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Abstract

Many studies have shown that memory retrieval for real-time language processing relies on a

cue-based access mechanism, which allows the cues available at the retrieval site to directly

access the target representation in memory. An open question is how different types of cues are

combined at retrieval to create a single retrieval probe (“cue combinatorics”). This study addresses

this question by testing whether retrieval for antecedent-reflexive dependencies combines cues in a

linear (i.e., additive) or nonlinear (i.e., multiplicative) fashion. Results from computational simula-

tions and a reading time experiment show that target items that match all the cues of the reflexive

are favored more than target items that mismatch these cues, and that different degrees of mis-

matches slow reading times in comparable amounts. This profile is consistent with the predictions

of a nonlinear cue combination and provides evidence against models in which all cues combine

in a linear fashion. A follow-up set of simulations shows that a nonlinear rule also captures previ-

ous demonstrations of interference from nontarget items during retrieval for reflexive licensing.

Taken together, these results shed new light on how different types of cues combine at the retrie-

val site and reveal how the method of cue combination impacts the accessibility of linguistic

information in memory.

Keywords: Memory retrieval; Sentence processing; Anaphora; Cue combinatorics; Reading times;

Computational modeling

1. Introduction

It has long been known that working memory shapes the dynamics of real-time

language processing (e.g., Chomsky & Miller, 1963; Fodor, Bever, & Garrett, 1974; Fra-

zier & Fodor, 1978; Jarvella, 1971; Jarvella & Herman, 1972; Kimball, 1973, 1975;

McElree, 2000; McElree, Foraker, & Dyer, 2003; Miller & Chomsky, 1963; Miller &

Isard, 1963; Van Dyke, 2007; Van Dyke & Lewis, 2003; Van Dyke & McElree, 2006,
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2007, 2011; Wundt, 1904). The role of working memory in language processing is evi-

dent in contexts involving the so-called long-distance dependencies, which require a com-

prehender to relate two nonadjacent constituents for interpretation. Common examples of

long-distance dependencies include subject-verb number agreement, as in (1a), and reflex-

ive-antecedent dependencies, as in (1b).

(1) a. The children at the park were playing on the slide.
b. The girl at the park hurt herself on the slide.

Successful interpretation of the sentences in (1) requires matching a specific form (e.g.,

the agreeing verb were or reflexive anaphor herself) to a specific item (a “licensor” or

“antecedent”) that appears earlier in the sentence (e.g., the children or the girl). How this

matching process happens has been the subject of much debate in psycholinguistics. One

possibility is that comprehenders actively maintain a representation of the target item

across the span of the dependency. But given the stringent limits on the amount of mate-

rial that can concurrently occupy working memory, active maintenance of the target is

not always feasible (Cowan, 2001; Jonides et al., 2008; McElree, 2006; McElree &

Dosher, 1989; Miller, 1956). To remedy these limitations, comprehenders may engage

memory retrieval mechanisms to recover the necessary information for interpretation.

Evidence from a range of methodologies, constructions, and languages suggests that

memory retrieval for dependency formation relies on a content-addressable memory

access mechanism (Dillon, Chow, & Xiang, 2016; Dillon, Mishler, Sloggett, & Phillips,

2013; Foraker & McElree, 2007; Lago, Shalom, Sigman, Lau, & Phillips, 2015; Lewis &

Vasishth, 2005; Lewis, Vasishth, & Van Dyke, 2006; Martin & McElree, 2008, 2009,

2011; Martin, Nieuwland, & Carreiras, 2012; McElree, 2000; McElree et al., 2003; Par-

ker & Lantz, 2017; Parker & Phillips, 2016, 2017; Tanner, Nicol, & Brehm, 2014;

Tucker, Idrissi, & Almeida, 2015; Van Dyke, 2007; Van Dyke & Lewis, 2003; Van Dyke

& McElree, 2006, 2011; Vasishth, Br€ussow, Lewis, & Drenhaus, 2008; Wagers, Lau, &

Phillips, 2009). On this view, syntactic dependencies like those in (1) are formed using a

retrieval process in which all of the cues available at the retrieval site are assembled into

a single retrieval probe that is matched against all task-relevant items in memory based

on their content features (Clark & Gronlund, 1996; Kohonen, 1980). The item that pro-

vides the best match is retrieved to establish the dependency (modulo effects of stochastic

noise, cue overload, and similarity-based interference, which will be discussed later).

For instance, encountering the reflexive anaphor herself in (1b) triggers a retrieval pro-

cess in which a set of syntactic and semantic cues corresponding to the syntactic position,

person, number, gender, and animacy features of the antecedent (e.g., +subject, +3rd per-

son, +singular, +feminine, +animate) are combined into a single retrieval probe that is

matched against the corresponding content features of each item in the sentence (Parker

& Phillips, 2017). In (1b), the item the girl provides the best match to the cues of the

retrieval probe and therefore should, in principle, be retrieved as the antecedent.

This account of memory retrieval for sentence comprehension is attractive because it is

derived from independently motivated principles of working memory attested across
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perceptual and cognitive domains (Lewis, 1996; McElree, 2000; McElree et al., 2003; see

Caplan & Waters, 2013, and Jonides et al., 2008, for a review). In particular, it has been

claimed that the same set of working memory principles that governs general cognition is

applied in retrieval for sentence comprehension (Lewis & Vasishth, 2005; Lewis et al.,

2006; McElree, 2000; McElree et al., 2003), motivating a unified theory of memory

retrieval processes across cognitive domains.

Many of the cue-based retrieval models described in the cognitive science literature

assume that the probability of retrieving an item in memory is a function of the strength

of association between each cue in the retrieval probe and the corresponding content fea-

tures of the memory item (for a review, see Caplan & Waters, 2013; Clark & Gronlund,

1996, or Jonides et al., 2008). Specifically, each cue has a strength of association with

each item in memory, taking into account “cue overload” or the degree to which the cue

matches other items in memory (Nairne, 2002). The overall strength of association

between the target and retrieval probe (i.e., probe-to-target match score) reflects the com-

bined strengths of association for all of the cues in the retrieval probe. On this view,

items that match more cues will have a higher probability of retrieval and will be inte-

grated back into the current processing stream more quickly than items that match fewer

cues. Thus, probe-to-target match score is a key determinant of the success and timing of

retrieval.

Research in this domain has identified two ways in which the individual cue strengths

can be combined at retrieval. One method of combining cue strengths is with a linear
(i.e., additive) function, such that each cue contributes directly to an item’s overall match

score, independently of the strengths of the other cues in the retrieval probe. This combi-

nation method predicts that for a given item, its match score (and hence, probability of

retrieval) will grow linearly as the number of matching cues increases (e.g., Trom-

mersh€auser, K€ording, & Landy, 2011, pp. 7–8). Cue strengths can also combine in a non-
linear (i.e., multiplicative) fashion, such that the contribution of each cue is not

independent, but rather depends on the overall degree of match with the other cues in the

retrieval probe. With this method, the total contribution of the matching cues will exceed

their simple summation, resulting in a superadditive/exponential growth in an item’s

match score (and retrieval probability) as the number of matching cues increases (e.g.,

Trommersh€auser et al., 2011, pp. 10–17).1

There is a large psychophysics literature examining the application of these cue combi-

nation methods within a wide range of sensory modalities (see Trommersh€auser et al.,

2011, for an introduction). However, cue combinatorics has received far less attention in

the domain of psycholinguistics and has only recently begun to be studied systematically.

For instance, Martin (2016) presents a novel model of language processing in which cue

combination and integration serves as the link between psycholinguistic theory and neuro-

biological models of language, grounding psycholinguistic process models in canonical

neurophysiological computation. Martin’s model focuses on the broad issue of cue inte-

gration across representational levels (e.g., phonemes, syllables, morphemes, words,

phrases, syntactic structures, and discourse context), where each level of representation

acts as a cue to higher levels of representation, resulting in a “cascaded” architecture for
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language processing. In this model, it is assumed that parsing and other language process-

ing phenomena can be accounted for using two important psychophysiological operations:

summation, the main mechanism for cue combination; and normalization, which incorpo-

rates probabilistic estimates of a cue’s reliability (Martin, 2016, p. 10). Martin’s model is

the first of its kind to forefront the role of cue combination and integration in the transi-

tion between levels of representation for language processing.

More narrowly in terms of retrieval for dependency formation during real-time sen-

tence processing, the prominent ACT-R model of sentence processing developed by

Lewis and Vasishth (2005) assumes that retrieval mechanisms always apply a linear cue

combination method uniformly for all dependencies (e.g., eq. 2 in Lewis & Vasishth,

2005). In this model, the notion of a cue is much more restricted than that which is

assumed in Martin’s (2016) cue-integration model. At the sentence level, cues are fea-

tures derived from the current word, linguistic context, and grammatical knowledge, and

form a subset of the features of the target item, that is, the antecedent/licensor (Lewis

et al., 2006, p. 448), are combined to retrieve the target as needed. In the ACT-R imple-

mentation of cue-based retrieval, it is simply stipulated that cues are combined in a linear

fashion.

Previous research in the cognitive and perceptual domains has shown that both a linear

and nonlinear cue combination method are needed to explain perceptual behavior, even

within the same cognitive domain. In other words, the two methods are not mutually

exclusive (see Trommersh€auser et al., 2011, for a review). For instance, psycholinguistic

studies have presented data that are consistent with a linear cue combination method in

retrieval for dependency formation, as well as data that are consistent with a nonlinear

cue combination method (e.g., Van Dyke & McElree, 2011; see also Parker & Phillips,

2017). However, models of memory retrieval in sentence processing have typically

adopted either a linear or nonlinear method exclusively for all cases of retrieval, and it

remains unclear under what conditions a linear vs. nonlinear cue combination method is

applied in retrieval for dependency formation. As Van Dyke and McElree (2011) explain,

a complete account of memory retrieval in sentence processing must explicitly character-

ize the types of cues that guide retrieval and how those cues combine at retrieval for lan-

guage processing. This study contributes to filling this gap using both computational and

behavioral methods, focusing on cue combinatorics in retrieval for anaphor resolution as

a model test case.

