum q (see Ref. [51] and references therein). From 

the modeling of our infrared absorption data, the large sharp 

peak in the Eliashberg function of BaFe1.9Pt0.1As2 is 

centered at 5.1 ± 0.6 meV (41 ± 5 cm-1), with a full width at 

half maximum of 1 meV, and is only present in the 

superconducting state. We note that the spin resonance 

mode at 3D antiferromagnetic ordering wave vector Q = (1, 

0, –1) occurs in BaFe1.9Ni0.1As2 (a superconductor with Tc = 

20 K and similar to BaFe1.9Pt0.1As2), with resonance energy 

ℏωres = 7 ± 0.5 meV, and width d = 1.9 ± 0.7 meV [8]. 

Inelastic neutron scattering experiments on BaFe1.9Pt0.1As2 

are not available at present. If the bosonic mode we have 

observed is due to spin fluctuations, then we expect that a 

spin resonance mode about 5 meV will be observed in future 

inelastic neutron scattering experiments. The center 

frequency of the bosonic mode in our infrared experiments 

is also not that different from the spin resonance mode of 

another electron-doped material Ba(Fe1-xCox)2As2 which is 

~8–9 meV [10,11]. Note that the bosonic mode observed in 

the optical response is the q averaged (all momenta in the 

Brillouin zone) local susceptibility. From the above 

discussion, we infer that the sharp peak about 5 meV in the 

Eliashberg function of BaFe1.9Pt0.1As2 possibly represents 

the spin resonance in the superconducting state. The 

important point is that the 5-meV peak cannot be due to 

phonons alone because it is lower in energy compared to the 

energy of the lowest peak in the phonon density of states in 

the parent compound or doped BaFe2As2 [52,53]. Moreover, 

since phonons are present in both the normal and 

superconducting states, the 5-meV peak cannot be due to 

phonons alone because it is only required in modeling the 

superconducting state data and not required for modeling the 

normal state data. 

The broad, weak peak in 𝛼2𝐹(Ω)  is centered at 15 

meV (121 cm-1), with a width of 5 meV, and is required in 

the models for both the superconducting and normal states. 

Inelastic x-ray scattering experiments have measured the 

lowest-energy peak in the Fe phonon density of states 

centered at 13 meV, with width approximately 5 meV. The 

phonon density of states is nearly temperature 

independent [54]. Phonons are likely the origin of the weak, 

broad mode. Actually, the position and the width of the 

broad peak are also very similar to the prediction of the 

resonance peak of the s++ wave pairing state [55]. Possible 

explanations are that the weak, broad mode is either due to 

electron-phonon interaction or due to phonon induced 

orbital fluctuations. Note that the total electron-boson 

coupling constant λ = 3.5 – 4.3 contains a significant 

contribution of 2.8 – 3.6 from the sharp peak, and a minor 



contribution of only 0.7 from the broad peak. If the sharp 

peak in the Eliashberg function is due to spin fluctuations, 

this means spin fluctuations play the dominant role in 

superconductivity in BaFe1.9Pt0.1As2. It would also support 

the presence of a predominant s± gap in superconducting 

BaFe1.9Pt0.1As2 [6]. However, we note that 

superconductivity with relatively high Tc is preserved in the 

presence of large impurity scattering in BaFe1.9Pt0.1As2. This 

is more consistent with an s++ pairing state because the s± 

pairing state is expected to be fragile against impurities due 

to interband scattering [56]. 

 

E. Temperature dependent features 

Finally, we study the temperature dependence of the 

normalized absorption spectra. The absorption spectra in the 

superconducting state at T = 5, 10, 15, and 20 K, are 

normalized to the normal state absorption data (T = 25 K) 

and plotted in Fig. 3(a). It is clear that the amplitude of the 

strong-coupling features due to electron-boson interaction 

decreases when temperature increases toward Tc. However, 

there is little frequency dependence of these features for 

temperatures at and below 15 K. At T = 20 K, still below Tc, 

the strong-coupling features weaken further and move to 

lower frequencies. This may be caused by a reduction of the 

energy gap Δ3 magnitude and a downward shift in center 

frequency Ω1 of the bosonic peak as the temperature 

approaches Tc from below. The Allen formalism for the 

superconducting state is meant for T = 0 K and works well 

for temperatures much below Tc. To the best of our 

knowledge, the Allen formalism for the superconducting 

state at higher temperatures does not exist at present. Hence, 

we cannot quantitatively model the temperature dependence 

of the bosonic mode based on the Allen formalism. 