1.1. Cue combination methods

The notion of cue-based retrieval is often made explicit within an “activation-based”

memory architecture. In an activation-based architecture, items encoded in memory are

differentially activated based on their probe-to-target match score, such that items with a

higher match score have a higher activation value, resulting in a higher probability and a

faster processing latency. Memory models that adopt a linear cue combination method

define activation according to Eq. 1 (e.g., Anderson, 1990; Anderson et al., 2004; Lewis

& Vasishth, 2005; Vasishth et al., 2008). Eq. 1 states that the activation Ai for an item Ii
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is the summation of strength of association S between each retrieval cue Qj and the fea-

tures of the item, expressed as WjS(Q1, Ii), where Wj reflects the weight associated with

the cue. Most implementations in psycholinguistics assume that cues are weighted equally

(see Kush, 2013, for discussion).

Ai ¼
Xn

j¼1

WjSðQj; IiÞ ð1Þ

The most important feature of Eq. 1 for the present purpose is that the strength of

association for each cue contributes directly to the item’s activation, independently of the

strengths of association for the other cues in the retrieval probe. Since the function is

additive, activation grows linearly with each matching cue (for an illustration, see Fig. 1

and Fig. 2 in the next section). This feature permits activation of items that match some,

but not all, of the cues in the retrieval probe (“partial matches”), increasing the probabil-

ity that nontarget items will interfere with retrieval of the target.

By contrast, memory models that adopt a nonlinear cue combination rule define activa-

tion according to Eq. 2 (e.g., Gillund & Shiffrin, 1984; Hintzman, 1984; Nairne, 1990;

Raajimakers & Shiffrin, 1981; Van Dyke, 2007; Van Dyke & McElree, 2006). Unlike

with a linear rule, the contribution of individual cues in a nonlinear combination is not

independent. Retrieval exhibits sensitivity to conjunctions of cues, rather than the occur-

rence of individual cues, such that target items that match all of the cues are favored

more than partially matching target items, with all degrees of partial matches being

Fig. 1. Predicted retrieval probabilities for the target item by condition for the linear and nonlinear rules

from Experiment 1.
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disfavored in comparable amounts. This is because cue strengths are multiplied, rather

than summed, which causes a much greater reduction in activation for partial matches

than occurs with a linear scheme (see Fig. 1 and Fig. 2 in the next section for an illustra-

tion). This feature makes interference from nontarget partial matches less likely, relative

to the linear combinatorics scheme (see Fig. 6 in Experiment 3).

Ai ¼
Yn

j¼1

SðQj; IiÞwj ð2Þ

Trommersh€auser et al. (2011) explain that while most studies on cue combination in

the cognitive and perceptual domains have found evidence consistent with a linear model

(e.g., see chapters 1–3 for a review), there are certain perceptual phenomena that motivate

a nonlinear model (e.g., see chapters 4–5 for a review), and there are even cases where

linear and nonlinear methods are jointly needed to explain behavior within the same

domain, modality, and perceptual circumstance (e.g., see pp. 33–34 for a brief summary).

In the domain of sentence processing, evidence of interference from nontarget partial

matches during retrieval for linguistic dependency formation is consistent with the predic-

tions of a linear combinatorics scheme. For instance, many studies on subject-verb agree-

ment processing have shown that nontarget partial matches can disrupt retrieval of the

target subject at the verb (e.g., example 1a; Dillon et al., 2013; Lago et al., 2015; Tanner

et al., 2014; Tucker & Almeida, 2017; Tucker et al., 2015; Wagers et al., 2009). Such

effects are frequently observed in ungrammatical sentences where a plural verb matches a

plural noun that is not the target subject in configurations like (2).

Fig. 2. Predicted reading times for the linear and nonlinear cue combination rules from Experiment 1.
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(2) *The key to the cabinets apparently were on the table.

According to retrieval-based accounts of agreement processing (e.g., Dillon et al., 2013;

Lago et al., 2015; Tanner et al., 2014; Tucker & Almeida, 2017; Tucker et al., 2015;

Wagers et al., 2009), encountering the plural verb were in (2) triggers a retrieval process

that seeks an item matching the cues +subject and +plural. In (2), the target noun phrase

(NP) the key matches the +subject cue, but it does not match the +plural cue. By contrast,

the NP the cabinets does not match the +subject cue, but it does match the +plural cue.
At retrieval, the partial feature match on +plural boosts the activation of the memory rep-

resentation of the cabinets, making it likely to interfere with retrieval of the target if its

activation passes a certain threshold due to stochastic noise. For present purposes, the find-

ing that individual features like +plural influence retrieval, independently of the match to

the other cues, is consistent with the predictions of a linear cue combination.

However, not all cases of interference clearly implicate a linear combination. For

instance, Van Dyke and McElree (2011) examined the effects of retrieval for subject-verb

thematic binding in configurations like (3a,b). In both (3a) and (3b), the verb compro-
mised requires an animate subject, motivating the use of +animate and +subject as retrie-
val cues. In (3a), the NP the witness matches both of these cues, but in (3b), it only

matches the +animate cue, because it is located in a direct object position.

(3) a. The attorney who the judge realized had declared that the witness/the motion

was inappropriate compromised during the negotiations.
b. The attorney who the judge realized had rejected the witness/the motion in the

case compromised during the negotiations.

Van Dyke and McElree (2011) found that the presence of the animate subject in (3a)

disrupted reading times at the verb, but the animate object in (3b) did not, in comparison

to their respective baseline conditions with an inanimate distractor. Van Dyke and McEl-

ree (2011) argued that these results are consistent with a linear combination, but one in

which syntactic cues are given greater weighting than semantic cues, such that syntacti-

cally inappropriate object distractors in sentences like (3b) have little or no measurable

impact on retrieval. However, they are explicit that their results are also consistent with a

nonlinear combination, in which only items that match all the cues, that is, both +ani-
mate and +subject, are considered at retrieval. Similarly, Parker and Phillips (2017)

recently reported findings of selective interference effects for antecedent–reflexive depen-

dencies, which are consistent with either a weighted linear rule or a nonlinear rule (see

also Cunnings & Sturt, 2014).

The conditions under which a linear or nonlinear method is applied in retrieval for sen-

tence comprehension remain unclear. In particular, existing data from interference studies

make it difficult to distinguish when linear and nonlinear cue combinations apply, since pre-

vious research on retrieval in sentence processing has focused on a narrow set of cue combi-

nations. In particular, most studies on retrieval for linguistic dependency formation have

been limited to tests of a single feature manipulation involving either gender, number, or
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animacy (see Parker & Phillips, 2017, for discussion), making it difficult to assess how dif-

ferent types of cues are assembled to create the retrieval probe. Addressing the question of

cue combinatorics in sentence processing is important to better understand the factors that

cause memory retrieval to succeed or fail during language comprehension.

1.2. The present study

This study uses a combination of behavioral and computational methods to tease apart

the predictions of the linear and nonlinear cue combination methods. The most important

difference between linear and nonlinear combination methods for present purposes is their

sensitivity to target items that fully match the cues relative to target items that match

only a subset of the cues (i.e., the conjunction of cues). This difference entails divergent

predictions for dependency formation during sentence comprehension. For instance, in the

case of reflexive-antecedent dependencies like (1b), a nonlinear combination rule predicts

that a target item that matches all the cues should be favored exponentially more than a

target item that matches only a subset of the cues. A linear combination rule, by contrast,

predicts an additive effect that increases linearly with each additional matching cue.

This study tests these predictions to determine which cue combination scheme is used in

retrieval for antecedent-reflexive dependencies—a model test case for examining the

computational properties of memory retrieval (Chen, J€ager, & Vasishth, 2012; Cunnings &

Felser, 2013; Cunnings & Sturt, 2014; Dillon, 2014; Dillon, Chow, & Xiang, 2016; J€ager,
Engelmann, & Vasishth, 2017; Kush & Phillips, 2014; Parker & Phillips, 2017; Patil,

Vasishth, & Lewis, 2016; Sturt, 2003; Xiang, Dillon, & Phillips, 2009). Previous studies on

retrieval for reflexive licensing have not addressed the issue of cue combinatorics, as they

focused on the broad question of whether partial matching nontarget items interfere with

retrieval of the target. However, given that the presence or absence of interference effects is

not always a clear indicator of the underlying cue combination method (see Van Dyke &

McElree, 2011), the question of what cue combination method is applied for antecedent-

reflexive dependencies remains open. To address this issue, this study begins by focusing on

contexts without a distractor in Experiments 1 and 2, which manipulated the degree of ante-

cedent-reflexive match to test the predictions regarding cue convergence for the linear and

nonlinear combination methods. Lastly, the question of how the candidate combination

methods play out for contexts with a distractor is taken up in Experiment 3.

The paper is organized in the following manner. Experiment 1 used computational

modeling to generate precise quantitative predictions about the timing of dependency for-

mation for the linear and nonlinear combination rules, using reflexive-antecedent depen-

dencies like those in (1b) as a model test case. Experiment 2 tested the model’s

predictions by manipulating the degree of match between the retrieval cues of the reflex-

ive and the antecedent, comparing target items that either fully matched the retrieval cues

(full match), had a single feature mismatch (1-feature mismatch), or had two feature mis-

matches (2-feature mismatch) using reading time measures. Results showed that target

items that matched all the cues (full match) were favored more than target items with a

1- and 2-feature mismatch, and crucially, that the 1- and 2-feature mismatches slowed
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reading times in comparable amounts. This profile is consistent with a nonlinear cue com-

bination and provides evidence against models that assume that cues always combine in a

linear fashion, such as the ACT-R model, validating the need for future research on cue

combinatorics. Experiment 3 provides a follow-up set of simulations that outline the pre-

dictions of the candidate cue combination methods for interference paradigms involving a

feature-matching distractor and shows that a nonlinear combination method can capture

previous demonstrations of interference in antecedent retrieval for reflexive licensing

(e.g., Parker & Phillips, 2017). These results provide further evidence that a nonlinear

rule applies in retrieval for reflexive licensing. Taken together, the results of Experiments

1–3 suggest that the method of cue combination is a key determinant of target accessibil-

ity during retrieval for sentence comprehension.

2. Experiment 1: Computational modeling

Experiment 1 used computational modeling to generate precise quantitative reading time

predictions for the linear and nonlinear cue combination functions in Eqs. 1 and 2. The

model used antecedent-reflexive dependencies like those in (1b) to assess how each of the

candidate cue combinations would play out at retrieval. Antecedent-reflexive dependencies

provide a model case for testing assumptions about cue combinatorics for several reasons.

First, many studies have shown that encountering a reflexive anaphor like herself, himself,
or themselves during real-time comprehension triggers a memory retrieval for an antecedent

in the previous context (Badecker & Straub, 2002; Clifton, Frazier, & Deevy, 1999; Cun-

nings & Felser, 2013; Cunnings & Sturt, 2014; Dillon et al., 2013; Nicol & Swinney, 1989;

Parker & Phillips, 2017; Runner, Sussman, & Tanenhaus, 2006; Sturt, 2003; Xiang et al.,

2009). Second, reflexive-antecedent dependencies have strict linguistic constraints that

define a precise target for retrieval. For instance, the antecedent must agree in person, num-

ber, and gender with the reflexive, and in the constructions tested in this study, the antece-

dent must be the subject of the clause that contains the reflexive (Chomsky, 1981; Reinhart,

1976; Reinhart & Reuland, 1993). These constraints can be viewed as instructions for the

retrieval mechanism to find an item with specific features in a specific location, and recent

work has verified that these constraints actively guide antecedent retrieval, with a direct

mapping between the overt linguistic features and retrieval cues (Parker & Phillips, 2017).

Third, and most important for present purposes, reflexive-antecedent dependencies allow

independent manipulation of the match between the retrieval cues at the reflexive and the

corresponding features of the antecedent. For instance, it is possible to systematically

manipulate the degree to which the antecedent matches these cue (i.e., cue convergence), as

shown in Table 1. This property is necessary to test the competing cue combination meth-

ods, as it allows investigation of how each of the cue combination methods behaves with

respect to varying degrees of partial matching targets.

One concern about this design is that some of the conditions involve a violation due to

the mismatch between the reflexive and target, which means that the results for these

conditions might not reflect “normal” processing. While there are limitations to the
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interpretation of data from violation paradigms, the current design is necessary to tease

apart the candidate cue combination methods, which are distinguished by their predictions

regarding the effects of cue convergence. The current design also facilitates comparison

with previous studies. The majority of the existing studies on retrieval in sentence com-

prehension have relied on a violation paradigm to draw inferences about the underlying

principles of the retrieval mechanisms (see J€ager et al., 2017, for a recent review), and

these studies have shown that manipulating the match between the cues and the items in

memory can reveal how cue-match guides retrieval. This study follows this tradition,

using the effects of cue convergence to gain insights about cue combinatorics.

2.1. Method

2.1.1. Procedure
The linear and nonlinear combination rules shown in Eqs. 1 and 2 were implemented

in the R software environment (R Development Core Team, 2018) for retrieval in sen-

tences with a reflexive-antecedent dependency using cues corresponding to the target sub-

ject position, person, number, and gender (following Wagers, 2008). Predictions for the

sensitivity to (mis)matching targets were generated for the candidate cue combination

rules by systematically manipulating the degree to which the cues converged on the target

(full match, 1-feature mismatch, 2-feature mismatch), as shown in Table 1.

Each matching (i.e., convergent) cue was assigned a high strength of association

(1.00), and each mismatching cue was assigned a low strength of association (0.00), fol-

lowing Wagers (2008). From these values, the resulting activation value for the target

item from each condition was normalized to a full match (i.e., normalized to unity), in

which all cues converged, to calculate the retrieval probabilities for each target item.

Most cue-based memory models assume that the probability of retrieving an item is pro-

portional to its activation, that is, Ai in Eqs. 1 and 2 (see Clark & Gronlund, 1996; Lewis

& Vasishth, 2005), and normalizing to unity is a standard procedure for converting con-

tinuous values, such as activation values, into probabilities [0, 1] (Grus, 2015).

The activation values for each condition were then mapped to reading time predictions

according to Eq. 3, which is a widely adopted function for mapping activation onto reading

times (Bothell, 2007; Lewis & Vasishth, 2005). T reflects the time to recover an item i and
integrate it back into the processing stream in milliseconds. F and f are two scaling constants

Table 1

Sample items for Experiments 1 and 2

Reflexive-Antecedent Feature (Mis)match Sentence

Full match The man recently hurt himself at the park

1-feature mismatch (gender) *The woman recently hurt himself at the park

2-feature mismatch (gender and number) *The women recently hurt himself at the park

Note. The symbol “*” indicates that the sentence is ungrammatical due to a reflexive-antecedent feature

mismatch.
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that set the predictions on an appropriate time scale to fit the dependent measures (e.g., self-

paced reading times). Broadly, Eq. 3 states that as activation decreases, T increases.

Ti ¼ Fe
� f�Aið Þ
i ð3Þ

To facilitate comparison with the reading time measures that will be obtained in Experiment

2, it is necessary to spell out some linking assumptions regarding the relationship between the

latencies generated by Eq. 3 and reading time measures. This study adopts the standard linking

assumption that the latencies generated by the model are monotonically related to the reading

time measures that index retrieval operations, such that longer latencies entail longer RTs

(Anderson & Milson, 1989). There are certainly additional contributors to the observed RTs,

such as interpretation time, and sometimes reanalysis. But this study assumes with many others

(e.g., Anderson, Budiu, & Reder, 2001; Boston, Hale, Vasishth, & Kliegl, 2011; Dillon, Chow,

Wagers, et al., 2016; Dillon et al., 2013; J€ager, Engelmann, et al., 2015; Kush & Phillips, 2014;

Lewis & Vasishth, 2005; Nicenboim, Loga�cev, Gattei, & Vasishth, 2016; Nicenboim &

Vasishth, 2018; Patil et al., 2016; Tucker et al., 2015; Vasishth et al., 2008) that these addi-

tional processes do not disrupt the monotonic relation between retrieval and reading times.

Importantly, these studies have shown that the reading times predicted by Eq. 3 provide a good

quantitative fit to the reading time data obtained in behavioral studies on retrieval in sentence

comprehension.

2.1.2. Results and discussion
Fig. 1 shows the predicted retrieval probabilities as a function of target cue conver-

gence for the linear and nonlinear combination rules. For the linear rule, a full matching

target has a relatively high probability of retrieval, which decreases linearly as the num-

ber of cue mismatches increases. The nonlinear rule, by contrast, predicts sensitivity to

the conjunction of cues, but not the occurrence of individual cues, such that a full match-

ing target is favored more than mismatching targets, with both the 1-feature and 2-feature

mismatches being disfavored in comparably.

Fig. 2 shows how the competing retrieval functions map to reading time predictions accord-

ing to Eq. 3. Both combination methods predict increased reading times for the mismatching

targets relative to the full match. However, it is the shape of the reading time disruption that

distinguishes the two methods: the linear rule predicts an additive effect, such that each addi-

tional cue mismatch yields a linear increase in reading times, whereas the nonlinear rule pre-

dicts a sharp increase in reading times for the mismatching targets relative to the full match,

such that the different degrees of mismatches increase reading times in comparable amounts.

3. Experiment 2: Testing the model’s predictions

The goal of Experiment 2 was to test the model predictions for the linear and nonlin-

ear cue combination rules using self-paced reading for reflexive-antecedent dependencies
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like those in Table 1. Importantly, many studies have shown that self-paced reading mea-

sures reliably index retrieval operations during real-time dependency formation (e.g.,

Chen et al., 2012; Dillon, Chow, & Xiang, 2016; J€ager, Benz, Roeser, Dillon, &

Vasishth, 2015; Kush & Phillips, 2014; Paape, 2016; Parker, Lago, & Phillips, 2015;

Slioussar & Malko, 2016; Tucker & Almeida, 2017; Tucker et al., 2015; Van Dyke &

McElree, 2006; Wagers et al., 2009; Xiang, Grove, & Giannakidou, 2013). To this end,

Experiment 2 fit the processing disruptions generated by the (mis)matching targets to the

model predictions generated in Experiment 1 to determine which cue combination is used

to guide retrieval for reflexive processing.

3.1. Method

3.1.1. Participants
One hundred twenty-six native speakers of American English were recruited using

Amazon’s Mechanical Turk Web service (https://www.mturk.com). The number of partici-

pants was determined by a statistical power analysis using the data generated by the com-

putational model in Experiment 1. The model predicted a 20 ms difference between the

two mismatch conditions for the linear model. Assuming a standard deviation of 75 ms

(following J€ager, Engelmann, et al., 2015; J€ager, Benz, et al., 2015, who assumed identical

values for self-paced reading measures), the power analysis suggested that at least 150 par-

ticipants would be needed to achieve 90% probability of detecting this effect. Funding

restrictions limited the actual sample size to 126 participants. As validation, the observed

standard deviation was slightly smaller at 63 ms, which yielded a statistical power of 94%

with 126 participants. All participants provided informed consent and were screened for

native speaker abilities. The screening probed knowledge of the constraints on English

tense, modality, morphology, ellipsis, and syntactic islands. Participants in Experiment 2

were compensated $3.00. The experiment lasted approximately 20 min.

3.1.2. Materials and design
The experimental materials consisted of 18 item sets of the form shown in Table 1.

Across all conditions, the subject noun phrase served as the antecedent for the reflexive,

which always appeared as the direct object of the verb. The reflexive was followed by a

3–6 word spillover region. The reflexive always appeared in the third-person, singular

form (e.g., himself or herself). The form of the reflexive remained constant across condi-

tions within each item set. The antecedent systematically varied in the degree of match

relative to the features of the reflexive (i.e., cue convergence), along the dimensions of

number and gender (full match, 1-feature mismatch, 2-feature mismatch).2 Item sets were

balanced such that nine sets contained masculine reflexives (himself) and nine sets con-

tained feminine reflexives (herself). Following previous studies (Dillon et al., 2013; Par-

ker & Phillips, 2017; Sturt, 2003), the target antecedent used both stereotypical gender

(e.g., nurse) and definitional gender (e.g., mother).
The 18 item sets were divided into three lists in a Latin square design and combined

with 36 grammatical filler sentences of similar length and complexity compared to the
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test items, yielding an overall grammatical-to-ungrammatical ratio of 3.5:1 (previous stud-

ies on reflexives range from 1.8:1 to 4.6:1; Xiang et al., 2009 and Dillon et al., 2013,

respectively). To balance the number of grammatical-to-ungrammatical reflexives, 1/3 of

the fillers contained grammatical reflexives. The full list of experimental materials can be

found in Data S1. All items were followed by a comprehension question that addressed

various parts of the sentence to prevent the possibility that participants would read only

the material needed to answer the question.