Nevertheless, we attempt to follow the temperature 

dependence of the energy gaps using two alternative 

methods discussed below. The first method is based on 

Mattis-Bardeen theory. The second method based on the 

Zimmerman formalism also allows us to model the 

temperature dependence of the low-energy bosonic mode.  

In the first method, the temperature-dependent energy 

gap 2Δ3(T) is estimated directly from the normalized 

absorption because it corresponds to the first prominent peak 

position [shown by arrows in Fig. 3(b)] and is plotted in Fig. 

3(c). The temperature dependence of Δ1 and Δ2 cannot be 

obtained directly from the data. However, since the ratio 

2Δ/kBTc for the smaller two gaps shows they are in the weak-

coupling regime, we have modeled the normalized 

absorption using three-band Mattis-Bardeen formalism (we 

assume the temperature dependence of the largest gap can 

be modeled with Mattis-Bardeen theory). The results are 

shown in Fig. 3(c) with hollow symbols. The largest and 

smallest gaps appear to deviate from the BCS prediction 

close to Tc. 

 

 

   

FIG. 3. (a) Solid lines are temperature-dependent infrared absorption 

in the superconducting state normalized to infrared absorption in the 

normal state at T = 25 K. Dashed lines (red) are Mattis-Bardeen fits to 

the normalized infrared absorption data. Dash-dotted lines (blue) are 

the fits using Zimmermann’s formalism for the largest energy gap, and 

Mattis-Bardeen formalism for the two smaller energy gaps. (b) 

Zoomed-in view of the spectra showing the peak associated with the 

largest gap 23 and the valley-peak-valley strong-coupling features at 

different temperatures in the superconducting state. Arrows indicate 

the frequency of the first prominent peak in the normalized absorption 

spectrum due to the energy gap 2Δ3 in the presence of impurity 

scattering. (c) Plot of the temperature dependence of the three energy 

gaps and bosonic mode Ω1. Hollow symbols (blue) represent energy 

gaps from Mattis-Bardeen formalism (see text), filled symbols (green) 

represent the energy gap Δ3 from Zimmermann formalism, and half-

hollow symbols (magenta) represent bosonic mode Ω1. The dashed 

lines are the BCS prediction of the temperature dependence of the 

energy gaps. The vertical dotted line represents Tc. 

 

Since the Mattis-Bardeen description does not capture 

the temperature dependence of the strong-coupling features 

and the low-energy bosonic mode, we attempt to fit the 

temperature-dependent normalized absorption using 

Zimmermann’s formalism for the largest gap channel. In the 

modeling, we assume the low-energy bosonic mode is 

temperature dependent and follows a similar functional 
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dependence as the energy gap [10]. Temperature-dependent 

complex renormalization function 𝑍(𝜀)  and 

superconducting gap Δ(𝜀)  are obtained by solving the 

standard Eliashberg equations for isotropic systems at real 

energies. The Zimmermann formalism is applied in the 

largest energy gap channel, and the temperature dependence 

of the two smaller gaps in the weak-coupling regime are 

modeled using Mattis-Bardeen theory. The simulation 

results are shown in Fig. 3(a). The theoretical model roughly 

captures the temperature-dependent trend of the valley-

peak-valley features. At T = 10 and 15 K, the valley-peak-

valley features become weaker compared to T = 5 K 

simulation, while there is some frequency dependence at T 

= 15 K compared to the T = 5 and 10 K simulations. At T = 

20 K, a temperature close to Tc, the valley-peak-valley 

features are nearly washed out in the simulation consistent 

with the experimental data. The temperature dependence of 

the energy gaps and the bosonic mode from the model is 

shown in Fig. 3(c). There are larger error bars at higher 

temperatures due to uncertainty in the solution of the 

Eliashberg equations using the EPW software when the 

temperature approaches Tc. 

 

 

IV. CONCLUSION 

To conclude, we have observed temperature-dependent 

features in the infrared absorption spectra arising from the 

energy gaps and strong electron-boson interaction in the 

superconductor BaFe1.9Pt0.1As2. This was enabled by careful, 

systematic cryogenic infrared reflectance measurements. 