3.1.3. Procedure
The experiment was conducted using the online experiment platform Ibex (http://spell

out.net/ibexfarm), which allows self-paced reading experiments to be deployed in a stan-

dard web browser. Sentences were initially masked by dashes, with white spaces and

punctuation intact. Participants pushed the space bar to reveal each word. Presentation

was noncumulative, such that the previous word was replaced with a row of dashes when

the next word appeared. Each sentence was followed by a “yes/no” comprehension ques-

tion, and an onscreen notification was provided for incorrect answers. The order of pre-

sentation was randomized for each participant.

To ensure that participants completed the task as directed, an instructional manipula-

tion check was used (Oppenheimer, Meyvis, & Davidenko, 2009). Instructional manipula-

tion checks ensure that participants are completing the task as directed by asking them to

confirm that they read the instructions. For this study, the instructional manipulation

check required participants to respond to a set of comprehension questions following the

instructions (e.g., What button should I press to advance a word? and What button do I
press to respond “Yes” to a comprehension question?). Two participants were excluded

from the analysis due to failure to respond correctly to the instructional manipulation

check, yielding a total of 124 participants for analysis.

3.1.4. Analysis
Average reading times were compared across conditions in the following regions of

interest: the word immediately before the reflexive (“pre-critical”), the reflexive

(“critical”), and the following word (“spillover”). Statistical analyses were carried out

over the raw reading times as well as the log-transformed values to control for the log-

normal distribution of reading times (Box & Cox, 1964; Ratcliff, 1993; Vasishth &

Nicenboim, 2016). Models were constructed using the lme4 package (Bates, Maechler, &

Bolker, 2011) in the R software environment (R Development Core Team, 2018). Con-

trast coding was applied to examine the effects of cue match (C1: full match vs. 1-feature

mismatch) and cue mismatch (C2: 1-feature mismatch vs. 2-feature mismatch) at each

region of interest. Both comparisons were included in the same model as fixed effect pre-

dictors. All models were fitted with a full variance–covariance matrix (i.e., a maximal

random effects structure), with random intercepts and slopes for participants and items

(Baayen, Davidson, & Bates, 2008; Bates et al., 2011). If the model failed to converge or

the variance–covariance matrix was degenerate (e.g., correlations were close to �1), ran-

dom slopes for participants and then items were removed until convergence obtained
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(i.e., the “BS Backward” procedure described in Barr, Levy, Scheepers, & Tily, 2013).

The structure of the final (i.e., converging) models is as follows:

Precritical region: lmer(RT ~ C1 + C2 + (1 + C1|Item) + (1|Subject), data = df)

Critical region: lmer(RT ~ C1 + C2 + (1 + C2|Item) + (1 + C1 + C2|Subject),
data = df)

Spillover region: lmer(RT ~ C1 + C2 + (1 + C2|Item) + (1 + C1 + C2|Subject),
data = df)

A fixed effect was considered significant if its absolute t value was >2, which indicates

that its 95% confidence interval did not include 0 (Gelman & Hill, 2007). Reading time

data were then compared to the model predictions for the linear and nonlinear cue combi-

nation rules generated in Experiment 1 using the adjusted R2 statistic.

3.1.5. Predictions
According to the model predictions generated in Experiment 1, both cue combination

methods predict a significant effect of cue match, but only the linear method predicts an

effect of cue mismatch, with significantly longer reading times for the 2-feature mismatch

condition relative to the 1-feature mismatch condition. The nonlinear method, by contrast,

predicts no difference between the 1-feature and 2-feature mismatch conditions.

3.1.6. Results
Fig. 3 shows the mean reading time data by region and condition. Fig. 4 shows the

effect of cue convergence at the critical region, and Fig. 5 shows the same for the spil-

lover region. Figures with the logged reading times are provided in Data S1. No effects

were observed in the precritical region (all ts < 0.15). At the reflexive region, there was a

main effect of cue match, carried by increased reading times for the 1-feature mismatch

condition relative to the full match condition (b̂ = 0.06, SE = 0.01, t = �3.53). No differ-

ences were observed between the mismatch conditions with respect to cue mismatch

(b̂ = �0.00, SE = 0.01, t = �0.04). The same profile was observed at the spillover region

(cue match: b̂ = 0.16, SE = 0.02, t = �6.84; cue mismatch: b̂ = �0.00, SE = 0.02,

t = �0.04). Statistical analyses over the raw reading times showed the same patterns of

significance. A comparison with the model predictions generated in Experiment 1

revealed that the nonlinear cue combination rule provided a better fit to the observed

reading time data in both the reflexive region (adjusted R2 for the linear rule = 0.49;

adjusted R2 for the nonlinear rule = 0.99) and spill-over region (adjusted R2 for the linear

rule = 0.48; adjusted R2 for the nonlinear rule = 0.99). These measures were based on

the values shown in Fig. 4 and Fig. 5, respectively.

3.1.7. Discussion
Experiment 2 tested the effect of cue convergence in retrieval for reflexive licensing

and compared the observed profiles with the model predictions generated in Experiment 1

to determine whether retrieval for reflexive licensing uses a linear or nonlinear cue com-

bination rule. Results revealed two findings. First, reading times were modulated by
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feature mismatches, such that sentences with a target item that matched all the cues of

the reflexive were read more quickly at the reflexive than sentences with a target item

that mismatched the cues. This effect replicates the basic effect of feature match reported

in previous studies on reflexive processing (e.g., Dillon et al., 2013; Parker & Phillips,

2017; Sturt, 2003) and demonstrates that comprehenders were sensitive to the feature

(mis)matches used in the present study. Second, and most important for present purposes,

the 1- and 2-feature mismatches slowed reading times in comparable amounts at the

reflexive and spillover regions. These results are consistent with the predictions of a non-

linear cue combination from the computational modeling experiment (Experiment 1). By

Fig. 3. Mean reading times by region and condition for Experiment 2. Error bars indicate standard error of

the mean.

Fig. 4. The effect of cue convergence at the critical region for Experiment 2.
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contrast, these results are not compatible with models that assume that cues always com-

bine linearly, such as the ACT-R model of sentence processing (Lewis & Vasishth,

2005).

A concern with the results of Experiment 2 is that the processing disruption for the

mismatching targets might reflect a ceiling effect. For instance, reading times at the

reflexive region might have shown a nonlinear trajectory not because retrieval deployed a

nonlinear cue combination rule, but rather because the processing disruptions associated

with cue mismatches had peaked, which might have masked potential differences between

mismatch conditions. There are several reasons why the nonlinear profile at the reflexive

is not a ceiling effect. First, the spillover region shows that the processing disruption

associated with the cue mismatches can reach even more extreme values than those

observed at the critical reflexive region. For instance, at the critical reflexive region, the

2-feature mismatch resulted in a 64 ms disruption, relative to the Full match, whereas at

the spillover region, the 2-feature mismatch resulted in a 106 ms disruption. This profile

suggests that the reading time disruption at the critical reflexive region was not at ceiling.

Second, results of a post hoc distributional analysis indicate that the observed nonlinear

profile is not bounded to the ceiling. If the observed nonlinear profile reflects a ceiling

effect, we would expect the nonlinearity to be restricted to the most extreme values in the

right tail (i.e., the ceiling) of the reading time distribution. To test this possibility, the 50th

percentile of reading times at the critical and spillover regions were analyzed to get a sense

of how the reading times patterned in the leftward portion of the reading time distribution.

Crucially, the results of this analysis presented in Table 2 show that the nonlinear profile

observed in the grand mean is not restricted to the right tail, as nonlinearity is observed in

Fig. 5. The effect of cue convergence at the spillover region for Experiment 2.
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the leftward portion of the reading time distribution. These results provide quantitative evi-

dence that the observed nonlinear profile is not a ceiling effect. Taken together, the current

results are most consistent with the predictions of a nonlinear cue combination rule.

4. Experiment 3: Extending the model’s predictions to an interference paradigm

Experiment 2 showed that target items that matched all the cues (“full match”) were

favored more than target items with a 1- and 2-feature mismatch, and crucially, that the

1- and 2-feature mismatches slowed reading times in comparable amounts, as predicted

by a nonlinear cue combination rule. However, most existing studies on retrieval for

reflexive licensing have focused on the conditions under which partially matching nontar-

get distractors interfere with retrieval of the target. A notable difference between those

studies and Experiments 1 and 2 of this study is that the stimuli from Experiments 1 and

2 did not contain distractors. The decision to not use distractors in Experiments 1 and 2

was made based on the current research goal, which was to better understand how cue

combinatorics affects target accessibility, as this is where the candidate combination

methods made clear predictions. Experiment 3 sought to extend the findings from Experi-

ments 1 and 2 by examining the predictions of the candidate cue combinatorics schemes

for configurations with a feature matching distractor in an interference paradigm.

Recent research has shown that interference effects arise during retrieval for reflexive

licensing if specific conditions are met. For instance, Parker and Phillips (2017) showed

that interference arises when the target antecedent is a particularly poor match to the

retrieval cues. They tested sentences like those in Table 3 using eye-tracking and found

that reflexives are susceptible to interference from partially matching distractors, but only

selectively, such that interference effects arose when the target mismatched the reflexive

in two features, e.g., gender and number (2-feature mismatch), but not when the target

mismatched the target in just one feature, for example, gender or number (1-feature mis-

match), or matched all of the cues (full match).

The design used in Experiment 2 of this study is similar to that used by Parker and

Phillips (2017) in that it also manipulated the degree of match between the reflexive and

Table 2

Grand means and the 50th percentile values of reading times by condition at the critical reflexive region and

the spillover region for Experiment 2

Full Match 1-Feature Mismatch 2-Feature Mismatch

Critical region
Grand mean 416 478 481

50th percentile 368 376 376

Spillover region
Grand mean 375 480 481

50th percentile 344 390 408

Reading times are in milliseconds.
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the target. However, there is a salient contrast between the current findings and those

reported by Parker and Phillips (2017). Parker and Phillips (2017) found that the 2-feature

mismatch condition patterns differently from the 1-feature mismatch condition (with

respect to interference effects), whereas this study showed that the 1-feature and 2-feature

mismatch conditions patterned similarly (with respect to effects of target match). Both of

these effects reflect cue-based retrieval, but the source of the 1- vs. 2-feature contrast

with respect to interference effects remains unclear. To address this issue, Experiment 3

provides additional simulations to investigate whether a linear or nonlinear cue combina-

tion could predict the categorical 1- vs. 2-feature mismatch contrast reported in Parker

and Phillips (2017) to better understand the nature of cue combinatorics in retrieval for

sentence comprehension.

4.1. Method

4.1.1. Procedure
In a cue-based retrieval architecture, the likelihood of interference is a function of

“cue overload,” or the degree to which the retrieval cues match the target relative to the

match to the other items in memory. This phenomenon can also be described in terms of

“cue diagnosticity,” or the ability of the cues to uniquely identify the target: As the cues

match more items in memory, they become less diagnostic to the target and the likeli-

hood of retrieving the wrong item increases (Martin, 2016; Martin et al., 2012; McElree,

2000, 2006; McElree et al., 2003; Nairne, 2002; Van Dyke & McElree, 2006). More for-

mally, the likelihood of interference can be expressed as the strength of association

between the cues and the target divided by the summation of the strengths of association

between the cues and the other items in memory (Nairne, 2002; see also Martin et al.,

2012). Experiment 3 implemented this formalization for the linear and nonlinear combi-

nation methods, as shown in Eqs. 4 and 5, to generate predictions about the likelihood of

interference for the sentences in Table 3. The model used the same parameters as in

Experiment 1.

PðIijQ1. . .;QnÞ ¼

Pn

j¼1

WjSðQj; IiÞ
PN

k¼1

Pn

j¼1

WjSðQj; IkÞ
ð4Þ

Table 3

Examples stimuli from Parker and Phillips (2017)

Full match The librariandistractor said that the schoolgirltarget reminded herself . . .
1-feature mismatch The librariandistractor said that the schoolboytarget reminded herself . . .
2-feature mismatch The librariandistractor said that the schoolboystarget reminded herself . . .
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PðIijQ1. . .;QnÞ ¼

Qn

j¼1

SðQj; IiÞwj

PN

k¼1

Qn

j¼1

SðQj; IkÞwj

ð5Þ

4.1.2. Results and discussion
Fig. 6 shows the probability of interference (i.e., retrieval of the feature-matching

distractor) for the linear and nonlinear cue combination methods as a function of the

degree of target match for the configurations shown in Table 3. The nonlinear combi-

nation predicts comparably low probabilities of interference for the full match and 1-

feature mismatch conditions, with a sharp increase in probability of interference in the

2-feature mismatch condition. This profile aligns well with the findings reported in Par-

ker and Phillips (2017), which showed that interference occurs when the target mis-

matched the reflexive in two features, but not when it mismatched in one feature or

fully matched the reflexive. The linear rule, by contrast, failed to predict this profile,

showing similar rates of interference across conditions, with a small linear increase in

interference with each mismatch. Overall, the predictions of the nonlinear cue combina-

tion rule provided a better fit to the total reading times at the reflexive region reported

in Parker and Phillips (adjusted R2 for the nonlinear rule = .99; adjusted R2 for the lin-

ear rule = .61).

The finding that a nonlinear cue combination method can capture previous findings

regarding interference effects in reflexive licensing lends additional support to the current

proposal that retrieval for reflexive licensing utilizes a nonlinear cue combination method.

However, as discussed by Van Dyke and McElree (2011), it may still be possible to cap-

ture the observed profiles with a linear rule with extreme differential weighting on syntac-

tic features. Nevertheless, the current results provide more comprehensive evidence that a

linear rule alone (without independent motivation for cue weighting) cannot capture the

effects of retrieval for reflexive licensing.

5. General discussion

Cue combinatorics has received much attention in the psychophysics literature (Trom-

mersh€auser et al., 2011). However, relatively little is known about how cues combine to

access linguistic representations in memory during real-time language processing.

Recently, it has been claimed that the activation of information across different levels of

representation for language processing can be accounted for using the neurobiological

mechanisms for cue combination and cue integration (Martin, 2016). This study advanced

Martin’s theory of cue combination by investigating how cues combine to retrieve infor-

mation from within a single level of representation, namely the syntactic level, for ana-

phor processing.
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5.1. Summary of findings

Research on memory retrieval in the cognitive and perceptual domains has identified

two ways in which cues can be combined to access information in working memory,

involving a linear and nonlinear cue combination rule. These rules are not mutually

exclusive, and both rules can be applied within the same cognitive domain (Trom-

mersh€auser et al., 2011). However, existing models of memory retrieval for sentence

comprehension have assumed that cues combine either in a linear or nonlinear fashion for

all instances of retrieval, and it remains unclear under what conditions the candidate cue

combination methods are used in retrieval for language processing.

To address this issue, this study used computational modeling to generate precise quan-

titative predictions about the timing of dependency formation for the linear and nonlinear

combination rules, using reflexive-antecedent dependencies as a model test case (Experi-

ment 1), and tested the model’s predictions by manipulating the degree of match between

the retrieval cues of the reflexive and the antecedent (Experiment 2). Results showed that

target items that matched all the retrieval cues (full match) were favored more than target

items with a 1- and 2-feature mismatch, and that the 1- and 2-feature mismatches slowed

reading times in comparable amounts. These results are consistent with the predictions of

a nonlinear rule, as shown in Fig. 7.

A follow-up set of simulations in Experiment 3 extended the findings from Experi-

ments 1 and 2 by examining the predictions of the linear and nonlinear cue combination

methods for configurations with a feature-matching distractor in an interference paradigm.

Specifically, Experiment 3 tested whether a linear or nonlinear rule could explain

Fig. 6. Probability of interference (i.e., retrieval of the feature-matching distractor) for the linear and nonlin-

ear cue combination methods as a function of the degree of target match, based on the feature matches in

Table 3.
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previous findings of selective interference effects in retrieval for reflexive licensing (Par-

ker & Phillips, 2017). Results showed that a nonlinear rule could capture the interference

effects reported in Parker and Phillips (2017), and that a linear rule, by contrast, could

not. These findings provide further evidence that retrieval for reflexive licensing most

likely utilizes a nonlinear cue combination method.

Taken together, the results of Experiments 1–3 suggest that the method of cue combi-

natorics is a key determinant of target accessibility. Broadly, these results shed new light

on how different types of cues combine at retrieval, how the method of combination

impacts the accessibility of the target in memory, and how different combination methods

determine the success of retrieval in scenarios with a distractor. These findings are consis-

tent with the predictions of Martin’s (2016) cue-integration theory, which claims that

interference depends on how diagnostic a combined cue set is to the target (described in

terms of optimal cue combination). Specifically, the current results demonstrate that the

precise method of cue combination that is applied in retrieval for dependency formation

affects how cues interact with the contents of memory, reflected in differences of target

vs. distractor accessibility as a function of cue diagnosticity (full match vs. 1-feature mis-

match vs. 2-feature mismatch).

A concern with the current proposal is that the empirical data could reflect a linear rule

with differential cue weighting. Although existing models of retrieval in sentence compre-

hension, such as ACT-R (Lewis & Vasishth, 2005), have assumed that all cues are com-

bined with equal priority or weighting, Van Dyke and McElree (2011) explain that it is

possible for a linear rule to mimic a nonlinear rule if certain cues are implemented with a

sufficiently large differential weighting. For instance, it may be possible to achieve the

observed nonlinear profile if the gender cue in the 1-feature mismatch condition was

strongly weighted relative to the number cue. However, there are several reasons why

Fig. 7. Comparison of model predictions (Experiment 1) and behavioral data (Experiment 2).
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such an account cannot be extended to reflexives. First, there is no a priori reason to

believe that gender would be more diagnostic or weighted more than number, at least in

English. If anything, gender might be less diagnostic than number in the case of reflexive

licensing because gender is probabilistically encoded on the antecedent (e.g., stereotypical

nouns like nurse or assistant are more likely to be feminine), whereas number is categori-

cal (e.g., �singular).

Second, findings across previous studies on reflexive processing suggest that gender

and number behave similarly with respect to retrieval for reflexive processing. For

instance, Experiment 2 of Dillon et al. (2013) investigated the impact of number on ante-

cedent retrieval for reflexive licensing and found that a number mismatch between the

target antecedent and reflexive produced a ~74 ms disruption in total reading times,

which is comparable to the ~71 ms disruption associated with a gender mismatch

reported in Patil et al. (2016) in a similar structural configuration. This comparison sug-

gests that comprehenders do not appear to be any more or less sensitive to a gender mis-

match than they are to a number mismatch. However, verification of this claim for future

work depends on a within-participants direct comparison using maximally similar sen-

tences for gender and number mismatches. Third, even if gender was weighted more than

number under a linear rule, we would expect the addition of a number mismatch in the

2-feature mismatch condition to further increase the processing disruption. However, no

such effect was observed, as reading times for the 1-feature and 2-feature mismatch con-

ditions patterned similarly, as expected with a nonlinear combination method in which

cues are weighted equally. Importantly, the current results are not incompatible with the

claim that other types of long-distance dependencies weight cues differentially, like the

thematic-binding relations tested by Van Dyke and McElree (2011). But some reasons for

why certain dependencies might differ with respect to cue combinatorics and cue weight-

ing are considered in the next subsection.