The data are consistent with three nodeless energy gaps in 

the superconducting state, out of which only the largest gap 

is in the strong-coupling regime. We obtain the Eliashberg 

function (electron-boson spectral density function) by 

modeling the absorption data with both the generalized 

Allen formalism and Zimmermann formalism. The largest 

gap, the Tc, and the Eliashberg function were verified to be 

self-consistent within the Eliashberg theory. We find that 

superconductivity in BaFe1.9Pt0.1As2 arises primarily due to 

pairing of electrons induced by a bosonic mode centered at 

5.1 ± 0.6 meV. This bosonic mode cannot be attributed to 

phonons alone because it occurs at an energy less than the 

lowest-energy peak in the phonon density of states. The 

bosonic mode may originate from spin fluctuations although 

we cannot rule out the role of orbital fluctuations or another 

mechanism.  
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APPENDIX A: OPTICAL CONDUCTIVITY 

The temperature dependence of the real part of the 

optical conductivity σ1 is shown in Fig. 4. It is  obtained 

from Kramers-Kronig transformation of the reflectance data 

constrained by cryogenic ellipsometry data, similar to the 

procedure described in Ref. [34]. At T = 5 K, the real part of 

the conductivity is negligible below the frequency 31.5 cm-

1, corresponding to the smallest gap. At higher frequencies, 

there is a sharp increase of the conductivity just above the 

gap and subsequently the conductivity reaches a maximum, 

which is a clear indication of superconductivity in the dirty 

limit. Indeed, the scattering rate in the normal state (T = 25 

K) is 370 cm-1 which is much larger than the energy gaps 

indicating that superconductivity is in the dirty limit. In fact, 

the large radius Pt ion doped into the FeAs4 tetragon leads 

to significant impurity scattering and to some degree of 

localization at higher temperatures in the normal state. This 

can be seen from the nonmonotonic frequency dependence 

of σ1 at low frequencies in the normal state at higher 

temperatures (see Fig. 4). 

The inset in Fig. 4 clearly shows the “missing” spectral 

weight between the normal state conductivity and the 

superconducting state conductivity. The missing spectral 

weight in the superconducting state is transferred into the 

delta function at zero frequency which represents the 

superfluid response to a dc electric field. The missing 

spectral weight area is equal to the superfluid density [22], 

𝜔𝑝𝑠
2 = 8 ∫ 𝑑𝜔[𝜎1(𝜔, 𝑇 = 25𝐾) − 𝜎1(𝜔, 𝑇 = 5𝐾)]

𝜔𝑐

0
=

1.9 × 107 cm−2 , where the cutoff frequency 𝜔𝑐 =

400 cm−1 is chosen so that the integral converges smoothly. 

The superfluid density is consistent with that obtained from 

the low-frequency limit 𝜔𝑝𝑠
2 = −𝜔2ε1 (𝜔 → 0) , where 1 

is the real part of the dielectric function [22,57]. We use the 

Drude-Lorentz model to separate the contribution of free 



carriers and interband transitions to the conductivity in the 

normal state (T = 25 K) [57]. In the simplest Drude-Lorentz 

model, a single Drude feature is sufficient to describe the 

free carrier contribution. The superfluid density at T = 5 K 

is 14% of the Drude spectral weight in the normal state (T = 

25 K). An interpretation is that 14% of free carriers in the 

normal state have condensed into the superconducting state. 

 

 

FIG. 4. The real part of the ab-plane optical conductivity σ1 is plotted 

as a function of frequency at different temperatures. Inset: the region 

shaded gray is the “missing area” between the normal and 

superconducting state real conductivity that moves into the delta 

function at  = 0 in the superconducting state. 

 

APPENDIX B: ABSOLUTE REFLECTANCE AND 

ABSORPTION CALCULATED USING THE TWO 

MODELS 

Absolute reflectance and absorption calculated [57] 

from the total optical conductivity based on the Allen 

formalism and the Zimmermann formalism in the 

superconducting state (T = 5 K) and normal state (T = 25 K) 

are shown in Fig. 5. We have obtained quantitatively good 

agreement to the absolute reflectance and absorption data 

using the Allen formalism. The Zimmermann formalism 

agrees better with the experimental data at lower frequencies 

compared to higher frequencies (above ≈100 cm-1).  

 

 

 

FIG. 5. The frequency-dependent (a) reflectance and (b) absorption in 

the superconducting state (5 K) and the normal state (25 K) calculated 

from the Allen formalism and the Zimmermann formalism and 

compared to the experimental data. 
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