A second concern with the current results is that there are limitations on the insights

that we can glean about the retrieval mechanisms based on reading time data. The use of

reading time measures in this study was motivated by the fact that prominent past studies

relied on reading time data to advance the cue combination theories tested here (e.g.,

Lewis & Vasishth, 2005; Van Dyke, 2007; Van Dyke & McElree, 2006; Vasishth et al.,

2008). However, reading time measures reflect a mixture of cognitive processes, includ-

ing retrieval, interpretive processes, and sometimes reanalysis, and these additional pro-

cesses can obscure or mask the relationship between the underlying retrieval procedures and

overall reading times. Currently, there does not exist a comprehensive theory of how retrie-

val and interpretation are jointly reflected in total reading times (in particular, one that is

explicit enough to make quantitatively precise predictions). The absence of such a theory

motivates the use of linking assumptions. This study adopted the standard linking assump-

tion that the latencies generated by the model are monotonically related to the reading time

measures that are considered to index retrieval operations, such that longer latencies entail

longer RTs (Anderson & Milson, 1989), and assumed with many others (e.g., Anderson

et al., 2001; Boston et al., 2011; Dillon, Chow, Wagers, et al., 2016; Dillon et al., 2013;

J€ager, Engelmann, et al., 2015; Kush & Phillips, 2014; Lewis & Vasishth, 2005; Nicenboim
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& Vasishth, 2018; Nicenboim et al., 2016; Patil et al., 2016; Tucker et al., 2015; Vasishth

et al., 2008) that any additional processes reflected in reading measures do not disrupt the

monotonic relation between retrieval and reading times. However, it is possible that the rela-

tionship between retrieval and reading times is non-monotonic, and this possibility cannot

be excluded without additional tests that do no conflate predictions about differences in pro-

cessing speed with predictions about differences in representation strength, such as those

involving a speed-accuracy trade-off (SAT) procedure (Reed, 1973). Ultimately, examining

the ways in which the model’s predictions align or diverge from human behavior will put us

in a better position to more explicitly characterize the relation between retrieval and inter-

pretation as reflected in reading time measures. This study takes a step in that direction, and

the finding that the model provides a good fit to the data (see Fig. 7) suggests that the model

and accompanying linking assumptions are on the right track.

5.2. Relation to previous findings on cue-based retrieval in sentence comprehension

The findings from Experiment 3 showed that a nonlinear rule can capture previous

demonstrations of interference in retrieval for reflexive licensing. These results raise the

question of whether other cases of interference in retrieval for dependency formation can be

captured similarly with a nonlinear rule. One challenge for a uniform account is that not all

dependencies are equally susceptible to interference. For instance, reflexives generally do

not exhibit interference in 1-feature mismatch configurations (Parker & Phillips, 2017; see

also Clifton et al., 1999; Dillon et al., 2013; Nicol & Swinney, 1989; Sturt, 2003), which is

consistent with the predictions of a nonlinear cue combination, but numerous studies have

shown that subject-verb agreement dependencies are highly susceptible to interference in

contexts with a 1-feature mismatch where the target mismatches the number cue of the verb,

for example, *The key to the cabinets are rusty, which is consistent with a linear cue combi-

nation (Clifton et al., 1999; Dillon et al., 2013; Lago et al., 2015; Patson & Husband, 2015;

Pearlmutter, Garnsey, & Bock, 1999; Staub, 2009, 2010; Tanner et al., 2014; Tucker &

Almeida, 2017; Tucker et al., 2015; Wagers et al., 2009).

There are several reasons why subject-verb agreement and reflexive-antecedent

dependencies might show different profiles with respect to interference effects. One

possibility suggested by Dillon et al. (2013) is that there are dependency-wise differ-

ences in cue combinatorics methods. For instance, reflexives might utilize a nonlinear

combination by default, but subject-verb agreement, by default, might utilize a linear

rule. The possibility that dependencies differ in their cue combination methods is con-

sistent with the findings in the cognitive and perceptual domains showing that linear

and nonlinear cue combination methods are not mutually exclusive, and that both are

needed to explain perceptual behavior within the same cognitive domain (Trom-

mersh€auser et al., 2011).

One relevant factor that motivates the use of a linear rule for subject-verb agreement

dependencies is the need for reanalysis. For instance, several researchers have argued

that cue-based retrieval for agreement processing functions as a reanalysis mechanism

that is engaged when the top-down expectations about the agreement features of the
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verb generated by the target subject conflict with the bottom-up information (e.g., Dillon

et al., 2013; Lago et al., 2015; Parker & Phillips, 2017). The retrieval mechanisms

might selectively engage a linear cue combination in response to this violation to

broaden the search for a number-matching item by permitting partial matches, leading

to interference on the basis of a single feature mismatch between the target subject and

verb. This account lends itself to a sort of noisy-channel analysis in which the parser

operates over an uncertain input (Gibson et al., 2013; Halle & Stevens, 1959, 1963;

Levy, 2008; Poeppel & Monahan, 2010) and draws on the computational rationality

framework (e.g., Lewis, Howes, & Singh, 2014), in which the exact cue combination

method engaged for language processing would be determined by the problem at hand.

On this view, both a linear and nonlinear cue combination are available for retrieval in

sentence comprehension, which is consistent with the claims in the broader psy-

chophysics literature (Trommersh€auser et al., 2011), and the need for reanalysis or

repair might be one factor that determines which method is applied. An important task

for future research is to investigate how different retrieval triggers (e.g., normal process-

ing vs. processing error) impact cue combinatorics and to test a broader range of depen-

dencies to better understand the boundary conditions for the application of the candidate

cue combination methods.

Relatedly, future work must also investigate the effect of cue reliability on retrieval for

sentence processing. Cue reliability plays a crucial role in Martin’s (2016) cue-integration

model of sentence processing, which focuses on the integration of information across dif-

ferent levels of representation. In Martin’s model, cue integration refers to the weighting

of individual cues by estimates of their reliability, based on prior experience and expecta-

tions. However, far less is known about how cue reliability impact retrieval on a narrower

scale in terms of retrieval for sentence processing. If retrieval for sentence processing is a

skilled-based procedure, as previously claimed (e.g., Lewis & Vasishth, 2005), then

retrieval could be optimized as a function of language use to deploy only the most fre-

quent and reliable cues to recover the target. Although it is typically assumed that all

cues are weighted equally in memory retrieval, some recent studies have argued that cer-

tain cues, such as structural cues, might be weighted more heavily than nonstructural cues

in retrieval for dependency formation (e.g., Cunnings & Sturt, 2014; Dillon et al., 2013;

Parker & Phillips, 2017; Van Dyke & McElree, 2011). However, the application of differ-

ential cue weighting in retrieval for sentence processing remains poorly understood. An

important task for future work is to investigate how both cue weighting and prediction

impact cue combinatorics in retrieval for language processing.

6. Conclusion

This paper addressed the question of how different types of cues are combined to access

linguistic information in memory. This study directly compared linear and nonlinear cue

combination rules using predictions derived from computational modeling. Those predic-

tions were then tested with antecedent-reflexive dependencies using a self-paced reading

24 of 30 D. Parker / Cognitive Science 43 (2019)



design that manipulated the degree of match between the target antecedent and reflexive.

Results showed that target items that matched all the cues (full match) were favored more

than target items with a 1- and 2-feature mismatch and that the 1- and 2-feature mis-

matches slowed reading times in comparable amounts. These results are consistent with

the predictions of a nonlinear rule and provide evidence against models that assume that

retrieval for dependency formation always utilizes a linear combination. A follow-up set

of simulations in Experiment 3 showed that a nonlinear rule also captures previous demon-

strations of interference effects in antecedent retrieval for reflexive licensing, lending addi-

tional support to the current proposal that retrieval for reflexive licensing utilizes a

nonlinear cue combination method. These results shed new light on our understanding of

the factors that determine the success and failure of retrieval in language processing.

Specifically, the results are informative about how different types of cues combine at the

retrieval site and how the method of cue combination impacts the accessibility of linguistic

information in memory—a topic that has received little attention in previous research.

Notes

1. These predictions assume that no feature-matching distractor is present. Experiment

3 outlines the predictions for contexts with a distractor.

2. A previous version of Experiment 2 presented at the 2017 CUNY Human Sentence

Processing Conference tested three violations. The third violation involved a 3-fea-

ture mismatch using the first-person plural pronoun we (e.g., We . . . himself). The
results of this experiment, which are provided in Data S1, are fully consistent with

the current results and theoretical conclusions. This additional condition introduces

several challenges due to the limitations of English morphology, motivating a new

version of the experiment reported here. In particular, we is an unheralded pronoun

that lacks a referent, it differs in length relative to the other target NPs, and it is

not clear that the underspecification or lack of a gender feature triggers a cue mis-

match penalty for the reflexive.

References

Anderson, J. R. (1990). The adaptive character of thought. Hillsdale, NJ: Erlbaum.

Anderson, J. R., Bothell, D., Byrne, M. D., Douglass, S., Lebiere, C., & Qin, Y. (2004). An integrated theory

of the mind. Psychology Review, 111, 1036–1060. https://doi.org/10.1037/0033-295X.111.4.1036.
Anderson, J. R., Budiu, R., & Reder, L. M. (2001). A theory of sentence memory as part of a general theory

of memory. Journal of Memory and Language, 45, 337–367. https://doi.org/10.1006/jmla.2000.2770.

Anderson, J. R., & Milson, R. (1989). Human memory: An adaptive perspective. Psychology Review, 96,
703–719. https://doi.org/10.1037/0033-295X.96.4.703.

Baayen, R. H., Davidson, D., & Bates, D. (2008). Mixed-effects modeling with crossed random effects for

subjects and items. Journal of Memory and Language, 59, 390–412. https://doi.org/10.1016/j.jml.2007.12.

005.

D. Parker / Cognitive Science 43 (2019) 25 of 30



Badecker, W., & Straub, K. (2002). The processing role of structural constraints on the interpretation of

pronouns and anaphors. Journal of Experimental Psychology: Learning, Memory and Cognition, 28, 748–
769. https://doi.org/10.1037/0278-7393.28.4.748.

Barr, D. J., Levy, R., Scheepers, C., & Tily, H. J. (2013). Random effects structure for confirmatory

hypothesis testing: Keep it maximal. Journal of Memory and Language, 68, 255–278. https://doi.org/10.
1016/j.jml.2012.11.001.

Bates, D., Maechler, M., & Bolker, B. (2011). lme4: Linear mixed-effects models using S4 classes. Available

at http://CRAN.R-project.org/package=lme4.

Boston, M. F., Hale, J., Vasishth, S., & Kliegl, R. (2011). Parallel processing and sentence comprehension

difficulty. Language and Cognitive Processes, 26, 301–349. https://doi.org/10.1080/01690965.2010.492228.
Bothell, D. (2007). ACT-R 6.0 reference manual. Available at http://act-r.psy.cmu.edu/wordpress/wp-content/

themes/ACT-R/actr6/reference-manual.pdf.

Box, G. E., & Cox, D. R. (1964). An analysis of transformations. Journal of the Royal Statistical Society
Series B (Methodological), 26, 211–252. https://doi.org/10.1111/j.2517-6161.1964.tb00553.x.

Caplan, D., & Waters, G. (2013). Memory mechanisms supporting syntactic comprehension. Psychonomic
Bulletin & Review, 20, 243–268. https://doi.org/10.3758/s13423-012-0369-9.

Chen, Z., J€ager, L., & Vasishth, S. (2012). How structure-sensitive is the parser? Evidence from Mandarin

Chinese. In B. Stolterfoht & S. Featherston (Eds.), Empirical approaches to linguistic theory: Studies of
meaning and structure (studies in generative grammar) (pp. 43–62). Berlin: Mouton de Gruyter.

Chomsky, N. (1981). Lectures on government and binding. Berlin: Mounten de Gruyter.

Chomsky, N., & Miller, G. A. (1963). Introduction to the formal analysis of natural languages. In R. Duncan

Luce, R. R. Bush, & E. Galanter (Eds.), Handbook of mathematical psychology (Vol. 2, pp. 269–321).
New York, NY: Wiley.

Clark, S. E., & Gronlund, S. D. (1996). Global matching models of recognition memory: How the models

match the data. Psychonomic Bulletin & Review, 3, 37–60. https://doi.org/10.3758/BF03210740.
Clifton, C. J., Frazier, L., & Deevy, P. (1999). Feature manipulation in sentence comprehension. Rivista di

Linguistica, 11, 11–39.
Cowan, N. (2001). The magical number 4 in short-term memory: A reconsideration of mental storage

capacity. The Behavioral and Brain Sciences, 24, 87–185. https://doi.org/10.1017/S0140525X01003922.
Cunnings, I., & Felser, C. (2013). The role of working memory in the processing of reflexives. Language and

Cognitive Processes, 28, 188–219. https://doi.org/10.1080/01690965.2010.548391.
Cunnings, I., & Sturt, P. (2014). Coargumenthood and the processing of reflexives. Journal of Memory &

Language, 75, 117–139. https://doi.org/10.1016/j.jml.2014.05.006.

Dillon, B. (2014). Syntactic memory in comprehension of reflexive dependencies: An overview. Language
and Linguistics Compass, 8, 171–187. https://doi.org/10.1111/lnc3.12075.

Dillon, B., Chow, W. Y., Wagers, M., Guo, T., Liu, F., & Phillips, C. (2016). The structure-sensitivity of

search: Evidence from Mandarin Chinese. Frontiers in Psychology, 5, 1–16.
Dillon, B., Chow, W. Y., & Xiang, M. (2016). The relationship between anaphor features and antecedent

retrieval: Comparing Mandarin Ziji and Ta-Ziji. Frontiers in Psychology, 6, 1–16. https://doi.org/10.3389/
fpsyg.2015.01966.

Dillon, B., Mishler, A., Sloggett, S., & Phillips, C. (2013). Contrasting intrusion profiles for agreement and

anaphora: Experimental and modeling evidence. Journal of Memory and Lanuage, 69, 85–103. https://doi.
org/10.1016/j.jml.2013.04.003.

Fodor, J. A., Bever, T. G., & Garrett, M. F. (1974). The psychology of language. New York: McGraw-Hill.

Foraker, S., & McElree, B. (2007). The role of prominence in pronoun resolution: Active versus passive

representations. Journal of Memory and Language, 56, 357–383. https://doi.org/10.1016/j.jml.2006.07.004.

Frazier, L., & Fodor, J. D. (1978). The sausage machine: A new two-stage parsing model. Cognition, 6, 291–
325. https://doi.org/10.1016/0010-0277(78)90002-1.

Gelman, A., & Hill, J. (2007). Data analysis using regression and multilevel/hierarchical models. Cambridge,

UK: Cambridge University Press.

26 of 30 D. Parker / Cognitive Science 43 (2019)



Gibson, E., Paintadosi, S. T., Brink, K., Bergen, L., Lim, E., & Saxe, R. (2013). A noisy-channel account of

crosslinguistic word-order variation. Psychological Science, 24, 1079–1088. https://doi.org/10.1177/

0956797612463705.

Gillund, G., & Shiffrin, R. M. (1984). A retreival model for both recognition and recall. Psychological
Review, 91, 1–67. https://doi.org/10.1037/0033-295X.91.1.1.

Grus, J. (2015). Data science from scratch. Sebastopol, CA: O’Reilly.
Halle, M., & Stevens, K. (1959). Analysis by synthesis. In W. Wathen-Dunn & L. E. Woods (Eds.),

Proceedings of the seminar on speech compression and processing (pp. 1–4). Bedford, MA: L.G.Hanscom

Field.

Halle, M., & Stevens, K. (1963). Speech recognition: A model and a program for research. IRE Transactions
on Information Theory, 8, 155–159. https://doi.org/10.1109/TIT.1962.1057686.

Hintzman, D. L. (1984). MINERVA2: A simulation model of human memory. Behavior Research Methods,
Instruments, and Computers, 16, 96–101. https://doi.org/10.3758/BF03202365.

J€ager, L., Benz, L., Roeser, J., Dillon, B., & Vasishth, S. (2015). Teasing apart retrieval and encoding

interference in the processing of anaphors. Frontiers in Psychology, 6, 1–18. https://doi.org/10.3389/fpsyg.
2015.00506.

J€ager, L., Engelmann, F., & Vasishth, S. (2015). Retrieval interference in reflexive processing: Experimental

evidence from Mandarin, and computational modeling. Frontiers in Psychology, 6, 1–24. https://doi.org/
10.3389/fpsyg.2015.00617.

J€ager, L. A., Engelmann, F., & Vasishth, S. (2017). Similarity-based interference in sentence comprehension:

Literature review and Bayesian meta-analysis. Journal of Memory and Language, 94, 305–315. https://doi.
org/10.1016/j.jml.2017.01.004.

Jarvella, R. (1971). Syntactic processing of connected speech. Journal of Verbal Learning and Verbal
Behavior, 10, 409–416. https://doi.org/10.1016/S0022-5371(71)80040-3.

Jarvella, R., & Herman, S. (1972). Clause structure of sentences and speech processing. Perception and
Psychophysics, 11, 381–384. https://doi.org/10.3758/BF03206272.

Jonides, J., Lewis, R. L., Nee, D. E., Lustig, C. A., Berman, M. G., & Moore, K. S. (2008). The mind and

brain of short-term memory. Annual Review of Psychology, 59, 193–224. https://doi.org/10.1146/annurev.
psych.59.103006.093615.

Kimball, J. (1973). Seven principles of surface structure parsing in natural language. Cognition, 2, 15–47.
https://doi.org/10.1016/0010-0277(72)90028-5.

Kimball, J. (1975). Predictive analysis and over-the-top parsing. In J. Kimball (Ed.), Syntax and semantics
(pp. 155–179). New York: Academic Press.

Kohonen, T. (1980). Content-addressable memories. Berlin: Springer-Verlag. https://doi.org/10.1007/978-3-

642-96552-4.

Kush, D. (2013). Respecting relations: Memory access and antecedent retrieval in incremental sentence

processing. Ph.D. Dissertation, University of Maryland.

Kush, D., & Phillips, C. (2014). Local anaphor licensing in an SOV language: Implications for retrieval

strategies. Frontiers in Psychology, 5, 1–12. https://doi.org/10.3389/fpsyg.2014.01252.
Lago, S., Shalom, D., Sigman, M., Lau, E., & Phillips, C. (2015). Agreement processes in Spanish

comprehension. Journal of Memory and Language, 82, 133–149. https://doi.org/10.1016/j.jml.2015.02.002.

Levy, R. (2008). A noisy-channel model of rational human sentence comprehension under uncertain input. In

D. Yarowsky, et al. (Eds.), Proceedings of the 13th conference on empirical methods in natural language
processing (pp. 234–243). Stroudsburg, PA: Association for Computational Linguistics.

Lewis, R. L. (1996). Interference in short-term memory: The magical number two (or three) in sentence

processing. Journal of Psycholinguistic Research, 25, 93–115. https://doi.org/10.1007/BF01708421.
Lewis, R. L., Howes, A., & Singh, S. (2014). Computational Rationality: Linking Mechanisms and Behavior

Through Bounded Utility Maximization. Topics in Cognitive Science, 6, 279–311. https://doi.org/10.

1111/tops.12086.

D. Parker / Cognitive Science 43 (2019) 27 of 30



Lewis, R. L., & Vasishth, S. (2005). An activation-based model of sentence processing as skilled memory

retrieval. Cognitive Science, 29, 375–419. https://doi.org/10.1207/s15516709cog0000_25.
Lewis, R. L., Vasishth, S., & Van Dyke, J. A. (2006). Computational principles of working memory in sentence

comprehension. Trends in Cognitive Science, 10, 447–454. https://doi.org/10.1016/j.tics.2006.08.007.
Martin, A. E. (2016). Langauge processing as cue integration: Grounding the psychology of language in

perception and neurophysiology. Frontiers in Psychology, 7, 1–17. https://doi.org/10.3389/fpsyg.2016.

00120.

Martin, A. E., & McElree, B. (2008). A content-addressable pointer mechanism underlies comprehension of

verb-phrase ellipsis. Journal of Memory and Language, 58, 879–906. https://doi.org/10.1016/j.jml.2007.06.

010.

Martin, A. E., & McElree, B. (2009). Memory operations that support language comprehension: Evidence

from verb-phrase ellipsis. Journal of Experimental Psychology: Learning, Memory, and Cognition, 35,
1231–1239. https://doi.org/10.1037/a0016271.

Martin, A. E., & McElree, B. (2011). Direct-access retrieval during sentence comprehension: Evidence from

Sluicing. Journal of Memory and Language, 64, 327–343. https://doi.org/10.1016/j.jml.2010.12.006.

Martin, A. E., Nieuwland, M. S., & Carreiras, M. (2012). Event-related brain potentials index cue-based

retrieval interference during sentence comprehension. NeuroImage, 59, 1859–1869. https://doi.org/10.1016/
j.neuroimage.2011.08.057.

McElree, B. (2000). Sentence comprehension is mediated by content-addressable memory structures. Journal
of Psycholinguistic Research, 29, 155–200. https://doi.org/10.1023/A:1005184709695; https://doi.org/10.

1023/a:1005140927442.

McElree, B. (2006). Accessing recent events. In B. H. Ross (Ed.), The psychology of learning and motivation
—Advances in research and theory (pp. 155–200). San Diego, CA: Academic Press.

McElree, B., & Dosher, B. A. (1989). Serial position and set size in short-term memory: Time course of

recognition. Journal of Experimental Pscyhology, 18, 346–373. https://doi.org/10.1037/0096-3445.118.4.
346.

McElree, B., Foraker, S., & Dyer, L. (2003). Memory structures that subserve sentence comprehension.

Journal of Memory and Language, 48, 67–91. https://doi.org/10.1016/S0749-596X(02)00515-6.
Miller, G. A. (1956). The magical number seven, plus or minus two: Some limits on our capacity for

processing information. Psychological Review, 101, 343–352. https://doi.org/10.1037/0033-295X.101.2.

343.

Miller, G. A., & Chomsky, N. (1963). Finitary models of language users. In R. Duncan Luce, R. R. Bush, &

E. Galanter (Eds.), Handbook of mathematical psychology (Vol. 2, pp. 419–491). New York: Wiley.

Miller, G. A., & Isard, S. D. (1963). Some perceptual consequences of linguistic rules. Journal of Verbal
Learning and Verbal Behavior, 2, 217–228. https://doi.org/10.1016/S0022-5371(63)80087-0.

Nairne, J. S. (1990). A feature model of immediate memory. Memory & Cognition, 18, 251–269. https://doi.
org/10.3758/BF03213879.

Nairne, J. S. (2002). Remembering over the short-term: The case against the standard model. Annual Review
of Psychology, 53, 53–81. https://doi.org/10.1146/annurev.psych.53.100901.135131.

Nicenboim, B., Loga�cev, P., Gattei, C., & Vasishth, S. (2016). When high-capacity readers slow down and

low-capacity readers speed up: Working memory and locality effects. Frontiers in Psychology, 7, 1–24.
https://doi.org/10.3389/fpsyg.2016.00280.

Nicenboim, B., & Vasishth, S. (2018). Models of retrieval in sentence comprehension: A computational

evaluation using Bayesian hierarchical modeling. Journal of Memory and Language, 99, 1–34. https://doi.
org/10.1016/j.jml.2017.08.004.

Nicol, J., & Swinney, D. (1989). The role of structure in coreference assignment during sentence

comprehension. Journal of Psycholinguistic Research, 18, 5–19. https://doi.org/10.1007/BF01069043.
Oppenheimer, D. M., Meyvis, T., & Davidenko, N. (2009). Instructional manipulation checks: Detecting

satisficing to increase statistical power. Journal of Experimental Social Psychology, 45, 867–872. https://doi.
org/10.1016/j.jesp.2009.03.009.

28 of 30 D. Parker / Cognitive Science 43 (2019)



Paape, D. (2016). Filling the silence: Reactivation, not reconstruction. Frontiers in Psychology, 7, 1–18.
https://doi.org/10.3389/fpsyg.2016.00027.

Parker, D., Lago, S., & Phillips, C. (2015). Interference in the processing of adjunct control. Frontiers in
Psychology, 6, 1–13. https://doi.org/10.3389/fpsyg.2015.01346.

Parker, D., & Lantz, D. (2017). Encoding and accessing linguistic representations in a dynamically structured

holographic memory system. Topics in Cognitive Science, 9, 51–68. https://doi.org/10.1111/tops.12246.
Parker, D., & Phillips, C. (2016). Negative polarity illusions and the format of hierarchical encodings in

memory. Cognition, 157, 321–339. https://doi.org/10.1016/j.cognition.2016.08.016.
Parker, D., & Phillips, C. (2017). Reflexive attraction in comprehension is selective. Journal of Memory and

Language, 94, 272–290. https://doi.org/10.1016/j.jml.2017.01.002.

Patil, U., Vasishth, S., & Lewis, R. (2016). Retrieval interference in syntactic processing: The case of

reflexive binding in English. Frontiers in Psychology, 7, 1–18. https://doi.org/10.3389/fpsyg.2016.00329.
Patson, N. D., & Husband, M. (2015). Misinterpretations in agreement and agreement attraction. Quarterly

Journal of Experimental Psychology, 69, 950–971. https://doi.org/10.1080/17470218.2014.992445.
Pearlmutter, N., Garnsey, S., & Bock, K. (1999). Agreement processes in sentence comprehension. Journal of

Memory and Language, 41, 427–456. https://doi.org/10.1006/jmla.1999.2653.

Poeppel, D., & Monahan, P. (2010). Feedforward and feedback in speech perception: Revisiting analysis-by-

synthesis. Language and Cognitive Processes, 26, 935–951. https://doi.org/10.1080/01690965.2010.493301.
R Development Core Team. (2018). R: A language and environment for statistical computing. R Foundation

for Statistical Computing. Retrieved from http://www.R-project.org.

Raajimakers, J. G. W., & Shiffrin, R. M. (1981). Search of associative memory. Psychological Review, 88,
93–134. https://doi.org/10.1037/0033-295X.88.2.93.

Ratcliff, R. (1993). Methods for dealing with reaction time outliers. Psychological Bulletin, 114, 510.

https://doi.org/10.1037/0033-2909.114.3.510.

Reed, A. V. (1973). Speed-accuracy trade-off in recognition memory. Science, 181, 574–576. https://doi.org/
10.1126/science.181.4099.574.

Reinhart, T. (1976). The syntactic domain of anaphora. Ph.D. dissertation, Massachusetts Institute of

Technology.

Reinhart, T., & Reuland, E. (1993). Reflexivity. Linguistic Inquiry, 24, 657–720.
Runner, J., Sussman, R. S., & Tanenhaus, M. K. (2006). Processing reflexives and pronouns in picture noun

phrases. Cognitive Science, 30, 193–241. https://doi.org/10.1207/s15516709cog0000_58.
Slioussar, N., & Malko, A. (2016). Gender agreement attraction in Russian: Production and comprehension

evidence. Frontiers in Psychology, 7, 1–20. https://doi.org/10.3389/fpsyg.2016.01651.
Staub, A. (2009). On the interpretation of the number attraction effect: Response time evidence. Journal of

Memory and Language, 60, 308–327. https://doi.org/10.1016/j.jml.2008.11.002.

Staub, A. (2010). Response time distributional evidence for distinct varieties of number attraction. Cognition,
114, 447–454. https://doi.org/10.1016/j.cognition.2009.11.003.

Sturt, P. (2003). The time-course of the application of binding constraints in reference resolution. Journal of
Memory and Language, 48, 542–562. https://doi.org/10.1016/S0749-596X(02)00536-3.

Tanner, D., Nicol, J., & Brehm, L. (2014). The time-course of feature interference in agreement

comprehension: Multiple mechanisms and asymmetrical attraction. Journal of Memory and Language, 76,
195–215. https://doi.org/10.1016/j.jml.2014.07.003.

Trommersh€auser, J., K€ording, K., & Landy, M. S. (2011). Sensory cue integration. New York: Oxford

University Press. https://doi.org/10.1093/acprof:oso/9780195387247.001.0001.

Tucker, M. A., & Almeida, D. (2017). The complex structure of agreement errors: Evidence from

distributional analyses of agreement attraction in Arabic. In A. Lamont & K. Tetzloff (Eds.), Proceedings
of the 47th Meeting of the North East Linguistics Society (pp. 45–54). Amherst, MA: GLSA.

Tucker, M. A., Idrissi, A., & Almeida, D. (2015). Representing number in the real-time processing of

agreement: Self-paced reading evidence from Arabic. Frontiers in Psychology, 6, 1–21. https://doi.org/10.
3389/fpsyg.2015.00347.

D. Parker / Cognitive Science 43 (2019) 29 of 30



Van Dyke, J. A. (2007). Interference effects from grammatically unavailable constituents during sentence

processing. Journal of Experimental Psychology: Learning, Memory, and Cognition, 33, 407–430. https://doi.
org/10.1037/0278-7393.33.2.407.

Van Dyke, J. A., & Lewis, R. L. (2003). Distinguishing effects of structure and decay on attachment and

repair: A cue-based parsing account of recovery from misanalyzed ambiguities. Journal of Memory and
Language, 49, 285–316. https://doi.org/10.1016/S0749-596X(03)00081-0.

Van Dyke, J. A., & McElree, B. (2006). Retrieval interference in sentence comprehension. Journal of
Memory and Language, 55, 157–166. https://doi.org/10.1016/j.jml.2006.03.007.

Van Dyke, J. A., & McElree, B. (2007). Similarity-based proactive and retroactive interference reduces

quality of linguistic representations. Poster presented at the CUNY Conference on Human Sentence

Processing. San Diego, CA.

Van Dyke, J. A., & McElree, B. (2011). Cue-dependent interference in comprehension. Journal of Memory
and Language, 65, 247–263. https://doi.org/10.1016/j.jml.2011.05.002.

Vasishth, S., Br€ussow, S., Lewis, R. L., & Drenhaus, H. (2008). Processing polarity: How the ungrammatical

intrudes on the grammatical. Cognitive Science, 32, 685–712. https://doi.org/10.1080/03640210802066865.
Vasishth, S., & Nicenboim, B. (2016). Statistical Methods for Linguistic Research: Foundational Ideas - Part

1. Language and Linguistics Compass, 10, 349–369.
Wagers, M. W., Lau, E. F., & Phillips, C. (2009). Agreement attraction in comprehension: Representations

and processes. Journal of Memory and Language, 61, 206–237.
Wagers, M. W. (2008). The structure of memory meets memory for structure in linguistic cognition. Ph.D.

Dissertation, University of Maryland.

Wundt, W. (1904). The psychology of the sentence. Reprinted in A. L. Blumenthal (Ed.). (1970). Language
and psychology: Historical aspects of psycholinguistics. (pp. 9–32). New York: Wiley.

Xiang, M., Dillon, B., & Phillips, C. (2009). Illusory licensing effects across dependency types: ERP

evidence. Brain and Language, 108, 40–55.
Xiang, M., Grove, J., & Giannakidou, A. (2013). Dependency dependent interference: NPI interference,

agreement attraction, and global pragmatic inferences. Frontiers in Psychology, 4, 1–19.

Supporting Information

Additional supporting information may be found

online in the Supporting Information section at the end

of the article:

Data S1. Supplementary materials.

30 of 30 D. Parker / Cognitive Science 43 (2019)


	Cue combinatorics in memory retrieval for anaphora
	Cue Combinatorics in Memory Retrieval for Anaphora

